xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 2c64e9cb)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 #include <asm/cpu_device_id.h>
22 
23 #include "../perf_event.h"
24 
25 /*
26  * Intel PerfMon, used on Core and later.
27  */
28 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 {
30 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
31 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
32 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
33 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
34 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
35 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
36 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
37 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
38 };
39 
40 static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 {
42 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
43 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
44 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
45 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
46 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
47 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
48 	EVENT_CONSTRAINT_END
49 };
50 
51 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52 {
53 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
54 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
57 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
58 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
59 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
60 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
61 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
62 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
63 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
66 	EVENT_CONSTRAINT_END
67 };
68 
69 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70 {
71 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
72 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
75 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
76 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
77 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
78 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
79 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
80 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
81 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
82 	EVENT_CONSTRAINT_END
83 };
84 
85 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86 {
87 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
88 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
90 	EVENT_EXTRA_END
91 };
92 
93 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94 {
95 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
96 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
99 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
100 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
102 	EVENT_CONSTRAINT_END
103 };
104 
105 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 {
107 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
108 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
111 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
116 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
118 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
119 
120 	/*
121 	 * When HT is off these events can only run on the bottom 4 counters
122 	 * When HT is on, they are impacted by the HT bug and require EXCL access
123 	 */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128 
129 	EVENT_CONSTRAINT_END
130 };
131 
132 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
133 {
134 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
135 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
136 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
137 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
139 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
142 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
147 
148 	/*
149 	 * When HT is off these events can only run on the bottom 4 counters
150 	 * When HT is on, they are impacted by the HT bug and require EXCL access
151 	 */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
156 
157 	EVENT_CONSTRAINT_END
158 };
159 
160 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161 {
162 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
163 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
164 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
166 	EVENT_EXTRA_END
167 };
168 
169 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
170 {
171 	EVENT_CONSTRAINT_END
172 };
173 
174 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175 {
176 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
177 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
179 	EVENT_CONSTRAINT_END
180 };
181 
182 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
183 {
184 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
185 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
186 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
187 	EVENT_CONSTRAINT_END
188 };
189 
190 static struct event_constraint intel_skl_event_constraints[] = {
191 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
192 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
193 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
194 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
195 
196 	/*
197 	 * when HT is off, these can only run on the bottom 4 counters
198 	 */
199 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
204 
205 	EVENT_CONSTRAINT_END
206 };
207 
208 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
210 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
211 	EVENT_EXTRA_END
212 };
213 
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219 	EVENT_EXTRA_END
220 };
221 
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227 	EVENT_EXTRA_END
228 };
229 
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 	/*
235 	 * Note the low 8 bits eventsel code is not a continuous field, containing
236 	 * some #GPing bits. These are masked out.
237 	 */
238 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239 	EVENT_EXTRA_END
240 };
241 
242 static struct event_constraint intel_icl_event_constraints[] = {
243 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
244 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0),	/* INST_RETIRED.PREC_DIST */
245 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
246 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
247 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
248 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
249 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
250 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
251 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
252 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
253 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
254 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
255 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
256 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
257 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
259 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
260 	EVENT_CONSTRAINT_END
261 };
262 
263 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
264 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff9fffull, RSP_0),
265 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff9fffull, RSP_1),
266 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
267 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
268 	EVENT_EXTRA_END
269 };
270 
271 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
272 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
273 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
274 
275 static struct attribute *nhm_mem_events_attrs[] = {
276 	EVENT_PTR(mem_ld_nhm),
277 	NULL,
278 };
279 
280 /*
281  * topdown events for Intel Core CPUs.
282  *
283  * The events are all in slots, which is a free slot in a 4 wide
284  * pipeline. Some events are already reported in slots, for cycle
285  * events we multiply by the pipeline width (4).
286  *
287  * With Hyper Threading on, topdown metrics are either summed or averaged
288  * between the threads of a core: (count_t0 + count_t1).
289  *
290  * For the average case the metric is always scaled to pipeline width,
291  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
292  */
293 
294 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
295 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
296 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
297 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
298 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
299 	"event=0xe,umask=0x1");			/* uops_issued.any */
300 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
301 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
302 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
303 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
304 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
305 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
306 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
307 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
308 	"4", "2");
309 
310 static struct attribute *snb_events_attrs[] = {
311 	EVENT_PTR(td_slots_issued),
312 	EVENT_PTR(td_slots_retired),
313 	EVENT_PTR(td_fetch_bubbles),
314 	EVENT_PTR(td_total_slots),
315 	EVENT_PTR(td_total_slots_scale),
316 	EVENT_PTR(td_recovery_bubbles),
317 	EVENT_PTR(td_recovery_bubbles_scale),
318 	NULL,
319 };
320 
321 static struct attribute *snb_mem_events_attrs[] = {
322 	EVENT_PTR(mem_ld_snb),
323 	EVENT_PTR(mem_st_snb),
324 	NULL,
325 };
326 
327 static struct event_constraint intel_hsw_event_constraints[] = {
328 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
329 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
330 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
331 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
332 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
333 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
334 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
335 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
336 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
337 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
338 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
339 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
340 
341 	/*
342 	 * When HT is off these events can only run on the bottom 4 counters
343 	 * When HT is on, they are impacted by the HT bug and require EXCL access
344 	 */
345 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
346 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
347 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
348 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
349 
350 	EVENT_CONSTRAINT_END
351 };
352 
353 static struct event_constraint intel_bdw_event_constraints[] = {
354 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
355 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
356 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
357 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
358 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
359 	/*
360 	 * when HT is off, these can only run on the bottom 4 counters
361 	 */
362 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
363 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
364 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
365 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
366 	EVENT_CONSTRAINT_END
367 };
368 
369 static u64 intel_pmu_event_map(int hw_event)
370 {
371 	return intel_perfmon_event_map[hw_event];
372 }
373 
374 /*
375  * Notes on the events:
376  * - data reads do not include code reads (comparable to earlier tables)
377  * - data counts include speculative execution (except L1 write, dtlb, bpu)
378  * - remote node access includes remote memory, remote cache, remote mmio.
379  * - prefetches are not included in the counts.
380  * - icache miss does not include decoded icache
381  */
382 
383 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
384 #define SKL_DEMAND_RFO			BIT_ULL(1)
385 #define SKL_ANY_RESPONSE		BIT_ULL(16)
386 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
387 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
388 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
389 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
390 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
391 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
392 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
393 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
394 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
395 #define SKL_SPL_HIT			BIT_ULL(30)
396 #define SKL_SNOOP_NONE			BIT_ULL(31)
397 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
398 #define SKL_SNOOP_MISS			BIT_ULL(33)
399 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
400 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
401 #define SKL_SNOOP_HITM			BIT_ULL(36)
402 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
403 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
404 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
405 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
406 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
407 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
408 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
409 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
410 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
411 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
412 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
413 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
414 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
415 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
416 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
417 
418 static __initconst const u64 skl_hw_cache_event_ids
419 				[PERF_COUNT_HW_CACHE_MAX]
420 				[PERF_COUNT_HW_CACHE_OP_MAX]
421 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
422 {
423  [ C(L1D ) ] = {
424 	[ C(OP_READ) ] = {
425 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
426 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
427 	},
428 	[ C(OP_WRITE) ] = {
429 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
430 		[ C(RESULT_MISS)   ] = 0x0,
431 	},
432 	[ C(OP_PREFETCH) ] = {
433 		[ C(RESULT_ACCESS) ] = 0x0,
434 		[ C(RESULT_MISS)   ] = 0x0,
435 	},
436  },
437  [ C(L1I ) ] = {
438 	[ C(OP_READ) ] = {
439 		[ C(RESULT_ACCESS) ] = 0x0,
440 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
441 	},
442 	[ C(OP_WRITE) ] = {
443 		[ C(RESULT_ACCESS) ] = -1,
444 		[ C(RESULT_MISS)   ] = -1,
445 	},
446 	[ C(OP_PREFETCH) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x0,
448 		[ C(RESULT_MISS)   ] = 0x0,
449 	},
450  },
451  [ C(LL  ) ] = {
452 	[ C(OP_READ) ] = {
453 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
454 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
455 	},
456 	[ C(OP_WRITE) ] = {
457 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
458 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
459 	},
460 	[ C(OP_PREFETCH) ] = {
461 		[ C(RESULT_ACCESS) ] = 0x0,
462 		[ C(RESULT_MISS)   ] = 0x0,
463 	},
464  },
465  [ C(DTLB) ] = {
466 	[ C(OP_READ) ] = {
467 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
468 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
469 	},
470 	[ C(OP_WRITE) ] = {
471 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
472 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
473 	},
474 	[ C(OP_PREFETCH) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x0,
476 		[ C(RESULT_MISS)   ] = 0x0,
477 	},
478  },
479  [ C(ITLB) ] = {
480 	[ C(OP_READ) ] = {
481 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
482 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
483 	},
484 	[ C(OP_WRITE) ] = {
485 		[ C(RESULT_ACCESS) ] = -1,
486 		[ C(RESULT_MISS)   ] = -1,
487 	},
488 	[ C(OP_PREFETCH) ] = {
489 		[ C(RESULT_ACCESS) ] = -1,
490 		[ C(RESULT_MISS)   ] = -1,
491 	},
492  },
493  [ C(BPU ) ] = {
494 	[ C(OP_READ) ] = {
495 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
496 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
497 	},
498 	[ C(OP_WRITE) ] = {
499 		[ C(RESULT_ACCESS) ] = -1,
500 		[ C(RESULT_MISS)   ] = -1,
501 	},
502 	[ C(OP_PREFETCH) ] = {
503 		[ C(RESULT_ACCESS) ] = -1,
504 		[ C(RESULT_MISS)   ] = -1,
505 	},
506  },
507  [ C(NODE) ] = {
508 	[ C(OP_READ) ] = {
509 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
510 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
511 	},
512 	[ C(OP_WRITE) ] = {
513 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
514 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
515 	},
516 	[ C(OP_PREFETCH) ] = {
517 		[ C(RESULT_ACCESS) ] = 0x0,
518 		[ C(RESULT_MISS)   ] = 0x0,
519 	},
520  },
521 };
522 
523 static __initconst const u64 skl_hw_cache_extra_regs
524 				[PERF_COUNT_HW_CACHE_MAX]
525 				[PERF_COUNT_HW_CACHE_OP_MAX]
526 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
527 {
528  [ C(LL  ) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
531 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
532 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
533 				       SKL_L3_MISS|SKL_ANY_SNOOP|
534 				       SKL_SUPPLIER_NONE,
535 	},
536 	[ C(OP_WRITE) ] = {
537 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
538 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
539 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
540 				       SKL_L3_MISS|SKL_ANY_SNOOP|
541 				       SKL_SUPPLIER_NONE,
542 	},
543 	[ C(OP_PREFETCH) ] = {
544 		[ C(RESULT_ACCESS) ] = 0x0,
545 		[ C(RESULT_MISS)   ] = 0x0,
546 	},
547  },
548  [ C(NODE) ] = {
549 	[ C(OP_READ) ] = {
550 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
551 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
552 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
553 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
554 	},
555 	[ C(OP_WRITE) ] = {
556 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
557 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
558 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
559 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
560 	},
561 	[ C(OP_PREFETCH) ] = {
562 		[ C(RESULT_ACCESS) ] = 0x0,
563 		[ C(RESULT_MISS)   ] = 0x0,
564 	},
565  },
566 };
567 
568 #define SNB_DMND_DATA_RD	(1ULL << 0)
569 #define SNB_DMND_RFO		(1ULL << 1)
570 #define SNB_DMND_IFETCH		(1ULL << 2)
571 #define SNB_DMND_WB		(1ULL << 3)
572 #define SNB_PF_DATA_RD		(1ULL << 4)
573 #define SNB_PF_RFO		(1ULL << 5)
574 #define SNB_PF_IFETCH		(1ULL << 6)
575 #define SNB_LLC_DATA_RD		(1ULL << 7)
576 #define SNB_LLC_RFO		(1ULL << 8)
577 #define SNB_LLC_IFETCH		(1ULL << 9)
578 #define SNB_BUS_LOCKS		(1ULL << 10)
579 #define SNB_STRM_ST		(1ULL << 11)
580 #define SNB_OTHER		(1ULL << 15)
581 #define SNB_RESP_ANY		(1ULL << 16)
582 #define SNB_NO_SUPP		(1ULL << 17)
583 #define SNB_LLC_HITM		(1ULL << 18)
584 #define SNB_LLC_HITE		(1ULL << 19)
585 #define SNB_LLC_HITS		(1ULL << 20)
586 #define SNB_LLC_HITF		(1ULL << 21)
587 #define SNB_LOCAL		(1ULL << 22)
588 #define SNB_REMOTE		(0xffULL << 23)
589 #define SNB_SNP_NONE		(1ULL << 31)
590 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
591 #define SNB_SNP_MISS		(1ULL << 33)
592 #define SNB_NO_FWD		(1ULL << 34)
593 #define SNB_SNP_FWD		(1ULL << 35)
594 #define SNB_HITM		(1ULL << 36)
595 #define SNB_NON_DRAM		(1ULL << 37)
596 
597 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
598 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
599 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
600 
601 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
602 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
603 				 SNB_HITM)
604 
605 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
606 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
607 
608 #define SNB_L3_ACCESS		SNB_RESP_ANY
609 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
610 
611 static __initconst const u64 snb_hw_cache_extra_regs
612 				[PERF_COUNT_HW_CACHE_MAX]
613 				[PERF_COUNT_HW_CACHE_OP_MAX]
614 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
615 {
616  [ C(LL  ) ] = {
617 	[ C(OP_READ) ] = {
618 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
619 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
620 	},
621 	[ C(OP_WRITE) ] = {
622 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
623 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
624 	},
625 	[ C(OP_PREFETCH) ] = {
626 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
627 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
628 	},
629  },
630  [ C(NODE) ] = {
631 	[ C(OP_READ) ] = {
632 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
633 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
634 	},
635 	[ C(OP_WRITE) ] = {
636 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
637 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
638 	},
639 	[ C(OP_PREFETCH) ] = {
640 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
641 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
642 	},
643  },
644 };
645 
646 static __initconst const u64 snb_hw_cache_event_ids
647 				[PERF_COUNT_HW_CACHE_MAX]
648 				[PERF_COUNT_HW_CACHE_OP_MAX]
649 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
650 {
651  [ C(L1D) ] = {
652 	[ C(OP_READ) ] = {
653 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
654 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
655 	},
656 	[ C(OP_WRITE) ] = {
657 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
658 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
659 	},
660 	[ C(OP_PREFETCH) ] = {
661 		[ C(RESULT_ACCESS) ] = 0x0,
662 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
663 	},
664  },
665  [ C(L1I ) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x0,
668 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = -1,
672 		[ C(RESULT_MISS)   ] = -1,
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(LL  ) ] = {
680 	[ C(OP_READ) ] = {
681 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
682 		[ C(RESULT_ACCESS) ] = 0x01b7,
683 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
684 		[ C(RESULT_MISS)   ] = 0x01b7,
685 	},
686 	[ C(OP_WRITE) ] = {
687 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
688 		[ C(RESULT_ACCESS) ] = 0x01b7,
689 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
690 		[ C(RESULT_MISS)   ] = 0x01b7,
691 	},
692 	[ C(OP_PREFETCH) ] = {
693 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
694 		[ C(RESULT_ACCESS) ] = 0x01b7,
695 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
696 		[ C(RESULT_MISS)   ] = 0x01b7,
697 	},
698  },
699  [ C(DTLB) ] = {
700 	[ C(OP_READ) ] = {
701 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
702 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
703 	},
704 	[ C(OP_WRITE) ] = {
705 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
706 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
707 	},
708 	[ C(OP_PREFETCH) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x0,
710 		[ C(RESULT_MISS)   ] = 0x0,
711 	},
712  },
713  [ C(ITLB) ] = {
714 	[ C(OP_READ) ] = {
715 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
716 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
717 	},
718 	[ C(OP_WRITE) ] = {
719 		[ C(RESULT_ACCESS) ] = -1,
720 		[ C(RESULT_MISS)   ] = -1,
721 	},
722 	[ C(OP_PREFETCH) ] = {
723 		[ C(RESULT_ACCESS) ] = -1,
724 		[ C(RESULT_MISS)   ] = -1,
725 	},
726  },
727  [ C(BPU ) ] = {
728 	[ C(OP_READ) ] = {
729 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
730 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
731 	},
732 	[ C(OP_WRITE) ] = {
733 		[ C(RESULT_ACCESS) ] = -1,
734 		[ C(RESULT_MISS)   ] = -1,
735 	},
736 	[ C(OP_PREFETCH) ] = {
737 		[ C(RESULT_ACCESS) ] = -1,
738 		[ C(RESULT_MISS)   ] = -1,
739 	},
740  },
741  [ C(NODE) ] = {
742 	[ C(OP_READ) ] = {
743 		[ C(RESULT_ACCESS) ] = 0x01b7,
744 		[ C(RESULT_MISS)   ] = 0x01b7,
745 	},
746 	[ C(OP_WRITE) ] = {
747 		[ C(RESULT_ACCESS) ] = 0x01b7,
748 		[ C(RESULT_MISS)   ] = 0x01b7,
749 	},
750 	[ C(OP_PREFETCH) ] = {
751 		[ C(RESULT_ACCESS) ] = 0x01b7,
752 		[ C(RESULT_MISS)   ] = 0x01b7,
753 	},
754  },
755 
756 };
757 
758 /*
759  * Notes on the events:
760  * - data reads do not include code reads (comparable to earlier tables)
761  * - data counts include speculative execution (except L1 write, dtlb, bpu)
762  * - remote node access includes remote memory, remote cache, remote mmio.
763  * - prefetches are not included in the counts because they are not
764  *   reliably counted.
765  */
766 
767 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
768 #define HSW_DEMAND_RFO			BIT_ULL(1)
769 #define HSW_ANY_RESPONSE		BIT_ULL(16)
770 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
771 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
772 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
773 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
774 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
775 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
776 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
777 					 HSW_L3_MISS_REMOTE_HOP2P)
778 #define HSW_SNOOP_NONE			BIT_ULL(31)
779 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
780 #define HSW_SNOOP_MISS			BIT_ULL(33)
781 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
782 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
783 #define HSW_SNOOP_HITM			BIT_ULL(36)
784 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
785 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
786 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
787 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
788 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
789 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
790 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
791 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
792 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
793 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
794 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
795 
796 #define BDW_L3_MISS_LOCAL		BIT(26)
797 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
798 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
799 					 HSW_L3_MISS_REMOTE_HOP2P)
800 
801 
802 static __initconst const u64 hsw_hw_cache_event_ids
803 				[PERF_COUNT_HW_CACHE_MAX]
804 				[PERF_COUNT_HW_CACHE_OP_MAX]
805 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
806 {
807  [ C(L1D ) ] = {
808 	[ C(OP_READ) ] = {
809 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
810 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
811 	},
812 	[ C(OP_WRITE) ] = {
813 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
814 		[ C(RESULT_MISS)   ] = 0x0,
815 	},
816 	[ C(OP_PREFETCH) ] = {
817 		[ C(RESULT_ACCESS) ] = 0x0,
818 		[ C(RESULT_MISS)   ] = 0x0,
819 	},
820  },
821  [ C(L1I ) ] = {
822 	[ C(OP_READ) ] = {
823 		[ C(RESULT_ACCESS) ] = 0x0,
824 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
825 	},
826 	[ C(OP_WRITE) ] = {
827 		[ C(RESULT_ACCESS) ] = -1,
828 		[ C(RESULT_MISS)   ] = -1,
829 	},
830 	[ C(OP_PREFETCH) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x0,
832 		[ C(RESULT_MISS)   ] = 0x0,
833 	},
834  },
835  [ C(LL  ) ] = {
836 	[ C(OP_READ) ] = {
837 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
838 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
839 	},
840 	[ C(OP_WRITE) ] = {
841 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
842 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
843 	},
844 	[ C(OP_PREFETCH) ] = {
845 		[ C(RESULT_ACCESS) ] = 0x0,
846 		[ C(RESULT_MISS)   ] = 0x0,
847 	},
848  },
849  [ C(DTLB) ] = {
850 	[ C(OP_READ) ] = {
851 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
852 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
853 	},
854 	[ C(OP_WRITE) ] = {
855 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
856 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
857 	},
858 	[ C(OP_PREFETCH) ] = {
859 		[ C(RESULT_ACCESS) ] = 0x0,
860 		[ C(RESULT_MISS)   ] = 0x0,
861 	},
862  },
863  [ C(ITLB) ] = {
864 	[ C(OP_READ) ] = {
865 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
866 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
867 	},
868 	[ C(OP_WRITE) ] = {
869 		[ C(RESULT_ACCESS) ] = -1,
870 		[ C(RESULT_MISS)   ] = -1,
871 	},
872 	[ C(OP_PREFETCH) ] = {
873 		[ C(RESULT_ACCESS) ] = -1,
874 		[ C(RESULT_MISS)   ] = -1,
875 	},
876  },
877  [ C(BPU ) ] = {
878 	[ C(OP_READ) ] = {
879 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
880 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
881 	},
882 	[ C(OP_WRITE) ] = {
883 		[ C(RESULT_ACCESS) ] = -1,
884 		[ C(RESULT_MISS)   ] = -1,
885 	},
886 	[ C(OP_PREFETCH) ] = {
887 		[ C(RESULT_ACCESS) ] = -1,
888 		[ C(RESULT_MISS)   ] = -1,
889 	},
890  },
891  [ C(NODE) ] = {
892 	[ C(OP_READ) ] = {
893 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
894 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
895 	},
896 	[ C(OP_WRITE) ] = {
897 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
898 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
899 	},
900 	[ C(OP_PREFETCH) ] = {
901 		[ C(RESULT_ACCESS) ] = 0x0,
902 		[ C(RESULT_MISS)   ] = 0x0,
903 	},
904  },
905 };
906 
907 static __initconst const u64 hsw_hw_cache_extra_regs
908 				[PERF_COUNT_HW_CACHE_MAX]
909 				[PERF_COUNT_HW_CACHE_OP_MAX]
910 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
911 {
912  [ C(LL  ) ] = {
913 	[ C(OP_READ) ] = {
914 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
915 				       HSW_LLC_ACCESS,
916 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
917 				       HSW_L3_MISS|HSW_ANY_SNOOP,
918 	},
919 	[ C(OP_WRITE) ] = {
920 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
921 				       HSW_LLC_ACCESS,
922 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
923 				       HSW_L3_MISS|HSW_ANY_SNOOP,
924 	},
925 	[ C(OP_PREFETCH) ] = {
926 		[ C(RESULT_ACCESS) ] = 0x0,
927 		[ C(RESULT_MISS)   ] = 0x0,
928 	},
929  },
930  [ C(NODE) ] = {
931 	[ C(OP_READ) ] = {
932 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
933 				       HSW_L3_MISS_LOCAL_DRAM|
934 				       HSW_SNOOP_DRAM,
935 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
936 				       HSW_L3_MISS_REMOTE|
937 				       HSW_SNOOP_DRAM,
938 	},
939 	[ C(OP_WRITE) ] = {
940 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
941 				       HSW_L3_MISS_LOCAL_DRAM|
942 				       HSW_SNOOP_DRAM,
943 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
944 				       HSW_L3_MISS_REMOTE|
945 				       HSW_SNOOP_DRAM,
946 	},
947 	[ C(OP_PREFETCH) ] = {
948 		[ C(RESULT_ACCESS) ] = 0x0,
949 		[ C(RESULT_MISS)   ] = 0x0,
950 	},
951  },
952 };
953 
954 static __initconst const u64 westmere_hw_cache_event_ids
955 				[PERF_COUNT_HW_CACHE_MAX]
956 				[PERF_COUNT_HW_CACHE_OP_MAX]
957 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
958 {
959  [ C(L1D) ] = {
960 	[ C(OP_READ) ] = {
961 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
962 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
963 	},
964 	[ C(OP_WRITE) ] = {
965 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
966 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
967 	},
968 	[ C(OP_PREFETCH) ] = {
969 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
970 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
971 	},
972  },
973  [ C(L1I ) ] = {
974 	[ C(OP_READ) ] = {
975 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
976 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
977 	},
978 	[ C(OP_WRITE) ] = {
979 		[ C(RESULT_ACCESS) ] = -1,
980 		[ C(RESULT_MISS)   ] = -1,
981 	},
982 	[ C(OP_PREFETCH) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x0,
984 		[ C(RESULT_MISS)   ] = 0x0,
985 	},
986  },
987  [ C(LL  ) ] = {
988 	[ C(OP_READ) ] = {
989 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
990 		[ C(RESULT_ACCESS) ] = 0x01b7,
991 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
992 		[ C(RESULT_MISS)   ] = 0x01b7,
993 	},
994 	/*
995 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
996 	 * on RFO.
997 	 */
998 	[ C(OP_WRITE) ] = {
999 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1000 		[ C(RESULT_ACCESS) ] = 0x01b7,
1001 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1002 		[ C(RESULT_MISS)   ] = 0x01b7,
1003 	},
1004 	[ C(OP_PREFETCH) ] = {
1005 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1006 		[ C(RESULT_ACCESS) ] = 0x01b7,
1007 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1008 		[ C(RESULT_MISS)   ] = 0x01b7,
1009 	},
1010  },
1011  [ C(DTLB) ] = {
1012 	[ C(OP_READ) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1014 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1015 	},
1016 	[ C(OP_WRITE) ] = {
1017 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1018 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1019 	},
1020 	[ C(OP_PREFETCH) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x0,
1022 		[ C(RESULT_MISS)   ] = 0x0,
1023 	},
1024  },
1025  [ C(ITLB) ] = {
1026 	[ C(OP_READ) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1028 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1029 	},
1030 	[ C(OP_WRITE) ] = {
1031 		[ C(RESULT_ACCESS) ] = -1,
1032 		[ C(RESULT_MISS)   ] = -1,
1033 	},
1034 	[ C(OP_PREFETCH) ] = {
1035 		[ C(RESULT_ACCESS) ] = -1,
1036 		[ C(RESULT_MISS)   ] = -1,
1037 	},
1038  },
1039  [ C(BPU ) ] = {
1040 	[ C(OP_READ) ] = {
1041 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1042 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1043 	},
1044 	[ C(OP_WRITE) ] = {
1045 		[ C(RESULT_ACCESS) ] = -1,
1046 		[ C(RESULT_MISS)   ] = -1,
1047 	},
1048 	[ C(OP_PREFETCH) ] = {
1049 		[ C(RESULT_ACCESS) ] = -1,
1050 		[ C(RESULT_MISS)   ] = -1,
1051 	},
1052  },
1053  [ C(NODE) ] = {
1054 	[ C(OP_READ) ] = {
1055 		[ C(RESULT_ACCESS) ] = 0x01b7,
1056 		[ C(RESULT_MISS)   ] = 0x01b7,
1057 	},
1058 	[ C(OP_WRITE) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x01b7,
1060 		[ C(RESULT_MISS)   ] = 0x01b7,
1061 	},
1062 	[ C(OP_PREFETCH) ] = {
1063 		[ C(RESULT_ACCESS) ] = 0x01b7,
1064 		[ C(RESULT_MISS)   ] = 0x01b7,
1065 	},
1066  },
1067 };
1068 
1069 /*
1070  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1071  * See IA32 SDM Vol 3B 30.6.1.3
1072  */
1073 
1074 #define NHM_DMND_DATA_RD	(1 << 0)
1075 #define NHM_DMND_RFO		(1 << 1)
1076 #define NHM_DMND_IFETCH		(1 << 2)
1077 #define NHM_DMND_WB		(1 << 3)
1078 #define NHM_PF_DATA_RD		(1 << 4)
1079 #define NHM_PF_DATA_RFO		(1 << 5)
1080 #define NHM_PF_IFETCH		(1 << 6)
1081 #define NHM_OFFCORE_OTHER	(1 << 7)
1082 #define NHM_UNCORE_HIT		(1 << 8)
1083 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1084 #define NHM_OTHER_CORE_HITM	(1 << 10)
1085         			/* reserved */
1086 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1087 #define NHM_REMOTE_DRAM		(1 << 13)
1088 #define NHM_LOCAL_DRAM		(1 << 14)
1089 #define NHM_NON_DRAM		(1 << 15)
1090 
1091 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1092 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1093 
1094 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1095 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1096 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1097 
1098 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1099 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1100 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1101 
1102 static __initconst const u64 nehalem_hw_cache_extra_regs
1103 				[PERF_COUNT_HW_CACHE_MAX]
1104 				[PERF_COUNT_HW_CACHE_OP_MAX]
1105 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1106 {
1107  [ C(LL  ) ] = {
1108 	[ C(OP_READ) ] = {
1109 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1110 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1111 	},
1112 	[ C(OP_WRITE) ] = {
1113 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1114 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1115 	},
1116 	[ C(OP_PREFETCH) ] = {
1117 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1118 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1119 	},
1120  },
1121  [ C(NODE) ] = {
1122 	[ C(OP_READ) ] = {
1123 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1124 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1125 	},
1126 	[ C(OP_WRITE) ] = {
1127 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1128 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1129 	},
1130 	[ C(OP_PREFETCH) ] = {
1131 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1132 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1133 	},
1134  },
1135 };
1136 
1137 static __initconst const u64 nehalem_hw_cache_event_ids
1138 				[PERF_COUNT_HW_CACHE_MAX]
1139 				[PERF_COUNT_HW_CACHE_OP_MAX]
1140 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1141 {
1142  [ C(L1D) ] = {
1143 	[ C(OP_READ) ] = {
1144 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1145 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1146 	},
1147 	[ C(OP_WRITE) ] = {
1148 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1149 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1150 	},
1151 	[ C(OP_PREFETCH) ] = {
1152 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1153 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1154 	},
1155  },
1156  [ C(L1I ) ] = {
1157 	[ C(OP_READ) ] = {
1158 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1159 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1160 	},
1161 	[ C(OP_WRITE) ] = {
1162 		[ C(RESULT_ACCESS) ] = -1,
1163 		[ C(RESULT_MISS)   ] = -1,
1164 	},
1165 	[ C(OP_PREFETCH) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0,
1167 		[ C(RESULT_MISS)   ] = 0x0,
1168 	},
1169  },
1170  [ C(LL  ) ] = {
1171 	[ C(OP_READ) ] = {
1172 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1173 		[ C(RESULT_ACCESS) ] = 0x01b7,
1174 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1175 		[ C(RESULT_MISS)   ] = 0x01b7,
1176 	},
1177 	/*
1178 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1179 	 * on RFO.
1180 	 */
1181 	[ C(OP_WRITE) ] = {
1182 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1183 		[ C(RESULT_ACCESS) ] = 0x01b7,
1184 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1185 		[ C(RESULT_MISS)   ] = 0x01b7,
1186 	},
1187 	[ C(OP_PREFETCH) ] = {
1188 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1189 		[ C(RESULT_ACCESS) ] = 0x01b7,
1190 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1191 		[ C(RESULT_MISS)   ] = 0x01b7,
1192 	},
1193  },
1194  [ C(DTLB) ] = {
1195 	[ C(OP_READ) ] = {
1196 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1197 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1198 	},
1199 	[ C(OP_WRITE) ] = {
1200 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1201 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1202 	},
1203 	[ C(OP_PREFETCH) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0x0,
1205 		[ C(RESULT_MISS)   ] = 0x0,
1206 	},
1207  },
1208  [ C(ITLB) ] = {
1209 	[ C(OP_READ) ] = {
1210 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1211 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1212 	},
1213 	[ C(OP_WRITE) ] = {
1214 		[ C(RESULT_ACCESS) ] = -1,
1215 		[ C(RESULT_MISS)   ] = -1,
1216 	},
1217 	[ C(OP_PREFETCH) ] = {
1218 		[ C(RESULT_ACCESS) ] = -1,
1219 		[ C(RESULT_MISS)   ] = -1,
1220 	},
1221  },
1222  [ C(BPU ) ] = {
1223 	[ C(OP_READ) ] = {
1224 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1225 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1226 	},
1227 	[ C(OP_WRITE) ] = {
1228 		[ C(RESULT_ACCESS) ] = -1,
1229 		[ C(RESULT_MISS)   ] = -1,
1230 	},
1231 	[ C(OP_PREFETCH) ] = {
1232 		[ C(RESULT_ACCESS) ] = -1,
1233 		[ C(RESULT_MISS)   ] = -1,
1234 	},
1235  },
1236  [ C(NODE) ] = {
1237 	[ C(OP_READ) ] = {
1238 		[ C(RESULT_ACCESS) ] = 0x01b7,
1239 		[ C(RESULT_MISS)   ] = 0x01b7,
1240 	},
1241 	[ C(OP_WRITE) ] = {
1242 		[ C(RESULT_ACCESS) ] = 0x01b7,
1243 		[ C(RESULT_MISS)   ] = 0x01b7,
1244 	},
1245 	[ C(OP_PREFETCH) ] = {
1246 		[ C(RESULT_ACCESS) ] = 0x01b7,
1247 		[ C(RESULT_MISS)   ] = 0x01b7,
1248 	},
1249  },
1250 };
1251 
1252 static __initconst const u64 core2_hw_cache_event_ids
1253 				[PERF_COUNT_HW_CACHE_MAX]
1254 				[PERF_COUNT_HW_CACHE_OP_MAX]
1255 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1256 {
1257  [ C(L1D) ] = {
1258 	[ C(OP_READ) ] = {
1259 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1260 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1261 	},
1262 	[ C(OP_WRITE) ] = {
1263 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1264 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1265 	},
1266 	[ C(OP_PREFETCH) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1268 		[ C(RESULT_MISS)   ] = 0,
1269 	},
1270  },
1271  [ C(L1I ) ] = {
1272 	[ C(OP_READ) ] = {
1273 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1274 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1275 	},
1276 	[ C(OP_WRITE) ] = {
1277 		[ C(RESULT_ACCESS) ] = -1,
1278 		[ C(RESULT_MISS)   ] = -1,
1279 	},
1280 	[ C(OP_PREFETCH) ] = {
1281 		[ C(RESULT_ACCESS) ] = 0,
1282 		[ C(RESULT_MISS)   ] = 0,
1283 	},
1284  },
1285  [ C(LL  ) ] = {
1286 	[ C(OP_READ) ] = {
1287 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1288 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1289 	},
1290 	[ C(OP_WRITE) ] = {
1291 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1292 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1293 	},
1294 	[ C(OP_PREFETCH) ] = {
1295 		[ C(RESULT_ACCESS) ] = 0,
1296 		[ C(RESULT_MISS)   ] = 0,
1297 	},
1298  },
1299  [ C(DTLB) ] = {
1300 	[ C(OP_READ) ] = {
1301 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1302 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1303 	},
1304 	[ C(OP_WRITE) ] = {
1305 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1306 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1307 	},
1308 	[ C(OP_PREFETCH) ] = {
1309 		[ C(RESULT_ACCESS) ] = 0,
1310 		[ C(RESULT_MISS)   ] = 0,
1311 	},
1312  },
1313  [ C(ITLB) ] = {
1314 	[ C(OP_READ) ] = {
1315 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1316 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1317 	},
1318 	[ C(OP_WRITE) ] = {
1319 		[ C(RESULT_ACCESS) ] = -1,
1320 		[ C(RESULT_MISS)   ] = -1,
1321 	},
1322 	[ C(OP_PREFETCH) ] = {
1323 		[ C(RESULT_ACCESS) ] = -1,
1324 		[ C(RESULT_MISS)   ] = -1,
1325 	},
1326  },
1327  [ C(BPU ) ] = {
1328 	[ C(OP_READ) ] = {
1329 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1330 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1331 	},
1332 	[ C(OP_WRITE) ] = {
1333 		[ C(RESULT_ACCESS) ] = -1,
1334 		[ C(RESULT_MISS)   ] = -1,
1335 	},
1336 	[ C(OP_PREFETCH) ] = {
1337 		[ C(RESULT_ACCESS) ] = -1,
1338 		[ C(RESULT_MISS)   ] = -1,
1339 	},
1340  },
1341 };
1342 
1343 static __initconst const u64 atom_hw_cache_event_ids
1344 				[PERF_COUNT_HW_CACHE_MAX]
1345 				[PERF_COUNT_HW_CACHE_OP_MAX]
1346 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1347 {
1348  [ C(L1D) ] = {
1349 	[ C(OP_READ) ] = {
1350 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1351 		[ C(RESULT_MISS)   ] = 0,
1352 	},
1353 	[ C(OP_WRITE) ] = {
1354 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1355 		[ C(RESULT_MISS)   ] = 0,
1356 	},
1357 	[ C(OP_PREFETCH) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x0,
1359 		[ C(RESULT_MISS)   ] = 0,
1360 	},
1361  },
1362  [ C(L1I ) ] = {
1363 	[ C(OP_READ) ] = {
1364 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1365 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1366 	},
1367 	[ C(OP_WRITE) ] = {
1368 		[ C(RESULT_ACCESS) ] = -1,
1369 		[ C(RESULT_MISS)   ] = -1,
1370 	},
1371 	[ C(OP_PREFETCH) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0,
1373 		[ C(RESULT_MISS)   ] = 0,
1374 	},
1375  },
1376  [ C(LL  ) ] = {
1377 	[ C(OP_READ) ] = {
1378 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1379 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1380 	},
1381 	[ C(OP_WRITE) ] = {
1382 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1383 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1384 	},
1385 	[ C(OP_PREFETCH) ] = {
1386 		[ C(RESULT_ACCESS) ] = 0,
1387 		[ C(RESULT_MISS)   ] = 0,
1388 	},
1389  },
1390  [ C(DTLB) ] = {
1391 	[ C(OP_READ) ] = {
1392 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1393 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1394 	},
1395 	[ C(OP_WRITE) ] = {
1396 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1397 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1398 	},
1399 	[ C(OP_PREFETCH) ] = {
1400 		[ C(RESULT_ACCESS) ] = 0,
1401 		[ C(RESULT_MISS)   ] = 0,
1402 	},
1403  },
1404  [ C(ITLB) ] = {
1405 	[ C(OP_READ) ] = {
1406 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1407 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1408 	},
1409 	[ C(OP_WRITE) ] = {
1410 		[ C(RESULT_ACCESS) ] = -1,
1411 		[ C(RESULT_MISS)   ] = -1,
1412 	},
1413 	[ C(OP_PREFETCH) ] = {
1414 		[ C(RESULT_ACCESS) ] = -1,
1415 		[ C(RESULT_MISS)   ] = -1,
1416 	},
1417  },
1418  [ C(BPU ) ] = {
1419 	[ C(OP_READ) ] = {
1420 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1421 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1422 	},
1423 	[ C(OP_WRITE) ] = {
1424 		[ C(RESULT_ACCESS) ] = -1,
1425 		[ C(RESULT_MISS)   ] = -1,
1426 	},
1427 	[ C(OP_PREFETCH) ] = {
1428 		[ C(RESULT_ACCESS) ] = -1,
1429 		[ C(RESULT_MISS)   ] = -1,
1430 	},
1431  },
1432 };
1433 
1434 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1435 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1436 /* no_alloc_cycles.not_delivered */
1437 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1438 	       "event=0xca,umask=0x50");
1439 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1440 /* uops_retired.all */
1441 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1442 	       "event=0xc2,umask=0x10");
1443 /* uops_retired.all */
1444 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1445 	       "event=0xc2,umask=0x10");
1446 
1447 static struct attribute *slm_events_attrs[] = {
1448 	EVENT_PTR(td_total_slots_slm),
1449 	EVENT_PTR(td_total_slots_scale_slm),
1450 	EVENT_PTR(td_fetch_bubbles_slm),
1451 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1452 	EVENT_PTR(td_slots_issued_slm),
1453 	EVENT_PTR(td_slots_retired_slm),
1454 	NULL
1455 };
1456 
1457 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1458 {
1459 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1460 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1461 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1462 	EVENT_EXTRA_END
1463 };
1464 
1465 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1466 #define SLM_DMND_WRITE		SNB_DMND_RFO
1467 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1468 
1469 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1470 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1471 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1472 
1473 static __initconst const u64 slm_hw_cache_extra_regs
1474 				[PERF_COUNT_HW_CACHE_MAX]
1475 				[PERF_COUNT_HW_CACHE_OP_MAX]
1476 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1477 {
1478  [ C(LL  ) ] = {
1479 	[ C(OP_READ) ] = {
1480 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1481 		[ C(RESULT_MISS)   ] = 0,
1482 	},
1483 	[ C(OP_WRITE) ] = {
1484 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1485 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1486 	},
1487 	[ C(OP_PREFETCH) ] = {
1488 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1489 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1490 	},
1491  },
1492 };
1493 
1494 static __initconst const u64 slm_hw_cache_event_ids
1495 				[PERF_COUNT_HW_CACHE_MAX]
1496 				[PERF_COUNT_HW_CACHE_OP_MAX]
1497 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1498 {
1499  [ C(L1D) ] = {
1500 	[ C(OP_READ) ] = {
1501 		[ C(RESULT_ACCESS) ] = 0,
1502 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		[ C(RESULT_ACCESS) ] = 0,
1506 		[ C(RESULT_MISS)   ] = 0,
1507 	},
1508 	[ C(OP_PREFETCH) ] = {
1509 		[ C(RESULT_ACCESS) ] = 0,
1510 		[ C(RESULT_MISS)   ] = 0,
1511 	},
1512  },
1513  [ C(L1I ) ] = {
1514 	[ C(OP_READ) ] = {
1515 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1516 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1517 	},
1518 	[ C(OP_WRITE) ] = {
1519 		[ C(RESULT_ACCESS) ] = -1,
1520 		[ C(RESULT_MISS)   ] = -1,
1521 	},
1522 	[ C(OP_PREFETCH) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0,
1524 		[ C(RESULT_MISS)   ] = 0,
1525 	},
1526  },
1527  [ C(LL  ) ] = {
1528 	[ C(OP_READ) ] = {
1529 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1530 		[ C(RESULT_ACCESS) ] = 0x01b7,
1531 		[ C(RESULT_MISS)   ] = 0,
1532 	},
1533 	[ C(OP_WRITE) ] = {
1534 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1535 		[ C(RESULT_ACCESS) ] = 0x01b7,
1536 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1537 		[ C(RESULT_MISS)   ] = 0x01b7,
1538 	},
1539 	[ C(OP_PREFETCH) ] = {
1540 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1541 		[ C(RESULT_ACCESS) ] = 0x01b7,
1542 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1543 		[ C(RESULT_MISS)   ] = 0x01b7,
1544 	},
1545  },
1546  [ C(DTLB) ] = {
1547 	[ C(OP_READ) ] = {
1548 		[ C(RESULT_ACCESS) ] = 0,
1549 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1550 	},
1551 	[ C(OP_WRITE) ] = {
1552 		[ C(RESULT_ACCESS) ] = 0,
1553 		[ C(RESULT_MISS)   ] = 0,
1554 	},
1555 	[ C(OP_PREFETCH) ] = {
1556 		[ C(RESULT_ACCESS) ] = 0,
1557 		[ C(RESULT_MISS)   ] = 0,
1558 	},
1559  },
1560  [ C(ITLB) ] = {
1561 	[ C(OP_READ) ] = {
1562 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1563 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1564 	},
1565 	[ C(OP_WRITE) ] = {
1566 		[ C(RESULT_ACCESS) ] = -1,
1567 		[ C(RESULT_MISS)   ] = -1,
1568 	},
1569 	[ C(OP_PREFETCH) ] = {
1570 		[ C(RESULT_ACCESS) ] = -1,
1571 		[ C(RESULT_MISS)   ] = -1,
1572 	},
1573  },
1574  [ C(BPU ) ] = {
1575 	[ C(OP_READ) ] = {
1576 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1577 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1578 	},
1579 	[ C(OP_WRITE) ] = {
1580 		[ C(RESULT_ACCESS) ] = -1,
1581 		[ C(RESULT_MISS)   ] = -1,
1582 	},
1583 	[ C(OP_PREFETCH) ] = {
1584 		[ C(RESULT_ACCESS) ] = -1,
1585 		[ C(RESULT_MISS)   ] = -1,
1586 	},
1587  },
1588 };
1589 
1590 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1591 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1592 /* UOPS_NOT_DELIVERED.ANY */
1593 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1594 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1595 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1596 /* UOPS_RETIRED.ANY */
1597 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1598 /* UOPS_ISSUED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1600 
1601 static struct attribute *glm_events_attrs[] = {
1602 	EVENT_PTR(td_total_slots_glm),
1603 	EVENT_PTR(td_total_slots_scale_glm),
1604 	EVENT_PTR(td_fetch_bubbles_glm),
1605 	EVENT_PTR(td_recovery_bubbles_glm),
1606 	EVENT_PTR(td_slots_issued_glm),
1607 	EVENT_PTR(td_slots_retired_glm),
1608 	NULL
1609 };
1610 
1611 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1612 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1613 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1614 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1615 	EVENT_EXTRA_END
1616 };
1617 
1618 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1619 #define GLM_DEMAND_RFO			BIT_ULL(1)
1620 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1621 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1622 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1623 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1624 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1625 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1626 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1627 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1628 
1629 static __initconst const u64 glm_hw_cache_event_ids
1630 				[PERF_COUNT_HW_CACHE_MAX]
1631 				[PERF_COUNT_HW_CACHE_OP_MAX]
1632 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1633 	[C(L1D)] = {
1634 		[C(OP_READ)] = {
1635 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1636 			[C(RESULT_MISS)]	= 0x0,
1637 		},
1638 		[C(OP_WRITE)] = {
1639 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1640 			[C(RESULT_MISS)]	= 0x0,
1641 		},
1642 		[C(OP_PREFETCH)] = {
1643 			[C(RESULT_ACCESS)]	= 0x0,
1644 			[C(RESULT_MISS)]	= 0x0,
1645 		},
1646 	},
1647 	[C(L1I)] = {
1648 		[C(OP_READ)] = {
1649 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1650 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1651 		},
1652 		[C(OP_WRITE)] = {
1653 			[C(RESULT_ACCESS)]	= -1,
1654 			[C(RESULT_MISS)]	= -1,
1655 		},
1656 		[C(OP_PREFETCH)] = {
1657 			[C(RESULT_ACCESS)]	= 0x0,
1658 			[C(RESULT_MISS)]	= 0x0,
1659 		},
1660 	},
1661 	[C(LL)] = {
1662 		[C(OP_READ)] = {
1663 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1664 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1665 		},
1666 		[C(OP_WRITE)] = {
1667 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1668 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1669 		},
1670 		[C(OP_PREFETCH)] = {
1671 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1672 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1673 		},
1674 	},
1675 	[C(DTLB)] = {
1676 		[C(OP_READ)] = {
1677 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1678 			[C(RESULT_MISS)]	= 0x0,
1679 		},
1680 		[C(OP_WRITE)] = {
1681 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1682 			[C(RESULT_MISS)]	= 0x0,
1683 		},
1684 		[C(OP_PREFETCH)] = {
1685 			[C(RESULT_ACCESS)]	= 0x0,
1686 			[C(RESULT_MISS)]	= 0x0,
1687 		},
1688 	},
1689 	[C(ITLB)] = {
1690 		[C(OP_READ)] = {
1691 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1692 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1693 		},
1694 		[C(OP_WRITE)] = {
1695 			[C(RESULT_ACCESS)]	= -1,
1696 			[C(RESULT_MISS)]	= -1,
1697 		},
1698 		[C(OP_PREFETCH)] = {
1699 			[C(RESULT_ACCESS)]	= -1,
1700 			[C(RESULT_MISS)]	= -1,
1701 		},
1702 	},
1703 	[C(BPU)] = {
1704 		[C(OP_READ)] = {
1705 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1706 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1707 		},
1708 		[C(OP_WRITE)] = {
1709 			[C(RESULT_ACCESS)]	= -1,
1710 			[C(RESULT_MISS)]	= -1,
1711 		},
1712 		[C(OP_PREFETCH)] = {
1713 			[C(RESULT_ACCESS)]	= -1,
1714 			[C(RESULT_MISS)]	= -1,
1715 		},
1716 	},
1717 };
1718 
1719 static __initconst const u64 glm_hw_cache_extra_regs
1720 				[PERF_COUNT_HW_CACHE_MAX]
1721 				[PERF_COUNT_HW_CACHE_OP_MAX]
1722 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1723 	[C(LL)] = {
1724 		[C(OP_READ)] = {
1725 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1726 						  GLM_LLC_ACCESS,
1727 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1728 						  GLM_LLC_MISS,
1729 		},
1730 		[C(OP_WRITE)] = {
1731 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1732 						  GLM_LLC_ACCESS,
1733 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1734 						  GLM_LLC_MISS,
1735 		},
1736 		[C(OP_PREFETCH)] = {
1737 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1738 						  GLM_LLC_ACCESS,
1739 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1740 						  GLM_LLC_MISS,
1741 		},
1742 	},
1743 };
1744 
1745 static __initconst const u64 glp_hw_cache_event_ids
1746 				[PERF_COUNT_HW_CACHE_MAX]
1747 				[PERF_COUNT_HW_CACHE_OP_MAX]
1748 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1749 	[C(L1D)] = {
1750 		[C(OP_READ)] = {
1751 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1752 			[C(RESULT_MISS)]	= 0x0,
1753 		},
1754 		[C(OP_WRITE)] = {
1755 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1756 			[C(RESULT_MISS)]	= 0x0,
1757 		},
1758 		[C(OP_PREFETCH)] = {
1759 			[C(RESULT_ACCESS)]	= 0x0,
1760 			[C(RESULT_MISS)]	= 0x0,
1761 		},
1762 	},
1763 	[C(L1I)] = {
1764 		[C(OP_READ)] = {
1765 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1766 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1767 		},
1768 		[C(OP_WRITE)] = {
1769 			[C(RESULT_ACCESS)]	= -1,
1770 			[C(RESULT_MISS)]	= -1,
1771 		},
1772 		[C(OP_PREFETCH)] = {
1773 			[C(RESULT_ACCESS)]	= 0x0,
1774 			[C(RESULT_MISS)]	= 0x0,
1775 		},
1776 	},
1777 	[C(LL)] = {
1778 		[C(OP_READ)] = {
1779 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1780 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1781 		},
1782 		[C(OP_WRITE)] = {
1783 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1784 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1785 		},
1786 		[C(OP_PREFETCH)] = {
1787 			[C(RESULT_ACCESS)]	= 0x0,
1788 			[C(RESULT_MISS)]	= 0x0,
1789 		},
1790 	},
1791 	[C(DTLB)] = {
1792 		[C(OP_READ)] = {
1793 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1794 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1795 		},
1796 		[C(OP_WRITE)] = {
1797 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1798 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1799 		},
1800 		[C(OP_PREFETCH)] = {
1801 			[C(RESULT_ACCESS)]	= 0x0,
1802 			[C(RESULT_MISS)]	= 0x0,
1803 		},
1804 	},
1805 	[C(ITLB)] = {
1806 		[C(OP_READ)] = {
1807 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1808 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1809 		},
1810 		[C(OP_WRITE)] = {
1811 			[C(RESULT_ACCESS)]	= -1,
1812 			[C(RESULT_MISS)]	= -1,
1813 		},
1814 		[C(OP_PREFETCH)] = {
1815 			[C(RESULT_ACCESS)]	= -1,
1816 			[C(RESULT_MISS)]	= -1,
1817 		},
1818 	},
1819 	[C(BPU)] = {
1820 		[C(OP_READ)] = {
1821 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1822 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1823 		},
1824 		[C(OP_WRITE)] = {
1825 			[C(RESULT_ACCESS)]	= -1,
1826 			[C(RESULT_MISS)]	= -1,
1827 		},
1828 		[C(OP_PREFETCH)] = {
1829 			[C(RESULT_ACCESS)]	= -1,
1830 			[C(RESULT_MISS)]	= -1,
1831 		},
1832 	},
1833 };
1834 
1835 static __initconst const u64 glp_hw_cache_extra_regs
1836 				[PERF_COUNT_HW_CACHE_MAX]
1837 				[PERF_COUNT_HW_CACHE_OP_MAX]
1838 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1839 	[C(LL)] = {
1840 		[C(OP_READ)] = {
1841 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1842 						  GLM_LLC_ACCESS,
1843 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1844 						  GLM_LLC_MISS,
1845 		},
1846 		[C(OP_WRITE)] = {
1847 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1848 						  GLM_LLC_ACCESS,
1849 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1850 						  GLM_LLC_MISS,
1851 		},
1852 		[C(OP_PREFETCH)] = {
1853 			[C(RESULT_ACCESS)]	= 0x0,
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 	},
1857 };
1858 
1859 #define TNT_LOCAL_DRAM			BIT_ULL(26)
1860 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
1861 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
1862 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
1863 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1864 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1865 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1866 
1867 static __initconst const u64 tnt_hw_cache_extra_regs
1868 				[PERF_COUNT_HW_CACHE_MAX]
1869 				[PERF_COUNT_HW_CACHE_OP_MAX]
1870 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1871 	[C(LL)] = {
1872 		[C(OP_READ)] = {
1873 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
1874 						  TNT_LLC_ACCESS,
1875 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
1876 						  TNT_LLC_MISS,
1877 		},
1878 		[C(OP_WRITE)] = {
1879 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
1880 						  TNT_LLC_ACCESS,
1881 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
1882 						  TNT_LLC_MISS,
1883 		},
1884 		[C(OP_PREFETCH)] = {
1885 			[C(RESULT_ACCESS)]	= 0x0,
1886 			[C(RESULT_MISS)]	= 0x0,
1887 		},
1888 	},
1889 };
1890 
1891 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1892 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1893 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0),
1894 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1),
1895 	EVENT_EXTRA_END
1896 };
1897 
1898 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1899 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1900 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1901 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1902 #define KNL_DDR_LOCAL		BIT_ULL(23)
1903 #define KNL_DDR_FAR		BIT_ULL(24)
1904 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1905 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1906 #define KNL_L2_READ		SLM_DMND_READ
1907 #define KNL_L2_WRITE		SLM_DMND_WRITE
1908 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1909 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1910 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1911 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1912 						  SNB_NON_DRAM)
1913 
1914 static __initconst const u64 knl_hw_cache_extra_regs
1915 				[PERF_COUNT_HW_CACHE_MAX]
1916 				[PERF_COUNT_HW_CACHE_OP_MAX]
1917 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1918 	[C(LL)] = {
1919 		[C(OP_READ)] = {
1920 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1921 			[C(RESULT_MISS)]   = 0,
1922 		},
1923 		[C(OP_WRITE)] = {
1924 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1925 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1926 		},
1927 		[C(OP_PREFETCH)] = {
1928 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1929 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1930 		},
1931 	},
1932 };
1933 
1934 /*
1935  * Used from PMIs where the LBRs are already disabled.
1936  *
1937  * This function could be called consecutively. It is required to remain in
1938  * disabled state if called consecutively.
1939  *
1940  * During consecutive calls, the same disable value will be written to related
1941  * registers, so the PMU state remains unchanged.
1942  *
1943  * intel_bts events don't coexist with intel PMU's BTS events because of
1944  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1945  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1946  */
1947 static void __intel_pmu_disable_all(void)
1948 {
1949 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1950 
1951 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1952 
1953 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1954 		intel_pmu_disable_bts();
1955 
1956 	intel_pmu_pebs_disable_all();
1957 }
1958 
1959 static void intel_pmu_disable_all(void)
1960 {
1961 	__intel_pmu_disable_all();
1962 	intel_pmu_lbr_disable_all();
1963 }
1964 
1965 static void __intel_pmu_enable_all(int added, bool pmi)
1966 {
1967 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1968 
1969 	intel_pmu_pebs_enable_all();
1970 	intel_pmu_lbr_enable_all(pmi);
1971 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1972 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1973 
1974 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1975 		struct perf_event *event =
1976 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1977 
1978 		if (WARN_ON_ONCE(!event))
1979 			return;
1980 
1981 		intel_pmu_enable_bts(event->hw.config);
1982 	}
1983 }
1984 
1985 static void intel_pmu_enable_all(int added)
1986 {
1987 	__intel_pmu_enable_all(added, false);
1988 }
1989 
1990 /*
1991  * Workaround for:
1992  *   Intel Errata AAK100 (model 26)
1993  *   Intel Errata AAP53  (model 30)
1994  *   Intel Errata BD53   (model 44)
1995  *
1996  * The official story:
1997  *   These chips need to be 'reset' when adding counters by programming the
1998  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1999  *   in sequence on the same PMC or on different PMCs.
2000  *
2001  * In practise it appears some of these events do in fact count, and
2002  * we need to program all 4 events.
2003  */
2004 static void intel_pmu_nhm_workaround(void)
2005 {
2006 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2007 	static const unsigned long nhm_magic[4] = {
2008 		0x4300B5,
2009 		0x4300D2,
2010 		0x4300B1,
2011 		0x4300B1
2012 	};
2013 	struct perf_event *event;
2014 	int i;
2015 
2016 	/*
2017 	 * The Errata requires below steps:
2018 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2019 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2020 	 *    the corresponding PMCx;
2021 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2022 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2023 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2024 	 */
2025 
2026 	/*
2027 	 * The real steps we choose are a little different from above.
2028 	 * A) To reduce MSR operations, we don't run step 1) as they
2029 	 *    are already cleared before this function is called;
2030 	 * B) Call x86_perf_event_update to save PMCx before configuring
2031 	 *    PERFEVTSELx with magic number;
2032 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2033 	 *    not used currently.
2034 	 * D) Call x86_perf_event_set_period to restore PMCx;
2035 	 */
2036 
2037 	/* We always operate 4 pairs of PERF Counters */
2038 	for (i = 0; i < 4; i++) {
2039 		event = cpuc->events[i];
2040 		if (event)
2041 			x86_perf_event_update(event);
2042 	}
2043 
2044 	for (i = 0; i < 4; i++) {
2045 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2046 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2047 	}
2048 
2049 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2050 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2051 
2052 	for (i = 0; i < 4; i++) {
2053 		event = cpuc->events[i];
2054 
2055 		if (event) {
2056 			x86_perf_event_set_period(event);
2057 			__x86_pmu_enable_event(&event->hw,
2058 					ARCH_PERFMON_EVENTSEL_ENABLE);
2059 		} else
2060 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2061 	}
2062 }
2063 
2064 static void intel_pmu_nhm_enable_all(int added)
2065 {
2066 	if (added)
2067 		intel_pmu_nhm_workaround();
2068 	intel_pmu_enable_all(added);
2069 }
2070 
2071 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2072 {
2073 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2074 
2075 	if (cpuc->tfa_shadow != val) {
2076 		cpuc->tfa_shadow = val;
2077 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2078 	}
2079 }
2080 
2081 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2082 {
2083 	/*
2084 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2085 	 */
2086 	if (cntr == 3)
2087 		intel_set_tfa(cpuc, true);
2088 }
2089 
2090 static void intel_tfa_pmu_enable_all(int added)
2091 {
2092 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2093 
2094 	/*
2095 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2096 	 * clear TFA.
2097 	 */
2098 	if (!test_bit(3, cpuc->active_mask))
2099 		intel_set_tfa(cpuc, false);
2100 
2101 	intel_pmu_enable_all(added);
2102 }
2103 
2104 static void enable_counter_freeze(void)
2105 {
2106 	update_debugctlmsr(get_debugctlmsr() |
2107 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2108 }
2109 
2110 static void disable_counter_freeze(void)
2111 {
2112 	update_debugctlmsr(get_debugctlmsr() &
2113 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2114 }
2115 
2116 static inline u64 intel_pmu_get_status(void)
2117 {
2118 	u64 status;
2119 
2120 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2121 
2122 	return status;
2123 }
2124 
2125 static inline void intel_pmu_ack_status(u64 ack)
2126 {
2127 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2128 }
2129 
2130 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2131 {
2132 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2133 	u64 ctrl_val, mask;
2134 
2135 	mask = 0xfULL << (idx * 4);
2136 
2137 	rdmsrl(hwc->config_base, ctrl_val);
2138 	ctrl_val &= ~mask;
2139 	wrmsrl(hwc->config_base, ctrl_val);
2140 }
2141 
2142 static inline bool event_is_checkpointed(struct perf_event *event)
2143 {
2144 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2145 }
2146 
2147 static void intel_pmu_disable_event(struct perf_event *event)
2148 {
2149 	struct hw_perf_event *hwc = &event->hw;
2150 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2151 
2152 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2153 		intel_pmu_disable_bts();
2154 		intel_pmu_drain_bts_buffer();
2155 		return;
2156 	}
2157 
2158 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2159 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2160 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2161 
2162 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2163 		intel_pmu_disable_fixed(hwc);
2164 		return;
2165 	}
2166 
2167 	x86_pmu_disable_event(event);
2168 
2169 	/*
2170 	 * Needs to be called after x86_pmu_disable_event,
2171 	 * so we don't trigger the event without PEBS bit set.
2172 	 */
2173 	if (unlikely(event->attr.precise_ip))
2174 		intel_pmu_pebs_disable(event);
2175 }
2176 
2177 static void intel_pmu_del_event(struct perf_event *event)
2178 {
2179 	if (needs_branch_stack(event))
2180 		intel_pmu_lbr_del(event);
2181 	if (event->attr.precise_ip)
2182 		intel_pmu_pebs_del(event);
2183 }
2184 
2185 static void intel_pmu_read_event(struct perf_event *event)
2186 {
2187 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2188 		intel_pmu_auto_reload_read(event);
2189 	else
2190 		x86_perf_event_update(event);
2191 }
2192 
2193 static void intel_pmu_enable_fixed(struct perf_event *event)
2194 {
2195 	struct hw_perf_event *hwc = &event->hw;
2196 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2197 	u64 ctrl_val, mask, bits = 0;
2198 
2199 	/*
2200 	 * Enable IRQ generation (0x8), if not PEBS,
2201 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2202 	 * if requested:
2203 	 */
2204 	if (!event->attr.precise_ip)
2205 		bits |= 0x8;
2206 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2207 		bits |= 0x2;
2208 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2209 		bits |= 0x1;
2210 
2211 	/*
2212 	 * ANY bit is supported in v3 and up
2213 	 */
2214 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2215 		bits |= 0x4;
2216 
2217 	bits <<= (idx * 4);
2218 	mask = 0xfULL << (idx * 4);
2219 
2220 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2221 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2222 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2223 	}
2224 
2225 	rdmsrl(hwc->config_base, ctrl_val);
2226 	ctrl_val &= ~mask;
2227 	ctrl_val |= bits;
2228 	wrmsrl(hwc->config_base, ctrl_val);
2229 }
2230 
2231 static void intel_pmu_enable_event(struct perf_event *event)
2232 {
2233 	struct hw_perf_event *hwc = &event->hw;
2234 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235 
2236 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2237 		if (!__this_cpu_read(cpu_hw_events.enabled))
2238 			return;
2239 
2240 		intel_pmu_enable_bts(hwc->config);
2241 		return;
2242 	}
2243 
2244 	if (event->attr.exclude_host)
2245 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2246 	if (event->attr.exclude_guest)
2247 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2248 
2249 	if (unlikely(event_is_checkpointed(event)))
2250 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2251 
2252 	if (unlikely(event->attr.precise_ip))
2253 		intel_pmu_pebs_enable(event);
2254 
2255 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2256 		intel_pmu_enable_fixed(event);
2257 		return;
2258 	}
2259 
2260 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2261 }
2262 
2263 static void intel_pmu_add_event(struct perf_event *event)
2264 {
2265 	if (event->attr.precise_ip)
2266 		intel_pmu_pebs_add(event);
2267 	if (needs_branch_stack(event))
2268 		intel_pmu_lbr_add(event);
2269 }
2270 
2271 /*
2272  * Save and restart an expired event. Called by NMI contexts,
2273  * so it has to be careful about preempting normal event ops:
2274  */
2275 int intel_pmu_save_and_restart(struct perf_event *event)
2276 {
2277 	x86_perf_event_update(event);
2278 	/*
2279 	 * For a checkpointed counter always reset back to 0.  This
2280 	 * avoids a situation where the counter overflows, aborts the
2281 	 * transaction and is then set back to shortly before the
2282 	 * overflow, and overflows and aborts again.
2283 	 */
2284 	if (unlikely(event_is_checkpointed(event))) {
2285 		/* No race with NMIs because the counter should not be armed */
2286 		wrmsrl(event->hw.event_base, 0);
2287 		local64_set(&event->hw.prev_count, 0);
2288 	}
2289 	return x86_perf_event_set_period(event);
2290 }
2291 
2292 static void intel_pmu_reset(void)
2293 {
2294 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2295 	unsigned long flags;
2296 	int idx;
2297 
2298 	if (!x86_pmu.num_counters)
2299 		return;
2300 
2301 	local_irq_save(flags);
2302 
2303 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2304 
2305 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2306 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2307 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2308 	}
2309 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2310 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2311 
2312 	if (ds)
2313 		ds->bts_index = ds->bts_buffer_base;
2314 
2315 	/* Ack all overflows and disable fixed counters */
2316 	if (x86_pmu.version >= 2) {
2317 		intel_pmu_ack_status(intel_pmu_get_status());
2318 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2319 	}
2320 
2321 	/* Reset LBRs and LBR freezing */
2322 	if (x86_pmu.lbr_nr) {
2323 		update_debugctlmsr(get_debugctlmsr() &
2324 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2325 	}
2326 
2327 	local_irq_restore(flags);
2328 }
2329 
2330 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2331 {
2332 	struct perf_sample_data data;
2333 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2334 	int bit;
2335 	int handled = 0;
2336 
2337 	inc_irq_stat(apic_perf_irqs);
2338 
2339 	/*
2340 	 * Ignore a range of extra bits in status that do not indicate
2341 	 * overflow by themselves.
2342 	 */
2343 	status &= ~(GLOBAL_STATUS_COND_CHG |
2344 		    GLOBAL_STATUS_ASIF |
2345 		    GLOBAL_STATUS_LBRS_FROZEN);
2346 	if (!status)
2347 		return 0;
2348 	/*
2349 	 * In case multiple PEBS events are sampled at the same time,
2350 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2351 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2352 	 * having their bits set in the status register. This is a sign
2353 	 * that there was at least one PEBS record pending at the time
2354 	 * of the PMU interrupt. PEBS counters must only be processed
2355 	 * via the drain_pebs() calls and not via the regular sample
2356 	 * processing loop coming after that the function, otherwise
2357 	 * phony regular samples may be generated in the sampling buffer
2358 	 * not marked with the EXACT tag. Another possibility is to have
2359 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2360 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2361 	 * not be set, yet the overflow status bit for the PEBS counter will
2362 	 * be on Skylake.
2363 	 *
2364 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2365 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2366 	 * events via drain_pebs().
2367 	 */
2368 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2369 		status &= ~cpuc->pebs_enabled;
2370 	else
2371 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2372 
2373 	/*
2374 	 * PEBS overflow sets bit 62 in the global status register
2375 	 */
2376 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2377 		handled++;
2378 		x86_pmu.drain_pebs(regs);
2379 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2380 	}
2381 
2382 	/*
2383 	 * Intel PT
2384 	 */
2385 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2386 		handled++;
2387 		intel_pt_interrupt();
2388 	}
2389 
2390 	/*
2391 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2392 	 * rollback caused by the PMI will have cleared the overflow status
2393 	 * bit. Therefore always force probe these counters.
2394 	 */
2395 	status |= cpuc->intel_cp_status;
2396 
2397 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2398 		struct perf_event *event = cpuc->events[bit];
2399 
2400 		handled++;
2401 
2402 		if (!test_bit(bit, cpuc->active_mask))
2403 			continue;
2404 
2405 		if (!intel_pmu_save_and_restart(event))
2406 			continue;
2407 
2408 		perf_sample_data_init(&data, 0, event->hw.last_period);
2409 
2410 		if (has_branch_stack(event))
2411 			data.br_stack = &cpuc->lbr_stack;
2412 
2413 		if (perf_event_overflow(event, &data, regs))
2414 			x86_pmu_stop(event, 0);
2415 	}
2416 
2417 	return handled;
2418 }
2419 
2420 static bool disable_counter_freezing = true;
2421 static int __init intel_perf_counter_freezing_setup(char *s)
2422 {
2423 	bool res;
2424 
2425 	if (kstrtobool(s, &res))
2426 		return -EINVAL;
2427 
2428 	disable_counter_freezing = !res;
2429 	return 1;
2430 }
2431 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2432 
2433 /*
2434  * Simplified handler for Arch Perfmon v4:
2435  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2436  * This is done automatically on PMU ack.
2437  * - Ack the PMU only after the APIC.
2438  */
2439 
2440 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2441 {
2442 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2443 	int handled = 0;
2444 	bool bts = false;
2445 	u64 status;
2446 	int pmu_enabled = cpuc->enabled;
2447 	int loops = 0;
2448 
2449 	/* PMU has been disabled because of counter freezing */
2450 	cpuc->enabled = 0;
2451 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2452 		bts = true;
2453 		intel_bts_disable_local();
2454 		handled = intel_pmu_drain_bts_buffer();
2455 		handled += intel_bts_interrupt();
2456 	}
2457 	status = intel_pmu_get_status();
2458 	if (!status)
2459 		goto done;
2460 again:
2461 	intel_pmu_lbr_read();
2462 	if (++loops > 100) {
2463 		static bool warned;
2464 
2465 		if (!warned) {
2466 			WARN(1, "perfevents: irq loop stuck!\n");
2467 			perf_event_print_debug();
2468 			warned = true;
2469 		}
2470 		intel_pmu_reset();
2471 		goto done;
2472 	}
2473 
2474 
2475 	handled += handle_pmi_common(regs, status);
2476 done:
2477 	/* Ack the PMI in the APIC */
2478 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2479 
2480 	/*
2481 	 * The counters start counting immediately while ack the status.
2482 	 * Make it as close as possible to IRET. This avoids bogus
2483 	 * freezing on Skylake CPUs.
2484 	 */
2485 	if (status) {
2486 		intel_pmu_ack_status(status);
2487 	} else {
2488 		/*
2489 		 * CPU may issues two PMIs very close to each other.
2490 		 * When the PMI handler services the first one, the
2491 		 * GLOBAL_STATUS is already updated to reflect both.
2492 		 * When it IRETs, the second PMI is immediately
2493 		 * handled and it sees clear status. At the meantime,
2494 		 * there may be a third PMI, because the freezing bit
2495 		 * isn't set since the ack in first PMI handlers.
2496 		 * Double check if there is more work to be done.
2497 		 */
2498 		status = intel_pmu_get_status();
2499 		if (status)
2500 			goto again;
2501 	}
2502 
2503 	if (bts)
2504 		intel_bts_enable_local();
2505 	cpuc->enabled = pmu_enabled;
2506 	return handled;
2507 }
2508 
2509 /*
2510  * This handler is triggered by the local APIC, so the APIC IRQ handling
2511  * rules apply:
2512  */
2513 static int intel_pmu_handle_irq(struct pt_regs *regs)
2514 {
2515 	struct cpu_hw_events *cpuc;
2516 	int loops;
2517 	u64 status;
2518 	int handled;
2519 	int pmu_enabled;
2520 
2521 	cpuc = this_cpu_ptr(&cpu_hw_events);
2522 
2523 	/*
2524 	 * Save the PMU state.
2525 	 * It needs to be restored when leaving the handler.
2526 	 */
2527 	pmu_enabled = cpuc->enabled;
2528 	/*
2529 	 * No known reason to not always do late ACK,
2530 	 * but just in case do it opt-in.
2531 	 */
2532 	if (!x86_pmu.late_ack)
2533 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2534 	intel_bts_disable_local();
2535 	cpuc->enabled = 0;
2536 	__intel_pmu_disable_all();
2537 	handled = intel_pmu_drain_bts_buffer();
2538 	handled += intel_bts_interrupt();
2539 	status = intel_pmu_get_status();
2540 	if (!status)
2541 		goto done;
2542 
2543 	loops = 0;
2544 again:
2545 	intel_pmu_lbr_read();
2546 	intel_pmu_ack_status(status);
2547 	if (++loops > 100) {
2548 		static bool warned;
2549 
2550 		if (!warned) {
2551 			WARN(1, "perfevents: irq loop stuck!\n");
2552 			perf_event_print_debug();
2553 			warned = true;
2554 		}
2555 		intel_pmu_reset();
2556 		goto done;
2557 	}
2558 
2559 	handled += handle_pmi_common(regs, status);
2560 
2561 	/*
2562 	 * Repeat if there is more work to be done:
2563 	 */
2564 	status = intel_pmu_get_status();
2565 	if (status)
2566 		goto again;
2567 
2568 done:
2569 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2570 	cpuc->enabled = pmu_enabled;
2571 	if (pmu_enabled)
2572 		__intel_pmu_enable_all(0, true);
2573 	intel_bts_enable_local();
2574 
2575 	/*
2576 	 * Only unmask the NMI after the overflow counters
2577 	 * have been reset. This avoids spurious NMIs on
2578 	 * Haswell CPUs.
2579 	 */
2580 	if (x86_pmu.late_ack)
2581 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2582 	return handled;
2583 }
2584 
2585 static struct event_constraint *
2586 intel_bts_constraints(struct perf_event *event)
2587 {
2588 	if (unlikely(intel_pmu_has_bts(event)))
2589 		return &bts_constraint;
2590 
2591 	return NULL;
2592 }
2593 
2594 static int intel_alt_er(int idx, u64 config)
2595 {
2596 	int alt_idx = idx;
2597 
2598 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2599 		return idx;
2600 
2601 	if (idx == EXTRA_REG_RSP_0)
2602 		alt_idx = EXTRA_REG_RSP_1;
2603 
2604 	if (idx == EXTRA_REG_RSP_1)
2605 		alt_idx = EXTRA_REG_RSP_0;
2606 
2607 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2608 		return idx;
2609 
2610 	return alt_idx;
2611 }
2612 
2613 static void intel_fixup_er(struct perf_event *event, int idx)
2614 {
2615 	event->hw.extra_reg.idx = idx;
2616 
2617 	if (idx == EXTRA_REG_RSP_0) {
2618 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2619 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2620 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2621 	} else if (idx == EXTRA_REG_RSP_1) {
2622 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2623 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2624 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2625 	}
2626 }
2627 
2628 /*
2629  * manage allocation of shared extra msr for certain events
2630  *
2631  * sharing can be:
2632  * per-cpu: to be shared between the various events on a single PMU
2633  * per-core: per-cpu + shared by HT threads
2634  */
2635 static struct event_constraint *
2636 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2637 				   struct perf_event *event,
2638 				   struct hw_perf_event_extra *reg)
2639 {
2640 	struct event_constraint *c = &emptyconstraint;
2641 	struct er_account *era;
2642 	unsigned long flags;
2643 	int idx = reg->idx;
2644 
2645 	/*
2646 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2647 	 * need to ignore this, otherwise we might fail to allocate proper fake
2648 	 * state for this extra reg constraint. Also see the comment below.
2649 	 */
2650 	if (reg->alloc && !cpuc->is_fake)
2651 		return NULL; /* call x86_get_event_constraint() */
2652 
2653 again:
2654 	era = &cpuc->shared_regs->regs[idx];
2655 	/*
2656 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2657 	 * passing a fake cpuc
2658 	 */
2659 	raw_spin_lock_irqsave(&era->lock, flags);
2660 
2661 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2662 
2663 		/*
2664 		 * If its a fake cpuc -- as per validate_{group,event}() we
2665 		 * shouldn't touch event state and we can avoid doing so
2666 		 * since both will only call get_event_constraints() once
2667 		 * on each event, this avoids the need for reg->alloc.
2668 		 *
2669 		 * Not doing the ER fixup will only result in era->reg being
2670 		 * wrong, but since we won't actually try and program hardware
2671 		 * this isn't a problem either.
2672 		 */
2673 		if (!cpuc->is_fake) {
2674 			if (idx != reg->idx)
2675 				intel_fixup_er(event, idx);
2676 
2677 			/*
2678 			 * x86_schedule_events() can call get_event_constraints()
2679 			 * multiple times on events in the case of incremental
2680 			 * scheduling(). reg->alloc ensures we only do the ER
2681 			 * allocation once.
2682 			 */
2683 			reg->alloc = 1;
2684 		}
2685 
2686 		/* lock in msr value */
2687 		era->config = reg->config;
2688 		era->reg = reg->reg;
2689 
2690 		/* one more user */
2691 		atomic_inc(&era->ref);
2692 
2693 		/*
2694 		 * need to call x86_get_event_constraint()
2695 		 * to check if associated event has constraints
2696 		 */
2697 		c = NULL;
2698 	} else {
2699 		idx = intel_alt_er(idx, reg->config);
2700 		if (idx != reg->idx) {
2701 			raw_spin_unlock_irqrestore(&era->lock, flags);
2702 			goto again;
2703 		}
2704 	}
2705 	raw_spin_unlock_irqrestore(&era->lock, flags);
2706 
2707 	return c;
2708 }
2709 
2710 static void
2711 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2712 				   struct hw_perf_event_extra *reg)
2713 {
2714 	struct er_account *era;
2715 
2716 	/*
2717 	 * Only put constraint if extra reg was actually allocated. Also takes
2718 	 * care of event which do not use an extra shared reg.
2719 	 *
2720 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2721 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2722 	 * either since it'll be thrown out.
2723 	 */
2724 	if (!reg->alloc || cpuc->is_fake)
2725 		return;
2726 
2727 	era = &cpuc->shared_regs->regs[reg->idx];
2728 
2729 	/* one fewer user */
2730 	atomic_dec(&era->ref);
2731 
2732 	/* allocate again next time */
2733 	reg->alloc = 0;
2734 }
2735 
2736 static struct event_constraint *
2737 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2738 			      struct perf_event *event)
2739 {
2740 	struct event_constraint *c = NULL, *d;
2741 	struct hw_perf_event_extra *xreg, *breg;
2742 
2743 	xreg = &event->hw.extra_reg;
2744 	if (xreg->idx != EXTRA_REG_NONE) {
2745 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2746 		if (c == &emptyconstraint)
2747 			return c;
2748 	}
2749 	breg = &event->hw.branch_reg;
2750 	if (breg->idx != EXTRA_REG_NONE) {
2751 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2752 		if (d == &emptyconstraint) {
2753 			__intel_shared_reg_put_constraints(cpuc, xreg);
2754 			c = d;
2755 		}
2756 	}
2757 	return c;
2758 }
2759 
2760 struct event_constraint *
2761 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2762 			  struct perf_event *event)
2763 {
2764 	struct event_constraint *c;
2765 
2766 	if (x86_pmu.event_constraints) {
2767 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2768 			if (constraint_match(c, event->hw.config)) {
2769 				event->hw.flags |= c->flags;
2770 				return c;
2771 			}
2772 		}
2773 	}
2774 
2775 	return &unconstrained;
2776 }
2777 
2778 static struct event_constraint *
2779 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2780 			    struct perf_event *event)
2781 {
2782 	struct event_constraint *c;
2783 
2784 	c = intel_bts_constraints(event);
2785 	if (c)
2786 		return c;
2787 
2788 	c = intel_shared_regs_constraints(cpuc, event);
2789 	if (c)
2790 		return c;
2791 
2792 	c = intel_pebs_constraints(event);
2793 	if (c)
2794 		return c;
2795 
2796 	return x86_get_event_constraints(cpuc, idx, event);
2797 }
2798 
2799 static void
2800 intel_start_scheduling(struct cpu_hw_events *cpuc)
2801 {
2802 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2803 	struct intel_excl_states *xl;
2804 	int tid = cpuc->excl_thread_id;
2805 
2806 	/*
2807 	 * nothing needed if in group validation mode
2808 	 */
2809 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2810 		return;
2811 
2812 	/*
2813 	 * no exclusion needed
2814 	 */
2815 	if (WARN_ON_ONCE(!excl_cntrs))
2816 		return;
2817 
2818 	xl = &excl_cntrs->states[tid];
2819 
2820 	xl->sched_started = true;
2821 	/*
2822 	 * lock shared state until we are done scheduling
2823 	 * in stop_event_scheduling()
2824 	 * makes scheduling appear as a transaction
2825 	 */
2826 	raw_spin_lock(&excl_cntrs->lock);
2827 }
2828 
2829 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2830 {
2831 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2832 	struct event_constraint *c = cpuc->event_constraint[idx];
2833 	struct intel_excl_states *xl;
2834 	int tid = cpuc->excl_thread_id;
2835 
2836 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2837 		return;
2838 
2839 	if (WARN_ON_ONCE(!excl_cntrs))
2840 		return;
2841 
2842 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2843 		return;
2844 
2845 	xl = &excl_cntrs->states[tid];
2846 
2847 	lockdep_assert_held(&excl_cntrs->lock);
2848 
2849 	if (c->flags & PERF_X86_EVENT_EXCL)
2850 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2851 	else
2852 		xl->state[cntr] = INTEL_EXCL_SHARED;
2853 }
2854 
2855 static void
2856 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2857 {
2858 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2859 	struct intel_excl_states *xl;
2860 	int tid = cpuc->excl_thread_id;
2861 
2862 	/*
2863 	 * nothing needed if in group validation mode
2864 	 */
2865 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2866 		return;
2867 	/*
2868 	 * no exclusion needed
2869 	 */
2870 	if (WARN_ON_ONCE(!excl_cntrs))
2871 		return;
2872 
2873 	xl = &excl_cntrs->states[tid];
2874 
2875 	xl->sched_started = false;
2876 	/*
2877 	 * release shared state lock (acquired in intel_start_scheduling())
2878 	 */
2879 	raw_spin_unlock(&excl_cntrs->lock);
2880 }
2881 
2882 static struct event_constraint *
2883 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2884 {
2885 	WARN_ON_ONCE(!cpuc->constraint_list);
2886 
2887 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2888 		struct event_constraint *cx;
2889 
2890 		/*
2891 		 * grab pre-allocated constraint entry
2892 		 */
2893 		cx = &cpuc->constraint_list[idx];
2894 
2895 		/*
2896 		 * initialize dynamic constraint
2897 		 * with static constraint
2898 		 */
2899 		*cx = *c;
2900 
2901 		/*
2902 		 * mark constraint as dynamic
2903 		 */
2904 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2905 		c = cx;
2906 	}
2907 
2908 	return c;
2909 }
2910 
2911 static struct event_constraint *
2912 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2913 			   int idx, struct event_constraint *c)
2914 {
2915 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2916 	struct intel_excl_states *xlo;
2917 	int tid = cpuc->excl_thread_id;
2918 	int is_excl, i, w;
2919 
2920 	/*
2921 	 * validating a group does not require
2922 	 * enforcing cross-thread  exclusion
2923 	 */
2924 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2925 		return c;
2926 
2927 	/*
2928 	 * no exclusion needed
2929 	 */
2930 	if (WARN_ON_ONCE(!excl_cntrs))
2931 		return c;
2932 
2933 	/*
2934 	 * because we modify the constraint, we need
2935 	 * to make a copy. Static constraints come
2936 	 * from static const tables.
2937 	 *
2938 	 * only needed when constraint has not yet
2939 	 * been cloned (marked dynamic)
2940 	 */
2941 	c = dyn_constraint(cpuc, c, idx);
2942 
2943 	/*
2944 	 * From here on, the constraint is dynamic.
2945 	 * Either it was just allocated above, or it
2946 	 * was allocated during a earlier invocation
2947 	 * of this function
2948 	 */
2949 
2950 	/*
2951 	 * state of sibling HT
2952 	 */
2953 	xlo = &excl_cntrs->states[tid ^ 1];
2954 
2955 	/*
2956 	 * event requires exclusive counter access
2957 	 * across HT threads
2958 	 */
2959 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2960 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2961 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2962 		if (!cpuc->n_excl++)
2963 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2964 	}
2965 
2966 	/*
2967 	 * Modify static constraint with current dynamic
2968 	 * state of thread
2969 	 *
2970 	 * EXCLUSIVE: sibling counter measuring exclusive event
2971 	 * SHARED   : sibling counter measuring non-exclusive event
2972 	 * UNUSED   : sibling counter unused
2973 	 */
2974 	w = c->weight;
2975 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2976 		/*
2977 		 * exclusive event in sibling counter
2978 		 * our corresponding counter cannot be used
2979 		 * regardless of our event
2980 		 */
2981 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
2982 			__clear_bit(i, c->idxmsk);
2983 			w--;
2984 			continue;
2985 		}
2986 		/*
2987 		 * if measuring an exclusive event, sibling
2988 		 * measuring non-exclusive, then counter cannot
2989 		 * be used
2990 		 */
2991 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
2992 			__clear_bit(i, c->idxmsk);
2993 			w--;
2994 			continue;
2995 		}
2996 	}
2997 
2998 	/*
2999 	 * if we return an empty mask, then switch
3000 	 * back to static empty constraint to avoid
3001 	 * the cost of freeing later on
3002 	 */
3003 	if (!w)
3004 		c = &emptyconstraint;
3005 
3006 	c->weight = w;
3007 
3008 	return c;
3009 }
3010 
3011 static struct event_constraint *
3012 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3013 			    struct perf_event *event)
3014 {
3015 	struct event_constraint *c1, *c2;
3016 
3017 	c1 = cpuc->event_constraint[idx];
3018 
3019 	/*
3020 	 * first time only
3021 	 * - static constraint: no change across incremental scheduling calls
3022 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3023 	 */
3024 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3025 	if (c1) {
3026 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3027 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3028 		c1->weight = c2->weight;
3029 		c2 = c1;
3030 	}
3031 
3032 	if (cpuc->excl_cntrs)
3033 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3034 
3035 	return c2;
3036 }
3037 
3038 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3039 		struct perf_event *event)
3040 {
3041 	struct hw_perf_event *hwc = &event->hw;
3042 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3043 	int tid = cpuc->excl_thread_id;
3044 	struct intel_excl_states *xl;
3045 
3046 	/*
3047 	 * nothing needed if in group validation mode
3048 	 */
3049 	if (cpuc->is_fake)
3050 		return;
3051 
3052 	if (WARN_ON_ONCE(!excl_cntrs))
3053 		return;
3054 
3055 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3056 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3057 		if (!--cpuc->n_excl)
3058 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3059 	}
3060 
3061 	/*
3062 	 * If event was actually assigned, then mark the counter state as
3063 	 * unused now.
3064 	 */
3065 	if (hwc->idx >= 0) {
3066 		xl = &excl_cntrs->states[tid];
3067 
3068 		/*
3069 		 * put_constraint may be called from x86_schedule_events()
3070 		 * which already has the lock held so here make locking
3071 		 * conditional.
3072 		 */
3073 		if (!xl->sched_started)
3074 			raw_spin_lock(&excl_cntrs->lock);
3075 
3076 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3077 
3078 		if (!xl->sched_started)
3079 			raw_spin_unlock(&excl_cntrs->lock);
3080 	}
3081 }
3082 
3083 static void
3084 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3085 					struct perf_event *event)
3086 {
3087 	struct hw_perf_event_extra *reg;
3088 
3089 	reg = &event->hw.extra_reg;
3090 	if (reg->idx != EXTRA_REG_NONE)
3091 		__intel_shared_reg_put_constraints(cpuc, reg);
3092 
3093 	reg = &event->hw.branch_reg;
3094 	if (reg->idx != EXTRA_REG_NONE)
3095 		__intel_shared_reg_put_constraints(cpuc, reg);
3096 }
3097 
3098 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3099 					struct perf_event *event)
3100 {
3101 	intel_put_shared_regs_event_constraints(cpuc, event);
3102 
3103 	/*
3104 	 * is PMU has exclusive counter restrictions, then
3105 	 * all events are subject to and must call the
3106 	 * put_excl_constraints() routine
3107 	 */
3108 	if (cpuc->excl_cntrs)
3109 		intel_put_excl_constraints(cpuc, event);
3110 }
3111 
3112 static void intel_pebs_aliases_core2(struct perf_event *event)
3113 {
3114 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3115 		/*
3116 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3117 		 * (0x003c) so that we can use it with PEBS.
3118 		 *
3119 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3120 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3121 		 * (0x00c0), which is a PEBS capable event, to get the same
3122 		 * count.
3123 		 *
3124 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3125 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3126 		 * larger than the maximum number of instructions that can be
3127 		 * retired per cycle (4) and then inverting the condition, we
3128 		 * count all cycles that retire 16 or less instructions, which
3129 		 * is every cycle.
3130 		 *
3131 		 * Thereby we gain a PEBS capable cycle counter.
3132 		 */
3133 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3134 
3135 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3136 		event->hw.config = alt_config;
3137 	}
3138 }
3139 
3140 static void intel_pebs_aliases_snb(struct perf_event *event)
3141 {
3142 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3143 		/*
3144 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3145 		 * (0x003c) so that we can use it with PEBS.
3146 		 *
3147 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3148 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3149 		 * (0x01c2), which is a PEBS capable event, to get the same
3150 		 * count.
3151 		 *
3152 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3153 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3154 		 * larger than the maximum number of micro-ops that can be
3155 		 * retired per cycle (4) and then inverting the condition, we
3156 		 * count all cycles that retire 16 or less micro-ops, which
3157 		 * is every cycle.
3158 		 *
3159 		 * Thereby we gain a PEBS capable cycle counter.
3160 		 */
3161 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3162 
3163 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3164 		event->hw.config = alt_config;
3165 	}
3166 }
3167 
3168 static void intel_pebs_aliases_precdist(struct perf_event *event)
3169 {
3170 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3171 		/*
3172 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3173 		 * (0x003c) so that we can use it with PEBS.
3174 		 *
3175 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3176 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3177 		 * (0x01c0), which is a PEBS capable event, to get the same
3178 		 * count.
3179 		 *
3180 		 * The PREC_DIST event has special support to minimize sample
3181 		 * shadowing effects. One drawback is that it can be
3182 		 * only programmed on counter 1, but that seems like an
3183 		 * acceptable trade off.
3184 		 */
3185 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3186 
3187 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3188 		event->hw.config = alt_config;
3189 	}
3190 }
3191 
3192 static void intel_pebs_aliases_ivb(struct perf_event *event)
3193 {
3194 	if (event->attr.precise_ip < 3)
3195 		return intel_pebs_aliases_snb(event);
3196 	return intel_pebs_aliases_precdist(event);
3197 }
3198 
3199 static void intel_pebs_aliases_skl(struct perf_event *event)
3200 {
3201 	if (event->attr.precise_ip < 3)
3202 		return intel_pebs_aliases_core2(event);
3203 	return intel_pebs_aliases_precdist(event);
3204 }
3205 
3206 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3207 {
3208 	unsigned long flags = x86_pmu.large_pebs_flags;
3209 
3210 	if (event->attr.use_clockid)
3211 		flags &= ~PERF_SAMPLE_TIME;
3212 	if (!event->attr.exclude_kernel)
3213 		flags &= ~PERF_SAMPLE_REGS_USER;
3214 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3215 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3216 	return flags;
3217 }
3218 
3219 static int intel_pmu_bts_config(struct perf_event *event)
3220 {
3221 	struct perf_event_attr *attr = &event->attr;
3222 
3223 	if (unlikely(intel_pmu_has_bts(event))) {
3224 		/* BTS is not supported by this architecture. */
3225 		if (!x86_pmu.bts_active)
3226 			return -EOPNOTSUPP;
3227 
3228 		/* BTS is currently only allowed for user-mode. */
3229 		if (!attr->exclude_kernel)
3230 			return -EOPNOTSUPP;
3231 
3232 		/* BTS is not allowed for precise events. */
3233 		if (attr->precise_ip)
3234 			return -EOPNOTSUPP;
3235 
3236 		/* disallow bts if conflicting events are present */
3237 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3238 			return -EBUSY;
3239 
3240 		event->destroy = hw_perf_lbr_event_destroy;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 static int core_pmu_hw_config(struct perf_event *event)
3247 {
3248 	int ret = x86_pmu_hw_config(event);
3249 
3250 	if (ret)
3251 		return ret;
3252 
3253 	return intel_pmu_bts_config(event);
3254 }
3255 
3256 static int intel_pmu_hw_config(struct perf_event *event)
3257 {
3258 	int ret = x86_pmu_hw_config(event);
3259 
3260 	if (ret)
3261 		return ret;
3262 
3263 	ret = intel_pmu_bts_config(event);
3264 	if (ret)
3265 		return ret;
3266 
3267 	if (event->attr.precise_ip) {
3268 		if (!(event->attr.freq || event->attr.wakeup_events)) {
3269 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3270 			if (!(event->attr.sample_type &
3271 			      ~intel_pmu_large_pebs_flags(event)))
3272 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3273 		}
3274 		if (x86_pmu.pebs_aliases)
3275 			x86_pmu.pebs_aliases(event);
3276 
3277 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3278 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3279 	}
3280 
3281 	if (needs_branch_stack(event)) {
3282 		ret = intel_pmu_setup_lbr_filter(event);
3283 		if (ret)
3284 			return ret;
3285 
3286 		/*
3287 		 * BTS is set up earlier in this path, so don't account twice
3288 		 */
3289 		if (!unlikely(intel_pmu_has_bts(event))) {
3290 			/* disallow lbr if conflicting events are present */
3291 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3292 				return -EBUSY;
3293 
3294 			event->destroy = hw_perf_lbr_event_destroy;
3295 		}
3296 	}
3297 
3298 	if (event->attr.type != PERF_TYPE_RAW)
3299 		return 0;
3300 
3301 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3302 		return 0;
3303 
3304 	if (x86_pmu.version < 3)
3305 		return -EINVAL;
3306 
3307 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3308 		return -EACCES;
3309 
3310 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3311 
3312 	return 0;
3313 }
3314 
3315 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3316 {
3317 	if (x86_pmu.guest_get_msrs)
3318 		return x86_pmu.guest_get_msrs(nr);
3319 	*nr = 0;
3320 	return NULL;
3321 }
3322 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3323 
3324 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3325 {
3326 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3327 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3328 
3329 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3330 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3331 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3332 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3333 		arr[0].guest &= ~cpuc->pebs_enabled;
3334 	else
3335 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3336 	*nr = 1;
3337 
3338 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3339 		/*
3340 		 * If PMU counter has PEBS enabled it is not enough to
3341 		 * disable counter on a guest entry since PEBS memory
3342 		 * write can overshoot guest entry and corrupt guest
3343 		 * memory. Disabling PEBS solves the problem.
3344 		 *
3345 		 * Don't do this if the CPU already enforces it.
3346 		 */
3347 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3348 		arr[1].host = cpuc->pebs_enabled;
3349 		arr[1].guest = 0;
3350 		*nr = 2;
3351 	}
3352 
3353 	return arr;
3354 }
3355 
3356 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3357 {
3358 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3359 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3360 	int idx;
3361 
3362 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3363 		struct perf_event *event = cpuc->events[idx];
3364 
3365 		arr[idx].msr = x86_pmu_config_addr(idx);
3366 		arr[idx].host = arr[idx].guest = 0;
3367 
3368 		if (!test_bit(idx, cpuc->active_mask))
3369 			continue;
3370 
3371 		arr[idx].host = arr[idx].guest =
3372 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3373 
3374 		if (event->attr.exclude_host)
3375 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3376 		else if (event->attr.exclude_guest)
3377 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3378 	}
3379 
3380 	*nr = x86_pmu.num_counters;
3381 	return arr;
3382 }
3383 
3384 static void core_pmu_enable_event(struct perf_event *event)
3385 {
3386 	if (!event->attr.exclude_host)
3387 		x86_pmu_enable_event(event);
3388 }
3389 
3390 static void core_pmu_enable_all(int added)
3391 {
3392 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3393 	int idx;
3394 
3395 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3396 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3397 
3398 		if (!test_bit(idx, cpuc->active_mask) ||
3399 				cpuc->events[idx]->attr.exclude_host)
3400 			continue;
3401 
3402 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3403 	}
3404 }
3405 
3406 static int hsw_hw_config(struct perf_event *event)
3407 {
3408 	int ret = intel_pmu_hw_config(event);
3409 
3410 	if (ret)
3411 		return ret;
3412 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3413 		return 0;
3414 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3415 
3416 	/*
3417 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3418 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3419 	 * this combination.
3420 	 */
3421 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3422 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3423 	      event->attr.precise_ip > 0))
3424 		return -EOPNOTSUPP;
3425 
3426 	if (event_is_checkpointed(event)) {
3427 		/*
3428 		 * Sampling of checkpointed events can cause situations where
3429 		 * the CPU constantly aborts because of a overflow, which is
3430 		 * then checkpointed back and ignored. Forbid checkpointing
3431 		 * for sampling.
3432 		 *
3433 		 * But still allow a long sampling period, so that perf stat
3434 		 * from KVM works.
3435 		 */
3436 		if (event->attr.sample_period > 0 &&
3437 		    event->attr.sample_period < 0x7fffffff)
3438 			return -EOPNOTSUPP;
3439 	}
3440 	return 0;
3441 }
3442 
3443 static struct event_constraint counter0_constraint =
3444 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3445 
3446 static struct event_constraint counter2_constraint =
3447 			EVENT_CONSTRAINT(0, 0x4, 0);
3448 
3449 static struct event_constraint fixed0_constraint =
3450 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3451 
3452 static struct event_constraint fixed0_counter0_constraint =
3453 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3454 
3455 static struct event_constraint *
3456 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3457 			  struct perf_event *event)
3458 {
3459 	struct event_constraint *c;
3460 
3461 	c = intel_get_event_constraints(cpuc, idx, event);
3462 
3463 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3464 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3465 		if (c->idxmsk64 & (1U << 2))
3466 			return &counter2_constraint;
3467 		return &emptyconstraint;
3468 	}
3469 
3470 	return c;
3471 }
3472 
3473 static struct event_constraint *
3474 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3475 			  struct perf_event *event)
3476 {
3477 	/*
3478 	 * Fixed counter 0 has less skid.
3479 	 * Force instruction:ppp in Fixed counter 0
3480 	 */
3481 	if ((event->attr.precise_ip == 3) &&
3482 	    constraint_match(&fixed0_constraint, event->hw.config))
3483 		return &fixed0_constraint;
3484 
3485 	return hsw_get_event_constraints(cpuc, idx, event);
3486 }
3487 
3488 static struct event_constraint *
3489 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3490 			  struct perf_event *event)
3491 {
3492 	struct event_constraint *c;
3493 
3494 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3495 	if (event->attr.precise_ip == 3)
3496 		return &counter0_constraint;
3497 
3498 	c = intel_get_event_constraints(cpuc, idx, event);
3499 
3500 	return c;
3501 }
3502 
3503 static struct event_constraint *
3504 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3505 			  struct perf_event *event)
3506 {
3507 	struct event_constraint *c;
3508 
3509 	/*
3510 	 * :ppp means to do reduced skid PEBS,
3511 	 * which is available on PMC0 and fixed counter 0.
3512 	 */
3513 	if (event->attr.precise_ip == 3) {
3514 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
3515 		if (constraint_match(&fixed0_constraint, event->hw.config))
3516 			return &fixed0_counter0_constraint;
3517 
3518 		return &counter0_constraint;
3519 	}
3520 
3521 	c = intel_get_event_constraints(cpuc, idx, event);
3522 
3523 	return c;
3524 }
3525 
3526 static bool allow_tsx_force_abort = true;
3527 
3528 static struct event_constraint *
3529 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3530 			  struct perf_event *event)
3531 {
3532 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3533 
3534 	/*
3535 	 * Without TFA we must not use PMC3.
3536 	 */
3537 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3538 		c = dyn_constraint(cpuc, c, idx);
3539 		c->idxmsk64 &= ~(1ULL << 3);
3540 		c->weight--;
3541 	}
3542 
3543 	return c;
3544 }
3545 
3546 /*
3547  * Broadwell:
3548  *
3549  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3550  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3551  * the two to enforce a minimum period of 128 (the smallest value that has bits
3552  * 0-5 cleared and >= 100).
3553  *
3554  * Because of how the code in x86_perf_event_set_period() works, the truncation
3555  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3556  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3557  *
3558  * Therefore the effective (average) period matches the requested period,
3559  * despite coarser hardware granularity.
3560  */
3561 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3562 {
3563 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3564 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3565 		if (left < 128)
3566 			left = 128;
3567 		left &= ~0x3fULL;
3568 	}
3569 	return left;
3570 }
3571 
3572 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3573 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3574 PMU_FORMAT_ATTR(edge,	"config:18"	);
3575 PMU_FORMAT_ATTR(pc,	"config:19"	);
3576 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3577 PMU_FORMAT_ATTR(inv,	"config:23"	);
3578 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3579 PMU_FORMAT_ATTR(in_tx,  "config:32");
3580 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3581 
3582 static struct attribute *intel_arch_formats_attr[] = {
3583 	&format_attr_event.attr,
3584 	&format_attr_umask.attr,
3585 	&format_attr_edge.attr,
3586 	&format_attr_pc.attr,
3587 	&format_attr_inv.attr,
3588 	&format_attr_cmask.attr,
3589 	NULL,
3590 };
3591 
3592 ssize_t intel_event_sysfs_show(char *page, u64 config)
3593 {
3594 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3595 
3596 	return x86_event_sysfs_show(page, config, event);
3597 }
3598 
3599 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3600 {
3601 	struct intel_shared_regs *regs;
3602 	int i;
3603 
3604 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3605 			    GFP_KERNEL, cpu_to_node(cpu));
3606 	if (regs) {
3607 		/*
3608 		 * initialize the locks to keep lockdep happy
3609 		 */
3610 		for (i = 0; i < EXTRA_REG_MAX; i++)
3611 			raw_spin_lock_init(&regs->regs[i].lock);
3612 
3613 		regs->core_id = -1;
3614 	}
3615 	return regs;
3616 }
3617 
3618 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3619 {
3620 	struct intel_excl_cntrs *c;
3621 
3622 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3623 			 GFP_KERNEL, cpu_to_node(cpu));
3624 	if (c) {
3625 		raw_spin_lock_init(&c->lock);
3626 		c->core_id = -1;
3627 	}
3628 	return c;
3629 }
3630 
3631 
3632 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3633 {
3634 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3635 
3636 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3637 		cpuc->shared_regs = allocate_shared_regs(cpu);
3638 		if (!cpuc->shared_regs)
3639 			goto err;
3640 	}
3641 
3642 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3643 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3644 
3645 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3646 		if (!cpuc->constraint_list)
3647 			goto err_shared_regs;
3648 	}
3649 
3650 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3651 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3652 		if (!cpuc->excl_cntrs)
3653 			goto err_constraint_list;
3654 
3655 		cpuc->excl_thread_id = 0;
3656 	}
3657 
3658 	return 0;
3659 
3660 err_constraint_list:
3661 	kfree(cpuc->constraint_list);
3662 	cpuc->constraint_list = NULL;
3663 
3664 err_shared_regs:
3665 	kfree(cpuc->shared_regs);
3666 	cpuc->shared_regs = NULL;
3667 
3668 err:
3669 	return -ENOMEM;
3670 }
3671 
3672 static int intel_pmu_cpu_prepare(int cpu)
3673 {
3674 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3675 }
3676 
3677 static void flip_smm_bit(void *data)
3678 {
3679 	unsigned long set = *(unsigned long *)data;
3680 
3681 	if (set > 0) {
3682 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3683 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3684 	} else {
3685 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3686 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3687 	}
3688 }
3689 
3690 static void intel_pmu_cpu_starting(int cpu)
3691 {
3692 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3693 	int core_id = topology_core_id(cpu);
3694 	int i;
3695 
3696 	init_debug_store_on_cpu(cpu);
3697 	/*
3698 	 * Deal with CPUs that don't clear their LBRs on power-up.
3699 	 */
3700 	intel_pmu_lbr_reset();
3701 
3702 	cpuc->lbr_sel = NULL;
3703 
3704 	if (x86_pmu.flags & PMU_FL_TFA) {
3705 		WARN_ON_ONCE(cpuc->tfa_shadow);
3706 		cpuc->tfa_shadow = ~0ULL;
3707 		intel_set_tfa(cpuc, false);
3708 	}
3709 
3710 	if (x86_pmu.version > 1)
3711 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3712 
3713 	if (x86_pmu.counter_freezing)
3714 		enable_counter_freeze();
3715 
3716 	if (!cpuc->shared_regs)
3717 		return;
3718 
3719 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3720 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3721 			struct intel_shared_regs *pc;
3722 
3723 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3724 			if (pc && pc->core_id == core_id) {
3725 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3726 				cpuc->shared_regs = pc;
3727 				break;
3728 			}
3729 		}
3730 		cpuc->shared_regs->core_id = core_id;
3731 		cpuc->shared_regs->refcnt++;
3732 	}
3733 
3734 	if (x86_pmu.lbr_sel_map)
3735 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3736 
3737 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3738 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3739 			struct cpu_hw_events *sibling;
3740 			struct intel_excl_cntrs *c;
3741 
3742 			sibling = &per_cpu(cpu_hw_events, i);
3743 			c = sibling->excl_cntrs;
3744 			if (c && c->core_id == core_id) {
3745 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3746 				cpuc->excl_cntrs = c;
3747 				if (!sibling->excl_thread_id)
3748 					cpuc->excl_thread_id = 1;
3749 				break;
3750 			}
3751 		}
3752 		cpuc->excl_cntrs->core_id = core_id;
3753 		cpuc->excl_cntrs->refcnt++;
3754 	}
3755 }
3756 
3757 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3758 {
3759 	struct intel_excl_cntrs *c;
3760 
3761 	c = cpuc->excl_cntrs;
3762 	if (c) {
3763 		if (c->core_id == -1 || --c->refcnt == 0)
3764 			kfree(c);
3765 		cpuc->excl_cntrs = NULL;
3766 	}
3767 
3768 	kfree(cpuc->constraint_list);
3769 	cpuc->constraint_list = NULL;
3770 }
3771 
3772 static void intel_pmu_cpu_dying(int cpu)
3773 {
3774 	fini_debug_store_on_cpu(cpu);
3775 
3776 	if (x86_pmu.counter_freezing)
3777 		disable_counter_freeze();
3778 }
3779 
3780 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3781 {
3782 	struct intel_shared_regs *pc;
3783 
3784 	pc = cpuc->shared_regs;
3785 	if (pc) {
3786 		if (pc->core_id == -1 || --pc->refcnt == 0)
3787 			kfree(pc);
3788 		cpuc->shared_regs = NULL;
3789 	}
3790 
3791 	free_excl_cntrs(cpuc);
3792 }
3793 
3794 static void intel_pmu_cpu_dead(int cpu)
3795 {
3796 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3797 }
3798 
3799 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3800 				 bool sched_in)
3801 {
3802 	intel_pmu_pebs_sched_task(ctx, sched_in);
3803 	intel_pmu_lbr_sched_task(ctx, sched_in);
3804 }
3805 
3806 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3807 {
3808 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3809 }
3810 
3811 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3812 
3813 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3814 
3815 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3816 
3817 static struct attribute *intel_arch3_formats_attr[] = {
3818 	&format_attr_event.attr,
3819 	&format_attr_umask.attr,
3820 	&format_attr_edge.attr,
3821 	&format_attr_pc.attr,
3822 	&format_attr_any.attr,
3823 	&format_attr_inv.attr,
3824 	&format_attr_cmask.attr,
3825 	NULL,
3826 };
3827 
3828 static struct attribute *hsw_format_attr[] = {
3829 	&format_attr_in_tx.attr,
3830 	&format_attr_in_tx_cp.attr,
3831 	&format_attr_offcore_rsp.attr,
3832 	&format_attr_ldlat.attr,
3833 	NULL
3834 };
3835 
3836 static struct attribute *nhm_format_attr[] = {
3837 	&format_attr_offcore_rsp.attr,
3838 	&format_attr_ldlat.attr,
3839 	NULL
3840 };
3841 
3842 static struct attribute *slm_format_attr[] = {
3843 	&format_attr_offcore_rsp.attr,
3844 	NULL
3845 };
3846 
3847 static struct attribute *skl_format_attr[] = {
3848 	&format_attr_frontend.attr,
3849 	NULL,
3850 };
3851 
3852 static __initconst const struct x86_pmu core_pmu = {
3853 	.name			= "core",
3854 	.handle_irq		= x86_pmu_handle_irq,
3855 	.disable_all		= x86_pmu_disable_all,
3856 	.enable_all		= core_pmu_enable_all,
3857 	.enable			= core_pmu_enable_event,
3858 	.disable		= x86_pmu_disable_event,
3859 	.hw_config		= core_pmu_hw_config,
3860 	.schedule_events	= x86_schedule_events,
3861 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3862 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3863 	.event_map		= intel_pmu_event_map,
3864 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3865 	.apic			= 1,
3866 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3867 
3868 	/*
3869 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3870 	 * so we install an artificial 1<<31 period regardless of
3871 	 * the generic event period:
3872 	 */
3873 	.max_period		= (1ULL<<31) - 1,
3874 	.get_event_constraints	= intel_get_event_constraints,
3875 	.put_event_constraints	= intel_put_event_constraints,
3876 	.event_constraints	= intel_core_event_constraints,
3877 	.guest_get_msrs		= core_guest_get_msrs,
3878 	.format_attrs		= intel_arch_formats_attr,
3879 	.events_sysfs_show	= intel_event_sysfs_show,
3880 
3881 	/*
3882 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3883 	 * together with PMU version 1 and thus be using core_pmu with
3884 	 * shared_regs. We need following callbacks here to allocate
3885 	 * it properly.
3886 	 */
3887 	.cpu_prepare		= intel_pmu_cpu_prepare,
3888 	.cpu_starting		= intel_pmu_cpu_starting,
3889 	.cpu_dying		= intel_pmu_cpu_dying,
3890 	.cpu_dead		= intel_pmu_cpu_dead,
3891 
3892 	.check_period		= intel_pmu_check_period,
3893 };
3894 
3895 static struct attribute *intel_pmu_attrs[];
3896 
3897 static __initconst const struct x86_pmu intel_pmu = {
3898 	.name			= "Intel",
3899 	.handle_irq		= intel_pmu_handle_irq,
3900 	.disable_all		= intel_pmu_disable_all,
3901 	.enable_all		= intel_pmu_enable_all,
3902 	.enable			= intel_pmu_enable_event,
3903 	.disable		= intel_pmu_disable_event,
3904 	.add			= intel_pmu_add_event,
3905 	.del			= intel_pmu_del_event,
3906 	.read			= intel_pmu_read_event,
3907 	.hw_config		= intel_pmu_hw_config,
3908 	.schedule_events	= x86_schedule_events,
3909 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3910 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3911 	.event_map		= intel_pmu_event_map,
3912 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3913 	.apic			= 1,
3914 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3915 	/*
3916 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3917 	 * so we install an artificial 1<<31 period regardless of
3918 	 * the generic event period:
3919 	 */
3920 	.max_period		= (1ULL << 31) - 1,
3921 	.get_event_constraints	= intel_get_event_constraints,
3922 	.put_event_constraints	= intel_put_event_constraints,
3923 	.pebs_aliases		= intel_pebs_aliases_core2,
3924 
3925 	.format_attrs		= intel_arch3_formats_attr,
3926 	.events_sysfs_show	= intel_event_sysfs_show,
3927 
3928 	.attrs			= intel_pmu_attrs,
3929 
3930 	.cpu_prepare		= intel_pmu_cpu_prepare,
3931 	.cpu_starting		= intel_pmu_cpu_starting,
3932 	.cpu_dying		= intel_pmu_cpu_dying,
3933 	.cpu_dead		= intel_pmu_cpu_dead,
3934 
3935 	.guest_get_msrs		= intel_guest_get_msrs,
3936 	.sched_task		= intel_pmu_sched_task,
3937 
3938 	.check_period		= intel_pmu_check_period,
3939 };
3940 
3941 static __init void intel_clovertown_quirk(void)
3942 {
3943 	/*
3944 	 * PEBS is unreliable due to:
3945 	 *
3946 	 *   AJ67  - PEBS may experience CPL leaks
3947 	 *   AJ68  - PEBS PMI may be delayed by one event
3948 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3949 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3950 	 *
3951 	 * AJ67 could be worked around by restricting the OS/USR flags.
3952 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3953 	 *
3954 	 * AJ106 could possibly be worked around by not allowing LBR
3955 	 *       usage from PEBS, including the fixup.
3956 	 * AJ68  could possibly be worked around by always programming
3957 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3958 	 *
3959 	 * But taken together it might just make sense to not enable PEBS on
3960 	 * these chips.
3961 	 */
3962 	pr_warn("PEBS disabled due to CPU errata\n");
3963 	x86_pmu.pebs = 0;
3964 	x86_pmu.pebs_constraints = NULL;
3965 }
3966 
3967 static const struct x86_cpu_desc isolation_ucodes[] = {
3968 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE,		 3, 0x0000001f),
3969 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT,		 1, 0x0000001e),
3970 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E,		 1, 0x00000015),
3971 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
3972 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
3973 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE,	 4, 0x00000023),
3974 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E,	 1, 0x00000014),
3975 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 2, 0x00000010),
3976 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 3, 0x07000009),
3977 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 4, 0x0f000009),
3978 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 5, 0x0e000002),
3979 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
3980 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
3981 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
3982 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE,	 3, 0x0000007c),
3983 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP,	 3, 0x0000007c),
3984 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	 9, 0x0000004e),
3985 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	 9, 0x0000004e),
3986 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	10, 0x0000004e),
3987 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	11, 0x0000004e),
3988 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	12, 0x0000004e),
3989 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	10, 0x0000004e),
3990 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	11, 0x0000004e),
3991 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	12, 0x0000004e),
3992 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	13, 0x0000004e),
3993 	{}
3994 };
3995 
3996 static void intel_check_pebs_isolation(void)
3997 {
3998 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
3999 }
4000 
4001 static __init void intel_pebs_isolation_quirk(void)
4002 {
4003 	WARN_ON_ONCE(x86_pmu.check_microcode);
4004 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4005 	intel_check_pebs_isolation();
4006 }
4007 
4008 static const struct x86_cpu_desc pebs_ucodes[] = {
4009 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4010 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4011 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4012 	{}
4013 };
4014 
4015 static bool intel_snb_pebs_broken(void)
4016 {
4017 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4018 }
4019 
4020 static void intel_snb_check_microcode(void)
4021 {
4022 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4023 		return;
4024 
4025 	/*
4026 	 * Serialized by the microcode lock..
4027 	 */
4028 	if (x86_pmu.pebs_broken) {
4029 		pr_info("PEBS enabled due to microcode update\n");
4030 		x86_pmu.pebs_broken = 0;
4031 	} else {
4032 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4033 		x86_pmu.pebs_broken = 1;
4034 	}
4035 }
4036 
4037 static bool is_lbr_from(unsigned long msr)
4038 {
4039 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4040 
4041 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4042 }
4043 
4044 /*
4045  * Under certain circumstances, access certain MSR may cause #GP.
4046  * The function tests if the input MSR can be safely accessed.
4047  */
4048 static bool check_msr(unsigned long msr, u64 mask)
4049 {
4050 	u64 val_old, val_new, val_tmp;
4051 
4052 	/*
4053 	 * Read the current value, change it and read it back to see if it
4054 	 * matches, this is needed to detect certain hardware emulators
4055 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4056 	 */
4057 	if (rdmsrl_safe(msr, &val_old))
4058 		return false;
4059 
4060 	/*
4061 	 * Only change the bits which can be updated by wrmsrl.
4062 	 */
4063 	val_tmp = val_old ^ mask;
4064 
4065 	if (is_lbr_from(msr))
4066 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4067 
4068 	if (wrmsrl_safe(msr, val_tmp) ||
4069 	    rdmsrl_safe(msr, &val_new))
4070 		return false;
4071 
4072 	/*
4073 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4074 	 * should equal rdmsrl()'s even with the quirk.
4075 	 */
4076 	if (val_new != val_tmp)
4077 		return false;
4078 
4079 	if (is_lbr_from(msr))
4080 		val_old = lbr_from_signext_quirk_wr(val_old);
4081 
4082 	/* Here it's sure that the MSR can be safely accessed.
4083 	 * Restore the old value and return.
4084 	 */
4085 	wrmsrl(msr, val_old);
4086 
4087 	return true;
4088 }
4089 
4090 static __init void intel_sandybridge_quirk(void)
4091 {
4092 	x86_pmu.check_microcode = intel_snb_check_microcode;
4093 	cpus_read_lock();
4094 	intel_snb_check_microcode();
4095 	cpus_read_unlock();
4096 }
4097 
4098 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4099 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4100 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4101 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4102 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4103 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4104 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4105 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4106 };
4107 
4108 static __init void intel_arch_events_quirk(void)
4109 {
4110 	int bit;
4111 
4112 	/* disable event that reported as not presend by cpuid */
4113 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4114 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4115 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4116 			intel_arch_events_map[bit].name);
4117 	}
4118 }
4119 
4120 static __init void intel_nehalem_quirk(void)
4121 {
4122 	union cpuid10_ebx ebx;
4123 
4124 	ebx.full = x86_pmu.events_maskl;
4125 	if (ebx.split.no_branch_misses_retired) {
4126 		/*
4127 		 * Erratum AAJ80 detected, we work it around by using
4128 		 * the BR_MISP_EXEC.ANY event. This will over-count
4129 		 * branch-misses, but it's still much better than the
4130 		 * architectural event which is often completely bogus:
4131 		 */
4132 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4133 		ebx.split.no_branch_misses_retired = 0;
4134 		x86_pmu.events_maskl = ebx.full;
4135 		pr_info("CPU erratum AAJ80 worked around\n");
4136 	}
4137 }
4138 
4139 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4140 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4141 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4142 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4143 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X,	 1, 0x00000028),
4144 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4145 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4146 	{}
4147 };
4148 
4149 static bool intel_counter_freezing_broken(void)
4150 {
4151 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4152 }
4153 
4154 static __init void intel_counter_freezing_quirk(void)
4155 {
4156 	/* Check if it's already disabled */
4157 	if (disable_counter_freezing)
4158 		return;
4159 
4160 	/*
4161 	 * If the system starts with the wrong ucode, leave the
4162 	 * counter-freezing feature permanently disabled.
4163 	 */
4164 	if (intel_counter_freezing_broken()) {
4165 		pr_info("PMU counter freezing disabled due to CPU errata,"
4166 			"please upgrade microcode\n");
4167 		x86_pmu.counter_freezing = false;
4168 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4169 	}
4170 }
4171 
4172 /*
4173  * enable software workaround for errata:
4174  * SNB: BJ122
4175  * IVB: BV98
4176  * HSW: HSD29
4177  *
4178  * Only needed when HT is enabled. However detecting
4179  * if HT is enabled is difficult (model specific). So instead,
4180  * we enable the workaround in the early boot, and verify if
4181  * it is needed in a later initcall phase once we have valid
4182  * topology information to check if HT is actually enabled
4183  */
4184 static __init void intel_ht_bug(void)
4185 {
4186 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4187 
4188 	x86_pmu.start_scheduling = intel_start_scheduling;
4189 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4190 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4191 }
4192 
4193 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4194 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4195 
4196 /* Haswell special events */
4197 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4198 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4199 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4200 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4201 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4202 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4203 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4204 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4205 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4206 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4207 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4208 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4209 
4210 static struct attribute *hsw_events_attrs[] = {
4211 	EVENT_PTR(td_slots_issued),
4212 	EVENT_PTR(td_slots_retired),
4213 	EVENT_PTR(td_fetch_bubbles),
4214 	EVENT_PTR(td_total_slots),
4215 	EVENT_PTR(td_total_slots_scale),
4216 	EVENT_PTR(td_recovery_bubbles),
4217 	EVENT_PTR(td_recovery_bubbles_scale),
4218 	NULL
4219 };
4220 
4221 static struct attribute *hsw_mem_events_attrs[] = {
4222 	EVENT_PTR(mem_ld_hsw),
4223 	EVENT_PTR(mem_st_hsw),
4224 	NULL,
4225 };
4226 
4227 static struct attribute *hsw_tsx_events_attrs[] = {
4228 	EVENT_PTR(tx_start),
4229 	EVENT_PTR(tx_commit),
4230 	EVENT_PTR(tx_abort),
4231 	EVENT_PTR(tx_capacity),
4232 	EVENT_PTR(tx_conflict),
4233 	EVENT_PTR(el_start),
4234 	EVENT_PTR(el_commit),
4235 	EVENT_PTR(el_abort),
4236 	EVENT_PTR(el_capacity),
4237 	EVENT_PTR(el_conflict),
4238 	EVENT_PTR(cycles_t),
4239 	EVENT_PTR(cycles_ct),
4240 	NULL
4241 };
4242 
4243 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4244 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4245 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4246 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4247 
4248 static struct attribute *icl_events_attrs[] = {
4249 	EVENT_PTR(mem_ld_hsw),
4250 	EVENT_PTR(mem_st_hsw),
4251 	NULL,
4252 };
4253 
4254 static struct attribute *icl_tsx_events_attrs[] = {
4255 	EVENT_PTR(tx_start),
4256 	EVENT_PTR(tx_abort),
4257 	EVENT_PTR(tx_commit),
4258 	EVENT_PTR(tx_capacity_read),
4259 	EVENT_PTR(tx_capacity_write),
4260 	EVENT_PTR(tx_conflict),
4261 	EVENT_PTR(el_start),
4262 	EVENT_PTR(el_abort),
4263 	EVENT_PTR(el_commit),
4264 	EVENT_PTR(el_capacity_read),
4265 	EVENT_PTR(el_capacity_write),
4266 	EVENT_PTR(el_conflict),
4267 	EVENT_PTR(cycles_t),
4268 	EVENT_PTR(cycles_ct),
4269 	NULL,
4270 };
4271 
4272 static __init struct attribute **get_icl_events_attrs(void)
4273 {
4274 	return boot_cpu_has(X86_FEATURE_RTM) ?
4275 		merge_attr(icl_events_attrs, icl_tsx_events_attrs) :
4276 		icl_events_attrs;
4277 }
4278 
4279 static ssize_t freeze_on_smi_show(struct device *cdev,
4280 				  struct device_attribute *attr,
4281 				  char *buf)
4282 {
4283 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4284 }
4285 
4286 static DEFINE_MUTEX(freeze_on_smi_mutex);
4287 
4288 static ssize_t freeze_on_smi_store(struct device *cdev,
4289 				   struct device_attribute *attr,
4290 				   const char *buf, size_t count)
4291 {
4292 	unsigned long val;
4293 	ssize_t ret;
4294 
4295 	ret = kstrtoul(buf, 0, &val);
4296 	if (ret)
4297 		return ret;
4298 
4299 	if (val > 1)
4300 		return -EINVAL;
4301 
4302 	mutex_lock(&freeze_on_smi_mutex);
4303 
4304 	if (x86_pmu.attr_freeze_on_smi == val)
4305 		goto done;
4306 
4307 	x86_pmu.attr_freeze_on_smi = val;
4308 
4309 	get_online_cpus();
4310 	on_each_cpu(flip_smm_bit, &val, 1);
4311 	put_online_cpus();
4312 done:
4313 	mutex_unlock(&freeze_on_smi_mutex);
4314 
4315 	return count;
4316 }
4317 
4318 static void update_tfa_sched(void *ignored)
4319 {
4320 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4321 
4322 	/*
4323 	 * check if PMC3 is used
4324 	 * and if so force schedule out for all event types all contexts
4325 	 */
4326 	if (test_bit(3, cpuc->active_mask))
4327 		perf_pmu_resched(x86_get_pmu());
4328 }
4329 
4330 static ssize_t show_sysctl_tfa(struct device *cdev,
4331 			      struct device_attribute *attr,
4332 			      char *buf)
4333 {
4334 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4335 }
4336 
4337 static ssize_t set_sysctl_tfa(struct device *cdev,
4338 			      struct device_attribute *attr,
4339 			      const char *buf, size_t count)
4340 {
4341 	bool val;
4342 	ssize_t ret;
4343 
4344 	ret = kstrtobool(buf, &val);
4345 	if (ret)
4346 		return ret;
4347 
4348 	/* no change */
4349 	if (val == allow_tsx_force_abort)
4350 		return count;
4351 
4352 	allow_tsx_force_abort = val;
4353 
4354 	get_online_cpus();
4355 	on_each_cpu(update_tfa_sched, NULL, 1);
4356 	put_online_cpus();
4357 
4358 	return count;
4359 }
4360 
4361 
4362 static DEVICE_ATTR_RW(freeze_on_smi);
4363 
4364 static ssize_t branches_show(struct device *cdev,
4365 			     struct device_attribute *attr,
4366 			     char *buf)
4367 {
4368 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4369 }
4370 
4371 static DEVICE_ATTR_RO(branches);
4372 
4373 static struct attribute *lbr_attrs[] = {
4374 	&dev_attr_branches.attr,
4375 	NULL
4376 };
4377 
4378 static char pmu_name_str[30];
4379 
4380 static ssize_t pmu_name_show(struct device *cdev,
4381 			     struct device_attribute *attr,
4382 			     char *buf)
4383 {
4384 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4385 }
4386 
4387 static DEVICE_ATTR_RO(pmu_name);
4388 
4389 static struct attribute *intel_pmu_caps_attrs[] = {
4390        &dev_attr_pmu_name.attr,
4391        NULL
4392 };
4393 
4394 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4395 		   show_sysctl_tfa,
4396 		   set_sysctl_tfa);
4397 
4398 static struct attribute *intel_pmu_attrs[] = {
4399 	&dev_attr_freeze_on_smi.attr,
4400 	NULL, /* &dev_attr_allow_tsx_force_abort.attr.attr */
4401 	NULL,
4402 };
4403 
4404 static __init struct attribute **
4405 get_events_attrs(struct attribute **base,
4406 		 struct attribute **mem,
4407 		 struct attribute **tsx)
4408 {
4409 	struct attribute **attrs = base;
4410 	struct attribute **old;
4411 
4412 	if (mem && x86_pmu.pebs)
4413 		attrs = merge_attr(attrs, mem);
4414 
4415 	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4416 		old = attrs;
4417 		attrs = merge_attr(attrs, tsx);
4418 		if (old != base)
4419 			kfree(old);
4420 	}
4421 
4422 	return attrs;
4423 }
4424 
4425 __init int intel_pmu_init(void)
4426 {
4427 	struct attribute **extra_attr = NULL;
4428 	struct attribute **mem_attr = NULL;
4429 	struct attribute **tsx_attr = NULL;
4430 	struct attribute **to_free = NULL;
4431 	union cpuid10_edx edx;
4432 	union cpuid10_eax eax;
4433 	union cpuid10_ebx ebx;
4434 	struct event_constraint *c;
4435 	unsigned int unused;
4436 	struct extra_reg *er;
4437 	int version, i;
4438 	char *name;
4439 
4440 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4441 		switch (boot_cpu_data.x86) {
4442 		case 0x6:
4443 			return p6_pmu_init();
4444 		case 0xb:
4445 			return knc_pmu_init();
4446 		case 0xf:
4447 			return p4_pmu_init();
4448 		}
4449 		return -ENODEV;
4450 	}
4451 
4452 	/*
4453 	 * Check whether the Architectural PerfMon supports
4454 	 * Branch Misses Retired hw_event or not.
4455 	 */
4456 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4457 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4458 		return -ENODEV;
4459 
4460 	version = eax.split.version_id;
4461 	if (version < 2)
4462 		x86_pmu = core_pmu;
4463 	else
4464 		x86_pmu = intel_pmu;
4465 
4466 	x86_pmu.version			= version;
4467 	x86_pmu.num_counters		= eax.split.num_counters;
4468 	x86_pmu.cntval_bits		= eax.split.bit_width;
4469 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4470 
4471 	x86_pmu.events_maskl		= ebx.full;
4472 	x86_pmu.events_mask_len		= eax.split.mask_length;
4473 
4474 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4475 
4476 	/*
4477 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4478 	 * assume at least 3 events, when not running in a hypervisor:
4479 	 */
4480 	if (version > 1) {
4481 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4482 
4483 		x86_pmu.num_counters_fixed =
4484 			max((int)edx.split.num_counters_fixed, assume);
4485 	}
4486 
4487 	if (version >= 4)
4488 		x86_pmu.counter_freezing = !disable_counter_freezing;
4489 
4490 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4491 		u64 capabilities;
4492 
4493 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4494 		x86_pmu.intel_cap.capabilities = capabilities;
4495 	}
4496 
4497 	intel_ds_init();
4498 
4499 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4500 
4501 	/*
4502 	 * Install the hw-cache-events table:
4503 	 */
4504 	switch (boot_cpu_data.x86_model) {
4505 	case INTEL_FAM6_CORE_YONAH:
4506 		pr_cont("Core events, ");
4507 		name = "core";
4508 		break;
4509 
4510 	case INTEL_FAM6_CORE2_MEROM:
4511 		x86_add_quirk(intel_clovertown_quirk);
4512 		/* fall through */
4513 
4514 	case INTEL_FAM6_CORE2_MEROM_L:
4515 	case INTEL_FAM6_CORE2_PENRYN:
4516 	case INTEL_FAM6_CORE2_DUNNINGTON:
4517 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4518 		       sizeof(hw_cache_event_ids));
4519 
4520 		intel_pmu_lbr_init_core();
4521 
4522 		x86_pmu.event_constraints = intel_core2_event_constraints;
4523 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4524 		pr_cont("Core2 events, ");
4525 		name = "core2";
4526 		break;
4527 
4528 	case INTEL_FAM6_NEHALEM:
4529 	case INTEL_FAM6_NEHALEM_EP:
4530 	case INTEL_FAM6_NEHALEM_EX:
4531 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4532 		       sizeof(hw_cache_event_ids));
4533 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4534 		       sizeof(hw_cache_extra_regs));
4535 
4536 		intel_pmu_lbr_init_nhm();
4537 
4538 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4539 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4540 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4541 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4542 
4543 		mem_attr = nhm_mem_events_attrs;
4544 
4545 		/* UOPS_ISSUED.STALLED_CYCLES */
4546 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4547 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4548 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4549 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4550 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4551 
4552 		intel_pmu_pebs_data_source_nhm();
4553 		x86_add_quirk(intel_nehalem_quirk);
4554 		x86_pmu.pebs_no_tlb = 1;
4555 		extra_attr = nhm_format_attr;
4556 
4557 		pr_cont("Nehalem events, ");
4558 		name = "nehalem";
4559 		break;
4560 
4561 	case INTEL_FAM6_ATOM_BONNELL:
4562 	case INTEL_FAM6_ATOM_BONNELL_MID:
4563 	case INTEL_FAM6_ATOM_SALTWELL:
4564 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4565 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4566 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4567 		       sizeof(hw_cache_event_ids));
4568 
4569 		intel_pmu_lbr_init_atom();
4570 
4571 		x86_pmu.event_constraints = intel_gen_event_constraints;
4572 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4573 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4574 		pr_cont("Atom events, ");
4575 		name = "bonnell";
4576 		break;
4577 
4578 	case INTEL_FAM6_ATOM_SILVERMONT:
4579 	case INTEL_FAM6_ATOM_SILVERMONT_X:
4580 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4581 	case INTEL_FAM6_ATOM_AIRMONT:
4582 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4583 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4584 			sizeof(hw_cache_event_ids));
4585 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4586 		       sizeof(hw_cache_extra_regs));
4587 
4588 		intel_pmu_lbr_init_slm();
4589 
4590 		x86_pmu.event_constraints = intel_slm_event_constraints;
4591 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4592 		x86_pmu.extra_regs = intel_slm_extra_regs;
4593 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4594 		x86_pmu.cpu_events = slm_events_attrs;
4595 		extra_attr = slm_format_attr;
4596 		pr_cont("Silvermont events, ");
4597 		name = "silvermont";
4598 		break;
4599 
4600 	case INTEL_FAM6_ATOM_GOLDMONT:
4601 	case INTEL_FAM6_ATOM_GOLDMONT_X:
4602 		x86_add_quirk(intel_counter_freezing_quirk);
4603 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4604 		       sizeof(hw_cache_event_ids));
4605 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4606 		       sizeof(hw_cache_extra_regs));
4607 
4608 		intel_pmu_lbr_init_skl();
4609 
4610 		x86_pmu.event_constraints = intel_slm_event_constraints;
4611 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4612 		x86_pmu.extra_regs = intel_glm_extra_regs;
4613 		/*
4614 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4615 		 * for precise cycles.
4616 		 * :pp is identical to :ppp
4617 		 */
4618 		x86_pmu.pebs_aliases = NULL;
4619 		x86_pmu.pebs_prec_dist = true;
4620 		x86_pmu.lbr_pt_coexist = true;
4621 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4622 		x86_pmu.cpu_events = glm_events_attrs;
4623 		extra_attr = slm_format_attr;
4624 		pr_cont("Goldmont events, ");
4625 		name = "goldmont";
4626 		break;
4627 
4628 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4629 		x86_add_quirk(intel_counter_freezing_quirk);
4630 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4631 		       sizeof(hw_cache_event_ids));
4632 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4633 		       sizeof(hw_cache_extra_regs));
4634 
4635 		intel_pmu_lbr_init_skl();
4636 
4637 		x86_pmu.event_constraints = intel_slm_event_constraints;
4638 		x86_pmu.extra_regs = intel_glm_extra_regs;
4639 		/*
4640 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4641 		 * for precise cycles.
4642 		 */
4643 		x86_pmu.pebs_aliases = NULL;
4644 		x86_pmu.pebs_prec_dist = true;
4645 		x86_pmu.lbr_pt_coexist = true;
4646 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4647 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4648 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4649 		x86_pmu.cpu_events = glm_events_attrs;
4650 		/* Goldmont Plus has 4-wide pipeline */
4651 		event_attr_td_total_slots_scale_glm.event_str = "4";
4652 		extra_attr = slm_format_attr;
4653 		pr_cont("Goldmont plus events, ");
4654 		name = "goldmont_plus";
4655 		break;
4656 
4657 	case INTEL_FAM6_ATOM_TREMONT_X:
4658 		x86_pmu.late_ack = true;
4659 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4660 		       sizeof(hw_cache_event_ids));
4661 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4662 		       sizeof(hw_cache_extra_regs));
4663 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4664 
4665 		intel_pmu_lbr_init_skl();
4666 
4667 		x86_pmu.event_constraints = intel_slm_event_constraints;
4668 		x86_pmu.extra_regs = intel_tnt_extra_regs;
4669 		/*
4670 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4671 		 * for precise cycles.
4672 		 */
4673 		x86_pmu.pebs_aliases = NULL;
4674 		x86_pmu.pebs_prec_dist = true;
4675 		x86_pmu.lbr_pt_coexist = true;
4676 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4677 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
4678 		extra_attr = slm_format_attr;
4679 		pr_cont("Tremont events, ");
4680 		name = "Tremont";
4681 		break;
4682 
4683 	case INTEL_FAM6_WESTMERE:
4684 	case INTEL_FAM6_WESTMERE_EP:
4685 	case INTEL_FAM6_WESTMERE_EX:
4686 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4687 		       sizeof(hw_cache_event_ids));
4688 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4689 		       sizeof(hw_cache_extra_regs));
4690 
4691 		intel_pmu_lbr_init_nhm();
4692 
4693 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4694 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4695 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4696 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4697 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4698 
4699 		mem_attr = nhm_mem_events_attrs;
4700 
4701 		/* UOPS_ISSUED.STALLED_CYCLES */
4702 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4703 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4704 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4705 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4706 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4707 
4708 		intel_pmu_pebs_data_source_nhm();
4709 		extra_attr = nhm_format_attr;
4710 		pr_cont("Westmere events, ");
4711 		name = "westmere";
4712 		break;
4713 
4714 	case INTEL_FAM6_SANDYBRIDGE:
4715 	case INTEL_FAM6_SANDYBRIDGE_X:
4716 		x86_add_quirk(intel_sandybridge_quirk);
4717 		x86_add_quirk(intel_ht_bug);
4718 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4719 		       sizeof(hw_cache_event_ids));
4720 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4721 		       sizeof(hw_cache_extra_regs));
4722 
4723 		intel_pmu_lbr_init_snb();
4724 
4725 		x86_pmu.event_constraints = intel_snb_event_constraints;
4726 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4727 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4728 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4729 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4730 		else
4731 			x86_pmu.extra_regs = intel_snb_extra_regs;
4732 
4733 
4734 		/* all extra regs are per-cpu when HT is on */
4735 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4736 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4737 
4738 		x86_pmu.cpu_events = snb_events_attrs;
4739 		mem_attr = snb_mem_events_attrs;
4740 
4741 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4742 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4743 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4744 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4745 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4746 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4747 
4748 		extra_attr = nhm_format_attr;
4749 
4750 		pr_cont("SandyBridge events, ");
4751 		name = "sandybridge";
4752 		break;
4753 
4754 	case INTEL_FAM6_IVYBRIDGE:
4755 	case INTEL_FAM6_IVYBRIDGE_X:
4756 		x86_add_quirk(intel_ht_bug);
4757 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4758 		       sizeof(hw_cache_event_ids));
4759 		/* dTLB-load-misses on IVB is different than SNB */
4760 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4761 
4762 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4763 		       sizeof(hw_cache_extra_regs));
4764 
4765 		intel_pmu_lbr_init_snb();
4766 
4767 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4768 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4769 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4770 		x86_pmu.pebs_prec_dist = true;
4771 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4772 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4773 		else
4774 			x86_pmu.extra_regs = intel_snb_extra_regs;
4775 		/* all extra regs are per-cpu when HT is on */
4776 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4777 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4778 
4779 		x86_pmu.cpu_events = snb_events_attrs;
4780 		mem_attr = snb_mem_events_attrs;
4781 
4782 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4783 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4784 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4785 
4786 		extra_attr = nhm_format_attr;
4787 
4788 		pr_cont("IvyBridge events, ");
4789 		name = "ivybridge";
4790 		break;
4791 
4792 
4793 	case INTEL_FAM6_HASWELL_CORE:
4794 	case INTEL_FAM6_HASWELL_X:
4795 	case INTEL_FAM6_HASWELL_ULT:
4796 	case INTEL_FAM6_HASWELL_GT3E:
4797 		x86_add_quirk(intel_ht_bug);
4798 		x86_add_quirk(intel_pebs_isolation_quirk);
4799 		x86_pmu.late_ack = true;
4800 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4801 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4802 
4803 		intel_pmu_lbr_init_hsw();
4804 
4805 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4806 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4807 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4808 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4809 		x86_pmu.pebs_prec_dist = true;
4810 		/* all extra regs are per-cpu when HT is on */
4811 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4812 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4813 
4814 		x86_pmu.hw_config = hsw_hw_config;
4815 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4816 		x86_pmu.cpu_events = hsw_events_attrs;
4817 		x86_pmu.lbr_double_abort = true;
4818 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4819 			hsw_format_attr : nhm_format_attr;
4820 		mem_attr = hsw_mem_events_attrs;
4821 		tsx_attr = hsw_tsx_events_attrs;
4822 		pr_cont("Haswell events, ");
4823 		name = "haswell";
4824 		break;
4825 
4826 	case INTEL_FAM6_BROADWELL_CORE:
4827 	case INTEL_FAM6_BROADWELL_XEON_D:
4828 	case INTEL_FAM6_BROADWELL_GT3E:
4829 	case INTEL_FAM6_BROADWELL_X:
4830 		x86_add_quirk(intel_pebs_isolation_quirk);
4831 		x86_pmu.late_ack = true;
4832 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4833 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4834 
4835 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4836 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4837 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4838 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4839 									  HSW_SNOOP_DRAM;
4840 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4841 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4842 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4843 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4844 
4845 		intel_pmu_lbr_init_hsw();
4846 
4847 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4848 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4849 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4850 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4851 		x86_pmu.pebs_prec_dist = true;
4852 		/* all extra regs are per-cpu when HT is on */
4853 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4854 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4855 
4856 		x86_pmu.hw_config = hsw_hw_config;
4857 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4858 		x86_pmu.cpu_events = hsw_events_attrs;
4859 		x86_pmu.limit_period = bdw_limit_period;
4860 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4861 			hsw_format_attr : nhm_format_attr;
4862 		mem_attr = hsw_mem_events_attrs;
4863 		tsx_attr = hsw_tsx_events_attrs;
4864 		pr_cont("Broadwell events, ");
4865 		name = "broadwell";
4866 		break;
4867 
4868 	case INTEL_FAM6_XEON_PHI_KNL:
4869 	case INTEL_FAM6_XEON_PHI_KNM:
4870 		memcpy(hw_cache_event_ids,
4871 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4872 		memcpy(hw_cache_extra_regs,
4873 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4874 		intel_pmu_lbr_init_knl();
4875 
4876 		x86_pmu.event_constraints = intel_slm_event_constraints;
4877 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4878 		x86_pmu.extra_regs = intel_knl_extra_regs;
4879 
4880 		/* all extra regs are per-cpu when HT is on */
4881 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4882 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4883 		extra_attr = slm_format_attr;
4884 		pr_cont("Knights Landing/Mill events, ");
4885 		name = "knights-landing";
4886 		break;
4887 
4888 	case INTEL_FAM6_SKYLAKE_MOBILE:
4889 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4890 	case INTEL_FAM6_SKYLAKE_X:
4891 	case INTEL_FAM6_KABYLAKE_MOBILE:
4892 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4893 		x86_add_quirk(intel_pebs_isolation_quirk);
4894 		x86_pmu.late_ack = true;
4895 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4896 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4897 		intel_pmu_lbr_init_skl();
4898 
4899 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4900 		event_attr_td_recovery_bubbles.event_str_noht =
4901 			"event=0xd,umask=0x1,cmask=1";
4902 		event_attr_td_recovery_bubbles.event_str_ht =
4903 			"event=0xd,umask=0x1,cmask=1,any=1";
4904 
4905 		x86_pmu.event_constraints = intel_skl_event_constraints;
4906 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4907 		x86_pmu.extra_regs = intel_skl_extra_regs;
4908 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4909 		x86_pmu.pebs_prec_dist = true;
4910 		/* all extra regs are per-cpu when HT is on */
4911 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4912 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4913 
4914 		x86_pmu.hw_config = hsw_hw_config;
4915 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4916 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4917 			hsw_format_attr : nhm_format_attr;
4918 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4919 		to_free = extra_attr;
4920 		x86_pmu.cpu_events = hsw_events_attrs;
4921 		mem_attr = hsw_mem_events_attrs;
4922 		tsx_attr = hsw_tsx_events_attrs;
4923 		intel_pmu_pebs_data_source_skl(
4924 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4925 
4926 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
4927 			x86_pmu.flags |= PMU_FL_TFA;
4928 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
4929 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
4930 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
4931 			intel_pmu_attrs[1] = &dev_attr_allow_tsx_force_abort.attr;
4932 		}
4933 
4934 		pr_cont("Skylake events, ");
4935 		name = "skylake";
4936 		break;
4937 
4938 	case INTEL_FAM6_ICELAKE_MOBILE:
4939 		x86_pmu.late_ack = true;
4940 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4941 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4942 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4943 		intel_pmu_lbr_init_skl();
4944 
4945 		x86_pmu.event_constraints = intel_icl_event_constraints;
4946 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
4947 		x86_pmu.extra_regs = intel_icl_extra_regs;
4948 		x86_pmu.pebs_aliases = NULL;
4949 		x86_pmu.pebs_prec_dist = true;
4950 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4951 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4952 
4953 		x86_pmu.hw_config = hsw_hw_config;
4954 		x86_pmu.get_event_constraints = icl_get_event_constraints;
4955 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4956 			hsw_format_attr : nhm_format_attr;
4957 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4958 		x86_pmu.cpu_events = get_icl_events_attrs();
4959 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
4960 		x86_pmu.lbr_pt_coexist = true;
4961 		intel_pmu_pebs_data_source_skl(false);
4962 		pr_cont("Icelake events, ");
4963 		name = "icelake";
4964 		break;
4965 
4966 	default:
4967 		switch (x86_pmu.version) {
4968 		case 1:
4969 			x86_pmu.event_constraints = intel_v1_event_constraints;
4970 			pr_cont("generic architected perfmon v1, ");
4971 			name = "generic_arch_v1";
4972 			break;
4973 		default:
4974 			/*
4975 			 * default constraints for v2 and up
4976 			 */
4977 			x86_pmu.event_constraints = intel_gen_event_constraints;
4978 			pr_cont("generic architected perfmon, ");
4979 			name = "generic_arch_v2+";
4980 			break;
4981 		}
4982 	}
4983 
4984 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4985 
4986 	if (version >= 2 && extra_attr) {
4987 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4988 						  extra_attr);
4989 		WARN_ON(!x86_pmu.format_attrs);
4990 	}
4991 
4992 	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4993 					      mem_attr, tsx_attr);
4994 
4995 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4996 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4997 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4998 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4999 	}
5000 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5001 
5002 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5003 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5004 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5005 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5006 	}
5007 
5008 	x86_pmu.intel_ctrl |=
5009 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5010 
5011 	if (x86_pmu.event_constraints) {
5012 		/*
5013 		 * event on fixed counter2 (REF_CYCLES) only works on this
5014 		 * counter, so do not extend mask to generic counters
5015 		 */
5016 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5017 			if (c->cmask == FIXED_EVENT_FLAGS
5018 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5019 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5020 			}
5021 			c->idxmsk64 &=
5022 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5023 			c->weight = hweight64(c->idxmsk64);
5024 		}
5025 	}
5026 
5027 	/*
5028 	 * Access LBR MSR may cause #GP under certain circumstances.
5029 	 * E.g. KVM doesn't support LBR MSR
5030 	 * Check all LBT MSR here.
5031 	 * Disable LBR access if any LBR MSRs can not be accessed.
5032 	 */
5033 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5034 		x86_pmu.lbr_nr = 0;
5035 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5036 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5037 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5038 			x86_pmu.lbr_nr = 0;
5039 	}
5040 
5041 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
5042 
5043 	if (x86_pmu.lbr_nr) {
5044 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
5045 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5046 	}
5047 
5048 	/*
5049 	 * Access extra MSR may cause #GP under certain circumstances.
5050 	 * E.g. KVM doesn't support offcore event
5051 	 * Check all extra_regs here.
5052 	 */
5053 	if (x86_pmu.extra_regs) {
5054 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5055 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5056 			/* Disable LBR select mapping */
5057 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5058 				x86_pmu.lbr_sel_map = NULL;
5059 		}
5060 	}
5061 
5062 	/* Support full width counters using alternative MSR range */
5063 	if (x86_pmu.intel_cap.full_width_write) {
5064 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5065 		x86_pmu.perfctr = MSR_IA32_PMC0;
5066 		pr_cont("full-width counters, ");
5067 	}
5068 
5069 	/*
5070 	 * For arch perfmon 4 use counter freezing to avoid
5071 	 * several MSR accesses in the PMI.
5072 	 */
5073 	if (x86_pmu.counter_freezing)
5074 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5075 
5076 	kfree(to_free);
5077 	return 0;
5078 }
5079 
5080 /*
5081  * HT bug: phase 2 init
5082  * Called once we have valid topology information to check
5083  * whether or not HT is enabled
5084  * If HT is off, then we disable the workaround
5085  */
5086 static __init int fixup_ht_bug(void)
5087 {
5088 	int c;
5089 	/*
5090 	 * problem not present on this CPU model, nothing to do
5091 	 */
5092 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5093 		return 0;
5094 
5095 	if (topology_max_smt_threads() > 1) {
5096 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5097 		return 0;
5098 	}
5099 
5100 	cpus_read_lock();
5101 
5102 	hardlockup_detector_perf_stop();
5103 
5104 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5105 
5106 	x86_pmu.start_scheduling = NULL;
5107 	x86_pmu.commit_scheduling = NULL;
5108 	x86_pmu.stop_scheduling = NULL;
5109 
5110 	hardlockup_detector_perf_restart();
5111 
5112 	for_each_online_cpu(c)
5113 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5114 
5115 	cpus_read_unlock();
5116 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5117 	return 0;
5118 }
5119 subsys_initcall(fixup_ht_bug)
5120