1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Per core/cpu state 4 * 5 * Used to coordinate shared registers between HT threads or 6 * among events on a single PMU. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/stddef.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/nmi.h> 17 18 #include <asm/cpufeature.h> 19 #include <asm/hardirq.h> 20 #include <asm/intel-family.h> 21 #include <asm/intel_pt.h> 22 #include <asm/apic.h> 23 #include <asm/cpu_device_id.h> 24 25 #include "../perf_event.h" 26 27 /* 28 * Intel PerfMon, used on Core and later. 29 */ 30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 31 { 32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 40 }; 41 42 static struct event_constraint intel_core_event_constraints[] __read_mostly = 43 { 44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 50 EVENT_CONSTRAINT_END 51 }; 52 53 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 54 { 55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 68 EVENT_CONSTRAINT_END 69 }; 70 71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 72 { 73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 84 EVENT_CONSTRAINT_END 85 }; 86 87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 88 { 89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 92 EVENT_EXTRA_END 93 }; 94 95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 96 { 97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 104 EVENT_CONSTRAINT_END 105 }; 106 107 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 108 { 109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 121 122 /* 123 * When HT is off these events can only run on the bottom 4 counters 124 * When HT is on, they are impacted by the HT bug and require EXCL access 125 */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 130 131 EVENT_CONSTRAINT_END 132 }; 133 134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 135 { 136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */ 141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 149 150 /* 151 * When HT is off these events can only run on the bottom 4 counters 152 * When HT is on, they are impacted by the HT bug and require EXCL access 153 */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 158 159 EVENT_CONSTRAINT_END 160 }; 161 162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 163 { 164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 168 EVENT_EXTRA_END 169 }; 170 171 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 172 { 173 EVENT_CONSTRAINT_END 174 }; 175 176 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 177 { 178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 181 EVENT_CONSTRAINT_END 182 }; 183 184 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 185 { 186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 189 EVENT_CONSTRAINT_END 190 }; 191 192 static struct event_constraint intel_skl_event_constraints[] = { 193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 197 198 /* 199 * when HT is off, these can only run on the bottom 4 counters 200 */ 201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 206 207 EVENT_CONSTRAINT_END 208 }; 209 210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 213 EVENT_EXTRA_END 214 }; 215 216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 221 EVENT_EXTRA_END 222 }; 223 224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 229 EVENT_EXTRA_END 230 }; 231 232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 236 /* 237 * Note the low 8 bits eventsel code is not a continuous field, containing 238 * some #GPing bits. These are masked out. 239 */ 240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 241 EVENT_EXTRA_END 242 }; 243 244 static struct event_constraint intel_icl_event_constraints[] = { 245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */ 247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 250 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), 251 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), 252 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), 253 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), 254 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf), 255 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf), 256 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */ 257 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf), 258 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf), 259 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */ 260 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */ 261 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */ 262 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */ 263 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf), 264 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf), 265 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf), 266 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf), 267 EVENT_CONSTRAINT_END 268 }; 269 270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = { 271 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0), 272 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1), 273 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 274 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 275 EVENT_EXTRA_END 276 }; 277 278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = { 279 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), 280 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), 281 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 282 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 283 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE), 284 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE), 285 EVENT_EXTRA_END 286 }; 287 288 static struct event_constraint intel_spr_event_constraints[] = { 289 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 290 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */ 291 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 292 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 293 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 294 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), 295 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), 296 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), 297 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), 298 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4), 299 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5), 300 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6), 301 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7), 302 303 INTEL_EVENT_CONSTRAINT(0x2e, 0xff), 304 INTEL_EVENT_CONSTRAINT(0x3c, 0xff), 305 /* 306 * Generally event codes < 0x90 are restricted to counters 0-3. 307 * The 0x2E and 0x3C are exception, which has no restriction. 308 */ 309 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf), 310 311 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf), 312 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), 313 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf), 314 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1), 315 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1), 316 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1), 317 INTEL_EVENT_CONSTRAINT(0xce, 0x1), 318 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf), 319 /* 320 * Generally event codes >= 0x90 are likely to have no restrictions. 321 * The exception are defined as above. 322 */ 323 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff), 324 325 EVENT_CONSTRAINT_END 326 }; 327 328 329 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 330 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 331 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 332 333 static struct attribute *nhm_mem_events_attrs[] = { 334 EVENT_PTR(mem_ld_nhm), 335 NULL, 336 }; 337 338 /* 339 * topdown events for Intel Core CPUs. 340 * 341 * The events are all in slots, which is a free slot in a 4 wide 342 * pipeline. Some events are already reported in slots, for cycle 343 * events we multiply by the pipeline width (4). 344 * 345 * With Hyper Threading on, topdown metrics are either summed or averaged 346 * between the threads of a core: (count_t0 + count_t1). 347 * 348 * For the average case the metric is always scaled to pipeline width, 349 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 350 */ 351 352 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 353 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 354 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 355 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 356 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 357 "event=0xe,umask=0x1"); /* uops_issued.any */ 358 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 359 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 360 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 361 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 362 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 363 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 364 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 365 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 366 "4", "2"); 367 368 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4"); 369 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80"); 370 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81"); 371 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82"); 372 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83"); 373 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84"); 374 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85"); 375 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86"); 376 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87"); 377 378 static struct attribute *snb_events_attrs[] = { 379 EVENT_PTR(td_slots_issued), 380 EVENT_PTR(td_slots_retired), 381 EVENT_PTR(td_fetch_bubbles), 382 EVENT_PTR(td_total_slots), 383 EVENT_PTR(td_total_slots_scale), 384 EVENT_PTR(td_recovery_bubbles), 385 EVENT_PTR(td_recovery_bubbles_scale), 386 NULL, 387 }; 388 389 static struct attribute *snb_mem_events_attrs[] = { 390 EVENT_PTR(mem_ld_snb), 391 EVENT_PTR(mem_st_snb), 392 NULL, 393 }; 394 395 static struct event_constraint intel_hsw_event_constraints[] = { 396 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 397 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 398 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 399 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 400 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 401 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 402 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 403 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 404 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 405 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 406 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 407 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 408 409 /* 410 * When HT is off these events can only run on the bottom 4 counters 411 * When HT is on, they are impacted by the HT bug and require EXCL access 412 */ 413 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 414 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 415 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 416 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 417 418 EVENT_CONSTRAINT_END 419 }; 420 421 static struct event_constraint intel_bdw_event_constraints[] = { 422 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 423 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 424 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 425 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 426 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 427 /* 428 * when HT is off, these can only run on the bottom 4 counters 429 */ 430 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 431 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 432 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 433 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 434 EVENT_CONSTRAINT_END 435 }; 436 437 static u64 intel_pmu_event_map(int hw_event) 438 { 439 return intel_perfmon_event_map[hw_event]; 440 } 441 442 static __initconst const u64 spr_hw_cache_event_ids 443 [PERF_COUNT_HW_CACHE_MAX] 444 [PERF_COUNT_HW_CACHE_OP_MAX] 445 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 446 { 447 [ C(L1D ) ] = { 448 [ C(OP_READ) ] = { 449 [ C(RESULT_ACCESS) ] = 0x81d0, 450 [ C(RESULT_MISS) ] = 0xe124, 451 }, 452 [ C(OP_WRITE) ] = { 453 [ C(RESULT_ACCESS) ] = 0x82d0, 454 }, 455 }, 456 [ C(L1I ) ] = { 457 [ C(OP_READ) ] = { 458 [ C(RESULT_MISS) ] = 0xe424, 459 }, 460 [ C(OP_WRITE) ] = { 461 [ C(RESULT_ACCESS) ] = -1, 462 [ C(RESULT_MISS) ] = -1, 463 }, 464 }, 465 [ C(LL ) ] = { 466 [ C(OP_READ) ] = { 467 [ C(RESULT_ACCESS) ] = 0x12a, 468 [ C(RESULT_MISS) ] = 0x12a, 469 }, 470 [ C(OP_WRITE) ] = { 471 [ C(RESULT_ACCESS) ] = 0x12a, 472 [ C(RESULT_MISS) ] = 0x12a, 473 }, 474 }, 475 [ C(DTLB) ] = { 476 [ C(OP_READ) ] = { 477 [ C(RESULT_ACCESS) ] = 0x81d0, 478 [ C(RESULT_MISS) ] = 0xe12, 479 }, 480 [ C(OP_WRITE) ] = { 481 [ C(RESULT_ACCESS) ] = 0x82d0, 482 [ C(RESULT_MISS) ] = 0xe13, 483 }, 484 }, 485 [ C(ITLB) ] = { 486 [ C(OP_READ) ] = { 487 [ C(RESULT_ACCESS) ] = -1, 488 [ C(RESULT_MISS) ] = 0xe11, 489 }, 490 [ C(OP_WRITE) ] = { 491 [ C(RESULT_ACCESS) ] = -1, 492 [ C(RESULT_MISS) ] = -1, 493 }, 494 [ C(OP_PREFETCH) ] = { 495 [ C(RESULT_ACCESS) ] = -1, 496 [ C(RESULT_MISS) ] = -1, 497 }, 498 }, 499 [ C(BPU ) ] = { 500 [ C(OP_READ) ] = { 501 [ C(RESULT_ACCESS) ] = 0x4c4, 502 [ C(RESULT_MISS) ] = 0x4c5, 503 }, 504 [ C(OP_WRITE) ] = { 505 [ C(RESULT_ACCESS) ] = -1, 506 [ C(RESULT_MISS) ] = -1, 507 }, 508 [ C(OP_PREFETCH) ] = { 509 [ C(RESULT_ACCESS) ] = -1, 510 [ C(RESULT_MISS) ] = -1, 511 }, 512 }, 513 [ C(NODE) ] = { 514 [ C(OP_READ) ] = { 515 [ C(RESULT_ACCESS) ] = 0x12a, 516 [ C(RESULT_MISS) ] = 0x12a, 517 }, 518 }, 519 }; 520 521 static __initconst const u64 spr_hw_cache_extra_regs 522 [PERF_COUNT_HW_CACHE_MAX] 523 [PERF_COUNT_HW_CACHE_OP_MAX] 524 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 525 { 526 [ C(LL ) ] = { 527 [ C(OP_READ) ] = { 528 [ C(RESULT_ACCESS) ] = 0x10001, 529 [ C(RESULT_MISS) ] = 0x3fbfc00001, 530 }, 531 [ C(OP_WRITE) ] = { 532 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002, 533 [ C(RESULT_MISS) ] = 0x3f3fc00002, 534 }, 535 }, 536 [ C(NODE) ] = { 537 [ C(OP_READ) ] = { 538 [ C(RESULT_ACCESS) ] = 0x10c000001, 539 [ C(RESULT_MISS) ] = 0x3fb3000001, 540 }, 541 }, 542 }; 543 544 /* 545 * Notes on the events: 546 * - data reads do not include code reads (comparable to earlier tables) 547 * - data counts include speculative execution (except L1 write, dtlb, bpu) 548 * - remote node access includes remote memory, remote cache, remote mmio. 549 * - prefetches are not included in the counts. 550 * - icache miss does not include decoded icache 551 */ 552 553 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 554 #define SKL_DEMAND_RFO BIT_ULL(1) 555 #define SKL_ANY_RESPONSE BIT_ULL(16) 556 #define SKL_SUPPLIER_NONE BIT_ULL(17) 557 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 558 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 559 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 560 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 561 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 562 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 563 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 564 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 565 #define SKL_SPL_HIT BIT_ULL(30) 566 #define SKL_SNOOP_NONE BIT_ULL(31) 567 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 568 #define SKL_SNOOP_MISS BIT_ULL(33) 569 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 570 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 571 #define SKL_SNOOP_HITM BIT_ULL(36) 572 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 573 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 574 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 575 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 576 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 577 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 578 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 579 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 580 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 581 SKL_SNOOP_HITM|SKL_SPL_HIT) 582 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 583 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 584 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 585 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 586 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 587 588 static __initconst const u64 skl_hw_cache_event_ids 589 [PERF_COUNT_HW_CACHE_MAX] 590 [PERF_COUNT_HW_CACHE_OP_MAX] 591 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 592 { 593 [ C(L1D ) ] = { 594 [ C(OP_READ) ] = { 595 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 596 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 597 }, 598 [ C(OP_WRITE) ] = { 599 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 600 [ C(RESULT_MISS) ] = 0x0, 601 }, 602 [ C(OP_PREFETCH) ] = { 603 [ C(RESULT_ACCESS) ] = 0x0, 604 [ C(RESULT_MISS) ] = 0x0, 605 }, 606 }, 607 [ C(L1I ) ] = { 608 [ C(OP_READ) ] = { 609 [ C(RESULT_ACCESS) ] = 0x0, 610 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 611 }, 612 [ C(OP_WRITE) ] = { 613 [ C(RESULT_ACCESS) ] = -1, 614 [ C(RESULT_MISS) ] = -1, 615 }, 616 [ C(OP_PREFETCH) ] = { 617 [ C(RESULT_ACCESS) ] = 0x0, 618 [ C(RESULT_MISS) ] = 0x0, 619 }, 620 }, 621 [ C(LL ) ] = { 622 [ C(OP_READ) ] = { 623 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 624 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 625 }, 626 [ C(OP_WRITE) ] = { 627 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 628 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 629 }, 630 [ C(OP_PREFETCH) ] = { 631 [ C(RESULT_ACCESS) ] = 0x0, 632 [ C(RESULT_MISS) ] = 0x0, 633 }, 634 }, 635 [ C(DTLB) ] = { 636 [ C(OP_READ) ] = { 637 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 638 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 639 }, 640 [ C(OP_WRITE) ] = { 641 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 642 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 643 }, 644 [ C(OP_PREFETCH) ] = { 645 [ C(RESULT_ACCESS) ] = 0x0, 646 [ C(RESULT_MISS) ] = 0x0, 647 }, 648 }, 649 [ C(ITLB) ] = { 650 [ C(OP_READ) ] = { 651 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 652 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 653 }, 654 [ C(OP_WRITE) ] = { 655 [ C(RESULT_ACCESS) ] = -1, 656 [ C(RESULT_MISS) ] = -1, 657 }, 658 [ C(OP_PREFETCH) ] = { 659 [ C(RESULT_ACCESS) ] = -1, 660 [ C(RESULT_MISS) ] = -1, 661 }, 662 }, 663 [ C(BPU ) ] = { 664 [ C(OP_READ) ] = { 665 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 666 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 667 }, 668 [ C(OP_WRITE) ] = { 669 [ C(RESULT_ACCESS) ] = -1, 670 [ C(RESULT_MISS) ] = -1, 671 }, 672 [ C(OP_PREFETCH) ] = { 673 [ C(RESULT_ACCESS) ] = -1, 674 [ C(RESULT_MISS) ] = -1, 675 }, 676 }, 677 [ C(NODE) ] = { 678 [ C(OP_READ) ] = { 679 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 680 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 681 }, 682 [ C(OP_WRITE) ] = { 683 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 684 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 685 }, 686 [ C(OP_PREFETCH) ] = { 687 [ C(RESULT_ACCESS) ] = 0x0, 688 [ C(RESULT_MISS) ] = 0x0, 689 }, 690 }, 691 }; 692 693 static __initconst const u64 skl_hw_cache_extra_regs 694 [PERF_COUNT_HW_CACHE_MAX] 695 [PERF_COUNT_HW_CACHE_OP_MAX] 696 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 697 { 698 [ C(LL ) ] = { 699 [ C(OP_READ) ] = { 700 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 701 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 702 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 703 SKL_L3_MISS|SKL_ANY_SNOOP| 704 SKL_SUPPLIER_NONE, 705 }, 706 [ C(OP_WRITE) ] = { 707 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 708 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 709 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 710 SKL_L3_MISS|SKL_ANY_SNOOP| 711 SKL_SUPPLIER_NONE, 712 }, 713 [ C(OP_PREFETCH) ] = { 714 [ C(RESULT_ACCESS) ] = 0x0, 715 [ C(RESULT_MISS) ] = 0x0, 716 }, 717 }, 718 [ C(NODE) ] = { 719 [ C(OP_READ) ] = { 720 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 721 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 722 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 723 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 724 }, 725 [ C(OP_WRITE) ] = { 726 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 727 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 728 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 729 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 730 }, 731 [ C(OP_PREFETCH) ] = { 732 [ C(RESULT_ACCESS) ] = 0x0, 733 [ C(RESULT_MISS) ] = 0x0, 734 }, 735 }, 736 }; 737 738 #define SNB_DMND_DATA_RD (1ULL << 0) 739 #define SNB_DMND_RFO (1ULL << 1) 740 #define SNB_DMND_IFETCH (1ULL << 2) 741 #define SNB_DMND_WB (1ULL << 3) 742 #define SNB_PF_DATA_RD (1ULL << 4) 743 #define SNB_PF_RFO (1ULL << 5) 744 #define SNB_PF_IFETCH (1ULL << 6) 745 #define SNB_LLC_DATA_RD (1ULL << 7) 746 #define SNB_LLC_RFO (1ULL << 8) 747 #define SNB_LLC_IFETCH (1ULL << 9) 748 #define SNB_BUS_LOCKS (1ULL << 10) 749 #define SNB_STRM_ST (1ULL << 11) 750 #define SNB_OTHER (1ULL << 15) 751 #define SNB_RESP_ANY (1ULL << 16) 752 #define SNB_NO_SUPP (1ULL << 17) 753 #define SNB_LLC_HITM (1ULL << 18) 754 #define SNB_LLC_HITE (1ULL << 19) 755 #define SNB_LLC_HITS (1ULL << 20) 756 #define SNB_LLC_HITF (1ULL << 21) 757 #define SNB_LOCAL (1ULL << 22) 758 #define SNB_REMOTE (0xffULL << 23) 759 #define SNB_SNP_NONE (1ULL << 31) 760 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 761 #define SNB_SNP_MISS (1ULL << 33) 762 #define SNB_NO_FWD (1ULL << 34) 763 #define SNB_SNP_FWD (1ULL << 35) 764 #define SNB_HITM (1ULL << 36) 765 #define SNB_NON_DRAM (1ULL << 37) 766 767 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 768 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 769 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 770 771 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 772 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 773 SNB_HITM) 774 775 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 776 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 777 778 #define SNB_L3_ACCESS SNB_RESP_ANY 779 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 780 781 static __initconst const u64 snb_hw_cache_extra_regs 782 [PERF_COUNT_HW_CACHE_MAX] 783 [PERF_COUNT_HW_CACHE_OP_MAX] 784 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 785 { 786 [ C(LL ) ] = { 787 [ C(OP_READ) ] = { 788 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 789 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 790 }, 791 [ C(OP_WRITE) ] = { 792 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 793 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 794 }, 795 [ C(OP_PREFETCH) ] = { 796 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 797 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 798 }, 799 }, 800 [ C(NODE) ] = { 801 [ C(OP_READ) ] = { 802 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 803 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 804 }, 805 [ C(OP_WRITE) ] = { 806 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 807 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 808 }, 809 [ C(OP_PREFETCH) ] = { 810 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 811 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 812 }, 813 }, 814 }; 815 816 static __initconst const u64 snb_hw_cache_event_ids 817 [PERF_COUNT_HW_CACHE_MAX] 818 [PERF_COUNT_HW_CACHE_OP_MAX] 819 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 820 { 821 [ C(L1D) ] = { 822 [ C(OP_READ) ] = { 823 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 824 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 825 }, 826 [ C(OP_WRITE) ] = { 827 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 828 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 829 }, 830 [ C(OP_PREFETCH) ] = { 831 [ C(RESULT_ACCESS) ] = 0x0, 832 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 833 }, 834 }, 835 [ C(L1I ) ] = { 836 [ C(OP_READ) ] = { 837 [ C(RESULT_ACCESS) ] = 0x0, 838 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 839 }, 840 [ C(OP_WRITE) ] = { 841 [ C(RESULT_ACCESS) ] = -1, 842 [ C(RESULT_MISS) ] = -1, 843 }, 844 [ C(OP_PREFETCH) ] = { 845 [ C(RESULT_ACCESS) ] = 0x0, 846 [ C(RESULT_MISS) ] = 0x0, 847 }, 848 }, 849 [ C(LL ) ] = { 850 [ C(OP_READ) ] = { 851 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 852 [ C(RESULT_ACCESS) ] = 0x01b7, 853 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 854 [ C(RESULT_MISS) ] = 0x01b7, 855 }, 856 [ C(OP_WRITE) ] = { 857 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 858 [ C(RESULT_ACCESS) ] = 0x01b7, 859 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 860 [ C(RESULT_MISS) ] = 0x01b7, 861 }, 862 [ C(OP_PREFETCH) ] = { 863 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 864 [ C(RESULT_ACCESS) ] = 0x01b7, 865 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 866 [ C(RESULT_MISS) ] = 0x01b7, 867 }, 868 }, 869 [ C(DTLB) ] = { 870 [ C(OP_READ) ] = { 871 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 872 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 873 }, 874 [ C(OP_WRITE) ] = { 875 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 876 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 877 }, 878 [ C(OP_PREFETCH) ] = { 879 [ C(RESULT_ACCESS) ] = 0x0, 880 [ C(RESULT_MISS) ] = 0x0, 881 }, 882 }, 883 [ C(ITLB) ] = { 884 [ C(OP_READ) ] = { 885 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 886 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 887 }, 888 [ C(OP_WRITE) ] = { 889 [ C(RESULT_ACCESS) ] = -1, 890 [ C(RESULT_MISS) ] = -1, 891 }, 892 [ C(OP_PREFETCH) ] = { 893 [ C(RESULT_ACCESS) ] = -1, 894 [ C(RESULT_MISS) ] = -1, 895 }, 896 }, 897 [ C(BPU ) ] = { 898 [ C(OP_READ) ] = { 899 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 900 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 901 }, 902 [ C(OP_WRITE) ] = { 903 [ C(RESULT_ACCESS) ] = -1, 904 [ C(RESULT_MISS) ] = -1, 905 }, 906 [ C(OP_PREFETCH) ] = { 907 [ C(RESULT_ACCESS) ] = -1, 908 [ C(RESULT_MISS) ] = -1, 909 }, 910 }, 911 [ C(NODE) ] = { 912 [ C(OP_READ) ] = { 913 [ C(RESULT_ACCESS) ] = 0x01b7, 914 [ C(RESULT_MISS) ] = 0x01b7, 915 }, 916 [ C(OP_WRITE) ] = { 917 [ C(RESULT_ACCESS) ] = 0x01b7, 918 [ C(RESULT_MISS) ] = 0x01b7, 919 }, 920 [ C(OP_PREFETCH) ] = { 921 [ C(RESULT_ACCESS) ] = 0x01b7, 922 [ C(RESULT_MISS) ] = 0x01b7, 923 }, 924 }, 925 926 }; 927 928 /* 929 * Notes on the events: 930 * - data reads do not include code reads (comparable to earlier tables) 931 * - data counts include speculative execution (except L1 write, dtlb, bpu) 932 * - remote node access includes remote memory, remote cache, remote mmio. 933 * - prefetches are not included in the counts because they are not 934 * reliably counted. 935 */ 936 937 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 938 #define HSW_DEMAND_RFO BIT_ULL(1) 939 #define HSW_ANY_RESPONSE BIT_ULL(16) 940 #define HSW_SUPPLIER_NONE BIT_ULL(17) 941 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 942 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 943 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 944 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 945 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 946 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 947 HSW_L3_MISS_REMOTE_HOP2P) 948 #define HSW_SNOOP_NONE BIT_ULL(31) 949 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 950 #define HSW_SNOOP_MISS BIT_ULL(33) 951 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 952 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 953 #define HSW_SNOOP_HITM BIT_ULL(36) 954 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 955 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 956 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 957 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 958 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 959 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 960 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 961 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 962 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 963 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 964 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 965 966 #define BDW_L3_MISS_LOCAL BIT(26) 967 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 968 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 969 HSW_L3_MISS_REMOTE_HOP2P) 970 971 972 static __initconst const u64 hsw_hw_cache_event_ids 973 [PERF_COUNT_HW_CACHE_MAX] 974 [PERF_COUNT_HW_CACHE_OP_MAX] 975 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 976 { 977 [ C(L1D ) ] = { 978 [ C(OP_READ) ] = { 979 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 980 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 981 }, 982 [ C(OP_WRITE) ] = { 983 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 984 [ C(RESULT_MISS) ] = 0x0, 985 }, 986 [ C(OP_PREFETCH) ] = { 987 [ C(RESULT_ACCESS) ] = 0x0, 988 [ C(RESULT_MISS) ] = 0x0, 989 }, 990 }, 991 [ C(L1I ) ] = { 992 [ C(OP_READ) ] = { 993 [ C(RESULT_ACCESS) ] = 0x0, 994 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 995 }, 996 [ C(OP_WRITE) ] = { 997 [ C(RESULT_ACCESS) ] = -1, 998 [ C(RESULT_MISS) ] = -1, 999 }, 1000 [ C(OP_PREFETCH) ] = { 1001 [ C(RESULT_ACCESS) ] = 0x0, 1002 [ C(RESULT_MISS) ] = 0x0, 1003 }, 1004 }, 1005 [ C(LL ) ] = { 1006 [ C(OP_READ) ] = { 1007 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1008 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1009 }, 1010 [ C(OP_WRITE) ] = { 1011 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1012 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1013 }, 1014 [ C(OP_PREFETCH) ] = { 1015 [ C(RESULT_ACCESS) ] = 0x0, 1016 [ C(RESULT_MISS) ] = 0x0, 1017 }, 1018 }, 1019 [ C(DTLB) ] = { 1020 [ C(OP_READ) ] = { 1021 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1022 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 1023 }, 1024 [ C(OP_WRITE) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1026 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 1027 }, 1028 [ C(OP_PREFETCH) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x0, 1030 [ C(RESULT_MISS) ] = 0x0, 1031 }, 1032 }, 1033 [ C(ITLB) ] = { 1034 [ C(OP_READ) ] = { 1035 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 1036 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 1037 }, 1038 [ C(OP_WRITE) ] = { 1039 [ C(RESULT_ACCESS) ] = -1, 1040 [ C(RESULT_MISS) ] = -1, 1041 }, 1042 [ C(OP_PREFETCH) ] = { 1043 [ C(RESULT_ACCESS) ] = -1, 1044 [ C(RESULT_MISS) ] = -1, 1045 }, 1046 }, 1047 [ C(BPU ) ] = { 1048 [ C(OP_READ) ] = { 1049 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1050 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1051 }, 1052 [ C(OP_WRITE) ] = { 1053 [ C(RESULT_ACCESS) ] = -1, 1054 [ C(RESULT_MISS) ] = -1, 1055 }, 1056 [ C(OP_PREFETCH) ] = { 1057 [ C(RESULT_ACCESS) ] = -1, 1058 [ C(RESULT_MISS) ] = -1, 1059 }, 1060 }, 1061 [ C(NODE) ] = { 1062 [ C(OP_READ) ] = { 1063 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1064 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1065 }, 1066 [ C(OP_WRITE) ] = { 1067 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1068 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 1069 }, 1070 [ C(OP_PREFETCH) ] = { 1071 [ C(RESULT_ACCESS) ] = 0x0, 1072 [ C(RESULT_MISS) ] = 0x0, 1073 }, 1074 }, 1075 }; 1076 1077 static __initconst const u64 hsw_hw_cache_extra_regs 1078 [PERF_COUNT_HW_CACHE_MAX] 1079 [PERF_COUNT_HW_CACHE_OP_MAX] 1080 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1081 { 1082 [ C(LL ) ] = { 1083 [ C(OP_READ) ] = { 1084 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 1085 HSW_LLC_ACCESS, 1086 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 1087 HSW_L3_MISS|HSW_ANY_SNOOP, 1088 }, 1089 [ C(OP_WRITE) ] = { 1090 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 1091 HSW_LLC_ACCESS, 1092 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 1093 HSW_L3_MISS|HSW_ANY_SNOOP, 1094 }, 1095 [ C(OP_PREFETCH) ] = { 1096 [ C(RESULT_ACCESS) ] = 0x0, 1097 [ C(RESULT_MISS) ] = 0x0, 1098 }, 1099 }, 1100 [ C(NODE) ] = { 1101 [ C(OP_READ) ] = { 1102 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 1103 HSW_L3_MISS_LOCAL_DRAM| 1104 HSW_SNOOP_DRAM, 1105 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 1106 HSW_L3_MISS_REMOTE| 1107 HSW_SNOOP_DRAM, 1108 }, 1109 [ C(OP_WRITE) ] = { 1110 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 1111 HSW_L3_MISS_LOCAL_DRAM| 1112 HSW_SNOOP_DRAM, 1113 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 1114 HSW_L3_MISS_REMOTE| 1115 HSW_SNOOP_DRAM, 1116 }, 1117 [ C(OP_PREFETCH) ] = { 1118 [ C(RESULT_ACCESS) ] = 0x0, 1119 [ C(RESULT_MISS) ] = 0x0, 1120 }, 1121 }, 1122 }; 1123 1124 static __initconst const u64 westmere_hw_cache_event_ids 1125 [PERF_COUNT_HW_CACHE_MAX] 1126 [PERF_COUNT_HW_CACHE_OP_MAX] 1127 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1128 { 1129 [ C(L1D) ] = { 1130 [ C(OP_READ) ] = { 1131 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1132 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1133 }, 1134 [ C(OP_WRITE) ] = { 1135 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1136 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1137 }, 1138 [ C(OP_PREFETCH) ] = { 1139 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1140 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1141 }, 1142 }, 1143 [ C(L1I ) ] = { 1144 [ C(OP_READ) ] = { 1145 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1146 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1147 }, 1148 [ C(OP_WRITE) ] = { 1149 [ C(RESULT_ACCESS) ] = -1, 1150 [ C(RESULT_MISS) ] = -1, 1151 }, 1152 [ C(OP_PREFETCH) ] = { 1153 [ C(RESULT_ACCESS) ] = 0x0, 1154 [ C(RESULT_MISS) ] = 0x0, 1155 }, 1156 }, 1157 [ C(LL ) ] = { 1158 [ C(OP_READ) ] = { 1159 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1160 [ C(RESULT_ACCESS) ] = 0x01b7, 1161 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1162 [ C(RESULT_MISS) ] = 0x01b7, 1163 }, 1164 /* 1165 * Use RFO, not WRITEBACK, because a write miss would typically occur 1166 * on RFO. 1167 */ 1168 [ C(OP_WRITE) ] = { 1169 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1170 [ C(RESULT_ACCESS) ] = 0x01b7, 1171 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1172 [ C(RESULT_MISS) ] = 0x01b7, 1173 }, 1174 [ C(OP_PREFETCH) ] = { 1175 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1176 [ C(RESULT_ACCESS) ] = 0x01b7, 1177 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1178 [ C(RESULT_MISS) ] = 0x01b7, 1179 }, 1180 }, 1181 [ C(DTLB) ] = { 1182 [ C(OP_READ) ] = { 1183 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1184 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1185 }, 1186 [ C(OP_WRITE) ] = { 1187 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1188 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1189 }, 1190 [ C(OP_PREFETCH) ] = { 1191 [ C(RESULT_ACCESS) ] = 0x0, 1192 [ C(RESULT_MISS) ] = 0x0, 1193 }, 1194 }, 1195 [ C(ITLB) ] = { 1196 [ C(OP_READ) ] = { 1197 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1198 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 1199 }, 1200 [ C(OP_WRITE) ] = { 1201 [ C(RESULT_ACCESS) ] = -1, 1202 [ C(RESULT_MISS) ] = -1, 1203 }, 1204 [ C(OP_PREFETCH) ] = { 1205 [ C(RESULT_ACCESS) ] = -1, 1206 [ C(RESULT_MISS) ] = -1, 1207 }, 1208 }, 1209 [ C(BPU ) ] = { 1210 [ C(OP_READ) ] = { 1211 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1212 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1213 }, 1214 [ C(OP_WRITE) ] = { 1215 [ C(RESULT_ACCESS) ] = -1, 1216 [ C(RESULT_MISS) ] = -1, 1217 }, 1218 [ C(OP_PREFETCH) ] = { 1219 [ C(RESULT_ACCESS) ] = -1, 1220 [ C(RESULT_MISS) ] = -1, 1221 }, 1222 }, 1223 [ C(NODE) ] = { 1224 [ C(OP_READ) ] = { 1225 [ C(RESULT_ACCESS) ] = 0x01b7, 1226 [ C(RESULT_MISS) ] = 0x01b7, 1227 }, 1228 [ C(OP_WRITE) ] = { 1229 [ C(RESULT_ACCESS) ] = 0x01b7, 1230 [ C(RESULT_MISS) ] = 0x01b7, 1231 }, 1232 [ C(OP_PREFETCH) ] = { 1233 [ C(RESULT_ACCESS) ] = 0x01b7, 1234 [ C(RESULT_MISS) ] = 0x01b7, 1235 }, 1236 }, 1237 }; 1238 1239 /* 1240 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1241 * See IA32 SDM Vol 3B 30.6.1.3 1242 */ 1243 1244 #define NHM_DMND_DATA_RD (1 << 0) 1245 #define NHM_DMND_RFO (1 << 1) 1246 #define NHM_DMND_IFETCH (1 << 2) 1247 #define NHM_DMND_WB (1 << 3) 1248 #define NHM_PF_DATA_RD (1 << 4) 1249 #define NHM_PF_DATA_RFO (1 << 5) 1250 #define NHM_PF_IFETCH (1 << 6) 1251 #define NHM_OFFCORE_OTHER (1 << 7) 1252 #define NHM_UNCORE_HIT (1 << 8) 1253 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1254 #define NHM_OTHER_CORE_HITM (1 << 10) 1255 /* reserved */ 1256 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1257 #define NHM_REMOTE_DRAM (1 << 13) 1258 #define NHM_LOCAL_DRAM (1 << 14) 1259 #define NHM_NON_DRAM (1 << 15) 1260 1261 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1262 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1263 1264 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1265 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1266 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1267 1268 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1269 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1270 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1271 1272 static __initconst const u64 nehalem_hw_cache_extra_regs 1273 [PERF_COUNT_HW_CACHE_MAX] 1274 [PERF_COUNT_HW_CACHE_OP_MAX] 1275 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1276 { 1277 [ C(LL ) ] = { 1278 [ C(OP_READ) ] = { 1279 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1280 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1281 }, 1282 [ C(OP_WRITE) ] = { 1283 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1284 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1285 }, 1286 [ C(OP_PREFETCH) ] = { 1287 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1288 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1289 }, 1290 }, 1291 [ C(NODE) ] = { 1292 [ C(OP_READ) ] = { 1293 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1294 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1295 }, 1296 [ C(OP_WRITE) ] = { 1297 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1298 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1299 }, 1300 [ C(OP_PREFETCH) ] = { 1301 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1302 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1303 }, 1304 }, 1305 }; 1306 1307 static __initconst const u64 nehalem_hw_cache_event_ids 1308 [PERF_COUNT_HW_CACHE_MAX] 1309 [PERF_COUNT_HW_CACHE_OP_MAX] 1310 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1311 { 1312 [ C(L1D) ] = { 1313 [ C(OP_READ) ] = { 1314 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1315 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1316 }, 1317 [ C(OP_WRITE) ] = { 1318 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1319 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1320 }, 1321 [ C(OP_PREFETCH) ] = { 1322 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1323 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1324 }, 1325 }, 1326 [ C(L1I ) ] = { 1327 [ C(OP_READ) ] = { 1328 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1329 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1330 }, 1331 [ C(OP_WRITE) ] = { 1332 [ C(RESULT_ACCESS) ] = -1, 1333 [ C(RESULT_MISS) ] = -1, 1334 }, 1335 [ C(OP_PREFETCH) ] = { 1336 [ C(RESULT_ACCESS) ] = 0x0, 1337 [ C(RESULT_MISS) ] = 0x0, 1338 }, 1339 }, 1340 [ C(LL ) ] = { 1341 [ C(OP_READ) ] = { 1342 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1343 [ C(RESULT_ACCESS) ] = 0x01b7, 1344 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1345 [ C(RESULT_MISS) ] = 0x01b7, 1346 }, 1347 /* 1348 * Use RFO, not WRITEBACK, because a write miss would typically occur 1349 * on RFO. 1350 */ 1351 [ C(OP_WRITE) ] = { 1352 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1353 [ C(RESULT_ACCESS) ] = 0x01b7, 1354 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1355 [ C(RESULT_MISS) ] = 0x01b7, 1356 }, 1357 [ C(OP_PREFETCH) ] = { 1358 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1359 [ C(RESULT_ACCESS) ] = 0x01b7, 1360 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1361 [ C(RESULT_MISS) ] = 0x01b7, 1362 }, 1363 }, 1364 [ C(DTLB) ] = { 1365 [ C(OP_READ) ] = { 1366 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1367 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1368 }, 1369 [ C(OP_WRITE) ] = { 1370 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1371 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1372 }, 1373 [ C(OP_PREFETCH) ] = { 1374 [ C(RESULT_ACCESS) ] = 0x0, 1375 [ C(RESULT_MISS) ] = 0x0, 1376 }, 1377 }, 1378 [ C(ITLB) ] = { 1379 [ C(OP_READ) ] = { 1380 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1381 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1382 }, 1383 [ C(OP_WRITE) ] = { 1384 [ C(RESULT_ACCESS) ] = -1, 1385 [ C(RESULT_MISS) ] = -1, 1386 }, 1387 [ C(OP_PREFETCH) ] = { 1388 [ C(RESULT_ACCESS) ] = -1, 1389 [ C(RESULT_MISS) ] = -1, 1390 }, 1391 }, 1392 [ C(BPU ) ] = { 1393 [ C(OP_READ) ] = { 1394 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1395 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1396 }, 1397 [ C(OP_WRITE) ] = { 1398 [ C(RESULT_ACCESS) ] = -1, 1399 [ C(RESULT_MISS) ] = -1, 1400 }, 1401 [ C(OP_PREFETCH) ] = { 1402 [ C(RESULT_ACCESS) ] = -1, 1403 [ C(RESULT_MISS) ] = -1, 1404 }, 1405 }, 1406 [ C(NODE) ] = { 1407 [ C(OP_READ) ] = { 1408 [ C(RESULT_ACCESS) ] = 0x01b7, 1409 [ C(RESULT_MISS) ] = 0x01b7, 1410 }, 1411 [ C(OP_WRITE) ] = { 1412 [ C(RESULT_ACCESS) ] = 0x01b7, 1413 [ C(RESULT_MISS) ] = 0x01b7, 1414 }, 1415 [ C(OP_PREFETCH) ] = { 1416 [ C(RESULT_ACCESS) ] = 0x01b7, 1417 [ C(RESULT_MISS) ] = 0x01b7, 1418 }, 1419 }, 1420 }; 1421 1422 static __initconst const u64 core2_hw_cache_event_ids 1423 [PERF_COUNT_HW_CACHE_MAX] 1424 [PERF_COUNT_HW_CACHE_OP_MAX] 1425 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1426 { 1427 [ C(L1D) ] = { 1428 [ C(OP_READ) ] = { 1429 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1430 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1431 }, 1432 [ C(OP_WRITE) ] = { 1433 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1434 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1435 }, 1436 [ C(OP_PREFETCH) ] = { 1437 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1438 [ C(RESULT_MISS) ] = 0, 1439 }, 1440 }, 1441 [ C(L1I ) ] = { 1442 [ C(OP_READ) ] = { 1443 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1444 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1445 }, 1446 [ C(OP_WRITE) ] = { 1447 [ C(RESULT_ACCESS) ] = -1, 1448 [ C(RESULT_MISS) ] = -1, 1449 }, 1450 [ C(OP_PREFETCH) ] = { 1451 [ C(RESULT_ACCESS) ] = 0, 1452 [ C(RESULT_MISS) ] = 0, 1453 }, 1454 }, 1455 [ C(LL ) ] = { 1456 [ C(OP_READ) ] = { 1457 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1458 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1459 }, 1460 [ C(OP_WRITE) ] = { 1461 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1462 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1463 }, 1464 [ C(OP_PREFETCH) ] = { 1465 [ C(RESULT_ACCESS) ] = 0, 1466 [ C(RESULT_MISS) ] = 0, 1467 }, 1468 }, 1469 [ C(DTLB) ] = { 1470 [ C(OP_READ) ] = { 1471 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1472 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1473 }, 1474 [ C(OP_WRITE) ] = { 1475 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1476 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1477 }, 1478 [ C(OP_PREFETCH) ] = { 1479 [ C(RESULT_ACCESS) ] = 0, 1480 [ C(RESULT_MISS) ] = 0, 1481 }, 1482 }, 1483 [ C(ITLB) ] = { 1484 [ C(OP_READ) ] = { 1485 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1486 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1487 }, 1488 [ C(OP_WRITE) ] = { 1489 [ C(RESULT_ACCESS) ] = -1, 1490 [ C(RESULT_MISS) ] = -1, 1491 }, 1492 [ C(OP_PREFETCH) ] = { 1493 [ C(RESULT_ACCESS) ] = -1, 1494 [ C(RESULT_MISS) ] = -1, 1495 }, 1496 }, 1497 [ C(BPU ) ] = { 1498 [ C(OP_READ) ] = { 1499 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1500 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1501 }, 1502 [ C(OP_WRITE) ] = { 1503 [ C(RESULT_ACCESS) ] = -1, 1504 [ C(RESULT_MISS) ] = -1, 1505 }, 1506 [ C(OP_PREFETCH) ] = { 1507 [ C(RESULT_ACCESS) ] = -1, 1508 [ C(RESULT_MISS) ] = -1, 1509 }, 1510 }, 1511 }; 1512 1513 static __initconst const u64 atom_hw_cache_event_ids 1514 [PERF_COUNT_HW_CACHE_MAX] 1515 [PERF_COUNT_HW_CACHE_OP_MAX] 1516 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1517 { 1518 [ C(L1D) ] = { 1519 [ C(OP_READ) ] = { 1520 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1521 [ C(RESULT_MISS) ] = 0, 1522 }, 1523 [ C(OP_WRITE) ] = { 1524 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1525 [ C(RESULT_MISS) ] = 0, 1526 }, 1527 [ C(OP_PREFETCH) ] = { 1528 [ C(RESULT_ACCESS) ] = 0x0, 1529 [ C(RESULT_MISS) ] = 0, 1530 }, 1531 }, 1532 [ C(L1I ) ] = { 1533 [ C(OP_READ) ] = { 1534 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1535 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1536 }, 1537 [ C(OP_WRITE) ] = { 1538 [ C(RESULT_ACCESS) ] = -1, 1539 [ C(RESULT_MISS) ] = -1, 1540 }, 1541 [ C(OP_PREFETCH) ] = { 1542 [ C(RESULT_ACCESS) ] = 0, 1543 [ C(RESULT_MISS) ] = 0, 1544 }, 1545 }, 1546 [ C(LL ) ] = { 1547 [ C(OP_READ) ] = { 1548 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1549 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1550 }, 1551 [ C(OP_WRITE) ] = { 1552 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1553 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1554 }, 1555 [ C(OP_PREFETCH) ] = { 1556 [ C(RESULT_ACCESS) ] = 0, 1557 [ C(RESULT_MISS) ] = 0, 1558 }, 1559 }, 1560 [ C(DTLB) ] = { 1561 [ C(OP_READ) ] = { 1562 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1563 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1564 }, 1565 [ C(OP_WRITE) ] = { 1566 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1567 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1568 }, 1569 [ C(OP_PREFETCH) ] = { 1570 [ C(RESULT_ACCESS) ] = 0, 1571 [ C(RESULT_MISS) ] = 0, 1572 }, 1573 }, 1574 [ C(ITLB) ] = { 1575 [ C(OP_READ) ] = { 1576 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1577 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1578 }, 1579 [ C(OP_WRITE) ] = { 1580 [ C(RESULT_ACCESS) ] = -1, 1581 [ C(RESULT_MISS) ] = -1, 1582 }, 1583 [ C(OP_PREFETCH) ] = { 1584 [ C(RESULT_ACCESS) ] = -1, 1585 [ C(RESULT_MISS) ] = -1, 1586 }, 1587 }, 1588 [ C(BPU ) ] = { 1589 [ C(OP_READ) ] = { 1590 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1591 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1592 }, 1593 [ C(OP_WRITE) ] = { 1594 [ C(RESULT_ACCESS) ] = -1, 1595 [ C(RESULT_MISS) ] = -1, 1596 }, 1597 [ C(OP_PREFETCH) ] = { 1598 [ C(RESULT_ACCESS) ] = -1, 1599 [ C(RESULT_MISS) ] = -1, 1600 }, 1601 }, 1602 }; 1603 1604 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1605 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1606 /* no_alloc_cycles.not_delivered */ 1607 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1608 "event=0xca,umask=0x50"); 1609 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1610 /* uops_retired.all */ 1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1612 "event=0xc2,umask=0x10"); 1613 /* uops_retired.all */ 1614 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1615 "event=0xc2,umask=0x10"); 1616 1617 static struct attribute *slm_events_attrs[] = { 1618 EVENT_PTR(td_total_slots_slm), 1619 EVENT_PTR(td_total_slots_scale_slm), 1620 EVENT_PTR(td_fetch_bubbles_slm), 1621 EVENT_PTR(td_fetch_bubbles_scale_slm), 1622 EVENT_PTR(td_slots_issued_slm), 1623 EVENT_PTR(td_slots_retired_slm), 1624 NULL 1625 }; 1626 1627 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1628 { 1629 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1630 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1631 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1632 EVENT_EXTRA_END 1633 }; 1634 1635 #define SLM_DMND_READ SNB_DMND_DATA_RD 1636 #define SLM_DMND_WRITE SNB_DMND_RFO 1637 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1638 1639 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1640 #define SLM_LLC_ACCESS SNB_RESP_ANY 1641 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1642 1643 static __initconst const u64 slm_hw_cache_extra_regs 1644 [PERF_COUNT_HW_CACHE_MAX] 1645 [PERF_COUNT_HW_CACHE_OP_MAX] 1646 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1647 { 1648 [ C(LL ) ] = { 1649 [ C(OP_READ) ] = { 1650 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1651 [ C(RESULT_MISS) ] = 0, 1652 }, 1653 [ C(OP_WRITE) ] = { 1654 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1655 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1656 }, 1657 [ C(OP_PREFETCH) ] = { 1658 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1659 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1660 }, 1661 }, 1662 }; 1663 1664 static __initconst const u64 slm_hw_cache_event_ids 1665 [PERF_COUNT_HW_CACHE_MAX] 1666 [PERF_COUNT_HW_CACHE_OP_MAX] 1667 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1668 { 1669 [ C(L1D) ] = { 1670 [ C(OP_READ) ] = { 1671 [ C(RESULT_ACCESS) ] = 0, 1672 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1673 }, 1674 [ C(OP_WRITE) ] = { 1675 [ C(RESULT_ACCESS) ] = 0, 1676 [ C(RESULT_MISS) ] = 0, 1677 }, 1678 [ C(OP_PREFETCH) ] = { 1679 [ C(RESULT_ACCESS) ] = 0, 1680 [ C(RESULT_MISS) ] = 0, 1681 }, 1682 }, 1683 [ C(L1I ) ] = { 1684 [ C(OP_READ) ] = { 1685 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1686 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1687 }, 1688 [ C(OP_WRITE) ] = { 1689 [ C(RESULT_ACCESS) ] = -1, 1690 [ C(RESULT_MISS) ] = -1, 1691 }, 1692 [ C(OP_PREFETCH) ] = { 1693 [ C(RESULT_ACCESS) ] = 0, 1694 [ C(RESULT_MISS) ] = 0, 1695 }, 1696 }, 1697 [ C(LL ) ] = { 1698 [ C(OP_READ) ] = { 1699 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1700 [ C(RESULT_ACCESS) ] = 0x01b7, 1701 [ C(RESULT_MISS) ] = 0, 1702 }, 1703 [ C(OP_WRITE) ] = { 1704 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1705 [ C(RESULT_ACCESS) ] = 0x01b7, 1706 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1707 [ C(RESULT_MISS) ] = 0x01b7, 1708 }, 1709 [ C(OP_PREFETCH) ] = { 1710 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1711 [ C(RESULT_ACCESS) ] = 0x01b7, 1712 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1713 [ C(RESULT_MISS) ] = 0x01b7, 1714 }, 1715 }, 1716 [ C(DTLB) ] = { 1717 [ C(OP_READ) ] = { 1718 [ C(RESULT_ACCESS) ] = 0, 1719 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1720 }, 1721 [ C(OP_WRITE) ] = { 1722 [ C(RESULT_ACCESS) ] = 0, 1723 [ C(RESULT_MISS) ] = 0, 1724 }, 1725 [ C(OP_PREFETCH) ] = { 1726 [ C(RESULT_ACCESS) ] = 0, 1727 [ C(RESULT_MISS) ] = 0, 1728 }, 1729 }, 1730 [ C(ITLB) ] = { 1731 [ C(OP_READ) ] = { 1732 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1733 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1734 }, 1735 [ C(OP_WRITE) ] = { 1736 [ C(RESULT_ACCESS) ] = -1, 1737 [ C(RESULT_MISS) ] = -1, 1738 }, 1739 [ C(OP_PREFETCH) ] = { 1740 [ C(RESULT_ACCESS) ] = -1, 1741 [ C(RESULT_MISS) ] = -1, 1742 }, 1743 }, 1744 [ C(BPU ) ] = { 1745 [ C(OP_READ) ] = { 1746 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1747 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1748 }, 1749 [ C(OP_WRITE) ] = { 1750 [ C(RESULT_ACCESS) ] = -1, 1751 [ C(RESULT_MISS) ] = -1, 1752 }, 1753 [ C(OP_PREFETCH) ] = { 1754 [ C(RESULT_ACCESS) ] = -1, 1755 [ C(RESULT_MISS) ] = -1, 1756 }, 1757 }, 1758 }; 1759 1760 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1761 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1762 /* UOPS_NOT_DELIVERED.ANY */ 1763 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1764 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1765 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1766 /* UOPS_RETIRED.ANY */ 1767 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1768 /* UOPS_ISSUED.ANY */ 1769 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1770 1771 static struct attribute *glm_events_attrs[] = { 1772 EVENT_PTR(td_total_slots_glm), 1773 EVENT_PTR(td_total_slots_scale_glm), 1774 EVENT_PTR(td_fetch_bubbles_glm), 1775 EVENT_PTR(td_recovery_bubbles_glm), 1776 EVENT_PTR(td_slots_issued_glm), 1777 EVENT_PTR(td_slots_retired_glm), 1778 NULL 1779 }; 1780 1781 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1782 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1783 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1784 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1785 EVENT_EXTRA_END 1786 }; 1787 1788 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1789 #define GLM_DEMAND_RFO BIT_ULL(1) 1790 #define GLM_ANY_RESPONSE BIT_ULL(16) 1791 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1792 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1793 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1794 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1795 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1796 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1797 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1798 1799 static __initconst const u64 glm_hw_cache_event_ids 1800 [PERF_COUNT_HW_CACHE_MAX] 1801 [PERF_COUNT_HW_CACHE_OP_MAX] 1802 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1803 [C(L1D)] = { 1804 [C(OP_READ)] = { 1805 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1806 [C(RESULT_MISS)] = 0x0, 1807 }, 1808 [C(OP_WRITE)] = { 1809 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1810 [C(RESULT_MISS)] = 0x0, 1811 }, 1812 [C(OP_PREFETCH)] = { 1813 [C(RESULT_ACCESS)] = 0x0, 1814 [C(RESULT_MISS)] = 0x0, 1815 }, 1816 }, 1817 [C(L1I)] = { 1818 [C(OP_READ)] = { 1819 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1820 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1821 }, 1822 [C(OP_WRITE)] = { 1823 [C(RESULT_ACCESS)] = -1, 1824 [C(RESULT_MISS)] = -1, 1825 }, 1826 [C(OP_PREFETCH)] = { 1827 [C(RESULT_ACCESS)] = 0x0, 1828 [C(RESULT_MISS)] = 0x0, 1829 }, 1830 }, 1831 [C(LL)] = { 1832 [C(OP_READ)] = { 1833 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1834 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1835 }, 1836 [C(OP_WRITE)] = { 1837 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1838 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1839 }, 1840 [C(OP_PREFETCH)] = { 1841 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1842 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1843 }, 1844 }, 1845 [C(DTLB)] = { 1846 [C(OP_READ)] = { 1847 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1848 [C(RESULT_MISS)] = 0x0, 1849 }, 1850 [C(OP_WRITE)] = { 1851 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1852 [C(RESULT_MISS)] = 0x0, 1853 }, 1854 [C(OP_PREFETCH)] = { 1855 [C(RESULT_ACCESS)] = 0x0, 1856 [C(RESULT_MISS)] = 0x0, 1857 }, 1858 }, 1859 [C(ITLB)] = { 1860 [C(OP_READ)] = { 1861 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1862 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1863 }, 1864 [C(OP_WRITE)] = { 1865 [C(RESULT_ACCESS)] = -1, 1866 [C(RESULT_MISS)] = -1, 1867 }, 1868 [C(OP_PREFETCH)] = { 1869 [C(RESULT_ACCESS)] = -1, 1870 [C(RESULT_MISS)] = -1, 1871 }, 1872 }, 1873 [C(BPU)] = { 1874 [C(OP_READ)] = { 1875 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1876 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1877 }, 1878 [C(OP_WRITE)] = { 1879 [C(RESULT_ACCESS)] = -1, 1880 [C(RESULT_MISS)] = -1, 1881 }, 1882 [C(OP_PREFETCH)] = { 1883 [C(RESULT_ACCESS)] = -1, 1884 [C(RESULT_MISS)] = -1, 1885 }, 1886 }, 1887 }; 1888 1889 static __initconst const u64 glm_hw_cache_extra_regs 1890 [PERF_COUNT_HW_CACHE_MAX] 1891 [PERF_COUNT_HW_CACHE_OP_MAX] 1892 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1893 [C(LL)] = { 1894 [C(OP_READ)] = { 1895 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1896 GLM_LLC_ACCESS, 1897 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1898 GLM_LLC_MISS, 1899 }, 1900 [C(OP_WRITE)] = { 1901 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1902 GLM_LLC_ACCESS, 1903 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1904 GLM_LLC_MISS, 1905 }, 1906 [C(OP_PREFETCH)] = { 1907 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1908 GLM_LLC_ACCESS, 1909 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1910 GLM_LLC_MISS, 1911 }, 1912 }, 1913 }; 1914 1915 static __initconst const u64 glp_hw_cache_event_ids 1916 [PERF_COUNT_HW_CACHE_MAX] 1917 [PERF_COUNT_HW_CACHE_OP_MAX] 1918 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1919 [C(L1D)] = { 1920 [C(OP_READ)] = { 1921 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1922 [C(RESULT_MISS)] = 0x0, 1923 }, 1924 [C(OP_WRITE)] = { 1925 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1926 [C(RESULT_MISS)] = 0x0, 1927 }, 1928 [C(OP_PREFETCH)] = { 1929 [C(RESULT_ACCESS)] = 0x0, 1930 [C(RESULT_MISS)] = 0x0, 1931 }, 1932 }, 1933 [C(L1I)] = { 1934 [C(OP_READ)] = { 1935 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1936 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1937 }, 1938 [C(OP_WRITE)] = { 1939 [C(RESULT_ACCESS)] = -1, 1940 [C(RESULT_MISS)] = -1, 1941 }, 1942 [C(OP_PREFETCH)] = { 1943 [C(RESULT_ACCESS)] = 0x0, 1944 [C(RESULT_MISS)] = 0x0, 1945 }, 1946 }, 1947 [C(LL)] = { 1948 [C(OP_READ)] = { 1949 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1950 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1951 }, 1952 [C(OP_WRITE)] = { 1953 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1954 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1955 }, 1956 [C(OP_PREFETCH)] = { 1957 [C(RESULT_ACCESS)] = 0x0, 1958 [C(RESULT_MISS)] = 0x0, 1959 }, 1960 }, 1961 [C(DTLB)] = { 1962 [C(OP_READ)] = { 1963 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1964 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1965 }, 1966 [C(OP_WRITE)] = { 1967 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1968 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1969 }, 1970 [C(OP_PREFETCH)] = { 1971 [C(RESULT_ACCESS)] = 0x0, 1972 [C(RESULT_MISS)] = 0x0, 1973 }, 1974 }, 1975 [C(ITLB)] = { 1976 [C(OP_READ)] = { 1977 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1978 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1979 }, 1980 [C(OP_WRITE)] = { 1981 [C(RESULT_ACCESS)] = -1, 1982 [C(RESULT_MISS)] = -1, 1983 }, 1984 [C(OP_PREFETCH)] = { 1985 [C(RESULT_ACCESS)] = -1, 1986 [C(RESULT_MISS)] = -1, 1987 }, 1988 }, 1989 [C(BPU)] = { 1990 [C(OP_READ)] = { 1991 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1992 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1993 }, 1994 [C(OP_WRITE)] = { 1995 [C(RESULT_ACCESS)] = -1, 1996 [C(RESULT_MISS)] = -1, 1997 }, 1998 [C(OP_PREFETCH)] = { 1999 [C(RESULT_ACCESS)] = -1, 2000 [C(RESULT_MISS)] = -1, 2001 }, 2002 }, 2003 }; 2004 2005 static __initconst const u64 glp_hw_cache_extra_regs 2006 [PERF_COUNT_HW_CACHE_MAX] 2007 [PERF_COUNT_HW_CACHE_OP_MAX] 2008 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2009 [C(LL)] = { 2010 [C(OP_READ)] = { 2011 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 2012 GLM_LLC_ACCESS, 2013 [C(RESULT_MISS)] = GLM_DEMAND_READ| 2014 GLM_LLC_MISS, 2015 }, 2016 [C(OP_WRITE)] = { 2017 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 2018 GLM_LLC_ACCESS, 2019 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 2020 GLM_LLC_MISS, 2021 }, 2022 [C(OP_PREFETCH)] = { 2023 [C(RESULT_ACCESS)] = 0x0, 2024 [C(RESULT_MISS)] = 0x0, 2025 }, 2026 }, 2027 }; 2028 2029 #define TNT_LOCAL_DRAM BIT_ULL(26) 2030 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD 2031 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO 2032 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE 2033 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \ 2034 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM) 2035 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM) 2036 2037 static __initconst const u64 tnt_hw_cache_extra_regs 2038 [PERF_COUNT_HW_CACHE_MAX] 2039 [PERF_COUNT_HW_CACHE_OP_MAX] 2040 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2041 [C(LL)] = { 2042 [C(OP_READ)] = { 2043 [C(RESULT_ACCESS)] = TNT_DEMAND_READ| 2044 TNT_LLC_ACCESS, 2045 [C(RESULT_MISS)] = TNT_DEMAND_READ| 2046 TNT_LLC_MISS, 2047 }, 2048 [C(OP_WRITE)] = { 2049 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE| 2050 TNT_LLC_ACCESS, 2051 [C(RESULT_MISS)] = TNT_DEMAND_WRITE| 2052 TNT_LLC_MISS, 2053 }, 2054 [C(OP_PREFETCH)] = { 2055 [C(RESULT_ACCESS)] = 0x0, 2056 [C(RESULT_MISS)] = 0x0, 2057 }, 2058 }, 2059 }; 2060 2061 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0"); 2062 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0"); 2063 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6"); 2064 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0"); 2065 2066 static struct attribute *tnt_events_attrs[] = { 2067 EVENT_PTR(td_fe_bound_tnt), 2068 EVENT_PTR(td_retiring_tnt), 2069 EVENT_PTR(td_bad_spec_tnt), 2070 EVENT_PTR(td_be_bound_tnt), 2071 NULL, 2072 }; 2073 2074 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = { 2075 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 2076 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0), 2077 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1), 2078 EVENT_EXTRA_END 2079 }; 2080 2081 static struct extra_reg intel_grt_extra_regs[] __read_mostly = { 2082 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 2083 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), 2084 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), 2085 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0), 2086 EVENT_EXTRA_END 2087 }; 2088 2089 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 2090 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 2091 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 2092 #define KNL_MCDRAM_FAR BIT_ULL(22) 2093 #define KNL_DDR_LOCAL BIT_ULL(23) 2094 #define KNL_DDR_FAR BIT_ULL(24) 2095 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 2096 KNL_DDR_LOCAL | KNL_DDR_FAR) 2097 #define KNL_L2_READ SLM_DMND_READ 2098 #define KNL_L2_WRITE SLM_DMND_WRITE 2099 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 2100 #define KNL_L2_ACCESS SLM_LLC_ACCESS 2101 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 2102 KNL_DRAM_ANY | SNB_SNP_ANY | \ 2103 SNB_NON_DRAM) 2104 2105 static __initconst const u64 knl_hw_cache_extra_regs 2106 [PERF_COUNT_HW_CACHE_MAX] 2107 [PERF_COUNT_HW_CACHE_OP_MAX] 2108 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 2109 [C(LL)] = { 2110 [C(OP_READ)] = { 2111 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 2112 [C(RESULT_MISS)] = 0, 2113 }, 2114 [C(OP_WRITE)] = { 2115 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 2116 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 2117 }, 2118 [C(OP_PREFETCH)] = { 2119 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 2120 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 2121 }, 2122 }, 2123 }; 2124 2125 /* 2126 * Used from PMIs where the LBRs are already disabled. 2127 * 2128 * This function could be called consecutively. It is required to remain in 2129 * disabled state if called consecutively. 2130 * 2131 * During consecutive calls, the same disable value will be written to related 2132 * registers, so the PMU state remains unchanged. 2133 * 2134 * intel_bts events don't coexist with intel PMU's BTS events because of 2135 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 2136 * disabled around intel PMU's event batching etc, only inside the PMI handler. 2137 * 2138 * Avoid PEBS_ENABLE MSR access in PMIs. 2139 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore. 2140 * It doesn't matter if the PEBS is enabled or not. 2141 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to 2142 * access PEBS_ENABLE MSR in disable_all()/enable_all(). 2143 * However, there are some cases which may change PEBS status, e.g. PMI 2144 * throttle. The PEBS_ENABLE should be updated where the status changes. 2145 */ 2146 static void __intel_pmu_disable_all(void) 2147 { 2148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2149 2150 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2151 2152 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 2153 intel_pmu_disable_bts(); 2154 } 2155 2156 static void intel_pmu_disable_all(void) 2157 { 2158 __intel_pmu_disable_all(); 2159 intel_pmu_pebs_disable_all(); 2160 intel_pmu_lbr_disable_all(); 2161 } 2162 2163 static void __intel_pmu_enable_all(int added, bool pmi) 2164 { 2165 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2166 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 2167 2168 intel_pmu_lbr_enable_all(pmi); 2169 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 2170 intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 2171 2172 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 2173 struct perf_event *event = 2174 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 2175 2176 if (WARN_ON_ONCE(!event)) 2177 return; 2178 2179 intel_pmu_enable_bts(event->hw.config); 2180 } 2181 } 2182 2183 static void intel_pmu_enable_all(int added) 2184 { 2185 intel_pmu_pebs_enable_all(); 2186 __intel_pmu_enable_all(added, false); 2187 } 2188 2189 /* 2190 * Workaround for: 2191 * Intel Errata AAK100 (model 26) 2192 * Intel Errata AAP53 (model 30) 2193 * Intel Errata BD53 (model 44) 2194 * 2195 * The official story: 2196 * These chips need to be 'reset' when adding counters by programming the 2197 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 2198 * in sequence on the same PMC or on different PMCs. 2199 * 2200 * In practice it appears some of these events do in fact count, and 2201 * we need to program all 4 events. 2202 */ 2203 static void intel_pmu_nhm_workaround(void) 2204 { 2205 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2206 static const unsigned long nhm_magic[4] = { 2207 0x4300B5, 2208 0x4300D2, 2209 0x4300B1, 2210 0x4300B1 2211 }; 2212 struct perf_event *event; 2213 int i; 2214 2215 /* 2216 * The Errata requires below steps: 2217 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 2218 * 2) Configure 4 PERFEVTSELx with the magic events and clear 2219 * the corresponding PMCx; 2220 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 2221 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 2222 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 2223 */ 2224 2225 /* 2226 * The real steps we choose are a little different from above. 2227 * A) To reduce MSR operations, we don't run step 1) as they 2228 * are already cleared before this function is called; 2229 * B) Call x86_perf_event_update to save PMCx before configuring 2230 * PERFEVTSELx with magic number; 2231 * C) With step 5), we do clear only when the PERFEVTSELx is 2232 * not used currently. 2233 * D) Call x86_perf_event_set_period to restore PMCx; 2234 */ 2235 2236 /* We always operate 4 pairs of PERF Counters */ 2237 for (i = 0; i < 4; i++) { 2238 event = cpuc->events[i]; 2239 if (event) 2240 x86_perf_event_update(event); 2241 } 2242 2243 for (i = 0; i < 4; i++) { 2244 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 2245 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 2246 } 2247 2248 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 2249 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 2250 2251 for (i = 0; i < 4; i++) { 2252 event = cpuc->events[i]; 2253 2254 if (event) { 2255 x86_perf_event_set_period(event); 2256 __x86_pmu_enable_event(&event->hw, 2257 ARCH_PERFMON_EVENTSEL_ENABLE); 2258 } else 2259 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 2260 } 2261 } 2262 2263 static void intel_pmu_nhm_enable_all(int added) 2264 { 2265 if (added) 2266 intel_pmu_nhm_workaround(); 2267 intel_pmu_enable_all(added); 2268 } 2269 2270 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on) 2271 { 2272 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0; 2273 2274 if (cpuc->tfa_shadow != val) { 2275 cpuc->tfa_shadow = val; 2276 wrmsrl(MSR_TSX_FORCE_ABORT, val); 2277 } 2278 } 2279 2280 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2281 { 2282 /* 2283 * We're going to use PMC3, make sure TFA is set before we touch it. 2284 */ 2285 if (cntr == 3) 2286 intel_set_tfa(cpuc, true); 2287 } 2288 2289 static void intel_tfa_pmu_enable_all(int added) 2290 { 2291 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2292 2293 /* 2294 * If we find PMC3 is no longer used when we enable the PMU, we can 2295 * clear TFA. 2296 */ 2297 if (!test_bit(3, cpuc->active_mask)) 2298 intel_set_tfa(cpuc, false); 2299 2300 intel_pmu_enable_all(added); 2301 } 2302 2303 static inline u64 intel_pmu_get_status(void) 2304 { 2305 u64 status; 2306 2307 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2308 2309 return status; 2310 } 2311 2312 static inline void intel_pmu_ack_status(u64 ack) 2313 { 2314 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2315 } 2316 2317 static inline bool event_is_checkpointed(struct perf_event *event) 2318 { 2319 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2320 } 2321 2322 static inline void intel_set_masks(struct perf_event *event, int idx) 2323 { 2324 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2325 2326 if (event->attr.exclude_host) 2327 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); 2328 if (event->attr.exclude_guest) 2329 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); 2330 if (event_is_checkpointed(event)) 2331 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status); 2332 } 2333 2334 static inline void intel_clear_masks(struct perf_event *event, int idx) 2335 { 2336 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2337 2338 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); 2339 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); 2340 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status); 2341 } 2342 2343 static void intel_pmu_disable_fixed(struct perf_event *event) 2344 { 2345 struct hw_perf_event *hwc = &event->hw; 2346 u64 ctrl_val, mask; 2347 int idx = hwc->idx; 2348 2349 if (is_topdown_idx(idx)) { 2350 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2351 2352 /* 2353 * When there are other active TopDown events, 2354 * don't disable the fixed counter 3. 2355 */ 2356 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) 2357 return; 2358 idx = INTEL_PMC_IDX_FIXED_SLOTS; 2359 } 2360 2361 intel_clear_masks(event, idx); 2362 2363 mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4); 2364 rdmsrl(hwc->config_base, ctrl_val); 2365 ctrl_val &= ~mask; 2366 wrmsrl(hwc->config_base, ctrl_val); 2367 } 2368 2369 static void intel_pmu_disable_event(struct perf_event *event) 2370 { 2371 struct hw_perf_event *hwc = &event->hw; 2372 int idx = hwc->idx; 2373 2374 switch (idx) { 2375 case 0 ... INTEL_PMC_IDX_FIXED - 1: 2376 intel_clear_masks(event, idx); 2377 x86_pmu_disable_event(event); 2378 break; 2379 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: 2380 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 2381 intel_pmu_disable_fixed(event); 2382 break; 2383 case INTEL_PMC_IDX_FIXED_BTS: 2384 intel_pmu_disable_bts(); 2385 intel_pmu_drain_bts_buffer(); 2386 return; 2387 case INTEL_PMC_IDX_FIXED_VLBR: 2388 intel_clear_masks(event, idx); 2389 break; 2390 default: 2391 intel_clear_masks(event, idx); 2392 pr_warn("Failed to disable the event with invalid index %d\n", 2393 idx); 2394 return; 2395 } 2396 2397 /* 2398 * Needs to be called after x86_pmu_disable_event, 2399 * so we don't trigger the event without PEBS bit set. 2400 */ 2401 if (unlikely(event->attr.precise_ip)) 2402 intel_pmu_pebs_disable(event); 2403 } 2404 2405 static void intel_pmu_del_event(struct perf_event *event) 2406 { 2407 if (needs_branch_stack(event)) 2408 intel_pmu_lbr_del(event); 2409 if (event->attr.precise_ip) 2410 intel_pmu_pebs_del(event); 2411 } 2412 2413 static int icl_set_topdown_event_period(struct perf_event *event) 2414 { 2415 struct hw_perf_event *hwc = &event->hw; 2416 s64 left = local64_read(&hwc->period_left); 2417 2418 /* 2419 * The values in PERF_METRICS MSR are derived from fixed counter 3. 2420 * Software should start both registers, PERF_METRICS and fixed 2421 * counter 3, from zero. 2422 * Clear PERF_METRICS and Fixed counter 3 in initialization. 2423 * After that, both MSRs will be cleared for each read. 2424 * Don't need to clear them again. 2425 */ 2426 if (left == x86_pmu.max_period) { 2427 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); 2428 wrmsrl(MSR_PERF_METRICS, 0); 2429 hwc->saved_slots = 0; 2430 hwc->saved_metric = 0; 2431 } 2432 2433 if ((hwc->saved_slots) && is_slots_event(event)) { 2434 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots); 2435 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric); 2436 } 2437 2438 perf_event_update_userpage(event); 2439 2440 return 0; 2441 } 2442 2443 static int adl_set_topdown_event_period(struct perf_event *event) 2444 { 2445 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 2446 2447 if (pmu->cpu_type != hybrid_big) 2448 return 0; 2449 2450 return icl_set_topdown_event_period(event); 2451 } 2452 2453 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx) 2454 { 2455 u32 val; 2456 2457 /* 2458 * The metric is reported as an 8bit integer fraction 2459 * summing up to 0xff. 2460 * slots-in-metric = (Metric / 0xff) * slots 2461 */ 2462 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff; 2463 return mul_u64_u32_div(slots, val, 0xff); 2464 } 2465 2466 static u64 icl_get_topdown_value(struct perf_event *event, 2467 u64 slots, u64 metrics) 2468 { 2469 int idx = event->hw.idx; 2470 u64 delta; 2471 2472 if (is_metric_idx(idx)) 2473 delta = icl_get_metrics_event_value(metrics, slots, idx); 2474 else 2475 delta = slots; 2476 2477 return delta; 2478 } 2479 2480 static void __icl_update_topdown_event(struct perf_event *event, 2481 u64 slots, u64 metrics, 2482 u64 last_slots, u64 last_metrics) 2483 { 2484 u64 delta, last = 0; 2485 2486 delta = icl_get_topdown_value(event, slots, metrics); 2487 if (last_slots) 2488 last = icl_get_topdown_value(event, last_slots, last_metrics); 2489 2490 /* 2491 * The 8bit integer fraction of metric may be not accurate, 2492 * especially when the changes is very small. 2493 * For example, if only a few bad_spec happens, the fraction 2494 * may be reduced from 1 to 0. If so, the bad_spec event value 2495 * will be 0 which is definitely less than the last value. 2496 * Avoid update event->count for this case. 2497 */ 2498 if (delta > last) { 2499 delta -= last; 2500 local64_add(delta, &event->count); 2501 } 2502 } 2503 2504 static void update_saved_topdown_regs(struct perf_event *event, u64 slots, 2505 u64 metrics, int metric_end) 2506 { 2507 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2508 struct perf_event *other; 2509 int idx; 2510 2511 event->hw.saved_slots = slots; 2512 event->hw.saved_metric = metrics; 2513 2514 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { 2515 if (!is_topdown_idx(idx)) 2516 continue; 2517 other = cpuc->events[idx]; 2518 other->hw.saved_slots = slots; 2519 other->hw.saved_metric = metrics; 2520 } 2521 } 2522 2523 /* 2524 * Update all active Topdown events. 2525 * 2526 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be 2527 * modify by a NMI. PMU has to be disabled before calling this function. 2528 */ 2529 2530 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end) 2531 { 2532 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2533 struct perf_event *other; 2534 u64 slots, metrics; 2535 bool reset = true; 2536 int idx; 2537 2538 /* read Fixed counter 3 */ 2539 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots); 2540 if (!slots) 2541 return 0; 2542 2543 /* read PERF_METRICS */ 2544 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics); 2545 2546 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { 2547 if (!is_topdown_idx(idx)) 2548 continue; 2549 other = cpuc->events[idx]; 2550 __icl_update_topdown_event(other, slots, metrics, 2551 event ? event->hw.saved_slots : 0, 2552 event ? event->hw.saved_metric : 0); 2553 } 2554 2555 /* 2556 * Check and update this event, which may have been cleared 2557 * in active_mask e.g. x86_pmu_stop() 2558 */ 2559 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) { 2560 __icl_update_topdown_event(event, slots, metrics, 2561 event->hw.saved_slots, 2562 event->hw.saved_metric); 2563 2564 /* 2565 * In x86_pmu_stop(), the event is cleared in active_mask first, 2566 * then drain the delta, which indicates context switch for 2567 * counting. 2568 * Save metric and slots for context switch. 2569 * Don't need to reset the PERF_METRICS and Fixed counter 3. 2570 * Because the values will be restored in next schedule in. 2571 */ 2572 update_saved_topdown_regs(event, slots, metrics, metric_end); 2573 reset = false; 2574 } 2575 2576 if (reset) { 2577 /* The fixed counter 3 has to be written before the PERF_METRICS. */ 2578 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); 2579 wrmsrl(MSR_PERF_METRICS, 0); 2580 if (event) 2581 update_saved_topdown_regs(event, 0, 0, metric_end); 2582 } 2583 2584 return slots; 2585 } 2586 2587 static u64 icl_update_topdown_event(struct perf_event *event) 2588 { 2589 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE + 2590 x86_pmu.num_topdown_events - 1); 2591 } 2592 2593 static u64 adl_update_topdown_event(struct perf_event *event) 2594 { 2595 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 2596 2597 if (pmu->cpu_type != hybrid_big) 2598 return 0; 2599 2600 return icl_update_topdown_event(event); 2601 } 2602 2603 2604 static void intel_pmu_read_topdown_event(struct perf_event *event) 2605 { 2606 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2607 2608 /* Only need to call update_topdown_event() once for group read. */ 2609 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) && 2610 !is_slots_event(event)) 2611 return; 2612 2613 perf_pmu_disable(event->pmu); 2614 x86_pmu.update_topdown_event(event); 2615 perf_pmu_enable(event->pmu); 2616 } 2617 2618 static void intel_pmu_read_event(struct perf_event *event) 2619 { 2620 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2621 intel_pmu_auto_reload_read(event); 2622 else if (is_topdown_count(event) && x86_pmu.update_topdown_event) 2623 intel_pmu_read_topdown_event(event); 2624 else 2625 x86_perf_event_update(event); 2626 } 2627 2628 static void intel_pmu_enable_fixed(struct perf_event *event) 2629 { 2630 struct hw_perf_event *hwc = &event->hw; 2631 u64 ctrl_val, mask, bits = 0; 2632 int idx = hwc->idx; 2633 2634 if (is_topdown_idx(idx)) { 2635 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2636 /* 2637 * When there are other active TopDown events, 2638 * don't enable the fixed counter 3 again. 2639 */ 2640 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) 2641 return; 2642 2643 idx = INTEL_PMC_IDX_FIXED_SLOTS; 2644 } 2645 2646 intel_set_masks(event, idx); 2647 2648 /* 2649 * Enable IRQ generation (0x8), if not PEBS, 2650 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2651 * if requested: 2652 */ 2653 if (!event->attr.precise_ip) 2654 bits |= 0x8; 2655 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2656 bits |= 0x2; 2657 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2658 bits |= 0x1; 2659 2660 /* 2661 * ANY bit is supported in v3 and up 2662 */ 2663 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2664 bits |= 0x4; 2665 2666 idx -= INTEL_PMC_IDX_FIXED; 2667 bits <<= (idx * 4); 2668 mask = 0xfULL << (idx * 4); 2669 2670 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) { 2671 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2672 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2673 } 2674 2675 rdmsrl(hwc->config_base, ctrl_val); 2676 ctrl_val &= ~mask; 2677 ctrl_val |= bits; 2678 wrmsrl(hwc->config_base, ctrl_val); 2679 } 2680 2681 static void intel_pmu_enable_event(struct perf_event *event) 2682 { 2683 struct hw_perf_event *hwc = &event->hw; 2684 int idx = hwc->idx; 2685 2686 if (unlikely(event->attr.precise_ip)) 2687 intel_pmu_pebs_enable(event); 2688 2689 switch (idx) { 2690 case 0 ... INTEL_PMC_IDX_FIXED - 1: 2691 intel_set_masks(event, idx); 2692 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2693 break; 2694 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: 2695 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 2696 intel_pmu_enable_fixed(event); 2697 break; 2698 case INTEL_PMC_IDX_FIXED_BTS: 2699 if (!__this_cpu_read(cpu_hw_events.enabled)) 2700 return; 2701 intel_pmu_enable_bts(hwc->config); 2702 break; 2703 case INTEL_PMC_IDX_FIXED_VLBR: 2704 intel_set_masks(event, idx); 2705 break; 2706 default: 2707 pr_warn("Failed to enable the event with invalid index %d\n", 2708 idx); 2709 } 2710 } 2711 2712 static void intel_pmu_add_event(struct perf_event *event) 2713 { 2714 if (event->attr.precise_ip) 2715 intel_pmu_pebs_add(event); 2716 if (needs_branch_stack(event)) 2717 intel_pmu_lbr_add(event); 2718 } 2719 2720 /* 2721 * Save and restart an expired event. Called by NMI contexts, 2722 * so it has to be careful about preempting normal event ops: 2723 */ 2724 int intel_pmu_save_and_restart(struct perf_event *event) 2725 { 2726 x86_perf_event_update(event); 2727 /* 2728 * For a checkpointed counter always reset back to 0. This 2729 * avoids a situation where the counter overflows, aborts the 2730 * transaction and is then set back to shortly before the 2731 * overflow, and overflows and aborts again. 2732 */ 2733 if (unlikely(event_is_checkpointed(event))) { 2734 /* No race with NMIs because the counter should not be armed */ 2735 wrmsrl(event->hw.event_base, 0); 2736 local64_set(&event->hw.prev_count, 0); 2737 } 2738 return x86_perf_event_set_period(event); 2739 } 2740 2741 static void intel_pmu_reset(void) 2742 { 2743 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2744 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2745 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2746 int num_counters = hybrid(cpuc->pmu, num_counters); 2747 unsigned long flags; 2748 int idx; 2749 2750 if (!num_counters) 2751 return; 2752 2753 local_irq_save(flags); 2754 2755 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2756 2757 for (idx = 0; idx < num_counters; idx++) { 2758 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2759 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2760 } 2761 for (idx = 0; idx < num_counters_fixed; idx++) { 2762 if (fixed_counter_disabled(idx, cpuc->pmu)) 2763 continue; 2764 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2765 } 2766 2767 if (ds) 2768 ds->bts_index = ds->bts_buffer_base; 2769 2770 /* Ack all overflows and disable fixed counters */ 2771 if (x86_pmu.version >= 2) { 2772 intel_pmu_ack_status(intel_pmu_get_status()); 2773 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2774 } 2775 2776 /* Reset LBRs and LBR freezing */ 2777 if (x86_pmu.lbr_nr) { 2778 update_debugctlmsr(get_debugctlmsr() & 2779 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2780 } 2781 2782 local_irq_restore(flags); 2783 } 2784 2785 static int handle_pmi_common(struct pt_regs *regs, u64 status) 2786 { 2787 struct perf_sample_data data; 2788 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2789 int bit; 2790 int handled = 0; 2791 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 2792 2793 inc_irq_stat(apic_perf_irqs); 2794 2795 /* 2796 * Ignore a range of extra bits in status that do not indicate 2797 * overflow by themselves. 2798 */ 2799 status &= ~(GLOBAL_STATUS_COND_CHG | 2800 GLOBAL_STATUS_ASIF | 2801 GLOBAL_STATUS_LBRS_FROZEN); 2802 if (!status) 2803 return 0; 2804 /* 2805 * In case multiple PEBS events are sampled at the same time, 2806 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2807 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2808 * having their bits set in the status register. This is a sign 2809 * that there was at least one PEBS record pending at the time 2810 * of the PMU interrupt. PEBS counters must only be processed 2811 * via the drain_pebs() calls and not via the regular sample 2812 * processing loop coming after that the function, otherwise 2813 * phony regular samples may be generated in the sampling buffer 2814 * not marked with the EXACT tag. Another possibility is to have 2815 * one PEBS event and at least one non-PEBS event which overflows 2816 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2817 * not be set, yet the overflow status bit for the PEBS counter will 2818 * be on Skylake. 2819 * 2820 * To avoid this problem, we systematically ignore the PEBS-enabled 2821 * counters from the GLOBAL_STATUS mask and we always process PEBS 2822 * events via drain_pebs(). 2823 */ 2824 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 2825 status &= ~cpuc->pebs_enabled; 2826 else 2827 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2828 2829 /* 2830 * PEBS overflow sets bit 62 in the global status register 2831 */ 2832 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) { 2833 u64 pebs_enabled = cpuc->pebs_enabled; 2834 2835 handled++; 2836 x86_pmu.drain_pebs(regs, &data); 2837 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2838 2839 /* 2840 * PMI throttle may be triggered, which stops the PEBS event. 2841 * Although cpuc->pebs_enabled is updated accordingly, the 2842 * MSR_IA32_PEBS_ENABLE is not updated. Because the 2843 * cpuc->enabled has been forced to 0 in PMI. 2844 * Update the MSR if pebs_enabled is changed. 2845 */ 2846 if (pebs_enabled != cpuc->pebs_enabled) 2847 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 2848 } 2849 2850 /* 2851 * Intel PT 2852 */ 2853 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) { 2854 handled++; 2855 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() && 2856 perf_guest_cbs->handle_intel_pt_intr)) 2857 perf_guest_cbs->handle_intel_pt_intr(); 2858 else 2859 intel_pt_interrupt(); 2860 } 2861 2862 /* 2863 * Intel Perf metrics 2864 */ 2865 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) { 2866 handled++; 2867 if (x86_pmu.update_topdown_event) 2868 x86_pmu.update_topdown_event(NULL); 2869 } 2870 2871 /* 2872 * Checkpointed counters can lead to 'spurious' PMIs because the 2873 * rollback caused by the PMI will have cleared the overflow status 2874 * bit. Therefore always force probe these counters. 2875 */ 2876 status |= cpuc->intel_cp_status; 2877 2878 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2879 struct perf_event *event = cpuc->events[bit]; 2880 2881 handled++; 2882 2883 if (!test_bit(bit, cpuc->active_mask)) 2884 continue; 2885 2886 if (!intel_pmu_save_and_restart(event)) 2887 continue; 2888 2889 perf_sample_data_init(&data, 0, event->hw.last_period); 2890 2891 if (has_branch_stack(event)) 2892 data.br_stack = &cpuc->lbr_stack; 2893 2894 if (perf_event_overflow(event, &data, regs)) 2895 x86_pmu_stop(event, 0); 2896 } 2897 2898 return handled; 2899 } 2900 2901 /* 2902 * This handler is triggered by the local APIC, so the APIC IRQ handling 2903 * rules apply: 2904 */ 2905 static int intel_pmu_handle_irq(struct pt_regs *regs) 2906 { 2907 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2908 bool late_ack = hybrid_bit(cpuc->pmu, late_ack); 2909 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack); 2910 int loops; 2911 u64 status; 2912 int handled; 2913 int pmu_enabled; 2914 2915 /* 2916 * Save the PMU state. 2917 * It needs to be restored when leaving the handler. 2918 */ 2919 pmu_enabled = cpuc->enabled; 2920 /* 2921 * In general, the early ACK is only applied for old platforms. 2922 * For the big core starts from Haswell, the late ACK should be 2923 * applied. 2924 * For the small core after Tremont, we have to do the ACK right 2925 * before re-enabling counters, which is in the middle of the 2926 * NMI handler. 2927 */ 2928 if (!late_ack && !mid_ack) 2929 apic_write(APIC_LVTPC, APIC_DM_NMI); 2930 intel_bts_disable_local(); 2931 cpuc->enabled = 0; 2932 __intel_pmu_disable_all(); 2933 handled = intel_pmu_drain_bts_buffer(); 2934 handled += intel_bts_interrupt(); 2935 status = intel_pmu_get_status(); 2936 if (!status) 2937 goto done; 2938 2939 loops = 0; 2940 again: 2941 intel_pmu_lbr_read(); 2942 intel_pmu_ack_status(status); 2943 if (++loops > 100) { 2944 static bool warned; 2945 2946 if (!warned) { 2947 WARN(1, "perfevents: irq loop stuck!\n"); 2948 perf_event_print_debug(); 2949 warned = true; 2950 } 2951 intel_pmu_reset(); 2952 goto done; 2953 } 2954 2955 handled += handle_pmi_common(regs, status); 2956 2957 /* 2958 * Repeat if there is more work to be done: 2959 */ 2960 status = intel_pmu_get_status(); 2961 if (status) 2962 goto again; 2963 2964 done: 2965 if (mid_ack) 2966 apic_write(APIC_LVTPC, APIC_DM_NMI); 2967 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2968 cpuc->enabled = pmu_enabled; 2969 if (pmu_enabled) 2970 __intel_pmu_enable_all(0, true); 2971 intel_bts_enable_local(); 2972 2973 /* 2974 * Only unmask the NMI after the overflow counters 2975 * have been reset. This avoids spurious NMIs on 2976 * Haswell CPUs. 2977 */ 2978 if (late_ack) 2979 apic_write(APIC_LVTPC, APIC_DM_NMI); 2980 return handled; 2981 } 2982 2983 static struct event_constraint * 2984 intel_bts_constraints(struct perf_event *event) 2985 { 2986 if (unlikely(intel_pmu_has_bts(event))) 2987 return &bts_constraint; 2988 2989 return NULL; 2990 } 2991 2992 /* 2993 * Note: matches a fake event, like Fixed2. 2994 */ 2995 static struct event_constraint * 2996 intel_vlbr_constraints(struct perf_event *event) 2997 { 2998 struct event_constraint *c = &vlbr_constraint; 2999 3000 if (unlikely(constraint_match(c, event->hw.config))) 3001 return c; 3002 3003 return NULL; 3004 } 3005 3006 static int intel_alt_er(struct cpu_hw_events *cpuc, 3007 int idx, u64 config) 3008 { 3009 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs); 3010 int alt_idx = idx; 3011 3012 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 3013 return idx; 3014 3015 if (idx == EXTRA_REG_RSP_0) 3016 alt_idx = EXTRA_REG_RSP_1; 3017 3018 if (idx == EXTRA_REG_RSP_1) 3019 alt_idx = EXTRA_REG_RSP_0; 3020 3021 if (config & ~extra_regs[alt_idx].valid_mask) 3022 return idx; 3023 3024 return alt_idx; 3025 } 3026 3027 static void intel_fixup_er(struct perf_event *event, int idx) 3028 { 3029 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 3030 event->hw.extra_reg.idx = idx; 3031 3032 if (idx == EXTRA_REG_RSP_0) { 3033 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 3034 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event; 3035 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 3036 } else if (idx == EXTRA_REG_RSP_1) { 3037 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 3038 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event; 3039 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 3040 } 3041 } 3042 3043 /* 3044 * manage allocation of shared extra msr for certain events 3045 * 3046 * sharing can be: 3047 * per-cpu: to be shared between the various events on a single PMU 3048 * per-core: per-cpu + shared by HT threads 3049 */ 3050 static struct event_constraint * 3051 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 3052 struct perf_event *event, 3053 struct hw_perf_event_extra *reg) 3054 { 3055 struct event_constraint *c = &emptyconstraint; 3056 struct er_account *era; 3057 unsigned long flags; 3058 int idx = reg->idx; 3059 3060 /* 3061 * reg->alloc can be set due to existing state, so for fake cpuc we 3062 * need to ignore this, otherwise we might fail to allocate proper fake 3063 * state for this extra reg constraint. Also see the comment below. 3064 */ 3065 if (reg->alloc && !cpuc->is_fake) 3066 return NULL; /* call x86_get_event_constraint() */ 3067 3068 again: 3069 era = &cpuc->shared_regs->regs[idx]; 3070 /* 3071 * we use spin_lock_irqsave() to avoid lockdep issues when 3072 * passing a fake cpuc 3073 */ 3074 raw_spin_lock_irqsave(&era->lock, flags); 3075 3076 if (!atomic_read(&era->ref) || era->config == reg->config) { 3077 3078 /* 3079 * If its a fake cpuc -- as per validate_{group,event}() we 3080 * shouldn't touch event state and we can avoid doing so 3081 * since both will only call get_event_constraints() once 3082 * on each event, this avoids the need for reg->alloc. 3083 * 3084 * Not doing the ER fixup will only result in era->reg being 3085 * wrong, but since we won't actually try and program hardware 3086 * this isn't a problem either. 3087 */ 3088 if (!cpuc->is_fake) { 3089 if (idx != reg->idx) 3090 intel_fixup_er(event, idx); 3091 3092 /* 3093 * x86_schedule_events() can call get_event_constraints() 3094 * multiple times on events in the case of incremental 3095 * scheduling(). reg->alloc ensures we only do the ER 3096 * allocation once. 3097 */ 3098 reg->alloc = 1; 3099 } 3100 3101 /* lock in msr value */ 3102 era->config = reg->config; 3103 era->reg = reg->reg; 3104 3105 /* one more user */ 3106 atomic_inc(&era->ref); 3107 3108 /* 3109 * need to call x86_get_event_constraint() 3110 * to check if associated event has constraints 3111 */ 3112 c = NULL; 3113 } else { 3114 idx = intel_alt_er(cpuc, idx, reg->config); 3115 if (idx != reg->idx) { 3116 raw_spin_unlock_irqrestore(&era->lock, flags); 3117 goto again; 3118 } 3119 } 3120 raw_spin_unlock_irqrestore(&era->lock, flags); 3121 3122 return c; 3123 } 3124 3125 static void 3126 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 3127 struct hw_perf_event_extra *reg) 3128 { 3129 struct er_account *era; 3130 3131 /* 3132 * Only put constraint if extra reg was actually allocated. Also takes 3133 * care of event which do not use an extra shared reg. 3134 * 3135 * Also, if this is a fake cpuc we shouldn't touch any event state 3136 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 3137 * either since it'll be thrown out. 3138 */ 3139 if (!reg->alloc || cpuc->is_fake) 3140 return; 3141 3142 era = &cpuc->shared_regs->regs[reg->idx]; 3143 3144 /* one fewer user */ 3145 atomic_dec(&era->ref); 3146 3147 /* allocate again next time */ 3148 reg->alloc = 0; 3149 } 3150 3151 static struct event_constraint * 3152 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 3153 struct perf_event *event) 3154 { 3155 struct event_constraint *c = NULL, *d; 3156 struct hw_perf_event_extra *xreg, *breg; 3157 3158 xreg = &event->hw.extra_reg; 3159 if (xreg->idx != EXTRA_REG_NONE) { 3160 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 3161 if (c == &emptyconstraint) 3162 return c; 3163 } 3164 breg = &event->hw.branch_reg; 3165 if (breg->idx != EXTRA_REG_NONE) { 3166 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 3167 if (d == &emptyconstraint) { 3168 __intel_shared_reg_put_constraints(cpuc, xreg); 3169 c = d; 3170 } 3171 } 3172 return c; 3173 } 3174 3175 struct event_constraint * 3176 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3177 struct perf_event *event) 3178 { 3179 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints); 3180 struct event_constraint *c; 3181 3182 if (event_constraints) { 3183 for_each_event_constraint(c, event_constraints) { 3184 if (constraint_match(c, event->hw.config)) { 3185 event->hw.flags |= c->flags; 3186 return c; 3187 } 3188 } 3189 } 3190 3191 return &hybrid_var(cpuc->pmu, unconstrained); 3192 } 3193 3194 static struct event_constraint * 3195 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3196 struct perf_event *event) 3197 { 3198 struct event_constraint *c; 3199 3200 c = intel_vlbr_constraints(event); 3201 if (c) 3202 return c; 3203 3204 c = intel_bts_constraints(event); 3205 if (c) 3206 return c; 3207 3208 c = intel_shared_regs_constraints(cpuc, event); 3209 if (c) 3210 return c; 3211 3212 c = intel_pebs_constraints(event); 3213 if (c) 3214 return c; 3215 3216 return x86_get_event_constraints(cpuc, idx, event); 3217 } 3218 3219 static void 3220 intel_start_scheduling(struct cpu_hw_events *cpuc) 3221 { 3222 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3223 struct intel_excl_states *xl; 3224 int tid = cpuc->excl_thread_id; 3225 3226 /* 3227 * nothing needed if in group validation mode 3228 */ 3229 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3230 return; 3231 3232 /* 3233 * no exclusion needed 3234 */ 3235 if (WARN_ON_ONCE(!excl_cntrs)) 3236 return; 3237 3238 xl = &excl_cntrs->states[tid]; 3239 3240 xl->sched_started = true; 3241 /* 3242 * lock shared state until we are done scheduling 3243 * in stop_event_scheduling() 3244 * makes scheduling appear as a transaction 3245 */ 3246 raw_spin_lock(&excl_cntrs->lock); 3247 } 3248 3249 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 3250 { 3251 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3252 struct event_constraint *c = cpuc->event_constraint[idx]; 3253 struct intel_excl_states *xl; 3254 int tid = cpuc->excl_thread_id; 3255 3256 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3257 return; 3258 3259 if (WARN_ON_ONCE(!excl_cntrs)) 3260 return; 3261 3262 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 3263 return; 3264 3265 xl = &excl_cntrs->states[tid]; 3266 3267 lockdep_assert_held(&excl_cntrs->lock); 3268 3269 if (c->flags & PERF_X86_EVENT_EXCL) 3270 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 3271 else 3272 xl->state[cntr] = INTEL_EXCL_SHARED; 3273 } 3274 3275 static void 3276 intel_stop_scheduling(struct cpu_hw_events *cpuc) 3277 { 3278 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3279 struct intel_excl_states *xl; 3280 int tid = cpuc->excl_thread_id; 3281 3282 /* 3283 * nothing needed if in group validation mode 3284 */ 3285 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3286 return; 3287 /* 3288 * no exclusion needed 3289 */ 3290 if (WARN_ON_ONCE(!excl_cntrs)) 3291 return; 3292 3293 xl = &excl_cntrs->states[tid]; 3294 3295 xl->sched_started = false; 3296 /* 3297 * release shared state lock (acquired in intel_start_scheduling()) 3298 */ 3299 raw_spin_unlock(&excl_cntrs->lock); 3300 } 3301 3302 static struct event_constraint * 3303 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx) 3304 { 3305 WARN_ON_ONCE(!cpuc->constraint_list); 3306 3307 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 3308 struct event_constraint *cx; 3309 3310 /* 3311 * grab pre-allocated constraint entry 3312 */ 3313 cx = &cpuc->constraint_list[idx]; 3314 3315 /* 3316 * initialize dynamic constraint 3317 * with static constraint 3318 */ 3319 *cx = *c; 3320 3321 /* 3322 * mark constraint as dynamic 3323 */ 3324 cx->flags |= PERF_X86_EVENT_DYNAMIC; 3325 c = cx; 3326 } 3327 3328 return c; 3329 } 3330 3331 static struct event_constraint * 3332 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 3333 int idx, struct event_constraint *c) 3334 { 3335 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3336 struct intel_excl_states *xlo; 3337 int tid = cpuc->excl_thread_id; 3338 int is_excl, i, w; 3339 3340 /* 3341 * validating a group does not require 3342 * enforcing cross-thread exclusion 3343 */ 3344 if (cpuc->is_fake || !is_ht_workaround_enabled()) 3345 return c; 3346 3347 /* 3348 * no exclusion needed 3349 */ 3350 if (WARN_ON_ONCE(!excl_cntrs)) 3351 return c; 3352 3353 /* 3354 * because we modify the constraint, we need 3355 * to make a copy. Static constraints come 3356 * from static const tables. 3357 * 3358 * only needed when constraint has not yet 3359 * been cloned (marked dynamic) 3360 */ 3361 c = dyn_constraint(cpuc, c, idx); 3362 3363 /* 3364 * From here on, the constraint is dynamic. 3365 * Either it was just allocated above, or it 3366 * was allocated during a earlier invocation 3367 * of this function 3368 */ 3369 3370 /* 3371 * state of sibling HT 3372 */ 3373 xlo = &excl_cntrs->states[tid ^ 1]; 3374 3375 /* 3376 * event requires exclusive counter access 3377 * across HT threads 3378 */ 3379 is_excl = c->flags & PERF_X86_EVENT_EXCL; 3380 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 3381 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 3382 if (!cpuc->n_excl++) 3383 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 3384 } 3385 3386 /* 3387 * Modify static constraint with current dynamic 3388 * state of thread 3389 * 3390 * EXCLUSIVE: sibling counter measuring exclusive event 3391 * SHARED : sibling counter measuring non-exclusive event 3392 * UNUSED : sibling counter unused 3393 */ 3394 w = c->weight; 3395 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 3396 /* 3397 * exclusive event in sibling counter 3398 * our corresponding counter cannot be used 3399 * regardless of our event 3400 */ 3401 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) { 3402 __clear_bit(i, c->idxmsk); 3403 w--; 3404 continue; 3405 } 3406 /* 3407 * if measuring an exclusive event, sibling 3408 * measuring non-exclusive, then counter cannot 3409 * be used 3410 */ 3411 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) { 3412 __clear_bit(i, c->idxmsk); 3413 w--; 3414 continue; 3415 } 3416 } 3417 3418 /* 3419 * if we return an empty mask, then switch 3420 * back to static empty constraint to avoid 3421 * the cost of freeing later on 3422 */ 3423 if (!w) 3424 c = &emptyconstraint; 3425 3426 c->weight = w; 3427 3428 return c; 3429 } 3430 3431 static struct event_constraint * 3432 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3433 struct perf_event *event) 3434 { 3435 struct event_constraint *c1, *c2; 3436 3437 c1 = cpuc->event_constraint[idx]; 3438 3439 /* 3440 * first time only 3441 * - static constraint: no change across incremental scheduling calls 3442 * - dynamic constraint: handled by intel_get_excl_constraints() 3443 */ 3444 c2 = __intel_get_event_constraints(cpuc, idx, event); 3445 if (c1) { 3446 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC)); 3447 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 3448 c1->weight = c2->weight; 3449 c2 = c1; 3450 } 3451 3452 if (cpuc->excl_cntrs) 3453 return intel_get_excl_constraints(cpuc, event, idx, c2); 3454 3455 return c2; 3456 } 3457 3458 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 3459 struct perf_event *event) 3460 { 3461 struct hw_perf_event *hwc = &event->hw; 3462 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3463 int tid = cpuc->excl_thread_id; 3464 struct intel_excl_states *xl; 3465 3466 /* 3467 * nothing needed if in group validation mode 3468 */ 3469 if (cpuc->is_fake) 3470 return; 3471 3472 if (WARN_ON_ONCE(!excl_cntrs)) 3473 return; 3474 3475 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 3476 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 3477 if (!--cpuc->n_excl) 3478 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 3479 } 3480 3481 /* 3482 * If event was actually assigned, then mark the counter state as 3483 * unused now. 3484 */ 3485 if (hwc->idx >= 0) { 3486 xl = &excl_cntrs->states[tid]; 3487 3488 /* 3489 * put_constraint may be called from x86_schedule_events() 3490 * which already has the lock held so here make locking 3491 * conditional. 3492 */ 3493 if (!xl->sched_started) 3494 raw_spin_lock(&excl_cntrs->lock); 3495 3496 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 3497 3498 if (!xl->sched_started) 3499 raw_spin_unlock(&excl_cntrs->lock); 3500 } 3501 } 3502 3503 static void 3504 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 3505 struct perf_event *event) 3506 { 3507 struct hw_perf_event_extra *reg; 3508 3509 reg = &event->hw.extra_reg; 3510 if (reg->idx != EXTRA_REG_NONE) 3511 __intel_shared_reg_put_constraints(cpuc, reg); 3512 3513 reg = &event->hw.branch_reg; 3514 if (reg->idx != EXTRA_REG_NONE) 3515 __intel_shared_reg_put_constraints(cpuc, reg); 3516 } 3517 3518 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 3519 struct perf_event *event) 3520 { 3521 intel_put_shared_regs_event_constraints(cpuc, event); 3522 3523 /* 3524 * is PMU has exclusive counter restrictions, then 3525 * all events are subject to and must call the 3526 * put_excl_constraints() routine 3527 */ 3528 if (cpuc->excl_cntrs) 3529 intel_put_excl_constraints(cpuc, event); 3530 } 3531 3532 static void intel_pebs_aliases_core2(struct perf_event *event) 3533 { 3534 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3535 /* 3536 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3537 * (0x003c) so that we can use it with PEBS. 3538 * 3539 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3540 * PEBS capable. However we can use INST_RETIRED.ANY_P 3541 * (0x00c0), which is a PEBS capable event, to get the same 3542 * count. 3543 * 3544 * INST_RETIRED.ANY_P counts the number of cycles that retires 3545 * CNTMASK instructions. By setting CNTMASK to a value (16) 3546 * larger than the maximum number of instructions that can be 3547 * retired per cycle (4) and then inverting the condition, we 3548 * count all cycles that retire 16 or less instructions, which 3549 * is every cycle. 3550 * 3551 * Thereby we gain a PEBS capable cycle counter. 3552 */ 3553 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 3554 3555 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3556 event->hw.config = alt_config; 3557 } 3558 } 3559 3560 static void intel_pebs_aliases_snb(struct perf_event *event) 3561 { 3562 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3563 /* 3564 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3565 * (0x003c) so that we can use it with PEBS. 3566 * 3567 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3568 * PEBS capable. However we can use UOPS_RETIRED.ALL 3569 * (0x01c2), which is a PEBS capable event, to get the same 3570 * count. 3571 * 3572 * UOPS_RETIRED.ALL counts the number of cycles that retires 3573 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 3574 * larger than the maximum number of micro-ops that can be 3575 * retired per cycle (4) and then inverting the condition, we 3576 * count all cycles that retire 16 or less micro-ops, which 3577 * is every cycle. 3578 * 3579 * Thereby we gain a PEBS capable cycle counter. 3580 */ 3581 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 3582 3583 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3584 event->hw.config = alt_config; 3585 } 3586 } 3587 3588 static void intel_pebs_aliases_precdist(struct perf_event *event) 3589 { 3590 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3591 /* 3592 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3593 * (0x003c) so that we can use it with PEBS. 3594 * 3595 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3596 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 3597 * (0x01c0), which is a PEBS capable event, to get the same 3598 * count. 3599 * 3600 * The PREC_DIST event has special support to minimize sample 3601 * shadowing effects. One drawback is that it can be 3602 * only programmed on counter 1, but that seems like an 3603 * acceptable trade off. 3604 */ 3605 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 3606 3607 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3608 event->hw.config = alt_config; 3609 } 3610 } 3611 3612 static void intel_pebs_aliases_ivb(struct perf_event *event) 3613 { 3614 if (event->attr.precise_ip < 3) 3615 return intel_pebs_aliases_snb(event); 3616 return intel_pebs_aliases_precdist(event); 3617 } 3618 3619 static void intel_pebs_aliases_skl(struct perf_event *event) 3620 { 3621 if (event->attr.precise_ip < 3) 3622 return intel_pebs_aliases_core2(event); 3623 return intel_pebs_aliases_precdist(event); 3624 } 3625 3626 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 3627 { 3628 unsigned long flags = x86_pmu.large_pebs_flags; 3629 3630 if (event->attr.use_clockid) 3631 flags &= ~PERF_SAMPLE_TIME; 3632 if (!event->attr.exclude_kernel) 3633 flags &= ~PERF_SAMPLE_REGS_USER; 3634 if (event->attr.sample_regs_user & ~PEBS_GP_REGS) 3635 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 3636 return flags; 3637 } 3638 3639 static int intel_pmu_bts_config(struct perf_event *event) 3640 { 3641 struct perf_event_attr *attr = &event->attr; 3642 3643 if (unlikely(intel_pmu_has_bts(event))) { 3644 /* BTS is not supported by this architecture. */ 3645 if (!x86_pmu.bts_active) 3646 return -EOPNOTSUPP; 3647 3648 /* BTS is currently only allowed for user-mode. */ 3649 if (!attr->exclude_kernel) 3650 return -EOPNOTSUPP; 3651 3652 /* BTS is not allowed for precise events. */ 3653 if (attr->precise_ip) 3654 return -EOPNOTSUPP; 3655 3656 /* disallow bts if conflicting events are present */ 3657 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3658 return -EBUSY; 3659 3660 event->destroy = hw_perf_lbr_event_destroy; 3661 } 3662 3663 return 0; 3664 } 3665 3666 static int core_pmu_hw_config(struct perf_event *event) 3667 { 3668 int ret = x86_pmu_hw_config(event); 3669 3670 if (ret) 3671 return ret; 3672 3673 return intel_pmu_bts_config(event); 3674 } 3675 3676 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \ 3677 ((x86_pmu.num_topdown_events - 1) << 8)) 3678 3679 static bool is_available_metric_event(struct perf_event *event) 3680 { 3681 return is_metric_event(event) && 3682 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX; 3683 } 3684 3685 static inline bool is_mem_loads_event(struct perf_event *event) 3686 { 3687 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01); 3688 } 3689 3690 static inline bool is_mem_loads_aux_event(struct perf_event *event) 3691 { 3692 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82); 3693 } 3694 3695 static inline bool require_mem_loads_aux_event(struct perf_event *event) 3696 { 3697 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX)) 3698 return false; 3699 3700 if (is_hybrid()) 3701 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big; 3702 3703 return true; 3704 } 3705 3706 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx) 3707 { 3708 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap); 3709 3710 return test_bit(idx, (unsigned long *)&intel_cap->capabilities); 3711 } 3712 3713 static int intel_pmu_hw_config(struct perf_event *event) 3714 { 3715 int ret = x86_pmu_hw_config(event); 3716 3717 if (ret) 3718 return ret; 3719 3720 ret = intel_pmu_bts_config(event); 3721 if (ret) 3722 return ret; 3723 3724 if (event->attr.precise_ip) { 3725 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT) 3726 return -EINVAL; 3727 3728 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) { 3729 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 3730 if (!(event->attr.sample_type & 3731 ~intel_pmu_large_pebs_flags(event))) { 3732 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 3733 event->attach_state |= PERF_ATTACH_SCHED_CB; 3734 } 3735 } 3736 if (x86_pmu.pebs_aliases) 3737 x86_pmu.pebs_aliases(event); 3738 3739 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3740 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3741 } 3742 3743 if (needs_branch_stack(event)) { 3744 ret = intel_pmu_setup_lbr_filter(event); 3745 if (ret) 3746 return ret; 3747 event->attach_state |= PERF_ATTACH_SCHED_CB; 3748 3749 /* 3750 * BTS is set up earlier in this path, so don't account twice 3751 */ 3752 if (!unlikely(intel_pmu_has_bts(event))) { 3753 /* disallow lbr if conflicting events are present */ 3754 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3755 return -EBUSY; 3756 3757 event->destroy = hw_perf_lbr_event_destroy; 3758 } 3759 } 3760 3761 if (event->attr.aux_output) { 3762 if (!event->attr.precise_ip) 3763 return -EINVAL; 3764 3765 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT; 3766 } 3767 3768 if ((event->attr.type == PERF_TYPE_HARDWARE) || 3769 (event->attr.type == PERF_TYPE_HW_CACHE)) 3770 return 0; 3771 3772 /* 3773 * Config Topdown slots and metric events 3774 * 3775 * The slots event on Fixed Counter 3 can support sampling, 3776 * which will be handled normally in x86_perf_event_update(). 3777 * 3778 * Metric events don't support sampling and require being paired 3779 * with a slots event as group leader. When the slots event 3780 * is used in a metrics group, it too cannot support sampling. 3781 */ 3782 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) { 3783 if (event->attr.config1 || event->attr.config2) 3784 return -EINVAL; 3785 3786 /* 3787 * The TopDown metrics events and slots event don't 3788 * support any filters. 3789 */ 3790 if (event->attr.config & X86_ALL_EVENT_FLAGS) 3791 return -EINVAL; 3792 3793 if (is_available_metric_event(event)) { 3794 struct perf_event *leader = event->group_leader; 3795 3796 /* The metric events don't support sampling. */ 3797 if (is_sampling_event(event)) 3798 return -EINVAL; 3799 3800 /* The metric events require a slots group leader. */ 3801 if (!is_slots_event(leader)) 3802 return -EINVAL; 3803 3804 /* 3805 * The leader/SLOTS must not be a sampling event for 3806 * metric use; hardware requires it starts at 0 when used 3807 * in conjunction with MSR_PERF_METRICS. 3808 */ 3809 if (is_sampling_event(leader)) 3810 return -EINVAL; 3811 3812 event->event_caps |= PERF_EV_CAP_SIBLING; 3813 /* 3814 * Only once we have a METRICs sibling do we 3815 * need TopDown magic. 3816 */ 3817 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN; 3818 event->hw.flags |= PERF_X86_EVENT_TOPDOWN; 3819 } 3820 } 3821 3822 /* 3823 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR 3824 * doesn't function quite right. As a work-around it needs to always be 3825 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82). 3826 * The actual count of this second event is irrelevant it just needs 3827 * to be active to make the first event function correctly. 3828 * 3829 * In a group, the auxiliary event must be in front of the load latency 3830 * event. The rule is to simplify the implementation of the check. 3831 * That's because perf cannot have a complete group at the moment. 3832 */ 3833 if (require_mem_loads_aux_event(event) && 3834 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) && 3835 is_mem_loads_event(event)) { 3836 struct perf_event *leader = event->group_leader; 3837 struct perf_event *sibling = NULL; 3838 3839 if (!is_mem_loads_aux_event(leader)) { 3840 for_each_sibling_event(sibling, leader) { 3841 if (is_mem_loads_aux_event(sibling)) 3842 break; 3843 } 3844 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list)) 3845 return -ENODATA; 3846 } 3847 } 3848 3849 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3850 return 0; 3851 3852 if (x86_pmu.version < 3) 3853 return -EINVAL; 3854 3855 ret = perf_allow_cpu(&event->attr); 3856 if (ret) 3857 return ret; 3858 3859 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3860 3861 return 0; 3862 } 3863 3864 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3865 { 3866 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3867 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3868 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); 3869 3870 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3871 arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3872 arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3873 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 3874 arr[0].guest &= ~cpuc->pebs_enabled; 3875 else 3876 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 3877 *nr = 1; 3878 3879 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) { 3880 /* 3881 * If PMU counter has PEBS enabled it is not enough to 3882 * disable counter on a guest entry since PEBS memory 3883 * write can overshoot guest entry and corrupt guest 3884 * memory. Disabling PEBS solves the problem. 3885 * 3886 * Don't do this if the CPU already enforces it. 3887 */ 3888 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3889 arr[1].host = cpuc->pebs_enabled; 3890 arr[1].guest = 0; 3891 *nr = 2; 3892 } 3893 3894 return arr; 3895 } 3896 3897 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3898 { 3899 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3900 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3901 int idx; 3902 3903 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3904 struct perf_event *event = cpuc->events[idx]; 3905 3906 arr[idx].msr = x86_pmu_config_addr(idx); 3907 arr[idx].host = arr[idx].guest = 0; 3908 3909 if (!test_bit(idx, cpuc->active_mask)) 3910 continue; 3911 3912 arr[idx].host = arr[idx].guest = 3913 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3914 3915 if (event->attr.exclude_host) 3916 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3917 else if (event->attr.exclude_guest) 3918 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3919 } 3920 3921 *nr = x86_pmu.num_counters; 3922 return arr; 3923 } 3924 3925 static void core_pmu_enable_event(struct perf_event *event) 3926 { 3927 if (!event->attr.exclude_host) 3928 x86_pmu_enable_event(event); 3929 } 3930 3931 static void core_pmu_enable_all(int added) 3932 { 3933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3934 int idx; 3935 3936 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3937 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3938 3939 if (!test_bit(idx, cpuc->active_mask) || 3940 cpuc->events[idx]->attr.exclude_host) 3941 continue; 3942 3943 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3944 } 3945 } 3946 3947 static int hsw_hw_config(struct perf_event *event) 3948 { 3949 int ret = intel_pmu_hw_config(event); 3950 3951 if (ret) 3952 return ret; 3953 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3954 return 0; 3955 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3956 3957 /* 3958 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3959 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3960 * this combination. 3961 */ 3962 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3963 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3964 event->attr.precise_ip > 0)) 3965 return -EOPNOTSUPP; 3966 3967 if (event_is_checkpointed(event)) { 3968 /* 3969 * Sampling of checkpointed events can cause situations where 3970 * the CPU constantly aborts because of a overflow, which is 3971 * then checkpointed back and ignored. Forbid checkpointing 3972 * for sampling. 3973 * 3974 * But still allow a long sampling period, so that perf stat 3975 * from KVM works. 3976 */ 3977 if (event->attr.sample_period > 0 && 3978 event->attr.sample_period < 0x7fffffff) 3979 return -EOPNOTSUPP; 3980 } 3981 return 0; 3982 } 3983 3984 static struct event_constraint counter0_constraint = 3985 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3986 3987 static struct event_constraint counter2_constraint = 3988 EVENT_CONSTRAINT(0, 0x4, 0); 3989 3990 static struct event_constraint fixed0_constraint = 3991 FIXED_EVENT_CONSTRAINT(0x00c0, 0); 3992 3993 static struct event_constraint fixed0_counter0_constraint = 3994 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL); 3995 3996 static struct event_constraint * 3997 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3998 struct perf_event *event) 3999 { 4000 struct event_constraint *c; 4001 4002 c = intel_get_event_constraints(cpuc, idx, event); 4003 4004 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 4005 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 4006 if (c->idxmsk64 & (1U << 2)) 4007 return &counter2_constraint; 4008 return &emptyconstraint; 4009 } 4010 4011 return c; 4012 } 4013 4014 static struct event_constraint * 4015 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4016 struct perf_event *event) 4017 { 4018 /* 4019 * Fixed counter 0 has less skid. 4020 * Force instruction:ppp in Fixed counter 0 4021 */ 4022 if ((event->attr.precise_ip == 3) && 4023 constraint_match(&fixed0_constraint, event->hw.config)) 4024 return &fixed0_constraint; 4025 4026 return hsw_get_event_constraints(cpuc, idx, event); 4027 } 4028 4029 static struct event_constraint * 4030 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4031 struct perf_event *event) 4032 { 4033 struct event_constraint *c; 4034 4035 c = icl_get_event_constraints(cpuc, idx, event); 4036 4037 /* 4038 * The :ppp indicates the Precise Distribution (PDist) facility, which 4039 * is only supported on the GP counter 0. If a :ppp event which is not 4040 * available on the GP counter 0, error out. 4041 * Exception: Instruction PDIR is only available on the fixed counter 0. 4042 */ 4043 if ((event->attr.precise_ip == 3) && 4044 !constraint_match(&fixed0_constraint, event->hw.config)) { 4045 if (c->idxmsk64 & BIT_ULL(0)) 4046 return &counter0_constraint; 4047 4048 return &emptyconstraint; 4049 } 4050 4051 return c; 4052 } 4053 4054 static struct event_constraint * 4055 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4056 struct perf_event *event) 4057 { 4058 struct event_constraint *c; 4059 4060 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 4061 if (event->attr.precise_ip == 3) 4062 return &counter0_constraint; 4063 4064 c = intel_get_event_constraints(cpuc, idx, event); 4065 4066 return c; 4067 } 4068 4069 static struct event_constraint * 4070 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4071 struct perf_event *event) 4072 { 4073 struct event_constraint *c; 4074 4075 /* 4076 * :ppp means to do reduced skid PEBS, 4077 * which is available on PMC0 and fixed counter 0. 4078 */ 4079 if (event->attr.precise_ip == 3) { 4080 /* Force instruction:ppp on PMC0 and Fixed counter 0 */ 4081 if (constraint_match(&fixed0_constraint, event->hw.config)) 4082 return &fixed0_counter0_constraint; 4083 4084 return &counter0_constraint; 4085 } 4086 4087 c = intel_get_event_constraints(cpuc, idx, event); 4088 4089 return c; 4090 } 4091 4092 static bool allow_tsx_force_abort = true; 4093 4094 static struct event_constraint * 4095 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4096 struct perf_event *event) 4097 { 4098 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event); 4099 4100 /* 4101 * Without TFA we must not use PMC3. 4102 */ 4103 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) { 4104 c = dyn_constraint(cpuc, c, idx); 4105 c->idxmsk64 &= ~(1ULL << 3); 4106 c->weight--; 4107 } 4108 4109 return c; 4110 } 4111 4112 static struct event_constraint * 4113 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 4114 struct perf_event *event) 4115 { 4116 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4117 4118 if (pmu->cpu_type == hybrid_big) 4119 return spr_get_event_constraints(cpuc, idx, event); 4120 else if (pmu->cpu_type == hybrid_small) 4121 return tnt_get_event_constraints(cpuc, idx, event); 4122 4123 WARN_ON(1); 4124 return &emptyconstraint; 4125 } 4126 4127 static int adl_hw_config(struct perf_event *event) 4128 { 4129 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4130 4131 if (pmu->cpu_type == hybrid_big) 4132 return hsw_hw_config(event); 4133 else if (pmu->cpu_type == hybrid_small) 4134 return intel_pmu_hw_config(event); 4135 4136 WARN_ON(1); 4137 return -EOPNOTSUPP; 4138 } 4139 4140 static u8 adl_get_hybrid_cpu_type(void) 4141 { 4142 return hybrid_big; 4143 } 4144 4145 /* 4146 * Broadwell: 4147 * 4148 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 4149 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 4150 * the two to enforce a minimum period of 128 (the smallest value that has bits 4151 * 0-5 cleared and >= 100). 4152 * 4153 * Because of how the code in x86_perf_event_set_period() works, the truncation 4154 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 4155 * to make up for the 'lost' events due to carrying the 'error' in period_left. 4156 * 4157 * Therefore the effective (average) period matches the requested period, 4158 * despite coarser hardware granularity. 4159 */ 4160 static u64 bdw_limit_period(struct perf_event *event, u64 left) 4161 { 4162 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 4163 X86_CONFIG(.event=0xc0, .umask=0x01)) { 4164 if (left < 128) 4165 left = 128; 4166 left &= ~0x3fULL; 4167 } 4168 return left; 4169 } 4170 4171 static u64 nhm_limit_period(struct perf_event *event, u64 left) 4172 { 4173 return max(left, 32ULL); 4174 } 4175 4176 static u64 spr_limit_period(struct perf_event *event, u64 left) 4177 { 4178 if (event->attr.precise_ip == 3) 4179 return max(left, 128ULL); 4180 4181 return left; 4182 } 4183 4184 PMU_FORMAT_ATTR(event, "config:0-7" ); 4185 PMU_FORMAT_ATTR(umask, "config:8-15" ); 4186 PMU_FORMAT_ATTR(edge, "config:18" ); 4187 PMU_FORMAT_ATTR(pc, "config:19" ); 4188 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 4189 PMU_FORMAT_ATTR(inv, "config:23" ); 4190 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 4191 PMU_FORMAT_ATTR(in_tx, "config:32"); 4192 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 4193 4194 static struct attribute *intel_arch_formats_attr[] = { 4195 &format_attr_event.attr, 4196 &format_attr_umask.attr, 4197 &format_attr_edge.attr, 4198 &format_attr_pc.attr, 4199 &format_attr_inv.attr, 4200 &format_attr_cmask.attr, 4201 NULL, 4202 }; 4203 4204 ssize_t intel_event_sysfs_show(char *page, u64 config) 4205 { 4206 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 4207 4208 return x86_event_sysfs_show(page, config, event); 4209 } 4210 4211 static struct intel_shared_regs *allocate_shared_regs(int cpu) 4212 { 4213 struct intel_shared_regs *regs; 4214 int i; 4215 4216 regs = kzalloc_node(sizeof(struct intel_shared_regs), 4217 GFP_KERNEL, cpu_to_node(cpu)); 4218 if (regs) { 4219 /* 4220 * initialize the locks to keep lockdep happy 4221 */ 4222 for (i = 0; i < EXTRA_REG_MAX; i++) 4223 raw_spin_lock_init(®s->regs[i].lock); 4224 4225 regs->core_id = -1; 4226 } 4227 return regs; 4228 } 4229 4230 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 4231 { 4232 struct intel_excl_cntrs *c; 4233 4234 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 4235 GFP_KERNEL, cpu_to_node(cpu)); 4236 if (c) { 4237 raw_spin_lock_init(&c->lock); 4238 c->core_id = -1; 4239 } 4240 return c; 4241 } 4242 4243 4244 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 4245 { 4246 cpuc->pebs_record_size = x86_pmu.pebs_record_size; 4247 4248 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 4249 cpuc->shared_regs = allocate_shared_regs(cpu); 4250 if (!cpuc->shared_regs) 4251 goto err; 4252 } 4253 4254 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) { 4255 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 4256 4257 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 4258 if (!cpuc->constraint_list) 4259 goto err_shared_regs; 4260 } 4261 4262 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 4263 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 4264 if (!cpuc->excl_cntrs) 4265 goto err_constraint_list; 4266 4267 cpuc->excl_thread_id = 0; 4268 } 4269 4270 return 0; 4271 4272 err_constraint_list: 4273 kfree(cpuc->constraint_list); 4274 cpuc->constraint_list = NULL; 4275 4276 err_shared_regs: 4277 kfree(cpuc->shared_regs); 4278 cpuc->shared_regs = NULL; 4279 4280 err: 4281 return -ENOMEM; 4282 } 4283 4284 static int intel_pmu_cpu_prepare(int cpu) 4285 { 4286 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu); 4287 } 4288 4289 static void flip_smm_bit(void *data) 4290 { 4291 unsigned long set = *(unsigned long *)data; 4292 4293 if (set > 0) { 4294 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 4295 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 4296 } else { 4297 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 4298 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 4299 } 4300 } 4301 4302 static bool init_hybrid_pmu(int cpu) 4303 { 4304 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4305 u8 cpu_type = get_this_hybrid_cpu_type(); 4306 struct x86_hybrid_pmu *pmu = NULL; 4307 int i; 4308 4309 if (!cpu_type && x86_pmu.get_hybrid_cpu_type) 4310 cpu_type = x86_pmu.get_hybrid_cpu_type(); 4311 4312 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 4313 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) { 4314 pmu = &x86_pmu.hybrid_pmu[i]; 4315 break; 4316 } 4317 } 4318 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) { 4319 cpuc->pmu = NULL; 4320 return false; 4321 } 4322 4323 /* Only check and dump the PMU information for the first CPU */ 4324 if (!cpumask_empty(&pmu->supported_cpus)) 4325 goto end; 4326 4327 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed)) 4328 return false; 4329 4330 pr_info("%s PMU driver: ", pmu->name); 4331 4332 if (pmu->intel_cap.pebs_output_pt_available) 4333 pr_cont("PEBS-via-PT "); 4334 4335 pr_cont("\n"); 4336 4337 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed, 4338 pmu->intel_ctrl); 4339 4340 end: 4341 cpumask_set_cpu(cpu, &pmu->supported_cpus); 4342 cpuc->pmu = &pmu->pmu; 4343 4344 x86_pmu_update_cpu_context(&pmu->pmu, cpu); 4345 4346 return true; 4347 } 4348 4349 static void intel_pmu_cpu_starting(int cpu) 4350 { 4351 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4352 int core_id = topology_core_id(cpu); 4353 int i; 4354 4355 if (is_hybrid() && !init_hybrid_pmu(cpu)) 4356 return; 4357 4358 init_debug_store_on_cpu(cpu); 4359 /* 4360 * Deal with CPUs that don't clear their LBRs on power-up. 4361 */ 4362 intel_pmu_lbr_reset(); 4363 4364 cpuc->lbr_sel = NULL; 4365 4366 if (x86_pmu.flags & PMU_FL_TFA) { 4367 WARN_ON_ONCE(cpuc->tfa_shadow); 4368 cpuc->tfa_shadow = ~0ULL; 4369 intel_set_tfa(cpuc, false); 4370 } 4371 4372 if (x86_pmu.version > 1) 4373 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 4374 4375 /* 4376 * Disable perf metrics if any added CPU doesn't support it. 4377 * 4378 * Turn off the check for a hybrid architecture, because the 4379 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate 4380 * the architecture features. The perf metrics is a model-specific 4381 * feature for now. The corresponding bit should always be 0 on 4382 * a hybrid platform, e.g., Alder Lake. 4383 */ 4384 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) { 4385 union perf_capabilities perf_cap; 4386 4387 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities); 4388 if (!perf_cap.perf_metrics) { 4389 x86_pmu.intel_cap.perf_metrics = 0; 4390 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS); 4391 } 4392 } 4393 4394 if (!cpuc->shared_regs) 4395 return; 4396 4397 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 4398 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 4399 struct intel_shared_regs *pc; 4400 4401 pc = per_cpu(cpu_hw_events, i).shared_regs; 4402 if (pc && pc->core_id == core_id) { 4403 cpuc->kfree_on_online[0] = cpuc->shared_regs; 4404 cpuc->shared_regs = pc; 4405 break; 4406 } 4407 } 4408 cpuc->shared_regs->core_id = core_id; 4409 cpuc->shared_regs->refcnt++; 4410 } 4411 4412 if (x86_pmu.lbr_sel_map) 4413 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 4414 4415 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 4416 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 4417 struct cpu_hw_events *sibling; 4418 struct intel_excl_cntrs *c; 4419 4420 sibling = &per_cpu(cpu_hw_events, i); 4421 c = sibling->excl_cntrs; 4422 if (c && c->core_id == core_id) { 4423 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 4424 cpuc->excl_cntrs = c; 4425 if (!sibling->excl_thread_id) 4426 cpuc->excl_thread_id = 1; 4427 break; 4428 } 4429 } 4430 cpuc->excl_cntrs->core_id = core_id; 4431 cpuc->excl_cntrs->refcnt++; 4432 } 4433 } 4434 4435 static void free_excl_cntrs(struct cpu_hw_events *cpuc) 4436 { 4437 struct intel_excl_cntrs *c; 4438 4439 c = cpuc->excl_cntrs; 4440 if (c) { 4441 if (c->core_id == -1 || --c->refcnt == 0) 4442 kfree(c); 4443 cpuc->excl_cntrs = NULL; 4444 } 4445 4446 kfree(cpuc->constraint_list); 4447 cpuc->constraint_list = NULL; 4448 } 4449 4450 static void intel_pmu_cpu_dying(int cpu) 4451 { 4452 fini_debug_store_on_cpu(cpu); 4453 } 4454 4455 void intel_cpuc_finish(struct cpu_hw_events *cpuc) 4456 { 4457 struct intel_shared_regs *pc; 4458 4459 pc = cpuc->shared_regs; 4460 if (pc) { 4461 if (pc->core_id == -1 || --pc->refcnt == 0) 4462 kfree(pc); 4463 cpuc->shared_regs = NULL; 4464 } 4465 4466 free_excl_cntrs(cpuc); 4467 } 4468 4469 static void intel_pmu_cpu_dead(int cpu) 4470 { 4471 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 4472 4473 intel_cpuc_finish(cpuc); 4474 4475 if (is_hybrid() && cpuc->pmu) 4476 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus); 4477 } 4478 4479 static void intel_pmu_sched_task(struct perf_event_context *ctx, 4480 bool sched_in) 4481 { 4482 intel_pmu_pebs_sched_task(ctx, sched_in); 4483 intel_pmu_lbr_sched_task(ctx, sched_in); 4484 } 4485 4486 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev, 4487 struct perf_event_context *next) 4488 { 4489 intel_pmu_lbr_swap_task_ctx(prev, next); 4490 } 4491 4492 static int intel_pmu_check_period(struct perf_event *event, u64 value) 4493 { 4494 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0; 4495 } 4496 4497 static int intel_pmu_aux_output_match(struct perf_event *event) 4498 { 4499 if (!x86_pmu.intel_cap.pebs_output_pt_available) 4500 return 0; 4501 4502 return is_intel_pt_event(event); 4503 } 4504 4505 static int intel_pmu_filter_match(struct perf_event *event) 4506 { 4507 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 4508 unsigned int cpu = smp_processor_id(); 4509 4510 return cpumask_test_cpu(cpu, &pmu->supported_cpus); 4511 } 4512 4513 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 4514 4515 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 4516 4517 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 4518 4519 static struct attribute *intel_arch3_formats_attr[] = { 4520 &format_attr_event.attr, 4521 &format_attr_umask.attr, 4522 &format_attr_edge.attr, 4523 &format_attr_pc.attr, 4524 &format_attr_any.attr, 4525 &format_attr_inv.attr, 4526 &format_attr_cmask.attr, 4527 NULL, 4528 }; 4529 4530 static struct attribute *hsw_format_attr[] = { 4531 &format_attr_in_tx.attr, 4532 &format_attr_in_tx_cp.attr, 4533 &format_attr_offcore_rsp.attr, 4534 &format_attr_ldlat.attr, 4535 NULL 4536 }; 4537 4538 static struct attribute *nhm_format_attr[] = { 4539 &format_attr_offcore_rsp.attr, 4540 &format_attr_ldlat.attr, 4541 NULL 4542 }; 4543 4544 static struct attribute *slm_format_attr[] = { 4545 &format_attr_offcore_rsp.attr, 4546 NULL 4547 }; 4548 4549 static struct attribute *skl_format_attr[] = { 4550 &format_attr_frontend.attr, 4551 NULL, 4552 }; 4553 4554 static __initconst const struct x86_pmu core_pmu = { 4555 .name = "core", 4556 .handle_irq = x86_pmu_handle_irq, 4557 .disable_all = x86_pmu_disable_all, 4558 .enable_all = core_pmu_enable_all, 4559 .enable = core_pmu_enable_event, 4560 .disable = x86_pmu_disable_event, 4561 .hw_config = core_pmu_hw_config, 4562 .schedule_events = x86_schedule_events, 4563 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 4564 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 4565 .event_map = intel_pmu_event_map, 4566 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 4567 .apic = 1, 4568 .large_pebs_flags = LARGE_PEBS_FLAGS, 4569 4570 /* 4571 * Intel PMCs cannot be accessed sanely above 32-bit width, 4572 * so we install an artificial 1<<31 period regardless of 4573 * the generic event period: 4574 */ 4575 .max_period = (1ULL<<31) - 1, 4576 .get_event_constraints = intel_get_event_constraints, 4577 .put_event_constraints = intel_put_event_constraints, 4578 .event_constraints = intel_core_event_constraints, 4579 .guest_get_msrs = core_guest_get_msrs, 4580 .format_attrs = intel_arch_formats_attr, 4581 .events_sysfs_show = intel_event_sysfs_show, 4582 4583 /* 4584 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 4585 * together with PMU version 1 and thus be using core_pmu with 4586 * shared_regs. We need following callbacks here to allocate 4587 * it properly. 4588 */ 4589 .cpu_prepare = intel_pmu_cpu_prepare, 4590 .cpu_starting = intel_pmu_cpu_starting, 4591 .cpu_dying = intel_pmu_cpu_dying, 4592 .cpu_dead = intel_pmu_cpu_dead, 4593 4594 .check_period = intel_pmu_check_period, 4595 4596 .lbr_reset = intel_pmu_lbr_reset_64, 4597 .lbr_read = intel_pmu_lbr_read_64, 4598 .lbr_save = intel_pmu_lbr_save, 4599 .lbr_restore = intel_pmu_lbr_restore, 4600 }; 4601 4602 static __initconst const struct x86_pmu intel_pmu = { 4603 .name = "Intel", 4604 .handle_irq = intel_pmu_handle_irq, 4605 .disable_all = intel_pmu_disable_all, 4606 .enable_all = intel_pmu_enable_all, 4607 .enable = intel_pmu_enable_event, 4608 .disable = intel_pmu_disable_event, 4609 .add = intel_pmu_add_event, 4610 .del = intel_pmu_del_event, 4611 .read = intel_pmu_read_event, 4612 .hw_config = intel_pmu_hw_config, 4613 .schedule_events = x86_schedule_events, 4614 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 4615 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 4616 .event_map = intel_pmu_event_map, 4617 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 4618 .apic = 1, 4619 .large_pebs_flags = LARGE_PEBS_FLAGS, 4620 /* 4621 * Intel PMCs cannot be accessed sanely above 32 bit width, 4622 * so we install an artificial 1<<31 period regardless of 4623 * the generic event period: 4624 */ 4625 .max_period = (1ULL << 31) - 1, 4626 .get_event_constraints = intel_get_event_constraints, 4627 .put_event_constraints = intel_put_event_constraints, 4628 .pebs_aliases = intel_pebs_aliases_core2, 4629 4630 .format_attrs = intel_arch3_formats_attr, 4631 .events_sysfs_show = intel_event_sysfs_show, 4632 4633 .cpu_prepare = intel_pmu_cpu_prepare, 4634 .cpu_starting = intel_pmu_cpu_starting, 4635 .cpu_dying = intel_pmu_cpu_dying, 4636 .cpu_dead = intel_pmu_cpu_dead, 4637 4638 .guest_get_msrs = intel_guest_get_msrs, 4639 .sched_task = intel_pmu_sched_task, 4640 .swap_task_ctx = intel_pmu_swap_task_ctx, 4641 4642 .check_period = intel_pmu_check_period, 4643 4644 .aux_output_match = intel_pmu_aux_output_match, 4645 4646 .lbr_reset = intel_pmu_lbr_reset_64, 4647 .lbr_read = intel_pmu_lbr_read_64, 4648 .lbr_save = intel_pmu_lbr_save, 4649 .lbr_restore = intel_pmu_lbr_restore, 4650 }; 4651 4652 static __init void intel_clovertown_quirk(void) 4653 { 4654 /* 4655 * PEBS is unreliable due to: 4656 * 4657 * AJ67 - PEBS may experience CPL leaks 4658 * AJ68 - PEBS PMI may be delayed by one event 4659 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 4660 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 4661 * 4662 * AJ67 could be worked around by restricting the OS/USR flags. 4663 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 4664 * 4665 * AJ106 could possibly be worked around by not allowing LBR 4666 * usage from PEBS, including the fixup. 4667 * AJ68 could possibly be worked around by always programming 4668 * a pebs_event_reset[0] value and coping with the lost events. 4669 * 4670 * But taken together it might just make sense to not enable PEBS on 4671 * these chips. 4672 */ 4673 pr_warn("PEBS disabled due to CPU errata\n"); 4674 x86_pmu.pebs = 0; 4675 x86_pmu.pebs_constraints = NULL; 4676 } 4677 4678 static const struct x86_cpu_desc isolation_ucodes[] = { 4679 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f), 4680 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e), 4681 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015), 4682 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037), 4683 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a), 4684 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023), 4685 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014), 4686 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010), 4687 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009), 4688 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009), 4689 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002), 4690 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014), 4691 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021), 4692 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000), 4693 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000), 4694 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000), 4695 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000), 4696 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c), 4697 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c), 4698 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e), 4699 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e), 4700 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e), 4701 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e), 4702 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e), 4703 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e), 4704 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e), 4705 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e), 4706 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e), 4707 {} 4708 }; 4709 4710 static void intel_check_pebs_isolation(void) 4711 { 4712 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes); 4713 } 4714 4715 static __init void intel_pebs_isolation_quirk(void) 4716 { 4717 WARN_ON_ONCE(x86_pmu.check_microcode); 4718 x86_pmu.check_microcode = intel_check_pebs_isolation; 4719 intel_check_pebs_isolation(); 4720 } 4721 4722 static const struct x86_cpu_desc pebs_ucodes[] = { 4723 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028), 4724 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618), 4725 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c), 4726 {} 4727 }; 4728 4729 static bool intel_snb_pebs_broken(void) 4730 { 4731 return !x86_cpu_has_min_microcode_rev(pebs_ucodes); 4732 } 4733 4734 static void intel_snb_check_microcode(void) 4735 { 4736 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken) 4737 return; 4738 4739 /* 4740 * Serialized by the microcode lock.. 4741 */ 4742 if (x86_pmu.pebs_broken) { 4743 pr_info("PEBS enabled due to microcode update\n"); 4744 x86_pmu.pebs_broken = 0; 4745 } else { 4746 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 4747 x86_pmu.pebs_broken = 1; 4748 } 4749 } 4750 4751 static bool is_lbr_from(unsigned long msr) 4752 { 4753 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 4754 4755 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 4756 } 4757 4758 /* 4759 * Under certain circumstances, access certain MSR may cause #GP. 4760 * The function tests if the input MSR can be safely accessed. 4761 */ 4762 static bool check_msr(unsigned long msr, u64 mask) 4763 { 4764 u64 val_old, val_new, val_tmp; 4765 4766 /* 4767 * Disable the check for real HW, so we don't 4768 * mess with potentially enabled registers: 4769 */ 4770 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) 4771 return true; 4772 4773 /* 4774 * Read the current value, change it and read it back to see if it 4775 * matches, this is needed to detect certain hardware emulators 4776 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 4777 */ 4778 if (rdmsrl_safe(msr, &val_old)) 4779 return false; 4780 4781 /* 4782 * Only change the bits which can be updated by wrmsrl. 4783 */ 4784 val_tmp = val_old ^ mask; 4785 4786 if (is_lbr_from(msr)) 4787 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 4788 4789 if (wrmsrl_safe(msr, val_tmp) || 4790 rdmsrl_safe(msr, &val_new)) 4791 return false; 4792 4793 /* 4794 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 4795 * should equal rdmsrl()'s even with the quirk. 4796 */ 4797 if (val_new != val_tmp) 4798 return false; 4799 4800 if (is_lbr_from(msr)) 4801 val_old = lbr_from_signext_quirk_wr(val_old); 4802 4803 /* Here it's sure that the MSR can be safely accessed. 4804 * Restore the old value and return. 4805 */ 4806 wrmsrl(msr, val_old); 4807 4808 return true; 4809 } 4810 4811 static __init void intel_sandybridge_quirk(void) 4812 { 4813 x86_pmu.check_microcode = intel_snb_check_microcode; 4814 cpus_read_lock(); 4815 intel_snb_check_microcode(); 4816 cpus_read_unlock(); 4817 } 4818 4819 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 4820 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 4821 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 4822 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 4823 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 4824 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 4825 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 4826 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 4827 }; 4828 4829 static __init void intel_arch_events_quirk(void) 4830 { 4831 int bit; 4832 4833 /* disable event that reported as not present by cpuid */ 4834 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 4835 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 4836 pr_warn("CPUID marked event: \'%s\' unavailable\n", 4837 intel_arch_events_map[bit].name); 4838 } 4839 } 4840 4841 static __init void intel_nehalem_quirk(void) 4842 { 4843 union cpuid10_ebx ebx; 4844 4845 ebx.full = x86_pmu.events_maskl; 4846 if (ebx.split.no_branch_misses_retired) { 4847 /* 4848 * Erratum AAJ80 detected, we work it around by using 4849 * the BR_MISP_EXEC.ANY event. This will over-count 4850 * branch-misses, but it's still much better than the 4851 * architectural event which is often completely bogus: 4852 */ 4853 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 4854 ebx.split.no_branch_misses_retired = 0; 4855 x86_pmu.events_maskl = ebx.full; 4856 pr_info("CPU erratum AAJ80 worked around\n"); 4857 } 4858 } 4859 4860 /* 4861 * enable software workaround for errata: 4862 * SNB: BJ122 4863 * IVB: BV98 4864 * HSW: HSD29 4865 * 4866 * Only needed when HT is enabled. However detecting 4867 * if HT is enabled is difficult (model specific). So instead, 4868 * we enable the workaround in the early boot, and verify if 4869 * it is needed in a later initcall phase once we have valid 4870 * topology information to check if HT is actually enabled 4871 */ 4872 static __init void intel_ht_bug(void) 4873 { 4874 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 4875 4876 x86_pmu.start_scheduling = intel_start_scheduling; 4877 x86_pmu.commit_scheduling = intel_commit_scheduling; 4878 x86_pmu.stop_scheduling = intel_stop_scheduling; 4879 } 4880 4881 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 4882 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 4883 4884 /* Haswell special events */ 4885 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 4886 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 4887 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 4888 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 4889 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 4890 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 4891 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 4892 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 4893 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 4894 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 4895 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 4896 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 4897 4898 static struct attribute *hsw_events_attrs[] = { 4899 EVENT_PTR(td_slots_issued), 4900 EVENT_PTR(td_slots_retired), 4901 EVENT_PTR(td_fetch_bubbles), 4902 EVENT_PTR(td_total_slots), 4903 EVENT_PTR(td_total_slots_scale), 4904 EVENT_PTR(td_recovery_bubbles), 4905 EVENT_PTR(td_recovery_bubbles_scale), 4906 NULL 4907 }; 4908 4909 static struct attribute *hsw_mem_events_attrs[] = { 4910 EVENT_PTR(mem_ld_hsw), 4911 EVENT_PTR(mem_st_hsw), 4912 NULL, 4913 }; 4914 4915 static struct attribute *hsw_tsx_events_attrs[] = { 4916 EVENT_PTR(tx_start), 4917 EVENT_PTR(tx_commit), 4918 EVENT_PTR(tx_abort), 4919 EVENT_PTR(tx_capacity), 4920 EVENT_PTR(tx_conflict), 4921 EVENT_PTR(el_start), 4922 EVENT_PTR(el_commit), 4923 EVENT_PTR(el_abort), 4924 EVENT_PTR(el_capacity), 4925 EVENT_PTR(el_conflict), 4926 EVENT_PTR(cycles_t), 4927 EVENT_PTR(cycles_ct), 4928 NULL 4929 }; 4930 4931 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80"); 4932 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2"); 4933 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80"); 4934 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2"); 4935 4936 static struct attribute *icl_events_attrs[] = { 4937 EVENT_PTR(mem_ld_hsw), 4938 EVENT_PTR(mem_st_hsw), 4939 NULL, 4940 }; 4941 4942 static struct attribute *icl_td_events_attrs[] = { 4943 EVENT_PTR(slots), 4944 EVENT_PTR(td_retiring), 4945 EVENT_PTR(td_bad_spec), 4946 EVENT_PTR(td_fe_bound), 4947 EVENT_PTR(td_be_bound), 4948 NULL, 4949 }; 4950 4951 static struct attribute *icl_tsx_events_attrs[] = { 4952 EVENT_PTR(tx_start), 4953 EVENT_PTR(tx_abort), 4954 EVENT_PTR(tx_commit), 4955 EVENT_PTR(tx_capacity_read), 4956 EVENT_PTR(tx_capacity_write), 4957 EVENT_PTR(tx_conflict), 4958 EVENT_PTR(el_start), 4959 EVENT_PTR(el_abort), 4960 EVENT_PTR(el_commit), 4961 EVENT_PTR(el_capacity_read), 4962 EVENT_PTR(el_capacity_write), 4963 EVENT_PTR(el_conflict), 4964 EVENT_PTR(cycles_t), 4965 EVENT_PTR(cycles_ct), 4966 NULL, 4967 }; 4968 4969 4970 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2"); 4971 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82"); 4972 4973 static struct attribute *spr_events_attrs[] = { 4974 EVENT_PTR(mem_ld_hsw), 4975 EVENT_PTR(mem_st_spr), 4976 EVENT_PTR(mem_ld_aux), 4977 NULL, 4978 }; 4979 4980 static struct attribute *spr_td_events_attrs[] = { 4981 EVENT_PTR(slots), 4982 EVENT_PTR(td_retiring), 4983 EVENT_PTR(td_bad_spec), 4984 EVENT_PTR(td_fe_bound), 4985 EVENT_PTR(td_be_bound), 4986 EVENT_PTR(td_heavy_ops), 4987 EVENT_PTR(td_br_mispredict), 4988 EVENT_PTR(td_fetch_lat), 4989 EVENT_PTR(td_mem_bound), 4990 NULL, 4991 }; 4992 4993 static struct attribute *spr_tsx_events_attrs[] = { 4994 EVENT_PTR(tx_start), 4995 EVENT_PTR(tx_abort), 4996 EVENT_PTR(tx_commit), 4997 EVENT_PTR(tx_capacity_read), 4998 EVENT_PTR(tx_capacity_write), 4999 EVENT_PTR(tx_conflict), 5000 EVENT_PTR(cycles_t), 5001 EVENT_PTR(cycles_ct), 5002 NULL, 5003 }; 5004 5005 static ssize_t freeze_on_smi_show(struct device *cdev, 5006 struct device_attribute *attr, 5007 char *buf) 5008 { 5009 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 5010 } 5011 5012 static DEFINE_MUTEX(freeze_on_smi_mutex); 5013 5014 static ssize_t freeze_on_smi_store(struct device *cdev, 5015 struct device_attribute *attr, 5016 const char *buf, size_t count) 5017 { 5018 unsigned long val; 5019 ssize_t ret; 5020 5021 ret = kstrtoul(buf, 0, &val); 5022 if (ret) 5023 return ret; 5024 5025 if (val > 1) 5026 return -EINVAL; 5027 5028 mutex_lock(&freeze_on_smi_mutex); 5029 5030 if (x86_pmu.attr_freeze_on_smi == val) 5031 goto done; 5032 5033 x86_pmu.attr_freeze_on_smi = val; 5034 5035 cpus_read_lock(); 5036 on_each_cpu(flip_smm_bit, &val, 1); 5037 cpus_read_unlock(); 5038 done: 5039 mutex_unlock(&freeze_on_smi_mutex); 5040 5041 return count; 5042 } 5043 5044 static void update_tfa_sched(void *ignored) 5045 { 5046 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 5047 5048 /* 5049 * check if PMC3 is used 5050 * and if so force schedule out for all event types all contexts 5051 */ 5052 if (test_bit(3, cpuc->active_mask)) 5053 perf_pmu_resched(x86_get_pmu(smp_processor_id())); 5054 } 5055 5056 static ssize_t show_sysctl_tfa(struct device *cdev, 5057 struct device_attribute *attr, 5058 char *buf) 5059 { 5060 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort); 5061 } 5062 5063 static ssize_t set_sysctl_tfa(struct device *cdev, 5064 struct device_attribute *attr, 5065 const char *buf, size_t count) 5066 { 5067 bool val; 5068 ssize_t ret; 5069 5070 ret = kstrtobool(buf, &val); 5071 if (ret) 5072 return ret; 5073 5074 /* no change */ 5075 if (val == allow_tsx_force_abort) 5076 return count; 5077 5078 allow_tsx_force_abort = val; 5079 5080 cpus_read_lock(); 5081 on_each_cpu(update_tfa_sched, NULL, 1); 5082 cpus_read_unlock(); 5083 5084 return count; 5085 } 5086 5087 5088 static DEVICE_ATTR_RW(freeze_on_smi); 5089 5090 static ssize_t branches_show(struct device *cdev, 5091 struct device_attribute *attr, 5092 char *buf) 5093 { 5094 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 5095 } 5096 5097 static DEVICE_ATTR_RO(branches); 5098 5099 static struct attribute *lbr_attrs[] = { 5100 &dev_attr_branches.attr, 5101 NULL 5102 }; 5103 5104 static char pmu_name_str[30]; 5105 5106 static ssize_t pmu_name_show(struct device *cdev, 5107 struct device_attribute *attr, 5108 char *buf) 5109 { 5110 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 5111 } 5112 5113 static DEVICE_ATTR_RO(pmu_name); 5114 5115 static struct attribute *intel_pmu_caps_attrs[] = { 5116 &dev_attr_pmu_name.attr, 5117 NULL 5118 }; 5119 5120 static DEVICE_ATTR(allow_tsx_force_abort, 0644, 5121 show_sysctl_tfa, 5122 set_sysctl_tfa); 5123 5124 static struct attribute *intel_pmu_attrs[] = { 5125 &dev_attr_freeze_on_smi.attr, 5126 &dev_attr_allow_tsx_force_abort.attr, 5127 NULL, 5128 }; 5129 5130 static umode_t 5131 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5132 { 5133 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0; 5134 } 5135 5136 static umode_t 5137 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5138 { 5139 return x86_pmu.pebs ? attr->mode : 0; 5140 } 5141 5142 static umode_t 5143 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5144 { 5145 return x86_pmu.lbr_nr ? attr->mode : 0; 5146 } 5147 5148 static umode_t 5149 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5150 { 5151 return x86_pmu.version >= 2 ? attr->mode : 0; 5152 } 5153 5154 static umode_t 5155 default_is_visible(struct kobject *kobj, struct attribute *attr, int i) 5156 { 5157 if (attr == &dev_attr_allow_tsx_force_abort.attr) 5158 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0; 5159 5160 return attr->mode; 5161 } 5162 5163 static struct attribute_group group_events_td = { 5164 .name = "events", 5165 }; 5166 5167 static struct attribute_group group_events_mem = { 5168 .name = "events", 5169 .is_visible = pebs_is_visible, 5170 }; 5171 5172 static struct attribute_group group_events_tsx = { 5173 .name = "events", 5174 .is_visible = tsx_is_visible, 5175 }; 5176 5177 static struct attribute_group group_caps_gen = { 5178 .name = "caps", 5179 .attrs = intel_pmu_caps_attrs, 5180 }; 5181 5182 static struct attribute_group group_caps_lbr = { 5183 .name = "caps", 5184 .attrs = lbr_attrs, 5185 .is_visible = lbr_is_visible, 5186 }; 5187 5188 static struct attribute_group group_format_extra = { 5189 .name = "format", 5190 .is_visible = exra_is_visible, 5191 }; 5192 5193 static struct attribute_group group_format_extra_skl = { 5194 .name = "format", 5195 .is_visible = exra_is_visible, 5196 }; 5197 5198 static struct attribute_group group_default = { 5199 .attrs = intel_pmu_attrs, 5200 .is_visible = default_is_visible, 5201 }; 5202 5203 static const struct attribute_group *attr_update[] = { 5204 &group_events_td, 5205 &group_events_mem, 5206 &group_events_tsx, 5207 &group_caps_gen, 5208 &group_caps_lbr, 5209 &group_format_extra, 5210 &group_format_extra_skl, 5211 &group_default, 5212 NULL, 5213 }; 5214 5215 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big); 5216 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small); 5217 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small); 5218 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small); 5219 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small); 5220 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big); 5221 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big); 5222 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big); 5223 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big); 5224 5225 static struct attribute *adl_hybrid_events_attrs[] = { 5226 EVENT_PTR(slots_adl), 5227 EVENT_PTR(td_retiring_adl), 5228 EVENT_PTR(td_bad_spec_adl), 5229 EVENT_PTR(td_fe_bound_adl), 5230 EVENT_PTR(td_be_bound_adl), 5231 EVENT_PTR(td_heavy_ops_adl), 5232 EVENT_PTR(td_br_mis_adl), 5233 EVENT_PTR(td_fetch_lat_adl), 5234 EVENT_PTR(td_mem_bound_adl), 5235 NULL, 5236 }; 5237 5238 /* Must be in IDX order */ 5239 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small); 5240 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small); 5241 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big); 5242 5243 static struct attribute *adl_hybrid_mem_attrs[] = { 5244 EVENT_PTR(mem_ld_adl), 5245 EVENT_PTR(mem_st_adl), 5246 EVENT_PTR(mem_ld_aux_adl), 5247 NULL, 5248 }; 5249 5250 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big); 5251 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big); 5252 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big); 5253 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big); 5254 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big); 5255 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big); 5256 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big); 5257 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big); 5258 5259 static struct attribute *adl_hybrid_tsx_attrs[] = { 5260 EVENT_PTR(tx_start_adl), 5261 EVENT_PTR(tx_abort_adl), 5262 EVENT_PTR(tx_commit_adl), 5263 EVENT_PTR(tx_capacity_read_adl), 5264 EVENT_PTR(tx_capacity_write_adl), 5265 EVENT_PTR(tx_conflict_adl), 5266 EVENT_PTR(cycles_t_adl), 5267 EVENT_PTR(cycles_ct_adl), 5268 NULL, 5269 }; 5270 5271 FORMAT_ATTR_HYBRID(in_tx, hybrid_big); 5272 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big); 5273 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small); 5274 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small); 5275 FORMAT_ATTR_HYBRID(frontend, hybrid_big); 5276 5277 static struct attribute *adl_hybrid_extra_attr_rtm[] = { 5278 FORMAT_HYBRID_PTR(in_tx), 5279 FORMAT_HYBRID_PTR(in_tx_cp), 5280 FORMAT_HYBRID_PTR(offcore_rsp), 5281 FORMAT_HYBRID_PTR(ldlat), 5282 FORMAT_HYBRID_PTR(frontend), 5283 NULL, 5284 }; 5285 5286 static struct attribute *adl_hybrid_extra_attr[] = { 5287 FORMAT_HYBRID_PTR(offcore_rsp), 5288 FORMAT_HYBRID_PTR(ldlat), 5289 FORMAT_HYBRID_PTR(frontend), 5290 NULL, 5291 }; 5292 5293 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr) 5294 { 5295 struct device *dev = kobj_to_dev(kobj); 5296 struct x86_hybrid_pmu *pmu = 5297 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5298 struct perf_pmu_events_hybrid_attr *pmu_attr = 5299 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr); 5300 5301 return pmu->cpu_type & pmu_attr->pmu_type; 5302 } 5303 5304 static umode_t hybrid_events_is_visible(struct kobject *kobj, 5305 struct attribute *attr, int i) 5306 { 5307 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0; 5308 } 5309 5310 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu) 5311 { 5312 int cpu = cpumask_first(&pmu->supported_cpus); 5313 5314 return (cpu >= nr_cpu_ids) ? -1 : cpu; 5315 } 5316 5317 static umode_t hybrid_tsx_is_visible(struct kobject *kobj, 5318 struct attribute *attr, int i) 5319 { 5320 struct device *dev = kobj_to_dev(kobj); 5321 struct x86_hybrid_pmu *pmu = 5322 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5323 int cpu = hybrid_find_supported_cpu(pmu); 5324 5325 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0; 5326 } 5327 5328 static umode_t hybrid_format_is_visible(struct kobject *kobj, 5329 struct attribute *attr, int i) 5330 { 5331 struct device *dev = kobj_to_dev(kobj); 5332 struct x86_hybrid_pmu *pmu = 5333 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5334 struct perf_pmu_format_hybrid_attr *pmu_attr = 5335 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr); 5336 int cpu = hybrid_find_supported_cpu(pmu); 5337 5338 return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0; 5339 } 5340 5341 static struct attribute_group hybrid_group_events_td = { 5342 .name = "events", 5343 .is_visible = hybrid_events_is_visible, 5344 }; 5345 5346 static struct attribute_group hybrid_group_events_mem = { 5347 .name = "events", 5348 .is_visible = hybrid_events_is_visible, 5349 }; 5350 5351 static struct attribute_group hybrid_group_events_tsx = { 5352 .name = "events", 5353 .is_visible = hybrid_tsx_is_visible, 5354 }; 5355 5356 static struct attribute_group hybrid_group_format_extra = { 5357 .name = "format", 5358 .is_visible = hybrid_format_is_visible, 5359 }; 5360 5361 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev, 5362 struct device_attribute *attr, 5363 char *buf) 5364 { 5365 struct x86_hybrid_pmu *pmu = 5366 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 5367 5368 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus); 5369 } 5370 5371 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL); 5372 static struct attribute *intel_hybrid_cpus_attrs[] = { 5373 &dev_attr_cpus.attr, 5374 NULL, 5375 }; 5376 5377 static struct attribute_group hybrid_group_cpus = { 5378 .attrs = intel_hybrid_cpus_attrs, 5379 }; 5380 5381 static const struct attribute_group *hybrid_attr_update[] = { 5382 &hybrid_group_events_td, 5383 &hybrid_group_events_mem, 5384 &hybrid_group_events_tsx, 5385 &group_caps_gen, 5386 &group_caps_lbr, 5387 &hybrid_group_format_extra, 5388 &group_default, 5389 &hybrid_group_cpus, 5390 NULL, 5391 }; 5392 5393 static struct attribute *empty_attrs; 5394 5395 static void intel_pmu_check_num_counters(int *num_counters, 5396 int *num_counters_fixed, 5397 u64 *intel_ctrl, u64 fixed_mask) 5398 { 5399 if (*num_counters > INTEL_PMC_MAX_GENERIC) { 5400 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 5401 *num_counters, INTEL_PMC_MAX_GENERIC); 5402 *num_counters = INTEL_PMC_MAX_GENERIC; 5403 } 5404 *intel_ctrl = (1ULL << *num_counters) - 1; 5405 5406 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) { 5407 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 5408 *num_counters_fixed, INTEL_PMC_MAX_FIXED); 5409 *num_counters_fixed = INTEL_PMC_MAX_FIXED; 5410 } 5411 5412 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED; 5413 } 5414 5415 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints, 5416 int num_counters, 5417 int num_counters_fixed, 5418 u64 intel_ctrl) 5419 { 5420 struct event_constraint *c; 5421 5422 if (!event_constraints) 5423 return; 5424 5425 /* 5426 * event on fixed counter2 (REF_CYCLES) only works on this 5427 * counter, so do not extend mask to generic counters 5428 */ 5429 for_each_event_constraint(c, event_constraints) { 5430 /* 5431 * Don't extend the topdown slots and metrics 5432 * events to the generic counters. 5433 */ 5434 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) { 5435 /* 5436 * Disable topdown slots and metrics events, 5437 * if slots event is not in CPUID. 5438 */ 5439 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl)) 5440 c->idxmsk64 = 0; 5441 c->weight = hweight64(c->idxmsk64); 5442 continue; 5443 } 5444 5445 if (c->cmask == FIXED_EVENT_FLAGS) { 5446 /* Disabled fixed counters which are not in CPUID */ 5447 c->idxmsk64 &= intel_ctrl; 5448 5449 if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) 5450 c->idxmsk64 |= (1ULL << num_counters) - 1; 5451 } 5452 c->idxmsk64 &= 5453 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed)); 5454 c->weight = hweight64(c->idxmsk64); 5455 } 5456 } 5457 5458 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs) 5459 { 5460 struct extra_reg *er; 5461 5462 /* 5463 * Access extra MSR may cause #GP under certain circumstances. 5464 * E.g. KVM doesn't support offcore event 5465 * Check all extra_regs here. 5466 */ 5467 if (!extra_regs) 5468 return; 5469 5470 for (er = extra_regs; er->msr; er++) { 5471 er->extra_msr_access = check_msr(er->msr, 0x11UL); 5472 /* Disable LBR select mapping */ 5473 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 5474 x86_pmu.lbr_sel_map = NULL; 5475 } 5476 } 5477 5478 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask) 5479 { 5480 struct x86_hybrid_pmu *pmu; 5481 int i; 5482 5483 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 5484 pmu = &x86_pmu.hybrid_pmu[i]; 5485 5486 intel_pmu_check_num_counters(&pmu->num_counters, 5487 &pmu->num_counters_fixed, 5488 &pmu->intel_ctrl, 5489 fixed_mask); 5490 5491 if (pmu->intel_cap.perf_metrics) { 5492 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; 5493 pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS; 5494 } 5495 5496 if (pmu->intel_cap.pebs_output_pt_available) 5497 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 5498 5499 intel_pmu_check_event_constraints(pmu->event_constraints, 5500 pmu->num_counters, 5501 pmu->num_counters_fixed, 5502 pmu->intel_ctrl); 5503 5504 intel_pmu_check_extra_regs(pmu->extra_regs); 5505 } 5506 } 5507 5508 __init int intel_pmu_init(void) 5509 { 5510 struct attribute **extra_skl_attr = &empty_attrs; 5511 struct attribute **extra_attr = &empty_attrs; 5512 struct attribute **td_attr = &empty_attrs; 5513 struct attribute **mem_attr = &empty_attrs; 5514 struct attribute **tsx_attr = &empty_attrs; 5515 union cpuid10_edx edx; 5516 union cpuid10_eax eax; 5517 union cpuid10_ebx ebx; 5518 unsigned int fixed_mask; 5519 bool pmem = false; 5520 int version, i; 5521 char *name; 5522 struct x86_hybrid_pmu *pmu; 5523 5524 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 5525 switch (boot_cpu_data.x86) { 5526 case 0x6: 5527 return p6_pmu_init(); 5528 case 0xb: 5529 return knc_pmu_init(); 5530 case 0xf: 5531 return p4_pmu_init(); 5532 } 5533 return -ENODEV; 5534 } 5535 5536 /* 5537 * Check whether the Architectural PerfMon supports 5538 * Branch Misses Retired hw_event or not. 5539 */ 5540 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full); 5541 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 5542 return -ENODEV; 5543 5544 version = eax.split.version_id; 5545 if (version < 2) 5546 x86_pmu = core_pmu; 5547 else 5548 x86_pmu = intel_pmu; 5549 5550 x86_pmu.version = version; 5551 x86_pmu.num_counters = eax.split.num_counters; 5552 x86_pmu.cntval_bits = eax.split.bit_width; 5553 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 5554 5555 x86_pmu.events_maskl = ebx.full; 5556 x86_pmu.events_mask_len = eax.split.mask_length; 5557 5558 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 5559 5560 /* 5561 * Quirk: v2 perfmon does not report fixed-purpose events, so 5562 * assume at least 3 events, when not running in a hypervisor: 5563 */ 5564 if (version > 1 && version < 5) { 5565 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 5566 5567 x86_pmu.num_counters_fixed = 5568 max((int)edx.split.num_counters_fixed, assume); 5569 5570 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1; 5571 } else if (version >= 5) 5572 x86_pmu.num_counters_fixed = fls(fixed_mask); 5573 5574 if (boot_cpu_has(X86_FEATURE_PDCM)) { 5575 u64 capabilities; 5576 5577 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 5578 x86_pmu.intel_cap.capabilities = capabilities; 5579 } 5580 5581 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) { 5582 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32; 5583 x86_pmu.lbr_read = intel_pmu_lbr_read_32; 5584 } 5585 5586 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) 5587 intel_pmu_arch_lbr_init(); 5588 5589 intel_ds_init(); 5590 5591 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 5592 5593 if (version >= 5) { 5594 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated; 5595 if (x86_pmu.intel_cap.anythread_deprecated) 5596 pr_cont(" AnyThread deprecated, "); 5597 } 5598 5599 /* 5600 * Install the hw-cache-events table: 5601 */ 5602 switch (boot_cpu_data.x86_model) { 5603 case INTEL_FAM6_CORE_YONAH: 5604 pr_cont("Core events, "); 5605 name = "core"; 5606 break; 5607 5608 case INTEL_FAM6_CORE2_MEROM: 5609 x86_add_quirk(intel_clovertown_quirk); 5610 fallthrough; 5611 5612 case INTEL_FAM6_CORE2_MEROM_L: 5613 case INTEL_FAM6_CORE2_PENRYN: 5614 case INTEL_FAM6_CORE2_DUNNINGTON: 5615 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 5616 sizeof(hw_cache_event_ids)); 5617 5618 intel_pmu_lbr_init_core(); 5619 5620 x86_pmu.event_constraints = intel_core2_event_constraints; 5621 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 5622 pr_cont("Core2 events, "); 5623 name = "core2"; 5624 break; 5625 5626 case INTEL_FAM6_NEHALEM: 5627 case INTEL_FAM6_NEHALEM_EP: 5628 case INTEL_FAM6_NEHALEM_EX: 5629 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 5630 sizeof(hw_cache_event_ids)); 5631 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 5632 sizeof(hw_cache_extra_regs)); 5633 5634 intel_pmu_lbr_init_nhm(); 5635 5636 x86_pmu.event_constraints = intel_nehalem_event_constraints; 5637 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 5638 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 5639 x86_pmu.extra_regs = intel_nehalem_extra_regs; 5640 x86_pmu.limit_period = nhm_limit_period; 5641 5642 mem_attr = nhm_mem_events_attrs; 5643 5644 /* UOPS_ISSUED.STALLED_CYCLES */ 5645 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5646 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5647 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 5648 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 5649 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 5650 5651 intel_pmu_pebs_data_source_nhm(); 5652 x86_add_quirk(intel_nehalem_quirk); 5653 x86_pmu.pebs_no_tlb = 1; 5654 extra_attr = nhm_format_attr; 5655 5656 pr_cont("Nehalem events, "); 5657 name = "nehalem"; 5658 break; 5659 5660 case INTEL_FAM6_ATOM_BONNELL: 5661 case INTEL_FAM6_ATOM_BONNELL_MID: 5662 case INTEL_FAM6_ATOM_SALTWELL: 5663 case INTEL_FAM6_ATOM_SALTWELL_MID: 5664 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 5665 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 5666 sizeof(hw_cache_event_ids)); 5667 5668 intel_pmu_lbr_init_atom(); 5669 5670 x86_pmu.event_constraints = intel_gen_event_constraints; 5671 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 5672 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 5673 pr_cont("Atom events, "); 5674 name = "bonnell"; 5675 break; 5676 5677 case INTEL_FAM6_ATOM_SILVERMONT: 5678 case INTEL_FAM6_ATOM_SILVERMONT_D: 5679 case INTEL_FAM6_ATOM_SILVERMONT_MID: 5680 case INTEL_FAM6_ATOM_AIRMONT: 5681 case INTEL_FAM6_ATOM_AIRMONT_MID: 5682 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 5683 sizeof(hw_cache_event_ids)); 5684 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 5685 sizeof(hw_cache_extra_regs)); 5686 5687 intel_pmu_lbr_init_slm(); 5688 5689 x86_pmu.event_constraints = intel_slm_event_constraints; 5690 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 5691 x86_pmu.extra_regs = intel_slm_extra_regs; 5692 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5693 td_attr = slm_events_attrs; 5694 extra_attr = slm_format_attr; 5695 pr_cont("Silvermont events, "); 5696 name = "silvermont"; 5697 break; 5698 5699 case INTEL_FAM6_ATOM_GOLDMONT: 5700 case INTEL_FAM6_ATOM_GOLDMONT_D: 5701 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 5702 sizeof(hw_cache_event_ids)); 5703 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 5704 sizeof(hw_cache_extra_regs)); 5705 5706 intel_pmu_lbr_init_skl(); 5707 5708 x86_pmu.event_constraints = intel_slm_event_constraints; 5709 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 5710 x86_pmu.extra_regs = intel_glm_extra_regs; 5711 /* 5712 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5713 * for precise cycles. 5714 * :pp is identical to :ppp 5715 */ 5716 x86_pmu.pebs_aliases = NULL; 5717 x86_pmu.pebs_prec_dist = true; 5718 x86_pmu.lbr_pt_coexist = true; 5719 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5720 td_attr = glm_events_attrs; 5721 extra_attr = slm_format_attr; 5722 pr_cont("Goldmont events, "); 5723 name = "goldmont"; 5724 break; 5725 5726 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 5727 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 5728 sizeof(hw_cache_event_ids)); 5729 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 5730 sizeof(hw_cache_extra_regs)); 5731 5732 intel_pmu_lbr_init_skl(); 5733 5734 x86_pmu.event_constraints = intel_slm_event_constraints; 5735 x86_pmu.extra_regs = intel_glm_extra_regs; 5736 /* 5737 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5738 * for precise cycles. 5739 */ 5740 x86_pmu.pebs_aliases = NULL; 5741 x86_pmu.pebs_prec_dist = true; 5742 x86_pmu.lbr_pt_coexist = true; 5743 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5744 x86_pmu.flags |= PMU_FL_PEBS_ALL; 5745 x86_pmu.get_event_constraints = glp_get_event_constraints; 5746 td_attr = glm_events_attrs; 5747 /* Goldmont Plus has 4-wide pipeline */ 5748 event_attr_td_total_slots_scale_glm.event_str = "4"; 5749 extra_attr = slm_format_attr; 5750 pr_cont("Goldmont plus events, "); 5751 name = "goldmont_plus"; 5752 break; 5753 5754 case INTEL_FAM6_ATOM_TREMONT_D: 5755 case INTEL_FAM6_ATOM_TREMONT: 5756 case INTEL_FAM6_ATOM_TREMONT_L: 5757 x86_pmu.late_ack = true; 5758 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 5759 sizeof(hw_cache_event_ids)); 5760 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs, 5761 sizeof(hw_cache_extra_regs)); 5762 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 5763 5764 intel_pmu_lbr_init_skl(); 5765 5766 x86_pmu.event_constraints = intel_slm_event_constraints; 5767 x86_pmu.extra_regs = intel_tnt_extra_regs; 5768 /* 5769 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 5770 * for precise cycles. 5771 */ 5772 x86_pmu.pebs_aliases = NULL; 5773 x86_pmu.pebs_prec_dist = true; 5774 x86_pmu.lbr_pt_coexist = true; 5775 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5776 x86_pmu.get_event_constraints = tnt_get_event_constraints; 5777 td_attr = tnt_events_attrs; 5778 extra_attr = slm_format_attr; 5779 pr_cont("Tremont events, "); 5780 name = "Tremont"; 5781 break; 5782 5783 case INTEL_FAM6_WESTMERE: 5784 case INTEL_FAM6_WESTMERE_EP: 5785 case INTEL_FAM6_WESTMERE_EX: 5786 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 5787 sizeof(hw_cache_event_ids)); 5788 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 5789 sizeof(hw_cache_extra_regs)); 5790 5791 intel_pmu_lbr_init_nhm(); 5792 5793 x86_pmu.event_constraints = intel_westmere_event_constraints; 5794 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 5795 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 5796 x86_pmu.extra_regs = intel_westmere_extra_regs; 5797 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5798 5799 mem_attr = nhm_mem_events_attrs; 5800 5801 /* UOPS_ISSUED.STALLED_CYCLES */ 5802 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5803 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5804 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 5805 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 5806 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 5807 5808 intel_pmu_pebs_data_source_nhm(); 5809 extra_attr = nhm_format_attr; 5810 pr_cont("Westmere events, "); 5811 name = "westmere"; 5812 break; 5813 5814 case INTEL_FAM6_SANDYBRIDGE: 5815 case INTEL_FAM6_SANDYBRIDGE_X: 5816 x86_add_quirk(intel_sandybridge_quirk); 5817 x86_add_quirk(intel_ht_bug); 5818 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 5819 sizeof(hw_cache_event_ids)); 5820 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 5821 sizeof(hw_cache_extra_regs)); 5822 5823 intel_pmu_lbr_init_snb(); 5824 5825 x86_pmu.event_constraints = intel_snb_event_constraints; 5826 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 5827 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 5828 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 5829 x86_pmu.extra_regs = intel_snbep_extra_regs; 5830 else 5831 x86_pmu.extra_regs = intel_snb_extra_regs; 5832 5833 5834 /* all extra regs are per-cpu when HT is on */ 5835 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5836 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5837 5838 td_attr = snb_events_attrs; 5839 mem_attr = snb_mem_events_attrs; 5840 5841 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 5842 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5843 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5844 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 5845 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 5846 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 5847 5848 extra_attr = nhm_format_attr; 5849 5850 pr_cont("SandyBridge events, "); 5851 name = "sandybridge"; 5852 break; 5853 5854 case INTEL_FAM6_IVYBRIDGE: 5855 case INTEL_FAM6_IVYBRIDGE_X: 5856 x86_add_quirk(intel_ht_bug); 5857 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 5858 sizeof(hw_cache_event_ids)); 5859 /* dTLB-load-misses on IVB is different than SNB */ 5860 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 5861 5862 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 5863 sizeof(hw_cache_extra_regs)); 5864 5865 intel_pmu_lbr_init_snb(); 5866 5867 x86_pmu.event_constraints = intel_ivb_event_constraints; 5868 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 5869 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 5870 x86_pmu.pebs_prec_dist = true; 5871 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 5872 x86_pmu.extra_regs = intel_snbep_extra_regs; 5873 else 5874 x86_pmu.extra_regs = intel_snb_extra_regs; 5875 /* all extra regs are per-cpu when HT is on */ 5876 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5877 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5878 5879 td_attr = snb_events_attrs; 5880 mem_attr = snb_mem_events_attrs; 5881 5882 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 5883 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 5884 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 5885 5886 extra_attr = nhm_format_attr; 5887 5888 pr_cont("IvyBridge events, "); 5889 name = "ivybridge"; 5890 break; 5891 5892 5893 case INTEL_FAM6_HASWELL: 5894 case INTEL_FAM6_HASWELL_X: 5895 case INTEL_FAM6_HASWELL_L: 5896 case INTEL_FAM6_HASWELL_G: 5897 x86_add_quirk(intel_ht_bug); 5898 x86_add_quirk(intel_pebs_isolation_quirk); 5899 x86_pmu.late_ack = true; 5900 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5901 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5902 5903 intel_pmu_lbr_init_hsw(); 5904 5905 x86_pmu.event_constraints = intel_hsw_event_constraints; 5906 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 5907 x86_pmu.extra_regs = intel_snbep_extra_regs; 5908 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 5909 x86_pmu.pebs_prec_dist = true; 5910 /* all extra regs are per-cpu when HT is on */ 5911 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5912 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5913 5914 x86_pmu.hw_config = hsw_hw_config; 5915 x86_pmu.get_event_constraints = hsw_get_event_constraints; 5916 x86_pmu.lbr_double_abort = true; 5917 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 5918 hsw_format_attr : nhm_format_attr; 5919 td_attr = hsw_events_attrs; 5920 mem_attr = hsw_mem_events_attrs; 5921 tsx_attr = hsw_tsx_events_attrs; 5922 pr_cont("Haswell events, "); 5923 name = "haswell"; 5924 break; 5925 5926 case INTEL_FAM6_BROADWELL: 5927 case INTEL_FAM6_BROADWELL_D: 5928 case INTEL_FAM6_BROADWELL_G: 5929 case INTEL_FAM6_BROADWELL_X: 5930 x86_add_quirk(intel_pebs_isolation_quirk); 5931 x86_pmu.late_ack = true; 5932 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5933 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5934 5935 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 5936 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 5937 BDW_L3_MISS|HSW_SNOOP_DRAM; 5938 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 5939 HSW_SNOOP_DRAM; 5940 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 5941 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 5942 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 5943 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 5944 5945 intel_pmu_lbr_init_hsw(); 5946 5947 x86_pmu.event_constraints = intel_bdw_event_constraints; 5948 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 5949 x86_pmu.extra_regs = intel_snbep_extra_regs; 5950 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 5951 x86_pmu.pebs_prec_dist = true; 5952 /* all extra regs are per-cpu when HT is on */ 5953 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5954 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5955 5956 x86_pmu.hw_config = hsw_hw_config; 5957 x86_pmu.get_event_constraints = hsw_get_event_constraints; 5958 x86_pmu.limit_period = bdw_limit_period; 5959 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 5960 hsw_format_attr : nhm_format_attr; 5961 td_attr = hsw_events_attrs; 5962 mem_attr = hsw_mem_events_attrs; 5963 tsx_attr = hsw_tsx_events_attrs; 5964 pr_cont("Broadwell events, "); 5965 name = "broadwell"; 5966 break; 5967 5968 case INTEL_FAM6_XEON_PHI_KNL: 5969 case INTEL_FAM6_XEON_PHI_KNM: 5970 memcpy(hw_cache_event_ids, 5971 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5972 memcpy(hw_cache_extra_regs, 5973 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5974 intel_pmu_lbr_init_knl(); 5975 5976 x86_pmu.event_constraints = intel_slm_event_constraints; 5977 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 5978 x86_pmu.extra_regs = intel_knl_extra_regs; 5979 5980 /* all extra regs are per-cpu when HT is on */ 5981 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5982 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5983 extra_attr = slm_format_attr; 5984 pr_cont("Knights Landing/Mill events, "); 5985 name = "knights-landing"; 5986 break; 5987 5988 case INTEL_FAM6_SKYLAKE_X: 5989 pmem = true; 5990 fallthrough; 5991 case INTEL_FAM6_SKYLAKE_L: 5992 case INTEL_FAM6_SKYLAKE: 5993 case INTEL_FAM6_KABYLAKE_L: 5994 case INTEL_FAM6_KABYLAKE: 5995 case INTEL_FAM6_COMETLAKE_L: 5996 case INTEL_FAM6_COMETLAKE: 5997 x86_add_quirk(intel_pebs_isolation_quirk); 5998 x86_pmu.late_ack = true; 5999 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6000 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6001 intel_pmu_lbr_init_skl(); 6002 6003 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 6004 event_attr_td_recovery_bubbles.event_str_noht = 6005 "event=0xd,umask=0x1,cmask=1"; 6006 event_attr_td_recovery_bubbles.event_str_ht = 6007 "event=0xd,umask=0x1,cmask=1,any=1"; 6008 6009 x86_pmu.event_constraints = intel_skl_event_constraints; 6010 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 6011 x86_pmu.extra_regs = intel_skl_extra_regs; 6012 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 6013 x86_pmu.pebs_prec_dist = true; 6014 /* all extra regs are per-cpu when HT is on */ 6015 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6016 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6017 6018 x86_pmu.hw_config = hsw_hw_config; 6019 x86_pmu.get_event_constraints = hsw_get_event_constraints; 6020 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6021 hsw_format_attr : nhm_format_attr; 6022 extra_skl_attr = skl_format_attr; 6023 td_attr = hsw_events_attrs; 6024 mem_attr = hsw_mem_events_attrs; 6025 tsx_attr = hsw_tsx_events_attrs; 6026 intel_pmu_pebs_data_source_skl(pmem); 6027 6028 /* 6029 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default. 6030 * TSX force abort hooks are not required on these systems. Only deploy 6031 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT. 6032 */ 6033 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) && 6034 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) { 6035 x86_pmu.flags |= PMU_FL_TFA; 6036 x86_pmu.get_event_constraints = tfa_get_event_constraints; 6037 x86_pmu.enable_all = intel_tfa_pmu_enable_all; 6038 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling; 6039 } 6040 6041 pr_cont("Skylake events, "); 6042 name = "skylake"; 6043 break; 6044 6045 case INTEL_FAM6_ICELAKE_X: 6046 case INTEL_FAM6_ICELAKE_D: 6047 pmem = true; 6048 fallthrough; 6049 case INTEL_FAM6_ICELAKE_L: 6050 case INTEL_FAM6_ICELAKE: 6051 case INTEL_FAM6_TIGERLAKE_L: 6052 case INTEL_FAM6_TIGERLAKE: 6053 case INTEL_FAM6_ROCKETLAKE: 6054 x86_pmu.late_ack = true; 6055 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6056 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6057 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 6058 intel_pmu_lbr_init_skl(); 6059 6060 x86_pmu.event_constraints = intel_icl_event_constraints; 6061 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints; 6062 x86_pmu.extra_regs = intel_icl_extra_regs; 6063 x86_pmu.pebs_aliases = NULL; 6064 x86_pmu.pebs_prec_dist = true; 6065 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6066 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6067 6068 x86_pmu.hw_config = hsw_hw_config; 6069 x86_pmu.get_event_constraints = icl_get_event_constraints; 6070 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6071 hsw_format_attr : nhm_format_attr; 6072 extra_skl_attr = skl_format_attr; 6073 mem_attr = icl_events_attrs; 6074 td_attr = icl_td_events_attrs; 6075 tsx_attr = icl_tsx_events_attrs; 6076 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6077 x86_pmu.lbr_pt_coexist = true; 6078 intel_pmu_pebs_data_source_skl(pmem); 6079 x86_pmu.num_topdown_events = 4; 6080 x86_pmu.update_topdown_event = icl_update_topdown_event; 6081 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period; 6082 pr_cont("Icelake events, "); 6083 name = "icelake"; 6084 break; 6085 6086 case INTEL_FAM6_SAPPHIRERAPIDS_X: 6087 pmem = true; 6088 x86_pmu.late_ack = true; 6089 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 6090 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 6091 6092 x86_pmu.event_constraints = intel_spr_event_constraints; 6093 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints; 6094 x86_pmu.extra_regs = intel_spr_extra_regs; 6095 x86_pmu.limit_period = spr_limit_period; 6096 x86_pmu.pebs_aliases = NULL; 6097 x86_pmu.pebs_prec_dist = true; 6098 x86_pmu.pebs_block = true; 6099 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6100 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6101 x86_pmu.flags |= PMU_FL_PEBS_ALL; 6102 x86_pmu.flags |= PMU_FL_INSTR_LATENCY; 6103 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; 6104 6105 x86_pmu.hw_config = hsw_hw_config; 6106 x86_pmu.get_event_constraints = spr_get_event_constraints; 6107 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6108 hsw_format_attr : nhm_format_attr; 6109 extra_skl_attr = skl_format_attr; 6110 mem_attr = spr_events_attrs; 6111 td_attr = spr_td_events_attrs; 6112 tsx_attr = spr_tsx_events_attrs; 6113 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6114 x86_pmu.lbr_pt_coexist = true; 6115 intel_pmu_pebs_data_source_skl(pmem); 6116 x86_pmu.num_topdown_events = 8; 6117 x86_pmu.update_topdown_event = icl_update_topdown_event; 6118 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period; 6119 pr_cont("Sapphire Rapids events, "); 6120 name = "sapphire_rapids"; 6121 break; 6122 6123 case INTEL_FAM6_ALDERLAKE: 6124 case INTEL_FAM6_ALDERLAKE_L: 6125 /* 6126 * Alder Lake has 2 types of CPU, core and atom. 6127 * 6128 * Initialize the common PerfMon capabilities here. 6129 */ 6130 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS, 6131 sizeof(struct x86_hybrid_pmu), 6132 GFP_KERNEL); 6133 if (!x86_pmu.hybrid_pmu) 6134 return -ENOMEM; 6135 static_branch_enable(&perf_is_hybrid); 6136 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS; 6137 6138 x86_pmu.pebs_aliases = NULL; 6139 x86_pmu.pebs_prec_dist = true; 6140 x86_pmu.pebs_block = true; 6141 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 6142 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 6143 x86_pmu.flags |= PMU_FL_PEBS_ALL; 6144 x86_pmu.flags |= PMU_FL_INSTR_LATENCY; 6145 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; 6146 x86_pmu.lbr_pt_coexist = true; 6147 intel_pmu_pebs_data_source_skl(false); 6148 x86_pmu.num_topdown_events = 8; 6149 x86_pmu.update_topdown_event = adl_update_topdown_event; 6150 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period; 6151 6152 x86_pmu.filter_match = intel_pmu_filter_match; 6153 x86_pmu.get_event_constraints = adl_get_event_constraints; 6154 x86_pmu.hw_config = adl_hw_config; 6155 x86_pmu.limit_period = spr_limit_period; 6156 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type; 6157 /* 6158 * The rtm_abort_event is used to check whether to enable GPRs 6159 * for the RTM abort event. Atom doesn't have the RTM abort 6160 * event. There is no harmful to set it in the common 6161 * x86_pmu.rtm_abort_event. 6162 */ 6163 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); 6164 6165 td_attr = adl_hybrid_events_attrs; 6166 mem_attr = adl_hybrid_mem_attrs; 6167 tsx_attr = adl_hybrid_tsx_attrs; 6168 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 6169 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr; 6170 6171 /* Initialize big core specific PerfMon capabilities.*/ 6172 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; 6173 pmu->name = "cpu_core"; 6174 pmu->cpu_type = hybrid_big; 6175 pmu->late_ack = true; 6176 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) { 6177 pmu->num_counters = x86_pmu.num_counters + 2; 6178 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1; 6179 } else { 6180 pmu->num_counters = x86_pmu.num_counters; 6181 pmu->num_counters_fixed = x86_pmu.num_counters_fixed; 6182 } 6183 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters); 6184 pmu->unconstrained = (struct event_constraint) 6185 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1, 6186 0, pmu->num_counters, 0, 0); 6187 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities; 6188 pmu->intel_cap.perf_metrics = 1; 6189 pmu->intel_cap.pebs_output_pt_available = 0; 6190 6191 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids)); 6192 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs)); 6193 pmu->event_constraints = intel_spr_event_constraints; 6194 pmu->pebs_constraints = intel_spr_pebs_event_constraints; 6195 pmu->extra_regs = intel_spr_extra_regs; 6196 6197 /* Initialize Atom core specific PerfMon capabilities.*/ 6198 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; 6199 pmu->name = "cpu_atom"; 6200 pmu->cpu_type = hybrid_small; 6201 pmu->mid_ack = true; 6202 pmu->num_counters = x86_pmu.num_counters; 6203 pmu->num_counters_fixed = x86_pmu.num_counters_fixed; 6204 pmu->max_pebs_events = x86_pmu.max_pebs_events; 6205 pmu->unconstrained = (struct event_constraint) 6206 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1, 6207 0, pmu->num_counters, 0, 0); 6208 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities; 6209 pmu->intel_cap.perf_metrics = 0; 6210 pmu->intel_cap.pebs_output_pt_available = 1; 6211 6212 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids)); 6213 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs)); 6214 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 6215 pmu->event_constraints = intel_slm_event_constraints; 6216 pmu->pebs_constraints = intel_grt_pebs_event_constraints; 6217 pmu->extra_regs = intel_grt_extra_regs; 6218 pr_cont("Alderlake Hybrid events, "); 6219 name = "alderlake_hybrid"; 6220 break; 6221 6222 default: 6223 switch (x86_pmu.version) { 6224 case 1: 6225 x86_pmu.event_constraints = intel_v1_event_constraints; 6226 pr_cont("generic architected perfmon v1, "); 6227 name = "generic_arch_v1"; 6228 break; 6229 default: 6230 /* 6231 * default constraints for v2 and up 6232 */ 6233 x86_pmu.event_constraints = intel_gen_event_constraints; 6234 pr_cont("generic architected perfmon, "); 6235 name = "generic_arch_v2+"; 6236 break; 6237 } 6238 } 6239 6240 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); 6241 6242 if (!is_hybrid()) { 6243 group_events_td.attrs = td_attr; 6244 group_events_mem.attrs = mem_attr; 6245 group_events_tsx.attrs = tsx_attr; 6246 group_format_extra.attrs = extra_attr; 6247 group_format_extra_skl.attrs = extra_skl_attr; 6248 6249 x86_pmu.attr_update = attr_update; 6250 } else { 6251 hybrid_group_events_td.attrs = td_attr; 6252 hybrid_group_events_mem.attrs = mem_attr; 6253 hybrid_group_events_tsx.attrs = tsx_attr; 6254 hybrid_group_format_extra.attrs = extra_attr; 6255 6256 x86_pmu.attr_update = hybrid_attr_update; 6257 } 6258 6259 intel_pmu_check_num_counters(&x86_pmu.num_counters, 6260 &x86_pmu.num_counters_fixed, 6261 &x86_pmu.intel_ctrl, 6262 (u64)fixed_mask); 6263 6264 /* AnyThread may be deprecated on arch perfmon v5 or later */ 6265 if (x86_pmu.intel_cap.anythread_deprecated) 6266 x86_pmu.format_attrs = intel_arch_formats_attr; 6267 6268 intel_pmu_check_event_constraints(x86_pmu.event_constraints, 6269 x86_pmu.num_counters, 6270 x86_pmu.num_counters_fixed, 6271 x86_pmu.intel_ctrl); 6272 /* 6273 * Access LBR MSR may cause #GP under certain circumstances. 6274 * E.g. KVM doesn't support LBR MSR 6275 * Check all LBT MSR here. 6276 * Disable LBR access if any LBR MSRs can not be accessed. 6277 */ 6278 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 6279 x86_pmu.lbr_nr = 0; 6280 for (i = 0; i < x86_pmu.lbr_nr; i++) { 6281 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 6282 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 6283 x86_pmu.lbr_nr = 0; 6284 } 6285 6286 if (x86_pmu.lbr_nr) 6287 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 6288 6289 intel_pmu_check_extra_regs(x86_pmu.extra_regs); 6290 6291 /* Support full width counters using alternative MSR range */ 6292 if (x86_pmu.intel_cap.full_width_write) { 6293 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 6294 x86_pmu.perfctr = MSR_IA32_PMC0; 6295 pr_cont("full-width counters, "); 6296 } 6297 6298 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) 6299 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; 6300 6301 if (is_hybrid()) 6302 intel_pmu_check_hybrid_pmus((u64)fixed_mask); 6303 6304 return 0; 6305 } 6306 6307 /* 6308 * HT bug: phase 2 init 6309 * Called once we have valid topology information to check 6310 * whether or not HT is enabled 6311 * If HT is off, then we disable the workaround 6312 */ 6313 static __init int fixup_ht_bug(void) 6314 { 6315 int c; 6316 /* 6317 * problem not present on this CPU model, nothing to do 6318 */ 6319 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 6320 return 0; 6321 6322 if (topology_max_smt_threads() > 1) { 6323 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 6324 return 0; 6325 } 6326 6327 cpus_read_lock(); 6328 6329 hardlockup_detector_perf_stop(); 6330 6331 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 6332 6333 x86_pmu.start_scheduling = NULL; 6334 x86_pmu.commit_scheduling = NULL; 6335 x86_pmu.stop_scheduling = NULL; 6336 6337 hardlockup_detector_perf_restart(); 6338 6339 for_each_online_cpu(c) 6340 free_excl_cntrs(&per_cpu(cpu_hw_events, c)); 6341 6342 cpus_read_unlock(); 6343 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 6344 return 0; 6345 } 6346 subsys_initcall(fixup_ht_bug) 6347