xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 04295878beac396dae47ba93141cae0d9386e7ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
261 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
262 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
266 	EVENT_CONSTRAINT_END
267 };
268 
269 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
270 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
271 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
272 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
273 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
274 	EVENT_EXTRA_END
275 };
276 
277 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
278 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
279 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
280 
281 static struct attribute *nhm_mem_events_attrs[] = {
282 	EVENT_PTR(mem_ld_nhm),
283 	NULL,
284 };
285 
286 /*
287  * topdown events for Intel Core CPUs.
288  *
289  * The events are all in slots, which is a free slot in a 4 wide
290  * pipeline. Some events are already reported in slots, for cycle
291  * events we multiply by the pipeline width (4).
292  *
293  * With Hyper Threading on, topdown metrics are either summed or averaged
294  * between the threads of a core: (count_t0 + count_t1).
295  *
296  * For the average case the metric is always scaled to pipeline width,
297  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
298  */
299 
300 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
301 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
302 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
303 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
304 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
305 	"event=0xe,umask=0x1");			/* uops_issued.any */
306 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
307 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
308 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
309 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
310 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
311 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
312 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
313 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
314 	"4", "2");
315 
316 EVENT_ATTR_STR(slots,			slots,		"event=0x00,umask=0x4");
317 EVENT_ATTR_STR(topdown-retiring,	td_retiring,	"event=0x00,umask=0x80");
318 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,	"event=0x00,umask=0x81");
319 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,	"event=0x00,umask=0x82");
320 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,	"event=0x00,umask=0x83");
321 
322 static struct attribute *snb_events_attrs[] = {
323 	EVENT_PTR(td_slots_issued),
324 	EVENT_PTR(td_slots_retired),
325 	EVENT_PTR(td_fetch_bubbles),
326 	EVENT_PTR(td_total_slots),
327 	EVENT_PTR(td_total_slots_scale),
328 	EVENT_PTR(td_recovery_bubbles),
329 	EVENT_PTR(td_recovery_bubbles_scale),
330 	NULL,
331 };
332 
333 static struct attribute *snb_mem_events_attrs[] = {
334 	EVENT_PTR(mem_ld_snb),
335 	EVENT_PTR(mem_st_snb),
336 	NULL,
337 };
338 
339 static struct event_constraint intel_hsw_event_constraints[] = {
340 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
341 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
342 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
343 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
344 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
345 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
346 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
347 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
348 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
349 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
350 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
351 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
352 
353 	/*
354 	 * When HT is off these events can only run on the bottom 4 counters
355 	 * When HT is on, they are impacted by the HT bug and require EXCL access
356 	 */
357 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
358 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
359 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
360 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
361 
362 	EVENT_CONSTRAINT_END
363 };
364 
365 static struct event_constraint intel_bdw_event_constraints[] = {
366 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
367 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
368 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
369 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
370 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
371 	/*
372 	 * when HT is off, these can only run on the bottom 4 counters
373 	 */
374 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
375 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
376 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
377 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
378 	EVENT_CONSTRAINT_END
379 };
380 
381 static u64 intel_pmu_event_map(int hw_event)
382 {
383 	return intel_perfmon_event_map[hw_event];
384 }
385 
386 /*
387  * Notes on the events:
388  * - data reads do not include code reads (comparable to earlier tables)
389  * - data counts include speculative execution (except L1 write, dtlb, bpu)
390  * - remote node access includes remote memory, remote cache, remote mmio.
391  * - prefetches are not included in the counts.
392  * - icache miss does not include decoded icache
393  */
394 
395 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
396 #define SKL_DEMAND_RFO			BIT_ULL(1)
397 #define SKL_ANY_RESPONSE		BIT_ULL(16)
398 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
399 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
400 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
401 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
402 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
403 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
404 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
405 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
406 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
407 #define SKL_SPL_HIT			BIT_ULL(30)
408 #define SKL_SNOOP_NONE			BIT_ULL(31)
409 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
410 #define SKL_SNOOP_MISS			BIT_ULL(33)
411 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
412 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
413 #define SKL_SNOOP_HITM			BIT_ULL(36)
414 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
415 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
416 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
417 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
418 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
419 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
420 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
421 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
422 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
423 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
424 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
425 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
426 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
427 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
428 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
429 
430 static __initconst const u64 skl_hw_cache_event_ids
431 				[PERF_COUNT_HW_CACHE_MAX]
432 				[PERF_COUNT_HW_CACHE_OP_MAX]
433 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
434 {
435  [ C(L1D ) ] = {
436 	[ C(OP_READ) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
438 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
439 	},
440 	[ C(OP_WRITE) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
442 		[ C(RESULT_MISS)   ] = 0x0,
443 	},
444 	[ C(OP_PREFETCH) ] = {
445 		[ C(RESULT_ACCESS) ] = 0x0,
446 		[ C(RESULT_MISS)   ] = 0x0,
447 	},
448  },
449  [ C(L1I ) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x0,
452 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
453 	},
454 	[ C(OP_WRITE) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458 	[ C(OP_PREFETCH) ] = {
459 		[ C(RESULT_ACCESS) ] = 0x0,
460 		[ C(RESULT_MISS)   ] = 0x0,
461 	},
462  },
463  [ C(LL  ) ] = {
464 	[ C(OP_READ) ] = {
465 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
466 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
467 	},
468 	[ C(OP_WRITE) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
470 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
471 	},
472 	[ C(OP_PREFETCH) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x0,
474 		[ C(RESULT_MISS)   ] = 0x0,
475 	},
476  },
477  [ C(DTLB) ] = {
478 	[ C(OP_READ) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
480 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
481 	},
482 	[ C(OP_WRITE) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
484 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
485 	},
486 	[ C(OP_PREFETCH) ] = {
487 		[ C(RESULT_ACCESS) ] = 0x0,
488 		[ C(RESULT_MISS)   ] = 0x0,
489 	},
490  },
491  [ C(ITLB) ] = {
492 	[ C(OP_READ) ] = {
493 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
494 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
495 	},
496 	[ C(OP_WRITE) ] = {
497 		[ C(RESULT_ACCESS) ] = -1,
498 		[ C(RESULT_MISS)   ] = -1,
499 	},
500 	[ C(OP_PREFETCH) ] = {
501 		[ C(RESULT_ACCESS) ] = -1,
502 		[ C(RESULT_MISS)   ] = -1,
503 	},
504  },
505  [ C(BPU ) ] = {
506 	[ C(OP_READ) ] = {
507 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
508 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
509 	},
510 	[ C(OP_WRITE) ] = {
511 		[ C(RESULT_ACCESS) ] = -1,
512 		[ C(RESULT_MISS)   ] = -1,
513 	},
514 	[ C(OP_PREFETCH) ] = {
515 		[ C(RESULT_ACCESS) ] = -1,
516 		[ C(RESULT_MISS)   ] = -1,
517 	},
518  },
519  [ C(NODE) ] = {
520 	[ C(OP_READ) ] = {
521 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
522 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
523 	},
524 	[ C(OP_WRITE) ] = {
525 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
526 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
527 	},
528 	[ C(OP_PREFETCH) ] = {
529 		[ C(RESULT_ACCESS) ] = 0x0,
530 		[ C(RESULT_MISS)   ] = 0x0,
531 	},
532  },
533 };
534 
535 static __initconst const u64 skl_hw_cache_extra_regs
536 				[PERF_COUNT_HW_CACHE_MAX]
537 				[PERF_COUNT_HW_CACHE_OP_MAX]
538 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
539 {
540  [ C(LL  ) ] = {
541 	[ C(OP_READ) ] = {
542 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
543 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
544 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
545 				       SKL_L3_MISS|SKL_ANY_SNOOP|
546 				       SKL_SUPPLIER_NONE,
547 	},
548 	[ C(OP_WRITE) ] = {
549 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
550 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
551 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
552 				       SKL_L3_MISS|SKL_ANY_SNOOP|
553 				       SKL_SUPPLIER_NONE,
554 	},
555 	[ C(OP_PREFETCH) ] = {
556 		[ C(RESULT_ACCESS) ] = 0x0,
557 		[ C(RESULT_MISS)   ] = 0x0,
558 	},
559  },
560  [ C(NODE) ] = {
561 	[ C(OP_READ) ] = {
562 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
563 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
564 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
565 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
566 	},
567 	[ C(OP_WRITE) ] = {
568 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
569 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
570 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
571 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
572 	},
573 	[ C(OP_PREFETCH) ] = {
574 		[ C(RESULT_ACCESS) ] = 0x0,
575 		[ C(RESULT_MISS)   ] = 0x0,
576 	},
577  },
578 };
579 
580 #define SNB_DMND_DATA_RD	(1ULL << 0)
581 #define SNB_DMND_RFO		(1ULL << 1)
582 #define SNB_DMND_IFETCH		(1ULL << 2)
583 #define SNB_DMND_WB		(1ULL << 3)
584 #define SNB_PF_DATA_RD		(1ULL << 4)
585 #define SNB_PF_RFO		(1ULL << 5)
586 #define SNB_PF_IFETCH		(1ULL << 6)
587 #define SNB_LLC_DATA_RD		(1ULL << 7)
588 #define SNB_LLC_RFO		(1ULL << 8)
589 #define SNB_LLC_IFETCH		(1ULL << 9)
590 #define SNB_BUS_LOCKS		(1ULL << 10)
591 #define SNB_STRM_ST		(1ULL << 11)
592 #define SNB_OTHER		(1ULL << 15)
593 #define SNB_RESP_ANY		(1ULL << 16)
594 #define SNB_NO_SUPP		(1ULL << 17)
595 #define SNB_LLC_HITM		(1ULL << 18)
596 #define SNB_LLC_HITE		(1ULL << 19)
597 #define SNB_LLC_HITS		(1ULL << 20)
598 #define SNB_LLC_HITF		(1ULL << 21)
599 #define SNB_LOCAL		(1ULL << 22)
600 #define SNB_REMOTE		(0xffULL << 23)
601 #define SNB_SNP_NONE		(1ULL << 31)
602 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
603 #define SNB_SNP_MISS		(1ULL << 33)
604 #define SNB_NO_FWD		(1ULL << 34)
605 #define SNB_SNP_FWD		(1ULL << 35)
606 #define SNB_HITM		(1ULL << 36)
607 #define SNB_NON_DRAM		(1ULL << 37)
608 
609 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
610 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
611 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
612 
613 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
614 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
615 				 SNB_HITM)
616 
617 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
618 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
619 
620 #define SNB_L3_ACCESS		SNB_RESP_ANY
621 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
622 
623 static __initconst const u64 snb_hw_cache_extra_regs
624 				[PERF_COUNT_HW_CACHE_MAX]
625 				[PERF_COUNT_HW_CACHE_OP_MAX]
626 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
627 {
628  [ C(LL  ) ] = {
629 	[ C(OP_READ) ] = {
630 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
631 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
632 	},
633 	[ C(OP_WRITE) ] = {
634 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
635 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
636 	},
637 	[ C(OP_PREFETCH) ] = {
638 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
639 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
640 	},
641  },
642  [ C(NODE) ] = {
643 	[ C(OP_READ) ] = {
644 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
645 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
646 	},
647 	[ C(OP_WRITE) ] = {
648 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
649 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
650 	},
651 	[ C(OP_PREFETCH) ] = {
652 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
653 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
654 	},
655  },
656 };
657 
658 static __initconst const u64 snb_hw_cache_event_ids
659 				[PERF_COUNT_HW_CACHE_MAX]
660 				[PERF_COUNT_HW_CACHE_OP_MAX]
661 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
662 {
663  [ C(L1D) ] = {
664 	[ C(OP_READ) ] = {
665 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
666 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
667 	},
668 	[ C(OP_WRITE) ] = {
669 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
670 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
671 	},
672 	[ C(OP_PREFETCH) ] = {
673 		[ C(RESULT_ACCESS) ] = 0x0,
674 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
675 	},
676  },
677  [ C(L1I ) ] = {
678 	[ C(OP_READ) ] = {
679 		[ C(RESULT_ACCESS) ] = 0x0,
680 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
681 	},
682 	[ C(OP_WRITE) ] = {
683 		[ C(RESULT_ACCESS) ] = -1,
684 		[ C(RESULT_MISS)   ] = -1,
685 	},
686 	[ C(OP_PREFETCH) ] = {
687 		[ C(RESULT_ACCESS) ] = 0x0,
688 		[ C(RESULT_MISS)   ] = 0x0,
689 	},
690  },
691  [ C(LL  ) ] = {
692 	[ C(OP_READ) ] = {
693 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
694 		[ C(RESULT_ACCESS) ] = 0x01b7,
695 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
696 		[ C(RESULT_MISS)   ] = 0x01b7,
697 	},
698 	[ C(OP_WRITE) ] = {
699 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
700 		[ C(RESULT_ACCESS) ] = 0x01b7,
701 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
702 		[ C(RESULT_MISS)   ] = 0x01b7,
703 	},
704 	[ C(OP_PREFETCH) ] = {
705 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
706 		[ C(RESULT_ACCESS) ] = 0x01b7,
707 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
708 		[ C(RESULT_MISS)   ] = 0x01b7,
709 	},
710  },
711  [ C(DTLB) ] = {
712 	[ C(OP_READ) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
714 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
715 	},
716 	[ C(OP_WRITE) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
718 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
719 	},
720 	[ C(OP_PREFETCH) ] = {
721 		[ C(RESULT_ACCESS) ] = 0x0,
722 		[ C(RESULT_MISS)   ] = 0x0,
723 	},
724  },
725  [ C(ITLB) ] = {
726 	[ C(OP_READ) ] = {
727 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
728 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
729 	},
730 	[ C(OP_WRITE) ] = {
731 		[ C(RESULT_ACCESS) ] = -1,
732 		[ C(RESULT_MISS)   ] = -1,
733 	},
734 	[ C(OP_PREFETCH) ] = {
735 		[ C(RESULT_ACCESS) ] = -1,
736 		[ C(RESULT_MISS)   ] = -1,
737 	},
738  },
739  [ C(BPU ) ] = {
740 	[ C(OP_READ) ] = {
741 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
742 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
743 	},
744 	[ C(OP_WRITE) ] = {
745 		[ C(RESULT_ACCESS) ] = -1,
746 		[ C(RESULT_MISS)   ] = -1,
747 	},
748 	[ C(OP_PREFETCH) ] = {
749 		[ C(RESULT_ACCESS) ] = -1,
750 		[ C(RESULT_MISS)   ] = -1,
751 	},
752  },
753  [ C(NODE) ] = {
754 	[ C(OP_READ) ] = {
755 		[ C(RESULT_ACCESS) ] = 0x01b7,
756 		[ C(RESULT_MISS)   ] = 0x01b7,
757 	},
758 	[ C(OP_WRITE) ] = {
759 		[ C(RESULT_ACCESS) ] = 0x01b7,
760 		[ C(RESULT_MISS)   ] = 0x01b7,
761 	},
762 	[ C(OP_PREFETCH) ] = {
763 		[ C(RESULT_ACCESS) ] = 0x01b7,
764 		[ C(RESULT_MISS)   ] = 0x01b7,
765 	},
766  },
767 
768 };
769 
770 /*
771  * Notes on the events:
772  * - data reads do not include code reads (comparable to earlier tables)
773  * - data counts include speculative execution (except L1 write, dtlb, bpu)
774  * - remote node access includes remote memory, remote cache, remote mmio.
775  * - prefetches are not included in the counts because they are not
776  *   reliably counted.
777  */
778 
779 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
780 #define HSW_DEMAND_RFO			BIT_ULL(1)
781 #define HSW_ANY_RESPONSE		BIT_ULL(16)
782 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
783 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
784 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
785 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
786 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
787 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
788 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
789 					 HSW_L3_MISS_REMOTE_HOP2P)
790 #define HSW_SNOOP_NONE			BIT_ULL(31)
791 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
792 #define HSW_SNOOP_MISS			BIT_ULL(33)
793 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
794 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
795 #define HSW_SNOOP_HITM			BIT_ULL(36)
796 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
797 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
798 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
799 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
800 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
801 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
802 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
803 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
804 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
805 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
806 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
807 
808 #define BDW_L3_MISS_LOCAL		BIT(26)
809 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
810 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
811 					 HSW_L3_MISS_REMOTE_HOP2P)
812 
813 
814 static __initconst const u64 hsw_hw_cache_event_ids
815 				[PERF_COUNT_HW_CACHE_MAX]
816 				[PERF_COUNT_HW_CACHE_OP_MAX]
817 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
818 {
819  [ C(L1D ) ] = {
820 	[ C(OP_READ) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
822 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
823 	},
824 	[ C(OP_WRITE) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
826 		[ C(RESULT_MISS)   ] = 0x0,
827 	},
828 	[ C(OP_PREFETCH) ] = {
829 		[ C(RESULT_ACCESS) ] = 0x0,
830 		[ C(RESULT_MISS)   ] = 0x0,
831 	},
832  },
833  [ C(L1I ) ] = {
834 	[ C(OP_READ) ] = {
835 		[ C(RESULT_ACCESS) ] = 0x0,
836 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
837 	},
838 	[ C(OP_WRITE) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842 	[ C(OP_PREFETCH) ] = {
843 		[ C(RESULT_ACCESS) ] = 0x0,
844 		[ C(RESULT_MISS)   ] = 0x0,
845 	},
846  },
847  [ C(LL  ) ] = {
848 	[ C(OP_READ) ] = {
849 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
850 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
851 	},
852 	[ C(OP_WRITE) ] = {
853 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
854 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
855 	},
856 	[ C(OP_PREFETCH) ] = {
857 		[ C(RESULT_ACCESS) ] = 0x0,
858 		[ C(RESULT_MISS)   ] = 0x0,
859 	},
860  },
861  [ C(DTLB) ] = {
862 	[ C(OP_READ) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
864 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
865 	},
866 	[ C(OP_WRITE) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
868 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
869 	},
870 	[ C(OP_PREFETCH) ] = {
871 		[ C(RESULT_ACCESS) ] = 0x0,
872 		[ C(RESULT_MISS)   ] = 0x0,
873 	},
874  },
875  [ C(ITLB) ] = {
876 	[ C(OP_READ) ] = {
877 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
878 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
879 	},
880 	[ C(OP_WRITE) ] = {
881 		[ C(RESULT_ACCESS) ] = -1,
882 		[ C(RESULT_MISS)   ] = -1,
883 	},
884 	[ C(OP_PREFETCH) ] = {
885 		[ C(RESULT_ACCESS) ] = -1,
886 		[ C(RESULT_MISS)   ] = -1,
887 	},
888  },
889  [ C(BPU ) ] = {
890 	[ C(OP_READ) ] = {
891 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
892 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
893 	},
894 	[ C(OP_WRITE) ] = {
895 		[ C(RESULT_ACCESS) ] = -1,
896 		[ C(RESULT_MISS)   ] = -1,
897 	},
898 	[ C(OP_PREFETCH) ] = {
899 		[ C(RESULT_ACCESS) ] = -1,
900 		[ C(RESULT_MISS)   ] = -1,
901 	},
902  },
903  [ C(NODE) ] = {
904 	[ C(OP_READ) ] = {
905 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
906 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
907 	},
908 	[ C(OP_WRITE) ] = {
909 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
910 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
911 	},
912 	[ C(OP_PREFETCH) ] = {
913 		[ C(RESULT_ACCESS) ] = 0x0,
914 		[ C(RESULT_MISS)   ] = 0x0,
915 	},
916  },
917 };
918 
919 static __initconst const u64 hsw_hw_cache_extra_regs
920 				[PERF_COUNT_HW_CACHE_MAX]
921 				[PERF_COUNT_HW_CACHE_OP_MAX]
922 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
923 {
924  [ C(LL  ) ] = {
925 	[ C(OP_READ) ] = {
926 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
927 				       HSW_LLC_ACCESS,
928 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
929 				       HSW_L3_MISS|HSW_ANY_SNOOP,
930 	},
931 	[ C(OP_WRITE) ] = {
932 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
933 				       HSW_LLC_ACCESS,
934 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
935 				       HSW_L3_MISS|HSW_ANY_SNOOP,
936 	},
937 	[ C(OP_PREFETCH) ] = {
938 		[ C(RESULT_ACCESS) ] = 0x0,
939 		[ C(RESULT_MISS)   ] = 0x0,
940 	},
941  },
942  [ C(NODE) ] = {
943 	[ C(OP_READ) ] = {
944 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
945 				       HSW_L3_MISS_LOCAL_DRAM|
946 				       HSW_SNOOP_DRAM,
947 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
948 				       HSW_L3_MISS_REMOTE|
949 				       HSW_SNOOP_DRAM,
950 	},
951 	[ C(OP_WRITE) ] = {
952 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
953 				       HSW_L3_MISS_LOCAL_DRAM|
954 				       HSW_SNOOP_DRAM,
955 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
956 				       HSW_L3_MISS_REMOTE|
957 				       HSW_SNOOP_DRAM,
958 	},
959 	[ C(OP_PREFETCH) ] = {
960 		[ C(RESULT_ACCESS) ] = 0x0,
961 		[ C(RESULT_MISS)   ] = 0x0,
962 	},
963  },
964 };
965 
966 static __initconst const u64 westmere_hw_cache_event_ids
967 				[PERF_COUNT_HW_CACHE_MAX]
968 				[PERF_COUNT_HW_CACHE_OP_MAX]
969 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
970 {
971  [ C(L1D) ] = {
972 	[ C(OP_READ) ] = {
973 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
974 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
975 	},
976 	[ C(OP_WRITE) ] = {
977 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
978 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
979 	},
980 	[ C(OP_PREFETCH) ] = {
981 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
982 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
983 	},
984  },
985  [ C(L1I ) ] = {
986 	[ C(OP_READ) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
988 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
989 	},
990 	[ C(OP_WRITE) ] = {
991 		[ C(RESULT_ACCESS) ] = -1,
992 		[ C(RESULT_MISS)   ] = -1,
993 	},
994 	[ C(OP_PREFETCH) ] = {
995 		[ C(RESULT_ACCESS) ] = 0x0,
996 		[ C(RESULT_MISS)   ] = 0x0,
997 	},
998  },
999  [ C(LL  ) ] = {
1000 	[ C(OP_READ) ] = {
1001 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1002 		[ C(RESULT_ACCESS) ] = 0x01b7,
1003 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1004 		[ C(RESULT_MISS)   ] = 0x01b7,
1005 	},
1006 	/*
1007 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1008 	 * on RFO.
1009 	 */
1010 	[ C(OP_WRITE) ] = {
1011 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1012 		[ C(RESULT_ACCESS) ] = 0x01b7,
1013 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1014 		[ C(RESULT_MISS)   ] = 0x01b7,
1015 	},
1016 	[ C(OP_PREFETCH) ] = {
1017 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1018 		[ C(RESULT_ACCESS) ] = 0x01b7,
1019 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1020 		[ C(RESULT_MISS)   ] = 0x01b7,
1021 	},
1022  },
1023  [ C(DTLB) ] = {
1024 	[ C(OP_READ) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1026 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1027 	},
1028 	[ C(OP_WRITE) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1030 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1031 	},
1032 	[ C(OP_PREFETCH) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x0,
1034 		[ C(RESULT_MISS)   ] = 0x0,
1035 	},
1036  },
1037  [ C(ITLB) ] = {
1038 	[ C(OP_READ) ] = {
1039 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1040 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1041 	},
1042 	[ C(OP_WRITE) ] = {
1043 		[ C(RESULT_ACCESS) ] = -1,
1044 		[ C(RESULT_MISS)   ] = -1,
1045 	},
1046 	[ C(OP_PREFETCH) ] = {
1047 		[ C(RESULT_ACCESS) ] = -1,
1048 		[ C(RESULT_MISS)   ] = -1,
1049 	},
1050  },
1051  [ C(BPU ) ] = {
1052 	[ C(OP_READ) ] = {
1053 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1054 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1055 	},
1056 	[ C(OP_WRITE) ] = {
1057 		[ C(RESULT_ACCESS) ] = -1,
1058 		[ C(RESULT_MISS)   ] = -1,
1059 	},
1060 	[ C(OP_PREFETCH) ] = {
1061 		[ C(RESULT_ACCESS) ] = -1,
1062 		[ C(RESULT_MISS)   ] = -1,
1063 	},
1064  },
1065  [ C(NODE) ] = {
1066 	[ C(OP_READ) ] = {
1067 		[ C(RESULT_ACCESS) ] = 0x01b7,
1068 		[ C(RESULT_MISS)   ] = 0x01b7,
1069 	},
1070 	[ C(OP_WRITE) ] = {
1071 		[ C(RESULT_ACCESS) ] = 0x01b7,
1072 		[ C(RESULT_MISS)   ] = 0x01b7,
1073 	},
1074 	[ C(OP_PREFETCH) ] = {
1075 		[ C(RESULT_ACCESS) ] = 0x01b7,
1076 		[ C(RESULT_MISS)   ] = 0x01b7,
1077 	},
1078  },
1079 };
1080 
1081 /*
1082  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1083  * See IA32 SDM Vol 3B 30.6.1.3
1084  */
1085 
1086 #define NHM_DMND_DATA_RD	(1 << 0)
1087 #define NHM_DMND_RFO		(1 << 1)
1088 #define NHM_DMND_IFETCH		(1 << 2)
1089 #define NHM_DMND_WB		(1 << 3)
1090 #define NHM_PF_DATA_RD		(1 << 4)
1091 #define NHM_PF_DATA_RFO		(1 << 5)
1092 #define NHM_PF_IFETCH		(1 << 6)
1093 #define NHM_OFFCORE_OTHER	(1 << 7)
1094 #define NHM_UNCORE_HIT		(1 << 8)
1095 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1096 #define NHM_OTHER_CORE_HITM	(1 << 10)
1097         			/* reserved */
1098 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1099 #define NHM_REMOTE_DRAM		(1 << 13)
1100 #define NHM_LOCAL_DRAM		(1 << 14)
1101 #define NHM_NON_DRAM		(1 << 15)
1102 
1103 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1104 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1105 
1106 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1107 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1108 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1109 
1110 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1111 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1112 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1113 
1114 static __initconst const u64 nehalem_hw_cache_extra_regs
1115 				[PERF_COUNT_HW_CACHE_MAX]
1116 				[PERF_COUNT_HW_CACHE_OP_MAX]
1117 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1118 {
1119  [ C(LL  ) ] = {
1120 	[ C(OP_READ) ] = {
1121 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1122 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1123 	},
1124 	[ C(OP_WRITE) ] = {
1125 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1126 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1127 	},
1128 	[ C(OP_PREFETCH) ] = {
1129 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1130 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1131 	},
1132  },
1133  [ C(NODE) ] = {
1134 	[ C(OP_READ) ] = {
1135 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1136 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1137 	},
1138 	[ C(OP_WRITE) ] = {
1139 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1140 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1141 	},
1142 	[ C(OP_PREFETCH) ] = {
1143 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1144 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1145 	},
1146  },
1147 };
1148 
1149 static __initconst const u64 nehalem_hw_cache_event_ids
1150 				[PERF_COUNT_HW_CACHE_MAX]
1151 				[PERF_COUNT_HW_CACHE_OP_MAX]
1152 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1153 {
1154  [ C(L1D) ] = {
1155 	[ C(OP_READ) ] = {
1156 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1157 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1158 	},
1159 	[ C(OP_WRITE) ] = {
1160 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1161 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1162 	},
1163 	[ C(OP_PREFETCH) ] = {
1164 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1165 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1166 	},
1167  },
1168  [ C(L1I ) ] = {
1169 	[ C(OP_READ) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1171 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1172 	},
1173 	[ C(OP_WRITE) ] = {
1174 		[ C(RESULT_ACCESS) ] = -1,
1175 		[ C(RESULT_MISS)   ] = -1,
1176 	},
1177 	[ C(OP_PREFETCH) ] = {
1178 		[ C(RESULT_ACCESS) ] = 0x0,
1179 		[ C(RESULT_MISS)   ] = 0x0,
1180 	},
1181  },
1182  [ C(LL  ) ] = {
1183 	[ C(OP_READ) ] = {
1184 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1185 		[ C(RESULT_ACCESS) ] = 0x01b7,
1186 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1187 		[ C(RESULT_MISS)   ] = 0x01b7,
1188 	},
1189 	/*
1190 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1191 	 * on RFO.
1192 	 */
1193 	[ C(OP_WRITE) ] = {
1194 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1195 		[ C(RESULT_ACCESS) ] = 0x01b7,
1196 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1197 		[ C(RESULT_MISS)   ] = 0x01b7,
1198 	},
1199 	[ C(OP_PREFETCH) ] = {
1200 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1201 		[ C(RESULT_ACCESS) ] = 0x01b7,
1202 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1203 		[ C(RESULT_MISS)   ] = 0x01b7,
1204 	},
1205  },
1206  [ C(DTLB) ] = {
1207 	[ C(OP_READ) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1209 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1210 	},
1211 	[ C(OP_WRITE) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1213 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1214 	},
1215 	[ C(OP_PREFETCH) ] = {
1216 		[ C(RESULT_ACCESS) ] = 0x0,
1217 		[ C(RESULT_MISS)   ] = 0x0,
1218 	},
1219  },
1220  [ C(ITLB) ] = {
1221 	[ C(OP_READ) ] = {
1222 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1223 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1224 	},
1225 	[ C(OP_WRITE) ] = {
1226 		[ C(RESULT_ACCESS) ] = -1,
1227 		[ C(RESULT_MISS)   ] = -1,
1228 	},
1229 	[ C(OP_PREFETCH) ] = {
1230 		[ C(RESULT_ACCESS) ] = -1,
1231 		[ C(RESULT_MISS)   ] = -1,
1232 	},
1233  },
1234  [ C(BPU ) ] = {
1235 	[ C(OP_READ) ] = {
1236 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1237 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1238 	},
1239 	[ C(OP_WRITE) ] = {
1240 		[ C(RESULT_ACCESS) ] = -1,
1241 		[ C(RESULT_MISS)   ] = -1,
1242 	},
1243 	[ C(OP_PREFETCH) ] = {
1244 		[ C(RESULT_ACCESS) ] = -1,
1245 		[ C(RESULT_MISS)   ] = -1,
1246 	},
1247  },
1248  [ C(NODE) ] = {
1249 	[ C(OP_READ) ] = {
1250 		[ C(RESULT_ACCESS) ] = 0x01b7,
1251 		[ C(RESULT_MISS)   ] = 0x01b7,
1252 	},
1253 	[ C(OP_WRITE) ] = {
1254 		[ C(RESULT_ACCESS) ] = 0x01b7,
1255 		[ C(RESULT_MISS)   ] = 0x01b7,
1256 	},
1257 	[ C(OP_PREFETCH) ] = {
1258 		[ C(RESULT_ACCESS) ] = 0x01b7,
1259 		[ C(RESULT_MISS)   ] = 0x01b7,
1260 	},
1261  },
1262 };
1263 
1264 static __initconst const u64 core2_hw_cache_event_ids
1265 				[PERF_COUNT_HW_CACHE_MAX]
1266 				[PERF_COUNT_HW_CACHE_OP_MAX]
1267 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1268 {
1269  [ C(L1D) ] = {
1270 	[ C(OP_READ) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1272 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1273 	},
1274 	[ C(OP_WRITE) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1276 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1277 	},
1278 	[ C(OP_PREFETCH) ] = {
1279 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1280 		[ C(RESULT_MISS)   ] = 0,
1281 	},
1282  },
1283  [ C(L1I ) ] = {
1284 	[ C(OP_READ) ] = {
1285 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1286 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1287 	},
1288 	[ C(OP_WRITE) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292 	[ C(OP_PREFETCH) ] = {
1293 		[ C(RESULT_ACCESS) ] = 0,
1294 		[ C(RESULT_MISS)   ] = 0,
1295 	},
1296  },
1297  [ C(LL  ) ] = {
1298 	[ C(OP_READ) ] = {
1299 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1300 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1301 	},
1302 	[ C(OP_WRITE) ] = {
1303 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1304 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1305 	},
1306 	[ C(OP_PREFETCH) ] = {
1307 		[ C(RESULT_ACCESS) ] = 0,
1308 		[ C(RESULT_MISS)   ] = 0,
1309 	},
1310  },
1311  [ C(DTLB) ] = {
1312 	[ C(OP_READ) ] = {
1313 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1314 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1315 	},
1316 	[ C(OP_WRITE) ] = {
1317 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1318 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1319 	},
1320 	[ C(OP_PREFETCH) ] = {
1321 		[ C(RESULT_ACCESS) ] = 0,
1322 		[ C(RESULT_MISS)   ] = 0,
1323 	},
1324  },
1325  [ C(ITLB) ] = {
1326 	[ C(OP_READ) ] = {
1327 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1328 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1329 	},
1330 	[ C(OP_WRITE) ] = {
1331 		[ C(RESULT_ACCESS) ] = -1,
1332 		[ C(RESULT_MISS)   ] = -1,
1333 	},
1334 	[ C(OP_PREFETCH) ] = {
1335 		[ C(RESULT_ACCESS) ] = -1,
1336 		[ C(RESULT_MISS)   ] = -1,
1337 	},
1338  },
1339  [ C(BPU ) ] = {
1340 	[ C(OP_READ) ] = {
1341 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1342 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1343 	},
1344 	[ C(OP_WRITE) ] = {
1345 		[ C(RESULT_ACCESS) ] = -1,
1346 		[ C(RESULT_MISS)   ] = -1,
1347 	},
1348 	[ C(OP_PREFETCH) ] = {
1349 		[ C(RESULT_ACCESS) ] = -1,
1350 		[ C(RESULT_MISS)   ] = -1,
1351 	},
1352  },
1353 };
1354 
1355 static __initconst const u64 atom_hw_cache_event_ids
1356 				[PERF_COUNT_HW_CACHE_MAX]
1357 				[PERF_COUNT_HW_CACHE_OP_MAX]
1358 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1359 {
1360  [ C(L1D) ] = {
1361 	[ C(OP_READ) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1363 		[ C(RESULT_MISS)   ] = 0,
1364 	},
1365 	[ C(OP_WRITE) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1367 		[ C(RESULT_MISS)   ] = 0,
1368 	},
1369 	[ C(OP_PREFETCH) ] = {
1370 		[ C(RESULT_ACCESS) ] = 0x0,
1371 		[ C(RESULT_MISS)   ] = 0,
1372 	},
1373  },
1374  [ C(L1I ) ] = {
1375 	[ C(OP_READ) ] = {
1376 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1377 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1378 	},
1379 	[ C(OP_WRITE) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383 	[ C(OP_PREFETCH) ] = {
1384 		[ C(RESULT_ACCESS) ] = 0,
1385 		[ C(RESULT_MISS)   ] = 0,
1386 	},
1387  },
1388  [ C(LL  ) ] = {
1389 	[ C(OP_READ) ] = {
1390 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1391 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1392 	},
1393 	[ C(OP_WRITE) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1395 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1396 	},
1397 	[ C(OP_PREFETCH) ] = {
1398 		[ C(RESULT_ACCESS) ] = 0,
1399 		[ C(RESULT_MISS)   ] = 0,
1400 	},
1401  },
1402  [ C(DTLB) ] = {
1403 	[ C(OP_READ) ] = {
1404 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1405 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1406 	},
1407 	[ C(OP_WRITE) ] = {
1408 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1409 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1410 	},
1411 	[ C(OP_PREFETCH) ] = {
1412 		[ C(RESULT_ACCESS) ] = 0,
1413 		[ C(RESULT_MISS)   ] = 0,
1414 	},
1415  },
1416  [ C(ITLB) ] = {
1417 	[ C(OP_READ) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1419 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1420 	},
1421 	[ C(OP_WRITE) ] = {
1422 		[ C(RESULT_ACCESS) ] = -1,
1423 		[ C(RESULT_MISS)   ] = -1,
1424 	},
1425 	[ C(OP_PREFETCH) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429  },
1430  [ C(BPU ) ] = {
1431 	[ C(OP_READ) ] = {
1432 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1433 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1434 	},
1435 	[ C(OP_WRITE) ] = {
1436 		[ C(RESULT_ACCESS) ] = -1,
1437 		[ C(RESULT_MISS)   ] = -1,
1438 	},
1439 	[ C(OP_PREFETCH) ] = {
1440 		[ C(RESULT_ACCESS) ] = -1,
1441 		[ C(RESULT_MISS)   ] = -1,
1442 	},
1443  },
1444 };
1445 
1446 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1447 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1448 /* no_alloc_cycles.not_delivered */
1449 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1450 	       "event=0xca,umask=0x50");
1451 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1452 /* uops_retired.all */
1453 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1454 	       "event=0xc2,umask=0x10");
1455 /* uops_retired.all */
1456 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1457 	       "event=0xc2,umask=0x10");
1458 
1459 static struct attribute *slm_events_attrs[] = {
1460 	EVENT_PTR(td_total_slots_slm),
1461 	EVENT_PTR(td_total_slots_scale_slm),
1462 	EVENT_PTR(td_fetch_bubbles_slm),
1463 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1464 	EVENT_PTR(td_slots_issued_slm),
1465 	EVENT_PTR(td_slots_retired_slm),
1466 	NULL
1467 };
1468 
1469 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1470 {
1471 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1472 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1473 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1474 	EVENT_EXTRA_END
1475 };
1476 
1477 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1478 #define SLM_DMND_WRITE		SNB_DMND_RFO
1479 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1480 
1481 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1482 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1483 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1484 
1485 static __initconst const u64 slm_hw_cache_extra_regs
1486 				[PERF_COUNT_HW_CACHE_MAX]
1487 				[PERF_COUNT_HW_CACHE_OP_MAX]
1488 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1489 {
1490  [ C(LL  ) ] = {
1491 	[ C(OP_READ) ] = {
1492 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1493 		[ C(RESULT_MISS)   ] = 0,
1494 	},
1495 	[ C(OP_WRITE) ] = {
1496 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1497 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1498 	},
1499 	[ C(OP_PREFETCH) ] = {
1500 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1501 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1502 	},
1503  },
1504 };
1505 
1506 static __initconst const u64 slm_hw_cache_event_ids
1507 				[PERF_COUNT_HW_CACHE_MAX]
1508 				[PERF_COUNT_HW_CACHE_OP_MAX]
1509 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1510 {
1511  [ C(L1D) ] = {
1512 	[ C(OP_READ) ] = {
1513 		[ C(RESULT_ACCESS) ] = 0,
1514 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1515 	},
1516 	[ C(OP_WRITE) ] = {
1517 		[ C(RESULT_ACCESS) ] = 0,
1518 		[ C(RESULT_MISS)   ] = 0,
1519 	},
1520 	[ C(OP_PREFETCH) ] = {
1521 		[ C(RESULT_ACCESS) ] = 0,
1522 		[ C(RESULT_MISS)   ] = 0,
1523 	},
1524  },
1525  [ C(L1I ) ] = {
1526 	[ C(OP_READ) ] = {
1527 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1528 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1529 	},
1530 	[ C(OP_WRITE) ] = {
1531 		[ C(RESULT_ACCESS) ] = -1,
1532 		[ C(RESULT_MISS)   ] = -1,
1533 	},
1534 	[ C(OP_PREFETCH) ] = {
1535 		[ C(RESULT_ACCESS) ] = 0,
1536 		[ C(RESULT_MISS)   ] = 0,
1537 	},
1538  },
1539  [ C(LL  ) ] = {
1540 	[ C(OP_READ) ] = {
1541 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1542 		[ C(RESULT_ACCESS) ] = 0x01b7,
1543 		[ C(RESULT_MISS)   ] = 0,
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1547 		[ C(RESULT_ACCESS) ] = 0x01b7,
1548 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1549 		[ C(RESULT_MISS)   ] = 0x01b7,
1550 	},
1551 	[ C(OP_PREFETCH) ] = {
1552 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1553 		[ C(RESULT_ACCESS) ] = 0x01b7,
1554 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1555 		[ C(RESULT_MISS)   ] = 0x01b7,
1556 	},
1557  },
1558  [ C(DTLB) ] = {
1559 	[ C(OP_READ) ] = {
1560 		[ C(RESULT_ACCESS) ] = 0,
1561 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1562 	},
1563 	[ C(OP_WRITE) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0,
1565 		[ C(RESULT_MISS)   ] = 0,
1566 	},
1567 	[ C(OP_PREFETCH) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0,
1569 		[ C(RESULT_MISS)   ] = 0,
1570 	},
1571  },
1572  [ C(ITLB) ] = {
1573 	[ C(OP_READ) ] = {
1574 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1575 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1576 	},
1577 	[ C(OP_WRITE) ] = {
1578 		[ C(RESULT_ACCESS) ] = -1,
1579 		[ C(RESULT_MISS)   ] = -1,
1580 	},
1581 	[ C(OP_PREFETCH) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585  },
1586  [ C(BPU ) ] = {
1587 	[ C(OP_READ) ] = {
1588 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1589 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1590 	},
1591 	[ C(OP_WRITE) ] = {
1592 		[ C(RESULT_ACCESS) ] = -1,
1593 		[ C(RESULT_MISS)   ] = -1,
1594 	},
1595 	[ C(OP_PREFETCH) ] = {
1596 		[ C(RESULT_ACCESS) ] = -1,
1597 		[ C(RESULT_MISS)   ] = -1,
1598 	},
1599  },
1600 };
1601 
1602 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1603 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1604 /* UOPS_NOT_DELIVERED.ANY */
1605 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1606 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1607 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1608 /* UOPS_RETIRED.ANY */
1609 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1610 /* UOPS_ISSUED.ANY */
1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1612 
1613 static struct attribute *glm_events_attrs[] = {
1614 	EVENT_PTR(td_total_slots_glm),
1615 	EVENT_PTR(td_total_slots_scale_glm),
1616 	EVENT_PTR(td_fetch_bubbles_glm),
1617 	EVENT_PTR(td_recovery_bubbles_glm),
1618 	EVENT_PTR(td_slots_issued_glm),
1619 	EVENT_PTR(td_slots_retired_glm),
1620 	NULL
1621 };
1622 
1623 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1624 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1625 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1626 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1627 	EVENT_EXTRA_END
1628 };
1629 
1630 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1631 #define GLM_DEMAND_RFO			BIT_ULL(1)
1632 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1633 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1634 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1635 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1636 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1637 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1638 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1639 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1640 
1641 static __initconst const u64 glm_hw_cache_event_ids
1642 				[PERF_COUNT_HW_CACHE_MAX]
1643 				[PERF_COUNT_HW_CACHE_OP_MAX]
1644 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1645 	[C(L1D)] = {
1646 		[C(OP_READ)] = {
1647 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1648 			[C(RESULT_MISS)]	= 0x0,
1649 		},
1650 		[C(OP_WRITE)] = {
1651 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1652 			[C(RESULT_MISS)]	= 0x0,
1653 		},
1654 		[C(OP_PREFETCH)] = {
1655 			[C(RESULT_ACCESS)]	= 0x0,
1656 			[C(RESULT_MISS)]	= 0x0,
1657 		},
1658 	},
1659 	[C(L1I)] = {
1660 		[C(OP_READ)] = {
1661 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1662 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1663 		},
1664 		[C(OP_WRITE)] = {
1665 			[C(RESULT_ACCESS)]	= -1,
1666 			[C(RESULT_MISS)]	= -1,
1667 		},
1668 		[C(OP_PREFETCH)] = {
1669 			[C(RESULT_ACCESS)]	= 0x0,
1670 			[C(RESULT_MISS)]	= 0x0,
1671 		},
1672 	},
1673 	[C(LL)] = {
1674 		[C(OP_READ)] = {
1675 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1676 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1677 		},
1678 		[C(OP_WRITE)] = {
1679 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1680 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1681 		},
1682 		[C(OP_PREFETCH)] = {
1683 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1684 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1685 		},
1686 	},
1687 	[C(DTLB)] = {
1688 		[C(OP_READ)] = {
1689 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1690 			[C(RESULT_MISS)]	= 0x0,
1691 		},
1692 		[C(OP_WRITE)] = {
1693 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1694 			[C(RESULT_MISS)]	= 0x0,
1695 		},
1696 		[C(OP_PREFETCH)] = {
1697 			[C(RESULT_ACCESS)]	= 0x0,
1698 			[C(RESULT_MISS)]	= 0x0,
1699 		},
1700 	},
1701 	[C(ITLB)] = {
1702 		[C(OP_READ)] = {
1703 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1704 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1705 		},
1706 		[C(OP_WRITE)] = {
1707 			[C(RESULT_ACCESS)]	= -1,
1708 			[C(RESULT_MISS)]	= -1,
1709 		},
1710 		[C(OP_PREFETCH)] = {
1711 			[C(RESULT_ACCESS)]	= -1,
1712 			[C(RESULT_MISS)]	= -1,
1713 		},
1714 	},
1715 	[C(BPU)] = {
1716 		[C(OP_READ)] = {
1717 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1718 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1719 		},
1720 		[C(OP_WRITE)] = {
1721 			[C(RESULT_ACCESS)]	= -1,
1722 			[C(RESULT_MISS)]	= -1,
1723 		},
1724 		[C(OP_PREFETCH)] = {
1725 			[C(RESULT_ACCESS)]	= -1,
1726 			[C(RESULT_MISS)]	= -1,
1727 		},
1728 	},
1729 };
1730 
1731 static __initconst const u64 glm_hw_cache_extra_regs
1732 				[PERF_COUNT_HW_CACHE_MAX]
1733 				[PERF_COUNT_HW_CACHE_OP_MAX]
1734 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1735 	[C(LL)] = {
1736 		[C(OP_READ)] = {
1737 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1738 						  GLM_LLC_ACCESS,
1739 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1740 						  GLM_LLC_MISS,
1741 		},
1742 		[C(OP_WRITE)] = {
1743 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1744 						  GLM_LLC_ACCESS,
1745 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1746 						  GLM_LLC_MISS,
1747 		},
1748 		[C(OP_PREFETCH)] = {
1749 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1750 						  GLM_LLC_ACCESS,
1751 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1752 						  GLM_LLC_MISS,
1753 		},
1754 	},
1755 };
1756 
1757 static __initconst const u64 glp_hw_cache_event_ids
1758 				[PERF_COUNT_HW_CACHE_MAX]
1759 				[PERF_COUNT_HW_CACHE_OP_MAX]
1760 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1761 	[C(L1D)] = {
1762 		[C(OP_READ)] = {
1763 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1764 			[C(RESULT_MISS)]	= 0x0,
1765 		},
1766 		[C(OP_WRITE)] = {
1767 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1768 			[C(RESULT_MISS)]	= 0x0,
1769 		},
1770 		[C(OP_PREFETCH)] = {
1771 			[C(RESULT_ACCESS)]	= 0x0,
1772 			[C(RESULT_MISS)]	= 0x0,
1773 		},
1774 	},
1775 	[C(L1I)] = {
1776 		[C(OP_READ)] = {
1777 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1778 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1779 		},
1780 		[C(OP_WRITE)] = {
1781 			[C(RESULT_ACCESS)]	= -1,
1782 			[C(RESULT_MISS)]	= -1,
1783 		},
1784 		[C(OP_PREFETCH)] = {
1785 			[C(RESULT_ACCESS)]	= 0x0,
1786 			[C(RESULT_MISS)]	= 0x0,
1787 		},
1788 	},
1789 	[C(LL)] = {
1790 		[C(OP_READ)] = {
1791 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1792 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1793 		},
1794 		[C(OP_WRITE)] = {
1795 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1796 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1797 		},
1798 		[C(OP_PREFETCH)] = {
1799 			[C(RESULT_ACCESS)]	= 0x0,
1800 			[C(RESULT_MISS)]	= 0x0,
1801 		},
1802 	},
1803 	[C(DTLB)] = {
1804 		[C(OP_READ)] = {
1805 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1806 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1807 		},
1808 		[C(OP_WRITE)] = {
1809 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1810 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1811 		},
1812 		[C(OP_PREFETCH)] = {
1813 			[C(RESULT_ACCESS)]	= 0x0,
1814 			[C(RESULT_MISS)]	= 0x0,
1815 		},
1816 	},
1817 	[C(ITLB)] = {
1818 		[C(OP_READ)] = {
1819 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1820 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1821 		},
1822 		[C(OP_WRITE)] = {
1823 			[C(RESULT_ACCESS)]	= -1,
1824 			[C(RESULT_MISS)]	= -1,
1825 		},
1826 		[C(OP_PREFETCH)] = {
1827 			[C(RESULT_ACCESS)]	= -1,
1828 			[C(RESULT_MISS)]	= -1,
1829 		},
1830 	},
1831 	[C(BPU)] = {
1832 		[C(OP_READ)] = {
1833 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1834 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1835 		},
1836 		[C(OP_WRITE)] = {
1837 			[C(RESULT_ACCESS)]	= -1,
1838 			[C(RESULT_MISS)]	= -1,
1839 		},
1840 		[C(OP_PREFETCH)] = {
1841 			[C(RESULT_ACCESS)]	= -1,
1842 			[C(RESULT_MISS)]	= -1,
1843 		},
1844 	},
1845 };
1846 
1847 static __initconst const u64 glp_hw_cache_extra_regs
1848 				[PERF_COUNT_HW_CACHE_MAX]
1849 				[PERF_COUNT_HW_CACHE_OP_MAX]
1850 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1851 	[C(LL)] = {
1852 		[C(OP_READ)] = {
1853 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1854 						  GLM_LLC_ACCESS,
1855 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1856 						  GLM_LLC_MISS,
1857 		},
1858 		[C(OP_WRITE)] = {
1859 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1860 						  GLM_LLC_ACCESS,
1861 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1862 						  GLM_LLC_MISS,
1863 		},
1864 		[C(OP_PREFETCH)] = {
1865 			[C(RESULT_ACCESS)]	= 0x0,
1866 			[C(RESULT_MISS)]	= 0x0,
1867 		},
1868 	},
1869 };
1870 
1871 #define TNT_LOCAL_DRAM			BIT_ULL(26)
1872 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
1873 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
1874 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
1875 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1876 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1877 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1878 
1879 static __initconst const u64 tnt_hw_cache_extra_regs
1880 				[PERF_COUNT_HW_CACHE_MAX]
1881 				[PERF_COUNT_HW_CACHE_OP_MAX]
1882 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1883 	[C(LL)] = {
1884 		[C(OP_READ)] = {
1885 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
1886 						  TNT_LLC_ACCESS,
1887 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
1888 						  TNT_LLC_MISS,
1889 		},
1890 		[C(OP_WRITE)] = {
1891 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
1892 						  TNT_LLC_ACCESS,
1893 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
1894 						  TNT_LLC_MISS,
1895 		},
1896 		[C(OP_PREFETCH)] = {
1897 			[C(RESULT_ACCESS)]	= 0x0,
1898 			[C(RESULT_MISS)]	= 0x0,
1899 		},
1900 	},
1901 };
1902 
1903 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1904 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1905 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1906 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1907 	EVENT_EXTRA_END
1908 };
1909 
1910 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1911 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1912 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1913 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1914 #define KNL_DDR_LOCAL		BIT_ULL(23)
1915 #define KNL_DDR_FAR		BIT_ULL(24)
1916 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1917 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1918 #define KNL_L2_READ		SLM_DMND_READ
1919 #define KNL_L2_WRITE		SLM_DMND_WRITE
1920 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1921 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1922 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1923 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1924 						  SNB_NON_DRAM)
1925 
1926 static __initconst const u64 knl_hw_cache_extra_regs
1927 				[PERF_COUNT_HW_CACHE_MAX]
1928 				[PERF_COUNT_HW_CACHE_OP_MAX]
1929 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1930 	[C(LL)] = {
1931 		[C(OP_READ)] = {
1932 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1933 			[C(RESULT_MISS)]   = 0,
1934 		},
1935 		[C(OP_WRITE)] = {
1936 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1937 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1938 		},
1939 		[C(OP_PREFETCH)] = {
1940 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1941 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1942 		},
1943 	},
1944 };
1945 
1946 /*
1947  * Used from PMIs where the LBRs are already disabled.
1948  *
1949  * This function could be called consecutively. It is required to remain in
1950  * disabled state if called consecutively.
1951  *
1952  * During consecutive calls, the same disable value will be written to related
1953  * registers, so the PMU state remains unchanged.
1954  *
1955  * intel_bts events don't coexist with intel PMU's BTS events because of
1956  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1957  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1958  *
1959  * Avoid PEBS_ENABLE MSR access in PMIs.
1960  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1961  * It doesn't matter if the PEBS is enabled or not.
1962  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1963  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1964  * However, there are some cases which may change PEBS status, e.g. PMI
1965  * throttle. The PEBS_ENABLE should be updated where the status changes.
1966  */
1967 static void __intel_pmu_disable_all(void)
1968 {
1969 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1970 
1971 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1972 
1973 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1974 		intel_pmu_disable_bts();
1975 }
1976 
1977 static void intel_pmu_disable_all(void)
1978 {
1979 	__intel_pmu_disable_all();
1980 	intel_pmu_pebs_disable_all();
1981 	intel_pmu_lbr_disable_all();
1982 }
1983 
1984 static void __intel_pmu_enable_all(int added, bool pmi)
1985 {
1986 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1987 
1988 	intel_pmu_lbr_enable_all(pmi);
1989 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1990 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1991 
1992 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1993 		struct perf_event *event =
1994 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1995 
1996 		if (WARN_ON_ONCE(!event))
1997 			return;
1998 
1999 		intel_pmu_enable_bts(event->hw.config);
2000 	}
2001 }
2002 
2003 static void intel_pmu_enable_all(int added)
2004 {
2005 	intel_pmu_pebs_enable_all();
2006 	__intel_pmu_enable_all(added, false);
2007 }
2008 
2009 /*
2010  * Workaround for:
2011  *   Intel Errata AAK100 (model 26)
2012  *   Intel Errata AAP53  (model 30)
2013  *   Intel Errata BD53   (model 44)
2014  *
2015  * The official story:
2016  *   These chips need to be 'reset' when adding counters by programming the
2017  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2018  *   in sequence on the same PMC or on different PMCs.
2019  *
2020  * In practise it appears some of these events do in fact count, and
2021  * we need to program all 4 events.
2022  */
2023 static void intel_pmu_nhm_workaround(void)
2024 {
2025 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2026 	static const unsigned long nhm_magic[4] = {
2027 		0x4300B5,
2028 		0x4300D2,
2029 		0x4300B1,
2030 		0x4300B1
2031 	};
2032 	struct perf_event *event;
2033 	int i;
2034 
2035 	/*
2036 	 * The Errata requires below steps:
2037 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2038 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2039 	 *    the corresponding PMCx;
2040 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2041 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2042 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2043 	 */
2044 
2045 	/*
2046 	 * The real steps we choose are a little different from above.
2047 	 * A) To reduce MSR operations, we don't run step 1) as they
2048 	 *    are already cleared before this function is called;
2049 	 * B) Call x86_perf_event_update to save PMCx before configuring
2050 	 *    PERFEVTSELx with magic number;
2051 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2052 	 *    not used currently.
2053 	 * D) Call x86_perf_event_set_period to restore PMCx;
2054 	 */
2055 
2056 	/* We always operate 4 pairs of PERF Counters */
2057 	for (i = 0; i < 4; i++) {
2058 		event = cpuc->events[i];
2059 		if (event)
2060 			x86_perf_event_update(event);
2061 	}
2062 
2063 	for (i = 0; i < 4; i++) {
2064 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2065 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2066 	}
2067 
2068 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2069 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2070 
2071 	for (i = 0; i < 4; i++) {
2072 		event = cpuc->events[i];
2073 
2074 		if (event) {
2075 			x86_perf_event_set_period(event);
2076 			__x86_pmu_enable_event(&event->hw,
2077 					ARCH_PERFMON_EVENTSEL_ENABLE);
2078 		} else
2079 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2080 	}
2081 }
2082 
2083 static void intel_pmu_nhm_enable_all(int added)
2084 {
2085 	if (added)
2086 		intel_pmu_nhm_workaround();
2087 	intel_pmu_enable_all(added);
2088 }
2089 
2090 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2091 {
2092 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2093 
2094 	if (cpuc->tfa_shadow != val) {
2095 		cpuc->tfa_shadow = val;
2096 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2097 	}
2098 }
2099 
2100 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2101 {
2102 	/*
2103 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2104 	 */
2105 	if (cntr == 3)
2106 		intel_set_tfa(cpuc, true);
2107 }
2108 
2109 static void intel_tfa_pmu_enable_all(int added)
2110 {
2111 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2112 
2113 	/*
2114 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2115 	 * clear TFA.
2116 	 */
2117 	if (!test_bit(3, cpuc->active_mask))
2118 		intel_set_tfa(cpuc, false);
2119 
2120 	intel_pmu_enable_all(added);
2121 }
2122 
2123 static void enable_counter_freeze(void)
2124 {
2125 	update_debugctlmsr(get_debugctlmsr() |
2126 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2127 }
2128 
2129 static void disable_counter_freeze(void)
2130 {
2131 	update_debugctlmsr(get_debugctlmsr() &
2132 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2133 }
2134 
2135 static inline u64 intel_pmu_get_status(void)
2136 {
2137 	u64 status;
2138 
2139 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2140 
2141 	return status;
2142 }
2143 
2144 static inline void intel_pmu_ack_status(u64 ack)
2145 {
2146 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2147 }
2148 
2149 static inline bool event_is_checkpointed(struct perf_event *event)
2150 {
2151 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2152 }
2153 
2154 static inline void intel_set_masks(struct perf_event *event, int idx)
2155 {
2156 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2157 
2158 	if (event->attr.exclude_host)
2159 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2160 	if (event->attr.exclude_guest)
2161 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2162 	if (event_is_checkpointed(event))
2163 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2164 }
2165 
2166 static inline void intel_clear_masks(struct perf_event *event, int idx)
2167 {
2168 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2169 
2170 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2171 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2172 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2173 }
2174 
2175 static void intel_pmu_disable_fixed(struct perf_event *event)
2176 {
2177 	struct hw_perf_event *hwc = &event->hw;
2178 	u64 ctrl_val, mask;
2179 	int idx = hwc->idx;
2180 
2181 	if (is_topdown_idx(idx)) {
2182 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2183 
2184 		/*
2185 		 * When there are other active TopDown events,
2186 		 * don't disable the fixed counter 3.
2187 		 */
2188 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2189 			return;
2190 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2191 	}
2192 
2193 	intel_clear_masks(event, idx);
2194 
2195 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2196 	rdmsrl(hwc->config_base, ctrl_val);
2197 	ctrl_val &= ~mask;
2198 	wrmsrl(hwc->config_base, ctrl_val);
2199 }
2200 
2201 static void intel_pmu_disable_event(struct perf_event *event)
2202 {
2203 	struct hw_perf_event *hwc = &event->hw;
2204 	int idx = hwc->idx;
2205 
2206 	switch (idx) {
2207 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2208 		intel_clear_masks(event, idx);
2209 		x86_pmu_disable_event(event);
2210 		break;
2211 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2212 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2213 		intel_pmu_disable_fixed(event);
2214 		break;
2215 	case INTEL_PMC_IDX_FIXED_BTS:
2216 		intel_pmu_disable_bts();
2217 		intel_pmu_drain_bts_buffer();
2218 		return;
2219 	case INTEL_PMC_IDX_FIXED_VLBR:
2220 		intel_clear_masks(event, idx);
2221 		break;
2222 	default:
2223 		intel_clear_masks(event, idx);
2224 		pr_warn("Failed to disable the event with invalid index %d\n",
2225 			idx);
2226 		return;
2227 	}
2228 
2229 	/*
2230 	 * Needs to be called after x86_pmu_disable_event,
2231 	 * so we don't trigger the event without PEBS bit set.
2232 	 */
2233 	if (unlikely(event->attr.precise_ip))
2234 		intel_pmu_pebs_disable(event);
2235 }
2236 
2237 static void intel_pmu_del_event(struct perf_event *event)
2238 {
2239 	if (needs_branch_stack(event))
2240 		intel_pmu_lbr_del(event);
2241 	if (event->attr.precise_ip)
2242 		intel_pmu_pebs_del(event);
2243 }
2244 
2245 static int icl_set_topdown_event_period(struct perf_event *event)
2246 {
2247 	struct hw_perf_event *hwc = &event->hw;
2248 	s64 left = local64_read(&hwc->period_left);
2249 
2250 	/*
2251 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2252 	 * Software should start both registers, PERF_METRICS and fixed
2253 	 * counter 3, from zero.
2254 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2255 	 * After that, both MSRs will be cleared for each read.
2256 	 * Don't need to clear them again.
2257 	 */
2258 	if (left == x86_pmu.max_period) {
2259 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2260 		wrmsrl(MSR_PERF_METRICS, 0);
2261 		hwc->saved_slots = 0;
2262 		hwc->saved_metric = 0;
2263 	}
2264 
2265 	if ((hwc->saved_slots) && is_slots_event(event)) {
2266 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2267 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2268 	}
2269 
2270 	perf_event_update_userpage(event);
2271 
2272 	return 0;
2273 }
2274 
2275 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2276 {
2277 	u32 val;
2278 
2279 	/*
2280 	 * The metric is reported as an 8bit integer fraction
2281 	 * suming up to 0xff.
2282 	 * slots-in-metric = (Metric / 0xff) * slots
2283 	 */
2284 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2285 	return  mul_u64_u32_div(slots, val, 0xff);
2286 }
2287 
2288 static u64 icl_get_topdown_value(struct perf_event *event,
2289 				       u64 slots, u64 metrics)
2290 {
2291 	int idx = event->hw.idx;
2292 	u64 delta;
2293 
2294 	if (is_metric_idx(idx))
2295 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2296 	else
2297 		delta = slots;
2298 
2299 	return delta;
2300 }
2301 
2302 static void __icl_update_topdown_event(struct perf_event *event,
2303 				       u64 slots, u64 metrics,
2304 				       u64 last_slots, u64 last_metrics)
2305 {
2306 	u64 delta, last = 0;
2307 
2308 	delta = icl_get_topdown_value(event, slots, metrics);
2309 	if (last_slots)
2310 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2311 
2312 	/*
2313 	 * The 8bit integer fraction of metric may be not accurate,
2314 	 * especially when the changes is very small.
2315 	 * For example, if only a few bad_spec happens, the fraction
2316 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2317 	 * will be 0 which is definitely less than the last value.
2318 	 * Avoid update event->count for this case.
2319 	 */
2320 	if (delta > last) {
2321 		delta -= last;
2322 		local64_add(delta, &event->count);
2323 	}
2324 }
2325 
2326 static void update_saved_topdown_regs(struct perf_event *event,
2327 				      u64 slots, u64 metrics)
2328 {
2329 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2330 	struct perf_event *other;
2331 	int idx;
2332 
2333 	event->hw.saved_slots = slots;
2334 	event->hw.saved_metric = metrics;
2335 
2336 	for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2337 		if (!is_topdown_idx(idx))
2338 			continue;
2339 		other = cpuc->events[idx];
2340 		other->hw.saved_slots = slots;
2341 		other->hw.saved_metric = metrics;
2342 	}
2343 }
2344 
2345 /*
2346  * Update all active Topdown events.
2347  *
2348  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2349  * modify by a NMI. PMU has to be disabled before calling this function.
2350  */
2351 static u64 icl_update_topdown_event(struct perf_event *event)
2352 {
2353 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2354 	struct perf_event *other;
2355 	u64 slots, metrics;
2356 	bool reset = true;
2357 	int idx;
2358 
2359 	/* read Fixed counter 3 */
2360 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2361 	if (!slots)
2362 		return 0;
2363 
2364 	/* read PERF_METRICS */
2365 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2366 
2367 	for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2368 		if (!is_topdown_idx(idx))
2369 			continue;
2370 		other = cpuc->events[idx];
2371 		__icl_update_topdown_event(other, slots, metrics,
2372 					   event ? event->hw.saved_slots : 0,
2373 					   event ? event->hw.saved_metric : 0);
2374 	}
2375 
2376 	/*
2377 	 * Check and update this event, which may have been cleared
2378 	 * in active_mask e.g. x86_pmu_stop()
2379 	 */
2380 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2381 		__icl_update_topdown_event(event, slots, metrics,
2382 					   event->hw.saved_slots,
2383 					   event->hw.saved_metric);
2384 
2385 		/*
2386 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2387 		 * then drain the delta, which indicates context switch for
2388 		 * counting.
2389 		 * Save metric and slots for context switch.
2390 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2391 		 * Because the values will be restored in next schedule in.
2392 		 */
2393 		update_saved_topdown_regs(event, slots, metrics);
2394 		reset = false;
2395 	}
2396 
2397 	if (reset) {
2398 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2399 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2400 		wrmsrl(MSR_PERF_METRICS, 0);
2401 		if (event)
2402 			update_saved_topdown_regs(event, 0, 0);
2403 	}
2404 
2405 	return slots;
2406 }
2407 
2408 static void intel_pmu_read_topdown_event(struct perf_event *event)
2409 {
2410 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2411 
2412 	/* Only need to call update_topdown_event() once for group read. */
2413 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2414 	    !is_slots_event(event))
2415 		return;
2416 
2417 	perf_pmu_disable(event->pmu);
2418 	x86_pmu.update_topdown_event(event);
2419 	perf_pmu_enable(event->pmu);
2420 }
2421 
2422 static void intel_pmu_read_event(struct perf_event *event)
2423 {
2424 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2425 		intel_pmu_auto_reload_read(event);
2426 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2427 		intel_pmu_read_topdown_event(event);
2428 	else
2429 		x86_perf_event_update(event);
2430 }
2431 
2432 static void intel_pmu_enable_fixed(struct perf_event *event)
2433 {
2434 	struct hw_perf_event *hwc = &event->hw;
2435 	u64 ctrl_val, mask, bits = 0;
2436 	int idx = hwc->idx;
2437 
2438 	if (is_topdown_idx(idx)) {
2439 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2440 		/*
2441 		 * When there are other active TopDown events,
2442 		 * don't enable the fixed counter 3 again.
2443 		 */
2444 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2445 			return;
2446 
2447 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2448 	}
2449 
2450 	intel_set_masks(event, idx);
2451 
2452 	/*
2453 	 * Enable IRQ generation (0x8), if not PEBS,
2454 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2455 	 * if requested:
2456 	 */
2457 	if (!event->attr.precise_ip)
2458 		bits |= 0x8;
2459 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2460 		bits |= 0x2;
2461 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2462 		bits |= 0x1;
2463 
2464 	/*
2465 	 * ANY bit is supported in v3 and up
2466 	 */
2467 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2468 		bits |= 0x4;
2469 
2470 	idx -= INTEL_PMC_IDX_FIXED;
2471 	bits <<= (idx * 4);
2472 	mask = 0xfULL << (idx * 4);
2473 
2474 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2475 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2476 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2477 	}
2478 
2479 	rdmsrl(hwc->config_base, ctrl_val);
2480 	ctrl_val &= ~mask;
2481 	ctrl_val |= bits;
2482 	wrmsrl(hwc->config_base, ctrl_val);
2483 }
2484 
2485 static void intel_pmu_enable_event(struct perf_event *event)
2486 {
2487 	struct hw_perf_event *hwc = &event->hw;
2488 	int idx = hwc->idx;
2489 
2490 	if (unlikely(event->attr.precise_ip))
2491 		intel_pmu_pebs_enable(event);
2492 
2493 	switch (idx) {
2494 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2495 		intel_set_masks(event, idx);
2496 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2497 		break;
2498 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2499 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2500 		intel_pmu_enable_fixed(event);
2501 		break;
2502 	case INTEL_PMC_IDX_FIXED_BTS:
2503 		if (!__this_cpu_read(cpu_hw_events.enabled))
2504 			return;
2505 		intel_pmu_enable_bts(hwc->config);
2506 		break;
2507 	case INTEL_PMC_IDX_FIXED_VLBR:
2508 		intel_set_masks(event, idx);
2509 		break;
2510 	default:
2511 		pr_warn("Failed to enable the event with invalid index %d\n",
2512 			idx);
2513 	}
2514 }
2515 
2516 static void intel_pmu_add_event(struct perf_event *event)
2517 {
2518 	if (event->attr.precise_ip)
2519 		intel_pmu_pebs_add(event);
2520 	if (needs_branch_stack(event))
2521 		intel_pmu_lbr_add(event);
2522 }
2523 
2524 /*
2525  * Save and restart an expired event. Called by NMI contexts,
2526  * so it has to be careful about preempting normal event ops:
2527  */
2528 int intel_pmu_save_and_restart(struct perf_event *event)
2529 {
2530 	x86_perf_event_update(event);
2531 	/*
2532 	 * For a checkpointed counter always reset back to 0.  This
2533 	 * avoids a situation where the counter overflows, aborts the
2534 	 * transaction and is then set back to shortly before the
2535 	 * overflow, and overflows and aborts again.
2536 	 */
2537 	if (unlikely(event_is_checkpointed(event))) {
2538 		/* No race with NMIs because the counter should not be armed */
2539 		wrmsrl(event->hw.event_base, 0);
2540 		local64_set(&event->hw.prev_count, 0);
2541 	}
2542 	return x86_perf_event_set_period(event);
2543 }
2544 
2545 static void intel_pmu_reset(void)
2546 {
2547 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2548 	unsigned long flags;
2549 	int idx;
2550 
2551 	if (!x86_pmu.num_counters)
2552 		return;
2553 
2554 	local_irq_save(flags);
2555 
2556 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2557 
2558 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2559 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2560 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2561 	}
2562 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2563 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2564 
2565 	if (ds)
2566 		ds->bts_index = ds->bts_buffer_base;
2567 
2568 	/* Ack all overflows and disable fixed counters */
2569 	if (x86_pmu.version >= 2) {
2570 		intel_pmu_ack_status(intel_pmu_get_status());
2571 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2572 	}
2573 
2574 	/* Reset LBRs and LBR freezing */
2575 	if (x86_pmu.lbr_nr) {
2576 		update_debugctlmsr(get_debugctlmsr() &
2577 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2578 	}
2579 
2580 	local_irq_restore(flags);
2581 }
2582 
2583 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2584 {
2585 	struct perf_sample_data data;
2586 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2587 	int bit;
2588 	int handled = 0;
2589 
2590 	inc_irq_stat(apic_perf_irqs);
2591 
2592 	/*
2593 	 * Ignore a range of extra bits in status that do not indicate
2594 	 * overflow by themselves.
2595 	 */
2596 	status &= ~(GLOBAL_STATUS_COND_CHG |
2597 		    GLOBAL_STATUS_ASIF |
2598 		    GLOBAL_STATUS_LBRS_FROZEN);
2599 	if (!status)
2600 		return 0;
2601 	/*
2602 	 * In case multiple PEBS events are sampled at the same time,
2603 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2604 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2605 	 * having their bits set in the status register. This is a sign
2606 	 * that there was at least one PEBS record pending at the time
2607 	 * of the PMU interrupt. PEBS counters must only be processed
2608 	 * via the drain_pebs() calls and not via the regular sample
2609 	 * processing loop coming after that the function, otherwise
2610 	 * phony regular samples may be generated in the sampling buffer
2611 	 * not marked with the EXACT tag. Another possibility is to have
2612 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2613 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2614 	 * not be set, yet the overflow status bit for the PEBS counter will
2615 	 * be on Skylake.
2616 	 *
2617 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2618 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2619 	 * events via drain_pebs().
2620 	 */
2621 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2622 		status &= ~cpuc->pebs_enabled;
2623 	else
2624 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2625 
2626 	/*
2627 	 * PEBS overflow sets bit 62 in the global status register
2628 	 */
2629 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2630 		u64 pebs_enabled = cpuc->pebs_enabled;
2631 
2632 		handled++;
2633 		x86_pmu.drain_pebs(regs, &data);
2634 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2635 
2636 		/*
2637 		 * PMI throttle may be triggered, which stops the PEBS event.
2638 		 * Although cpuc->pebs_enabled is updated accordingly, the
2639 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2640 		 * cpuc->enabled has been forced to 0 in PMI.
2641 		 * Update the MSR if pebs_enabled is changed.
2642 		 */
2643 		if (pebs_enabled != cpuc->pebs_enabled)
2644 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2645 	}
2646 
2647 	/*
2648 	 * Intel PT
2649 	 */
2650 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2651 		handled++;
2652 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2653 			perf_guest_cbs->handle_intel_pt_intr))
2654 			perf_guest_cbs->handle_intel_pt_intr();
2655 		else
2656 			intel_pt_interrupt();
2657 	}
2658 
2659 	/*
2660 	 * Intel Perf mertrics
2661 	 */
2662 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2663 		handled++;
2664 		if (x86_pmu.update_topdown_event)
2665 			x86_pmu.update_topdown_event(NULL);
2666 	}
2667 
2668 	/*
2669 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2670 	 * rollback caused by the PMI will have cleared the overflow status
2671 	 * bit. Therefore always force probe these counters.
2672 	 */
2673 	status |= cpuc->intel_cp_status;
2674 
2675 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2676 		struct perf_event *event = cpuc->events[bit];
2677 
2678 		handled++;
2679 
2680 		if (!test_bit(bit, cpuc->active_mask))
2681 			continue;
2682 
2683 		if (!intel_pmu_save_and_restart(event))
2684 			continue;
2685 
2686 		perf_sample_data_init(&data, 0, event->hw.last_period);
2687 
2688 		if (has_branch_stack(event))
2689 			data.br_stack = &cpuc->lbr_stack;
2690 
2691 		if (perf_event_overflow(event, &data, regs))
2692 			x86_pmu_stop(event, 0);
2693 	}
2694 
2695 	return handled;
2696 }
2697 
2698 static bool disable_counter_freezing = true;
2699 static int __init intel_perf_counter_freezing_setup(char *s)
2700 {
2701 	bool res;
2702 
2703 	if (kstrtobool(s, &res))
2704 		return -EINVAL;
2705 
2706 	disable_counter_freezing = !res;
2707 	return 1;
2708 }
2709 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2710 
2711 /*
2712  * Simplified handler for Arch Perfmon v4:
2713  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2714  * This is done automatically on PMU ack.
2715  * - Ack the PMU only after the APIC.
2716  */
2717 
2718 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2719 {
2720 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2721 	int handled = 0;
2722 	bool bts = false;
2723 	u64 status;
2724 	int pmu_enabled = cpuc->enabled;
2725 	int loops = 0;
2726 
2727 	/* PMU has been disabled because of counter freezing */
2728 	cpuc->enabled = 0;
2729 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2730 		bts = true;
2731 		intel_bts_disable_local();
2732 		handled = intel_pmu_drain_bts_buffer();
2733 		handled += intel_bts_interrupt();
2734 	}
2735 	status = intel_pmu_get_status();
2736 	if (!status)
2737 		goto done;
2738 again:
2739 	intel_pmu_lbr_read();
2740 	if (++loops > 100) {
2741 		static bool warned;
2742 
2743 		if (!warned) {
2744 			WARN(1, "perfevents: irq loop stuck!\n");
2745 			perf_event_print_debug();
2746 			warned = true;
2747 		}
2748 		intel_pmu_reset();
2749 		goto done;
2750 	}
2751 
2752 
2753 	handled += handle_pmi_common(regs, status);
2754 done:
2755 	/* Ack the PMI in the APIC */
2756 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2757 
2758 	/*
2759 	 * The counters start counting immediately while ack the status.
2760 	 * Make it as close as possible to IRET. This avoids bogus
2761 	 * freezing on Skylake CPUs.
2762 	 */
2763 	if (status) {
2764 		intel_pmu_ack_status(status);
2765 	} else {
2766 		/*
2767 		 * CPU may issues two PMIs very close to each other.
2768 		 * When the PMI handler services the first one, the
2769 		 * GLOBAL_STATUS is already updated to reflect both.
2770 		 * When it IRETs, the second PMI is immediately
2771 		 * handled and it sees clear status. At the meantime,
2772 		 * there may be a third PMI, because the freezing bit
2773 		 * isn't set since the ack in first PMI handlers.
2774 		 * Double check if there is more work to be done.
2775 		 */
2776 		status = intel_pmu_get_status();
2777 		if (status)
2778 			goto again;
2779 	}
2780 
2781 	if (bts)
2782 		intel_bts_enable_local();
2783 	cpuc->enabled = pmu_enabled;
2784 	return handled;
2785 }
2786 
2787 /*
2788  * This handler is triggered by the local APIC, so the APIC IRQ handling
2789  * rules apply:
2790  */
2791 static int intel_pmu_handle_irq(struct pt_regs *regs)
2792 {
2793 	struct cpu_hw_events *cpuc;
2794 	int loops;
2795 	u64 status;
2796 	int handled;
2797 	int pmu_enabled;
2798 
2799 	cpuc = this_cpu_ptr(&cpu_hw_events);
2800 
2801 	/*
2802 	 * Save the PMU state.
2803 	 * It needs to be restored when leaving the handler.
2804 	 */
2805 	pmu_enabled = cpuc->enabled;
2806 	/*
2807 	 * No known reason to not always do late ACK,
2808 	 * but just in case do it opt-in.
2809 	 */
2810 	if (!x86_pmu.late_ack)
2811 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2812 	intel_bts_disable_local();
2813 	cpuc->enabled = 0;
2814 	__intel_pmu_disable_all();
2815 	handled = intel_pmu_drain_bts_buffer();
2816 	handled += intel_bts_interrupt();
2817 	status = intel_pmu_get_status();
2818 	if (!status)
2819 		goto done;
2820 
2821 	loops = 0;
2822 again:
2823 	intel_pmu_lbr_read();
2824 	intel_pmu_ack_status(status);
2825 	if (++loops > 100) {
2826 		static bool warned;
2827 
2828 		if (!warned) {
2829 			WARN(1, "perfevents: irq loop stuck!\n");
2830 			perf_event_print_debug();
2831 			warned = true;
2832 		}
2833 		intel_pmu_reset();
2834 		goto done;
2835 	}
2836 
2837 	handled += handle_pmi_common(regs, status);
2838 
2839 	/*
2840 	 * Repeat if there is more work to be done:
2841 	 */
2842 	status = intel_pmu_get_status();
2843 	if (status)
2844 		goto again;
2845 
2846 done:
2847 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2848 	cpuc->enabled = pmu_enabled;
2849 	if (pmu_enabled)
2850 		__intel_pmu_enable_all(0, true);
2851 	intel_bts_enable_local();
2852 
2853 	/*
2854 	 * Only unmask the NMI after the overflow counters
2855 	 * have been reset. This avoids spurious NMIs on
2856 	 * Haswell CPUs.
2857 	 */
2858 	if (x86_pmu.late_ack)
2859 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2860 	return handled;
2861 }
2862 
2863 static struct event_constraint *
2864 intel_bts_constraints(struct perf_event *event)
2865 {
2866 	if (unlikely(intel_pmu_has_bts(event)))
2867 		return &bts_constraint;
2868 
2869 	return NULL;
2870 }
2871 
2872 /*
2873  * Note: matches a fake event, like Fixed2.
2874  */
2875 static struct event_constraint *
2876 intel_vlbr_constraints(struct perf_event *event)
2877 {
2878 	struct event_constraint *c = &vlbr_constraint;
2879 
2880 	if (unlikely(constraint_match(c, event->hw.config)))
2881 		return c;
2882 
2883 	return NULL;
2884 }
2885 
2886 static int intel_alt_er(int idx, u64 config)
2887 {
2888 	int alt_idx = idx;
2889 
2890 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2891 		return idx;
2892 
2893 	if (idx == EXTRA_REG_RSP_0)
2894 		alt_idx = EXTRA_REG_RSP_1;
2895 
2896 	if (idx == EXTRA_REG_RSP_1)
2897 		alt_idx = EXTRA_REG_RSP_0;
2898 
2899 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2900 		return idx;
2901 
2902 	return alt_idx;
2903 }
2904 
2905 static void intel_fixup_er(struct perf_event *event, int idx)
2906 {
2907 	event->hw.extra_reg.idx = idx;
2908 
2909 	if (idx == EXTRA_REG_RSP_0) {
2910 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2911 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2912 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2913 	} else if (idx == EXTRA_REG_RSP_1) {
2914 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2915 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2916 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2917 	}
2918 }
2919 
2920 /*
2921  * manage allocation of shared extra msr for certain events
2922  *
2923  * sharing can be:
2924  * per-cpu: to be shared between the various events on a single PMU
2925  * per-core: per-cpu + shared by HT threads
2926  */
2927 static struct event_constraint *
2928 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2929 				   struct perf_event *event,
2930 				   struct hw_perf_event_extra *reg)
2931 {
2932 	struct event_constraint *c = &emptyconstraint;
2933 	struct er_account *era;
2934 	unsigned long flags;
2935 	int idx = reg->idx;
2936 
2937 	/*
2938 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2939 	 * need to ignore this, otherwise we might fail to allocate proper fake
2940 	 * state for this extra reg constraint. Also see the comment below.
2941 	 */
2942 	if (reg->alloc && !cpuc->is_fake)
2943 		return NULL; /* call x86_get_event_constraint() */
2944 
2945 again:
2946 	era = &cpuc->shared_regs->regs[idx];
2947 	/*
2948 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2949 	 * passing a fake cpuc
2950 	 */
2951 	raw_spin_lock_irqsave(&era->lock, flags);
2952 
2953 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2954 
2955 		/*
2956 		 * If its a fake cpuc -- as per validate_{group,event}() we
2957 		 * shouldn't touch event state and we can avoid doing so
2958 		 * since both will only call get_event_constraints() once
2959 		 * on each event, this avoids the need for reg->alloc.
2960 		 *
2961 		 * Not doing the ER fixup will only result in era->reg being
2962 		 * wrong, but since we won't actually try and program hardware
2963 		 * this isn't a problem either.
2964 		 */
2965 		if (!cpuc->is_fake) {
2966 			if (idx != reg->idx)
2967 				intel_fixup_er(event, idx);
2968 
2969 			/*
2970 			 * x86_schedule_events() can call get_event_constraints()
2971 			 * multiple times on events in the case of incremental
2972 			 * scheduling(). reg->alloc ensures we only do the ER
2973 			 * allocation once.
2974 			 */
2975 			reg->alloc = 1;
2976 		}
2977 
2978 		/* lock in msr value */
2979 		era->config = reg->config;
2980 		era->reg = reg->reg;
2981 
2982 		/* one more user */
2983 		atomic_inc(&era->ref);
2984 
2985 		/*
2986 		 * need to call x86_get_event_constraint()
2987 		 * to check if associated event has constraints
2988 		 */
2989 		c = NULL;
2990 	} else {
2991 		idx = intel_alt_er(idx, reg->config);
2992 		if (idx != reg->idx) {
2993 			raw_spin_unlock_irqrestore(&era->lock, flags);
2994 			goto again;
2995 		}
2996 	}
2997 	raw_spin_unlock_irqrestore(&era->lock, flags);
2998 
2999 	return c;
3000 }
3001 
3002 static void
3003 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3004 				   struct hw_perf_event_extra *reg)
3005 {
3006 	struct er_account *era;
3007 
3008 	/*
3009 	 * Only put constraint if extra reg was actually allocated. Also takes
3010 	 * care of event which do not use an extra shared reg.
3011 	 *
3012 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3013 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3014 	 * either since it'll be thrown out.
3015 	 */
3016 	if (!reg->alloc || cpuc->is_fake)
3017 		return;
3018 
3019 	era = &cpuc->shared_regs->regs[reg->idx];
3020 
3021 	/* one fewer user */
3022 	atomic_dec(&era->ref);
3023 
3024 	/* allocate again next time */
3025 	reg->alloc = 0;
3026 }
3027 
3028 static struct event_constraint *
3029 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3030 			      struct perf_event *event)
3031 {
3032 	struct event_constraint *c = NULL, *d;
3033 	struct hw_perf_event_extra *xreg, *breg;
3034 
3035 	xreg = &event->hw.extra_reg;
3036 	if (xreg->idx != EXTRA_REG_NONE) {
3037 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3038 		if (c == &emptyconstraint)
3039 			return c;
3040 	}
3041 	breg = &event->hw.branch_reg;
3042 	if (breg->idx != EXTRA_REG_NONE) {
3043 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3044 		if (d == &emptyconstraint) {
3045 			__intel_shared_reg_put_constraints(cpuc, xreg);
3046 			c = d;
3047 		}
3048 	}
3049 	return c;
3050 }
3051 
3052 struct event_constraint *
3053 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3054 			  struct perf_event *event)
3055 {
3056 	struct event_constraint *c;
3057 
3058 	if (x86_pmu.event_constraints) {
3059 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3060 			if (constraint_match(c, event->hw.config)) {
3061 				event->hw.flags |= c->flags;
3062 				return c;
3063 			}
3064 		}
3065 	}
3066 
3067 	return &unconstrained;
3068 }
3069 
3070 static struct event_constraint *
3071 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3072 			    struct perf_event *event)
3073 {
3074 	struct event_constraint *c;
3075 
3076 	c = intel_vlbr_constraints(event);
3077 	if (c)
3078 		return c;
3079 
3080 	c = intel_bts_constraints(event);
3081 	if (c)
3082 		return c;
3083 
3084 	c = intel_shared_regs_constraints(cpuc, event);
3085 	if (c)
3086 		return c;
3087 
3088 	c = intel_pebs_constraints(event);
3089 	if (c)
3090 		return c;
3091 
3092 	return x86_get_event_constraints(cpuc, idx, event);
3093 }
3094 
3095 static void
3096 intel_start_scheduling(struct cpu_hw_events *cpuc)
3097 {
3098 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3099 	struct intel_excl_states *xl;
3100 	int tid = cpuc->excl_thread_id;
3101 
3102 	/*
3103 	 * nothing needed if in group validation mode
3104 	 */
3105 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3106 		return;
3107 
3108 	/*
3109 	 * no exclusion needed
3110 	 */
3111 	if (WARN_ON_ONCE(!excl_cntrs))
3112 		return;
3113 
3114 	xl = &excl_cntrs->states[tid];
3115 
3116 	xl->sched_started = true;
3117 	/*
3118 	 * lock shared state until we are done scheduling
3119 	 * in stop_event_scheduling()
3120 	 * makes scheduling appear as a transaction
3121 	 */
3122 	raw_spin_lock(&excl_cntrs->lock);
3123 }
3124 
3125 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3126 {
3127 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3128 	struct event_constraint *c = cpuc->event_constraint[idx];
3129 	struct intel_excl_states *xl;
3130 	int tid = cpuc->excl_thread_id;
3131 
3132 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3133 		return;
3134 
3135 	if (WARN_ON_ONCE(!excl_cntrs))
3136 		return;
3137 
3138 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3139 		return;
3140 
3141 	xl = &excl_cntrs->states[tid];
3142 
3143 	lockdep_assert_held(&excl_cntrs->lock);
3144 
3145 	if (c->flags & PERF_X86_EVENT_EXCL)
3146 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3147 	else
3148 		xl->state[cntr] = INTEL_EXCL_SHARED;
3149 }
3150 
3151 static void
3152 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3153 {
3154 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3155 	struct intel_excl_states *xl;
3156 	int tid = cpuc->excl_thread_id;
3157 
3158 	/*
3159 	 * nothing needed if in group validation mode
3160 	 */
3161 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3162 		return;
3163 	/*
3164 	 * no exclusion needed
3165 	 */
3166 	if (WARN_ON_ONCE(!excl_cntrs))
3167 		return;
3168 
3169 	xl = &excl_cntrs->states[tid];
3170 
3171 	xl->sched_started = false;
3172 	/*
3173 	 * release shared state lock (acquired in intel_start_scheduling())
3174 	 */
3175 	raw_spin_unlock(&excl_cntrs->lock);
3176 }
3177 
3178 static struct event_constraint *
3179 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3180 {
3181 	WARN_ON_ONCE(!cpuc->constraint_list);
3182 
3183 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3184 		struct event_constraint *cx;
3185 
3186 		/*
3187 		 * grab pre-allocated constraint entry
3188 		 */
3189 		cx = &cpuc->constraint_list[idx];
3190 
3191 		/*
3192 		 * initialize dynamic constraint
3193 		 * with static constraint
3194 		 */
3195 		*cx = *c;
3196 
3197 		/*
3198 		 * mark constraint as dynamic
3199 		 */
3200 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3201 		c = cx;
3202 	}
3203 
3204 	return c;
3205 }
3206 
3207 static struct event_constraint *
3208 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3209 			   int idx, struct event_constraint *c)
3210 {
3211 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3212 	struct intel_excl_states *xlo;
3213 	int tid = cpuc->excl_thread_id;
3214 	int is_excl, i, w;
3215 
3216 	/*
3217 	 * validating a group does not require
3218 	 * enforcing cross-thread  exclusion
3219 	 */
3220 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3221 		return c;
3222 
3223 	/*
3224 	 * no exclusion needed
3225 	 */
3226 	if (WARN_ON_ONCE(!excl_cntrs))
3227 		return c;
3228 
3229 	/*
3230 	 * because we modify the constraint, we need
3231 	 * to make a copy. Static constraints come
3232 	 * from static const tables.
3233 	 *
3234 	 * only needed when constraint has not yet
3235 	 * been cloned (marked dynamic)
3236 	 */
3237 	c = dyn_constraint(cpuc, c, idx);
3238 
3239 	/*
3240 	 * From here on, the constraint is dynamic.
3241 	 * Either it was just allocated above, or it
3242 	 * was allocated during a earlier invocation
3243 	 * of this function
3244 	 */
3245 
3246 	/*
3247 	 * state of sibling HT
3248 	 */
3249 	xlo = &excl_cntrs->states[tid ^ 1];
3250 
3251 	/*
3252 	 * event requires exclusive counter access
3253 	 * across HT threads
3254 	 */
3255 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3256 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3257 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3258 		if (!cpuc->n_excl++)
3259 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3260 	}
3261 
3262 	/*
3263 	 * Modify static constraint with current dynamic
3264 	 * state of thread
3265 	 *
3266 	 * EXCLUSIVE: sibling counter measuring exclusive event
3267 	 * SHARED   : sibling counter measuring non-exclusive event
3268 	 * UNUSED   : sibling counter unused
3269 	 */
3270 	w = c->weight;
3271 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3272 		/*
3273 		 * exclusive event in sibling counter
3274 		 * our corresponding counter cannot be used
3275 		 * regardless of our event
3276 		 */
3277 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3278 			__clear_bit(i, c->idxmsk);
3279 			w--;
3280 			continue;
3281 		}
3282 		/*
3283 		 * if measuring an exclusive event, sibling
3284 		 * measuring non-exclusive, then counter cannot
3285 		 * be used
3286 		 */
3287 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3288 			__clear_bit(i, c->idxmsk);
3289 			w--;
3290 			continue;
3291 		}
3292 	}
3293 
3294 	/*
3295 	 * if we return an empty mask, then switch
3296 	 * back to static empty constraint to avoid
3297 	 * the cost of freeing later on
3298 	 */
3299 	if (!w)
3300 		c = &emptyconstraint;
3301 
3302 	c->weight = w;
3303 
3304 	return c;
3305 }
3306 
3307 static struct event_constraint *
3308 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3309 			    struct perf_event *event)
3310 {
3311 	struct event_constraint *c1, *c2;
3312 
3313 	c1 = cpuc->event_constraint[idx];
3314 
3315 	/*
3316 	 * first time only
3317 	 * - static constraint: no change across incremental scheduling calls
3318 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3319 	 */
3320 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3321 	if (c1) {
3322 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3323 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3324 		c1->weight = c2->weight;
3325 		c2 = c1;
3326 	}
3327 
3328 	if (cpuc->excl_cntrs)
3329 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3330 
3331 	return c2;
3332 }
3333 
3334 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3335 		struct perf_event *event)
3336 {
3337 	struct hw_perf_event *hwc = &event->hw;
3338 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3339 	int tid = cpuc->excl_thread_id;
3340 	struct intel_excl_states *xl;
3341 
3342 	/*
3343 	 * nothing needed if in group validation mode
3344 	 */
3345 	if (cpuc->is_fake)
3346 		return;
3347 
3348 	if (WARN_ON_ONCE(!excl_cntrs))
3349 		return;
3350 
3351 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3352 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3353 		if (!--cpuc->n_excl)
3354 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3355 	}
3356 
3357 	/*
3358 	 * If event was actually assigned, then mark the counter state as
3359 	 * unused now.
3360 	 */
3361 	if (hwc->idx >= 0) {
3362 		xl = &excl_cntrs->states[tid];
3363 
3364 		/*
3365 		 * put_constraint may be called from x86_schedule_events()
3366 		 * which already has the lock held so here make locking
3367 		 * conditional.
3368 		 */
3369 		if (!xl->sched_started)
3370 			raw_spin_lock(&excl_cntrs->lock);
3371 
3372 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3373 
3374 		if (!xl->sched_started)
3375 			raw_spin_unlock(&excl_cntrs->lock);
3376 	}
3377 }
3378 
3379 static void
3380 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3381 					struct perf_event *event)
3382 {
3383 	struct hw_perf_event_extra *reg;
3384 
3385 	reg = &event->hw.extra_reg;
3386 	if (reg->idx != EXTRA_REG_NONE)
3387 		__intel_shared_reg_put_constraints(cpuc, reg);
3388 
3389 	reg = &event->hw.branch_reg;
3390 	if (reg->idx != EXTRA_REG_NONE)
3391 		__intel_shared_reg_put_constraints(cpuc, reg);
3392 }
3393 
3394 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3395 					struct perf_event *event)
3396 {
3397 	intel_put_shared_regs_event_constraints(cpuc, event);
3398 
3399 	/*
3400 	 * is PMU has exclusive counter restrictions, then
3401 	 * all events are subject to and must call the
3402 	 * put_excl_constraints() routine
3403 	 */
3404 	if (cpuc->excl_cntrs)
3405 		intel_put_excl_constraints(cpuc, event);
3406 }
3407 
3408 static void intel_pebs_aliases_core2(struct perf_event *event)
3409 {
3410 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3411 		/*
3412 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3413 		 * (0x003c) so that we can use it with PEBS.
3414 		 *
3415 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3416 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3417 		 * (0x00c0), which is a PEBS capable event, to get the same
3418 		 * count.
3419 		 *
3420 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3421 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3422 		 * larger than the maximum number of instructions that can be
3423 		 * retired per cycle (4) and then inverting the condition, we
3424 		 * count all cycles that retire 16 or less instructions, which
3425 		 * is every cycle.
3426 		 *
3427 		 * Thereby we gain a PEBS capable cycle counter.
3428 		 */
3429 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3430 
3431 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3432 		event->hw.config = alt_config;
3433 	}
3434 }
3435 
3436 static void intel_pebs_aliases_snb(struct perf_event *event)
3437 {
3438 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3439 		/*
3440 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3441 		 * (0x003c) so that we can use it with PEBS.
3442 		 *
3443 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3444 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3445 		 * (0x01c2), which is a PEBS capable event, to get the same
3446 		 * count.
3447 		 *
3448 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3449 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3450 		 * larger than the maximum number of micro-ops that can be
3451 		 * retired per cycle (4) and then inverting the condition, we
3452 		 * count all cycles that retire 16 or less micro-ops, which
3453 		 * is every cycle.
3454 		 *
3455 		 * Thereby we gain a PEBS capable cycle counter.
3456 		 */
3457 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3458 
3459 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3460 		event->hw.config = alt_config;
3461 	}
3462 }
3463 
3464 static void intel_pebs_aliases_precdist(struct perf_event *event)
3465 {
3466 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3467 		/*
3468 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3469 		 * (0x003c) so that we can use it with PEBS.
3470 		 *
3471 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3472 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3473 		 * (0x01c0), which is a PEBS capable event, to get the same
3474 		 * count.
3475 		 *
3476 		 * The PREC_DIST event has special support to minimize sample
3477 		 * shadowing effects. One drawback is that it can be
3478 		 * only programmed on counter 1, but that seems like an
3479 		 * acceptable trade off.
3480 		 */
3481 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3482 
3483 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3484 		event->hw.config = alt_config;
3485 	}
3486 }
3487 
3488 static void intel_pebs_aliases_ivb(struct perf_event *event)
3489 {
3490 	if (event->attr.precise_ip < 3)
3491 		return intel_pebs_aliases_snb(event);
3492 	return intel_pebs_aliases_precdist(event);
3493 }
3494 
3495 static void intel_pebs_aliases_skl(struct perf_event *event)
3496 {
3497 	if (event->attr.precise_ip < 3)
3498 		return intel_pebs_aliases_core2(event);
3499 	return intel_pebs_aliases_precdist(event);
3500 }
3501 
3502 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3503 {
3504 	unsigned long flags = x86_pmu.large_pebs_flags;
3505 
3506 	if (event->attr.use_clockid)
3507 		flags &= ~PERF_SAMPLE_TIME;
3508 	if (!event->attr.exclude_kernel)
3509 		flags &= ~PERF_SAMPLE_REGS_USER;
3510 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3511 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3512 	return flags;
3513 }
3514 
3515 static int intel_pmu_bts_config(struct perf_event *event)
3516 {
3517 	struct perf_event_attr *attr = &event->attr;
3518 
3519 	if (unlikely(intel_pmu_has_bts(event))) {
3520 		/* BTS is not supported by this architecture. */
3521 		if (!x86_pmu.bts_active)
3522 			return -EOPNOTSUPP;
3523 
3524 		/* BTS is currently only allowed for user-mode. */
3525 		if (!attr->exclude_kernel)
3526 			return -EOPNOTSUPP;
3527 
3528 		/* BTS is not allowed for precise events. */
3529 		if (attr->precise_ip)
3530 			return -EOPNOTSUPP;
3531 
3532 		/* disallow bts if conflicting events are present */
3533 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3534 			return -EBUSY;
3535 
3536 		event->destroy = hw_perf_lbr_event_destroy;
3537 	}
3538 
3539 	return 0;
3540 }
3541 
3542 static int core_pmu_hw_config(struct perf_event *event)
3543 {
3544 	int ret = x86_pmu_hw_config(event);
3545 
3546 	if (ret)
3547 		return ret;
3548 
3549 	return intel_pmu_bts_config(event);
3550 }
3551 
3552 static int intel_pmu_hw_config(struct perf_event *event)
3553 {
3554 	int ret = x86_pmu_hw_config(event);
3555 
3556 	if (ret)
3557 		return ret;
3558 
3559 	ret = intel_pmu_bts_config(event);
3560 	if (ret)
3561 		return ret;
3562 
3563 	if (event->attr.precise_ip) {
3564 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3565 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3566 			if (!(event->attr.sample_type &
3567 			      ~intel_pmu_large_pebs_flags(event)))
3568 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3569 		}
3570 		if (x86_pmu.pebs_aliases)
3571 			x86_pmu.pebs_aliases(event);
3572 
3573 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3574 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3575 	}
3576 
3577 	if (needs_branch_stack(event)) {
3578 		ret = intel_pmu_setup_lbr_filter(event);
3579 		if (ret)
3580 			return ret;
3581 
3582 		/*
3583 		 * BTS is set up earlier in this path, so don't account twice
3584 		 */
3585 		if (!unlikely(intel_pmu_has_bts(event))) {
3586 			/* disallow lbr if conflicting events are present */
3587 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3588 				return -EBUSY;
3589 
3590 			event->destroy = hw_perf_lbr_event_destroy;
3591 		}
3592 	}
3593 
3594 	if (event->attr.aux_output) {
3595 		if (!event->attr.precise_ip)
3596 			return -EINVAL;
3597 
3598 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3599 	}
3600 
3601 	if (event->attr.type != PERF_TYPE_RAW)
3602 		return 0;
3603 
3604 	/*
3605 	 * Config Topdown slots and metric events
3606 	 *
3607 	 * The slots event on Fixed Counter 3 can support sampling,
3608 	 * which will be handled normally in x86_perf_event_update().
3609 	 *
3610 	 * Metric events don't support sampling and require being paired
3611 	 * with a slots event as group leader. When the slots event
3612 	 * is used in a metrics group, it too cannot support sampling.
3613 	 */
3614 	if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
3615 		if (event->attr.config1 || event->attr.config2)
3616 			return -EINVAL;
3617 
3618 		/*
3619 		 * The TopDown metrics events and slots event don't
3620 		 * support any filters.
3621 		 */
3622 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3623 			return -EINVAL;
3624 
3625 		if (is_metric_event(event)) {
3626 			struct perf_event *leader = event->group_leader;
3627 
3628 			/* The metric events don't support sampling. */
3629 			if (is_sampling_event(event))
3630 				return -EINVAL;
3631 
3632 			/* The metric events require a slots group leader. */
3633 			if (!is_slots_event(leader))
3634 				return -EINVAL;
3635 
3636 			/*
3637 			 * The leader/SLOTS must not be a sampling event for
3638 			 * metric use; hardware requires it starts at 0 when used
3639 			 * in conjunction with MSR_PERF_METRICS.
3640 			 */
3641 			if (is_sampling_event(leader))
3642 				return -EINVAL;
3643 
3644 			event->event_caps |= PERF_EV_CAP_SIBLING;
3645 			/*
3646 			 * Only once we have a METRICs sibling do we
3647 			 * need TopDown magic.
3648 			 */
3649 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3650 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3651 		}
3652 	}
3653 
3654 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3655 		return 0;
3656 
3657 	if (x86_pmu.version < 3)
3658 		return -EINVAL;
3659 
3660 	ret = perf_allow_cpu(&event->attr);
3661 	if (ret)
3662 		return ret;
3663 
3664 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3665 
3666 	return 0;
3667 }
3668 
3669 #ifdef CONFIG_RETPOLINE
3670 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3671 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3672 #endif
3673 
3674 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3675 {
3676 #ifdef CONFIG_RETPOLINE
3677 	if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3678 		return intel_guest_get_msrs(nr);
3679 	else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3680 		return core_guest_get_msrs(nr);
3681 #endif
3682 	if (x86_pmu.guest_get_msrs)
3683 		return x86_pmu.guest_get_msrs(nr);
3684 	*nr = 0;
3685 	return NULL;
3686 }
3687 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3688 
3689 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3690 {
3691 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3692 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3693 
3694 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3695 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3696 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3697 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3698 		arr[0].guest &= ~cpuc->pebs_enabled;
3699 	else
3700 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3701 	*nr = 1;
3702 
3703 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3704 		/*
3705 		 * If PMU counter has PEBS enabled it is not enough to
3706 		 * disable counter on a guest entry since PEBS memory
3707 		 * write can overshoot guest entry and corrupt guest
3708 		 * memory. Disabling PEBS solves the problem.
3709 		 *
3710 		 * Don't do this if the CPU already enforces it.
3711 		 */
3712 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3713 		arr[1].host = cpuc->pebs_enabled;
3714 		arr[1].guest = 0;
3715 		*nr = 2;
3716 	}
3717 
3718 	return arr;
3719 }
3720 
3721 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3722 {
3723 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3724 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3725 	int idx;
3726 
3727 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3728 		struct perf_event *event = cpuc->events[idx];
3729 
3730 		arr[idx].msr = x86_pmu_config_addr(idx);
3731 		arr[idx].host = arr[idx].guest = 0;
3732 
3733 		if (!test_bit(idx, cpuc->active_mask))
3734 			continue;
3735 
3736 		arr[idx].host = arr[idx].guest =
3737 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3738 
3739 		if (event->attr.exclude_host)
3740 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3741 		else if (event->attr.exclude_guest)
3742 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3743 	}
3744 
3745 	*nr = x86_pmu.num_counters;
3746 	return arr;
3747 }
3748 
3749 static void core_pmu_enable_event(struct perf_event *event)
3750 {
3751 	if (!event->attr.exclude_host)
3752 		x86_pmu_enable_event(event);
3753 }
3754 
3755 static void core_pmu_enable_all(int added)
3756 {
3757 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3758 	int idx;
3759 
3760 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3761 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3762 
3763 		if (!test_bit(idx, cpuc->active_mask) ||
3764 				cpuc->events[idx]->attr.exclude_host)
3765 			continue;
3766 
3767 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3768 	}
3769 }
3770 
3771 static int hsw_hw_config(struct perf_event *event)
3772 {
3773 	int ret = intel_pmu_hw_config(event);
3774 
3775 	if (ret)
3776 		return ret;
3777 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3778 		return 0;
3779 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3780 
3781 	/*
3782 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3783 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3784 	 * this combination.
3785 	 */
3786 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3787 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3788 	      event->attr.precise_ip > 0))
3789 		return -EOPNOTSUPP;
3790 
3791 	if (event_is_checkpointed(event)) {
3792 		/*
3793 		 * Sampling of checkpointed events can cause situations where
3794 		 * the CPU constantly aborts because of a overflow, which is
3795 		 * then checkpointed back and ignored. Forbid checkpointing
3796 		 * for sampling.
3797 		 *
3798 		 * But still allow a long sampling period, so that perf stat
3799 		 * from KVM works.
3800 		 */
3801 		if (event->attr.sample_period > 0 &&
3802 		    event->attr.sample_period < 0x7fffffff)
3803 			return -EOPNOTSUPP;
3804 	}
3805 	return 0;
3806 }
3807 
3808 static struct event_constraint counter0_constraint =
3809 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3810 
3811 static struct event_constraint counter2_constraint =
3812 			EVENT_CONSTRAINT(0, 0x4, 0);
3813 
3814 static struct event_constraint fixed0_constraint =
3815 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3816 
3817 static struct event_constraint fixed0_counter0_constraint =
3818 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3819 
3820 static struct event_constraint *
3821 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3822 			  struct perf_event *event)
3823 {
3824 	struct event_constraint *c;
3825 
3826 	c = intel_get_event_constraints(cpuc, idx, event);
3827 
3828 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3829 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3830 		if (c->idxmsk64 & (1U << 2))
3831 			return &counter2_constraint;
3832 		return &emptyconstraint;
3833 	}
3834 
3835 	return c;
3836 }
3837 
3838 static struct event_constraint *
3839 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3840 			  struct perf_event *event)
3841 {
3842 	/*
3843 	 * Fixed counter 0 has less skid.
3844 	 * Force instruction:ppp in Fixed counter 0
3845 	 */
3846 	if ((event->attr.precise_ip == 3) &&
3847 	    constraint_match(&fixed0_constraint, event->hw.config))
3848 		return &fixed0_constraint;
3849 
3850 	return hsw_get_event_constraints(cpuc, idx, event);
3851 }
3852 
3853 static struct event_constraint *
3854 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3855 			  struct perf_event *event)
3856 {
3857 	struct event_constraint *c;
3858 
3859 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3860 	if (event->attr.precise_ip == 3)
3861 		return &counter0_constraint;
3862 
3863 	c = intel_get_event_constraints(cpuc, idx, event);
3864 
3865 	return c;
3866 }
3867 
3868 static struct event_constraint *
3869 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3870 			  struct perf_event *event)
3871 {
3872 	struct event_constraint *c;
3873 
3874 	/*
3875 	 * :ppp means to do reduced skid PEBS,
3876 	 * which is available on PMC0 and fixed counter 0.
3877 	 */
3878 	if (event->attr.precise_ip == 3) {
3879 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
3880 		if (constraint_match(&fixed0_constraint, event->hw.config))
3881 			return &fixed0_counter0_constraint;
3882 
3883 		return &counter0_constraint;
3884 	}
3885 
3886 	c = intel_get_event_constraints(cpuc, idx, event);
3887 
3888 	return c;
3889 }
3890 
3891 static bool allow_tsx_force_abort = true;
3892 
3893 static struct event_constraint *
3894 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3895 			  struct perf_event *event)
3896 {
3897 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3898 
3899 	/*
3900 	 * Without TFA we must not use PMC3.
3901 	 */
3902 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3903 		c = dyn_constraint(cpuc, c, idx);
3904 		c->idxmsk64 &= ~(1ULL << 3);
3905 		c->weight--;
3906 	}
3907 
3908 	return c;
3909 }
3910 
3911 /*
3912  * Broadwell:
3913  *
3914  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3915  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3916  * the two to enforce a minimum period of 128 (the smallest value that has bits
3917  * 0-5 cleared and >= 100).
3918  *
3919  * Because of how the code in x86_perf_event_set_period() works, the truncation
3920  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3921  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3922  *
3923  * Therefore the effective (average) period matches the requested period,
3924  * despite coarser hardware granularity.
3925  */
3926 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3927 {
3928 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3929 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3930 		if (left < 128)
3931 			left = 128;
3932 		left &= ~0x3fULL;
3933 	}
3934 	return left;
3935 }
3936 
3937 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3938 {
3939 	return max(left, 32ULL);
3940 }
3941 
3942 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3943 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3944 PMU_FORMAT_ATTR(edge,	"config:18"	);
3945 PMU_FORMAT_ATTR(pc,	"config:19"	);
3946 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3947 PMU_FORMAT_ATTR(inv,	"config:23"	);
3948 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3949 PMU_FORMAT_ATTR(in_tx,  "config:32");
3950 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3951 
3952 static struct attribute *intel_arch_formats_attr[] = {
3953 	&format_attr_event.attr,
3954 	&format_attr_umask.attr,
3955 	&format_attr_edge.attr,
3956 	&format_attr_pc.attr,
3957 	&format_attr_inv.attr,
3958 	&format_attr_cmask.attr,
3959 	NULL,
3960 };
3961 
3962 ssize_t intel_event_sysfs_show(char *page, u64 config)
3963 {
3964 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3965 
3966 	return x86_event_sysfs_show(page, config, event);
3967 }
3968 
3969 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3970 {
3971 	struct intel_shared_regs *regs;
3972 	int i;
3973 
3974 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3975 			    GFP_KERNEL, cpu_to_node(cpu));
3976 	if (regs) {
3977 		/*
3978 		 * initialize the locks to keep lockdep happy
3979 		 */
3980 		for (i = 0; i < EXTRA_REG_MAX; i++)
3981 			raw_spin_lock_init(&regs->regs[i].lock);
3982 
3983 		regs->core_id = -1;
3984 	}
3985 	return regs;
3986 }
3987 
3988 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3989 {
3990 	struct intel_excl_cntrs *c;
3991 
3992 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3993 			 GFP_KERNEL, cpu_to_node(cpu));
3994 	if (c) {
3995 		raw_spin_lock_init(&c->lock);
3996 		c->core_id = -1;
3997 	}
3998 	return c;
3999 }
4000 
4001 
4002 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4003 {
4004 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4005 
4006 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4007 		cpuc->shared_regs = allocate_shared_regs(cpu);
4008 		if (!cpuc->shared_regs)
4009 			goto err;
4010 	}
4011 
4012 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4013 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4014 
4015 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4016 		if (!cpuc->constraint_list)
4017 			goto err_shared_regs;
4018 	}
4019 
4020 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4021 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4022 		if (!cpuc->excl_cntrs)
4023 			goto err_constraint_list;
4024 
4025 		cpuc->excl_thread_id = 0;
4026 	}
4027 
4028 	return 0;
4029 
4030 err_constraint_list:
4031 	kfree(cpuc->constraint_list);
4032 	cpuc->constraint_list = NULL;
4033 
4034 err_shared_regs:
4035 	kfree(cpuc->shared_regs);
4036 	cpuc->shared_regs = NULL;
4037 
4038 err:
4039 	return -ENOMEM;
4040 }
4041 
4042 static int intel_pmu_cpu_prepare(int cpu)
4043 {
4044 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4045 }
4046 
4047 static void flip_smm_bit(void *data)
4048 {
4049 	unsigned long set = *(unsigned long *)data;
4050 
4051 	if (set > 0) {
4052 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4053 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4054 	} else {
4055 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4056 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4057 	}
4058 }
4059 
4060 static void intel_pmu_cpu_starting(int cpu)
4061 {
4062 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4063 	int core_id = topology_core_id(cpu);
4064 	int i;
4065 
4066 	init_debug_store_on_cpu(cpu);
4067 	/*
4068 	 * Deal with CPUs that don't clear their LBRs on power-up.
4069 	 */
4070 	intel_pmu_lbr_reset();
4071 
4072 	cpuc->lbr_sel = NULL;
4073 
4074 	if (x86_pmu.flags & PMU_FL_TFA) {
4075 		WARN_ON_ONCE(cpuc->tfa_shadow);
4076 		cpuc->tfa_shadow = ~0ULL;
4077 		intel_set_tfa(cpuc, false);
4078 	}
4079 
4080 	if (x86_pmu.version > 1)
4081 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4082 
4083 	if (x86_pmu.counter_freezing)
4084 		enable_counter_freeze();
4085 
4086 	/* Disable perf metrics if any added CPU doesn't support it. */
4087 	if (x86_pmu.intel_cap.perf_metrics) {
4088 		union perf_capabilities perf_cap;
4089 
4090 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4091 		if (!perf_cap.perf_metrics) {
4092 			x86_pmu.intel_cap.perf_metrics = 0;
4093 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4094 		}
4095 	}
4096 
4097 	if (!cpuc->shared_regs)
4098 		return;
4099 
4100 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4101 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4102 			struct intel_shared_regs *pc;
4103 
4104 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4105 			if (pc && pc->core_id == core_id) {
4106 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4107 				cpuc->shared_regs = pc;
4108 				break;
4109 			}
4110 		}
4111 		cpuc->shared_regs->core_id = core_id;
4112 		cpuc->shared_regs->refcnt++;
4113 	}
4114 
4115 	if (x86_pmu.lbr_sel_map)
4116 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4117 
4118 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4119 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4120 			struct cpu_hw_events *sibling;
4121 			struct intel_excl_cntrs *c;
4122 
4123 			sibling = &per_cpu(cpu_hw_events, i);
4124 			c = sibling->excl_cntrs;
4125 			if (c && c->core_id == core_id) {
4126 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4127 				cpuc->excl_cntrs = c;
4128 				if (!sibling->excl_thread_id)
4129 					cpuc->excl_thread_id = 1;
4130 				break;
4131 			}
4132 		}
4133 		cpuc->excl_cntrs->core_id = core_id;
4134 		cpuc->excl_cntrs->refcnt++;
4135 	}
4136 }
4137 
4138 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4139 {
4140 	struct intel_excl_cntrs *c;
4141 
4142 	c = cpuc->excl_cntrs;
4143 	if (c) {
4144 		if (c->core_id == -1 || --c->refcnt == 0)
4145 			kfree(c);
4146 		cpuc->excl_cntrs = NULL;
4147 	}
4148 
4149 	kfree(cpuc->constraint_list);
4150 	cpuc->constraint_list = NULL;
4151 }
4152 
4153 static void intel_pmu_cpu_dying(int cpu)
4154 {
4155 	fini_debug_store_on_cpu(cpu);
4156 
4157 	if (x86_pmu.counter_freezing)
4158 		disable_counter_freeze();
4159 }
4160 
4161 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4162 {
4163 	struct intel_shared_regs *pc;
4164 
4165 	pc = cpuc->shared_regs;
4166 	if (pc) {
4167 		if (pc->core_id == -1 || --pc->refcnt == 0)
4168 			kfree(pc);
4169 		cpuc->shared_regs = NULL;
4170 	}
4171 
4172 	free_excl_cntrs(cpuc);
4173 }
4174 
4175 static void intel_pmu_cpu_dead(int cpu)
4176 {
4177 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4178 }
4179 
4180 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4181 				 bool sched_in)
4182 {
4183 	intel_pmu_pebs_sched_task(ctx, sched_in);
4184 	intel_pmu_lbr_sched_task(ctx, sched_in);
4185 }
4186 
4187 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4188 				    struct perf_event_context *next)
4189 {
4190 	intel_pmu_lbr_swap_task_ctx(prev, next);
4191 }
4192 
4193 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4194 {
4195 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4196 }
4197 
4198 static int intel_pmu_aux_output_match(struct perf_event *event)
4199 {
4200 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4201 		return 0;
4202 
4203 	return is_intel_pt_event(event);
4204 }
4205 
4206 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4207 
4208 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4209 
4210 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4211 
4212 static struct attribute *intel_arch3_formats_attr[] = {
4213 	&format_attr_event.attr,
4214 	&format_attr_umask.attr,
4215 	&format_attr_edge.attr,
4216 	&format_attr_pc.attr,
4217 	&format_attr_any.attr,
4218 	&format_attr_inv.attr,
4219 	&format_attr_cmask.attr,
4220 	NULL,
4221 };
4222 
4223 static struct attribute *hsw_format_attr[] = {
4224 	&format_attr_in_tx.attr,
4225 	&format_attr_in_tx_cp.attr,
4226 	&format_attr_offcore_rsp.attr,
4227 	&format_attr_ldlat.attr,
4228 	NULL
4229 };
4230 
4231 static struct attribute *nhm_format_attr[] = {
4232 	&format_attr_offcore_rsp.attr,
4233 	&format_attr_ldlat.attr,
4234 	NULL
4235 };
4236 
4237 static struct attribute *slm_format_attr[] = {
4238 	&format_attr_offcore_rsp.attr,
4239 	NULL
4240 };
4241 
4242 static struct attribute *skl_format_attr[] = {
4243 	&format_attr_frontend.attr,
4244 	NULL,
4245 };
4246 
4247 static __initconst const struct x86_pmu core_pmu = {
4248 	.name			= "core",
4249 	.handle_irq		= x86_pmu_handle_irq,
4250 	.disable_all		= x86_pmu_disable_all,
4251 	.enable_all		= core_pmu_enable_all,
4252 	.enable			= core_pmu_enable_event,
4253 	.disable		= x86_pmu_disable_event,
4254 	.hw_config		= core_pmu_hw_config,
4255 	.schedule_events	= x86_schedule_events,
4256 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4257 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4258 	.event_map		= intel_pmu_event_map,
4259 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4260 	.apic			= 1,
4261 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4262 
4263 	/*
4264 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4265 	 * so we install an artificial 1<<31 period regardless of
4266 	 * the generic event period:
4267 	 */
4268 	.max_period		= (1ULL<<31) - 1,
4269 	.get_event_constraints	= intel_get_event_constraints,
4270 	.put_event_constraints	= intel_put_event_constraints,
4271 	.event_constraints	= intel_core_event_constraints,
4272 	.guest_get_msrs		= core_guest_get_msrs,
4273 	.format_attrs		= intel_arch_formats_attr,
4274 	.events_sysfs_show	= intel_event_sysfs_show,
4275 
4276 	/*
4277 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4278 	 * together with PMU version 1 and thus be using core_pmu with
4279 	 * shared_regs. We need following callbacks here to allocate
4280 	 * it properly.
4281 	 */
4282 	.cpu_prepare		= intel_pmu_cpu_prepare,
4283 	.cpu_starting		= intel_pmu_cpu_starting,
4284 	.cpu_dying		= intel_pmu_cpu_dying,
4285 	.cpu_dead		= intel_pmu_cpu_dead,
4286 
4287 	.check_period		= intel_pmu_check_period,
4288 
4289 	.lbr_reset		= intel_pmu_lbr_reset_64,
4290 	.lbr_read		= intel_pmu_lbr_read_64,
4291 	.lbr_save		= intel_pmu_lbr_save,
4292 	.lbr_restore		= intel_pmu_lbr_restore,
4293 };
4294 
4295 static __initconst const struct x86_pmu intel_pmu = {
4296 	.name			= "Intel",
4297 	.handle_irq		= intel_pmu_handle_irq,
4298 	.disable_all		= intel_pmu_disable_all,
4299 	.enable_all		= intel_pmu_enable_all,
4300 	.enable			= intel_pmu_enable_event,
4301 	.disable		= intel_pmu_disable_event,
4302 	.add			= intel_pmu_add_event,
4303 	.del			= intel_pmu_del_event,
4304 	.read			= intel_pmu_read_event,
4305 	.hw_config		= intel_pmu_hw_config,
4306 	.schedule_events	= x86_schedule_events,
4307 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4308 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4309 	.event_map		= intel_pmu_event_map,
4310 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4311 	.apic			= 1,
4312 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4313 	/*
4314 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4315 	 * so we install an artificial 1<<31 period regardless of
4316 	 * the generic event period:
4317 	 */
4318 	.max_period		= (1ULL << 31) - 1,
4319 	.get_event_constraints	= intel_get_event_constraints,
4320 	.put_event_constraints	= intel_put_event_constraints,
4321 	.pebs_aliases		= intel_pebs_aliases_core2,
4322 
4323 	.format_attrs		= intel_arch3_formats_attr,
4324 	.events_sysfs_show	= intel_event_sysfs_show,
4325 
4326 	.cpu_prepare		= intel_pmu_cpu_prepare,
4327 	.cpu_starting		= intel_pmu_cpu_starting,
4328 	.cpu_dying		= intel_pmu_cpu_dying,
4329 	.cpu_dead		= intel_pmu_cpu_dead,
4330 
4331 	.guest_get_msrs		= intel_guest_get_msrs,
4332 	.sched_task		= intel_pmu_sched_task,
4333 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4334 
4335 	.check_period		= intel_pmu_check_period,
4336 
4337 	.aux_output_match	= intel_pmu_aux_output_match,
4338 
4339 	.lbr_reset		= intel_pmu_lbr_reset_64,
4340 	.lbr_read		= intel_pmu_lbr_read_64,
4341 	.lbr_save		= intel_pmu_lbr_save,
4342 	.lbr_restore		= intel_pmu_lbr_restore,
4343 };
4344 
4345 static __init void intel_clovertown_quirk(void)
4346 {
4347 	/*
4348 	 * PEBS is unreliable due to:
4349 	 *
4350 	 *   AJ67  - PEBS may experience CPL leaks
4351 	 *   AJ68  - PEBS PMI may be delayed by one event
4352 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4353 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4354 	 *
4355 	 * AJ67 could be worked around by restricting the OS/USR flags.
4356 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4357 	 *
4358 	 * AJ106 could possibly be worked around by not allowing LBR
4359 	 *       usage from PEBS, including the fixup.
4360 	 * AJ68  could possibly be worked around by always programming
4361 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4362 	 *
4363 	 * But taken together it might just make sense to not enable PEBS on
4364 	 * these chips.
4365 	 */
4366 	pr_warn("PEBS disabled due to CPU errata\n");
4367 	x86_pmu.pebs = 0;
4368 	x86_pmu.pebs_constraints = NULL;
4369 }
4370 
4371 static const struct x86_cpu_desc isolation_ucodes[] = {
4372 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4373 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4374 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4375 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4376 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4377 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4378 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4379 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4380 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4381 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4382 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4383 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
4384 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4385 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4386 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4387 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4388 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4389 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4390 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4391 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4392 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4393 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4394 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4395 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4396 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4397 	{}
4398 };
4399 
4400 static void intel_check_pebs_isolation(void)
4401 {
4402 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4403 }
4404 
4405 static __init void intel_pebs_isolation_quirk(void)
4406 {
4407 	WARN_ON_ONCE(x86_pmu.check_microcode);
4408 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4409 	intel_check_pebs_isolation();
4410 }
4411 
4412 static const struct x86_cpu_desc pebs_ucodes[] = {
4413 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4414 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4415 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4416 	{}
4417 };
4418 
4419 static bool intel_snb_pebs_broken(void)
4420 {
4421 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4422 }
4423 
4424 static void intel_snb_check_microcode(void)
4425 {
4426 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4427 		return;
4428 
4429 	/*
4430 	 * Serialized by the microcode lock..
4431 	 */
4432 	if (x86_pmu.pebs_broken) {
4433 		pr_info("PEBS enabled due to microcode update\n");
4434 		x86_pmu.pebs_broken = 0;
4435 	} else {
4436 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4437 		x86_pmu.pebs_broken = 1;
4438 	}
4439 }
4440 
4441 static bool is_lbr_from(unsigned long msr)
4442 {
4443 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4444 
4445 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4446 }
4447 
4448 /*
4449  * Under certain circumstances, access certain MSR may cause #GP.
4450  * The function tests if the input MSR can be safely accessed.
4451  */
4452 static bool check_msr(unsigned long msr, u64 mask)
4453 {
4454 	u64 val_old, val_new, val_tmp;
4455 
4456 	/*
4457 	 * Disable the check for real HW, so we don't
4458 	 * mess with potentionaly enabled registers:
4459 	 */
4460 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4461 		return true;
4462 
4463 	/*
4464 	 * Read the current value, change it and read it back to see if it
4465 	 * matches, this is needed to detect certain hardware emulators
4466 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4467 	 */
4468 	if (rdmsrl_safe(msr, &val_old))
4469 		return false;
4470 
4471 	/*
4472 	 * Only change the bits which can be updated by wrmsrl.
4473 	 */
4474 	val_tmp = val_old ^ mask;
4475 
4476 	if (is_lbr_from(msr))
4477 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4478 
4479 	if (wrmsrl_safe(msr, val_tmp) ||
4480 	    rdmsrl_safe(msr, &val_new))
4481 		return false;
4482 
4483 	/*
4484 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4485 	 * should equal rdmsrl()'s even with the quirk.
4486 	 */
4487 	if (val_new != val_tmp)
4488 		return false;
4489 
4490 	if (is_lbr_from(msr))
4491 		val_old = lbr_from_signext_quirk_wr(val_old);
4492 
4493 	/* Here it's sure that the MSR can be safely accessed.
4494 	 * Restore the old value and return.
4495 	 */
4496 	wrmsrl(msr, val_old);
4497 
4498 	return true;
4499 }
4500 
4501 static __init void intel_sandybridge_quirk(void)
4502 {
4503 	x86_pmu.check_microcode = intel_snb_check_microcode;
4504 	cpus_read_lock();
4505 	intel_snb_check_microcode();
4506 	cpus_read_unlock();
4507 }
4508 
4509 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4510 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4511 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4512 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4513 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4514 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4515 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4516 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4517 };
4518 
4519 static __init void intel_arch_events_quirk(void)
4520 {
4521 	int bit;
4522 
4523 	/* disable event that reported as not presend by cpuid */
4524 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4525 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4526 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4527 			intel_arch_events_map[bit].name);
4528 	}
4529 }
4530 
4531 static __init void intel_nehalem_quirk(void)
4532 {
4533 	union cpuid10_ebx ebx;
4534 
4535 	ebx.full = x86_pmu.events_maskl;
4536 	if (ebx.split.no_branch_misses_retired) {
4537 		/*
4538 		 * Erratum AAJ80 detected, we work it around by using
4539 		 * the BR_MISP_EXEC.ANY event. This will over-count
4540 		 * branch-misses, but it's still much better than the
4541 		 * architectural event which is often completely bogus:
4542 		 */
4543 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4544 		ebx.split.no_branch_misses_retired = 0;
4545 		x86_pmu.events_maskl = ebx.full;
4546 		pr_info("CPU erratum AAJ80 worked around\n");
4547 	}
4548 }
4549 
4550 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4551 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4552 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4553 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4554 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,	 1, 0x00000028),
4555 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4556 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4557 	{}
4558 };
4559 
4560 static bool intel_counter_freezing_broken(void)
4561 {
4562 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4563 }
4564 
4565 static __init void intel_counter_freezing_quirk(void)
4566 {
4567 	/* Check if it's already disabled */
4568 	if (disable_counter_freezing)
4569 		return;
4570 
4571 	/*
4572 	 * If the system starts with the wrong ucode, leave the
4573 	 * counter-freezing feature permanently disabled.
4574 	 */
4575 	if (intel_counter_freezing_broken()) {
4576 		pr_info("PMU counter freezing disabled due to CPU errata,"
4577 			"please upgrade microcode\n");
4578 		x86_pmu.counter_freezing = false;
4579 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4580 	}
4581 }
4582 
4583 /*
4584  * enable software workaround for errata:
4585  * SNB: BJ122
4586  * IVB: BV98
4587  * HSW: HSD29
4588  *
4589  * Only needed when HT is enabled. However detecting
4590  * if HT is enabled is difficult (model specific). So instead,
4591  * we enable the workaround in the early boot, and verify if
4592  * it is needed in a later initcall phase once we have valid
4593  * topology information to check if HT is actually enabled
4594  */
4595 static __init void intel_ht_bug(void)
4596 {
4597 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4598 
4599 	x86_pmu.start_scheduling = intel_start_scheduling;
4600 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4601 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4602 }
4603 
4604 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4605 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4606 
4607 /* Haswell special events */
4608 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4609 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4610 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4611 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4612 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4613 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4614 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4615 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4616 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4617 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4618 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4619 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4620 
4621 static struct attribute *hsw_events_attrs[] = {
4622 	EVENT_PTR(td_slots_issued),
4623 	EVENT_PTR(td_slots_retired),
4624 	EVENT_PTR(td_fetch_bubbles),
4625 	EVENT_PTR(td_total_slots),
4626 	EVENT_PTR(td_total_slots_scale),
4627 	EVENT_PTR(td_recovery_bubbles),
4628 	EVENT_PTR(td_recovery_bubbles_scale),
4629 	NULL
4630 };
4631 
4632 static struct attribute *hsw_mem_events_attrs[] = {
4633 	EVENT_PTR(mem_ld_hsw),
4634 	EVENT_PTR(mem_st_hsw),
4635 	NULL,
4636 };
4637 
4638 static struct attribute *hsw_tsx_events_attrs[] = {
4639 	EVENT_PTR(tx_start),
4640 	EVENT_PTR(tx_commit),
4641 	EVENT_PTR(tx_abort),
4642 	EVENT_PTR(tx_capacity),
4643 	EVENT_PTR(tx_conflict),
4644 	EVENT_PTR(el_start),
4645 	EVENT_PTR(el_commit),
4646 	EVENT_PTR(el_abort),
4647 	EVENT_PTR(el_capacity),
4648 	EVENT_PTR(el_conflict),
4649 	EVENT_PTR(cycles_t),
4650 	EVENT_PTR(cycles_ct),
4651 	NULL
4652 };
4653 
4654 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4655 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4656 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4657 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4658 
4659 static struct attribute *icl_events_attrs[] = {
4660 	EVENT_PTR(mem_ld_hsw),
4661 	EVENT_PTR(mem_st_hsw),
4662 	NULL,
4663 };
4664 
4665 static struct attribute *icl_td_events_attrs[] = {
4666 	EVENT_PTR(slots),
4667 	EVENT_PTR(td_retiring),
4668 	EVENT_PTR(td_bad_spec),
4669 	EVENT_PTR(td_fe_bound),
4670 	EVENT_PTR(td_be_bound),
4671 	NULL,
4672 };
4673 
4674 static struct attribute *icl_tsx_events_attrs[] = {
4675 	EVENT_PTR(tx_start),
4676 	EVENT_PTR(tx_abort),
4677 	EVENT_PTR(tx_commit),
4678 	EVENT_PTR(tx_capacity_read),
4679 	EVENT_PTR(tx_capacity_write),
4680 	EVENT_PTR(tx_conflict),
4681 	EVENT_PTR(el_start),
4682 	EVENT_PTR(el_abort),
4683 	EVENT_PTR(el_commit),
4684 	EVENT_PTR(el_capacity_read),
4685 	EVENT_PTR(el_capacity_write),
4686 	EVENT_PTR(el_conflict),
4687 	EVENT_PTR(cycles_t),
4688 	EVENT_PTR(cycles_ct),
4689 	NULL,
4690 };
4691 
4692 static ssize_t freeze_on_smi_show(struct device *cdev,
4693 				  struct device_attribute *attr,
4694 				  char *buf)
4695 {
4696 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4697 }
4698 
4699 static DEFINE_MUTEX(freeze_on_smi_mutex);
4700 
4701 static ssize_t freeze_on_smi_store(struct device *cdev,
4702 				   struct device_attribute *attr,
4703 				   const char *buf, size_t count)
4704 {
4705 	unsigned long val;
4706 	ssize_t ret;
4707 
4708 	ret = kstrtoul(buf, 0, &val);
4709 	if (ret)
4710 		return ret;
4711 
4712 	if (val > 1)
4713 		return -EINVAL;
4714 
4715 	mutex_lock(&freeze_on_smi_mutex);
4716 
4717 	if (x86_pmu.attr_freeze_on_smi == val)
4718 		goto done;
4719 
4720 	x86_pmu.attr_freeze_on_smi = val;
4721 
4722 	get_online_cpus();
4723 	on_each_cpu(flip_smm_bit, &val, 1);
4724 	put_online_cpus();
4725 done:
4726 	mutex_unlock(&freeze_on_smi_mutex);
4727 
4728 	return count;
4729 }
4730 
4731 static void update_tfa_sched(void *ignored)
4732 {
4733 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4734 
4735 	/*
4736 	 * check if PMC3 is used
4737 	 * and if so force schedule out for all event types all contexts
4738 	 */
4739 	if (test_bit(3, cpuc->active_mask))
4740 		perf_pmu_resched(x86_get_pmu());
4741 }
4742 
4743 static ssize_t show_sysctl_tfa(struct device *cdev,
4744 			      struct device_attribute *attr,
4745 			      char *buf)
4746 {
4747 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4748 }
4749 
4750 static ssize_t set_sysctl_tfa(struct device *cdev,
4751 			      struct device_attribute *attr,
4752 			      const char *buf, size_t count)
4753 {
4754 	bool val;
4755 	ssize_t ret;
4756 
4757 	ret = kstrtobool(buf, &val);
4758 	if (ret)
4759 		return ret;
4760 
4761 	/* no change */
4762 	if (val == allow_tsx_force_abort)
4763 		return count;
4764 
4765 	allow_tsx_force_abort = val;
4766 
4767 	get_online_cpus();
4768 	on_each_cpu(update_tfa_sched, NULL, 1);
4769 	put_online_cpus();
4770 
4771 	return count;
4772 }
4773 
4774 
4775 static DEVICE_ATTR_RW(freeze_on_smi);
4776 
4777 static ssize_t branches_show(struct device *cdev,
4778 			     struct device_attribute *attr,
4779 			     char *buf)
4780 {
4781 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4782 }
4783 
4784 static DEVICE_ATTR_RO(branches);
4785 
4786 static struct attribute *lbr_attrs[] = {
4787 	&dev_attr_branches.attr,
4788 	NULL
4789 };
4790 
4791 static char pmu_name_str[30];
4792 
4793 static ssize_t pmu_name_show(struct device *cdev,
4794 			     struct device_attribute *attr,
4795 			     char *buf)
4796 {
4797 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4798 }
4799 
4800 static DEVICE_ATTR_RO(pmu_name);
4801 
4802 static struct attribute *intel_pmu_caps_attrs[] = {
4803        &dev_attr_pmu_name.attr,
4804        NULL
4805 };
4806 
4807 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4808 		   show_sysctl_tfa,
4809 		   set_sysctl_tfa);
4810 
4811 static struct attribute *intel_pmu_attrs[] = {
4812 	&dev_attr_freeze_on_smi.attr,
4813 	&dev_attr_allow_tsx_force_abort.attr,
4814 	NULL,
4815 };
4816 
4817 static umode_t
4818 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4819 {
4820 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4821 }
4822 
4823 static umode_t
4824 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4825 {
4826 	return x86_pmu.pebs ? attr->mode : 0;
4827 }
4828 
4829 static umode_t
4830 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4831 {
4832 	return x86_pmu.lbr_nr ? attr->mode : 0;
4833 }
4834 
4835 static umode_t
4836 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4837 {
4838 	return x86_pmu.version >= 2 ? attr->mode : 0;
4839 }
4840 
4841 static umode_t
4842 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4843 {
4844 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
4845 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4846 
4847 	return attr->mode;
4848 }
4849 
4850 static struct attribute_group group_events_td  = {
4851 	.name = "events",
4852 };
4853 
4854 static struct attribute_group group_events_mem = {
4855 	.name       = "events",
4856 	.is_visible = pebs_is_visible,
4857 };
4858 
4859 static struct attribute_group group_events_tsx = {
4860 	.name       = "events",
4861 	.is_visible = tsx_is_visible,
4862 };
4863 
4864 static struct attribute_group group_caps_gen = {
4865 	.name  = "caps",
4866 	.attrs = intel_pmu_caps_attrs,
4867 };
4868 
4869 static struct attribute_group group_caps_lbr = {
4870 	.name       = "caps",
4871 	.attrs	    = lbr_attrs,
4872 	.is_visible = lbr_is_visible,
4873 };
4874 
4875 static struct attribute_group group_format_extra = {
4876 	.name       = "format",
4877 	.is_visible = exra_is_visible,
4878 };
4879 
4880 static struct attribute_group group_format_extra_skl = {
4881 	.name       = "format",
4882 	.is_visible = exra_is_visible,
4883 };
4884 
4885 static struct attribute_group group_default = {
4886 	.attrs      = intel_pmu_attrs,
4887 	.is_visible = default_is_visible,
4888 };
4889 
4890 static const struct attribute_group *attr_update[] = {
4891 	&group_events_td,
4892 	&group_events_mem,
4893 	&group_events_tsx,
4894 	&group_caps_gen,
4895 	&group_caps_lbr,
4896 	&group_format_extra,
4897 	&group_format_extra_skl,
4898 	&group_default,
4899 	NULL,
4900 };
4901 
4902 static struct attribute *empty_attrs;
4903 
4904 __init int intel_pmu_init(void)
4905 {
4906 	struct attribute **extra_skl_attr = &empty_attrs;
4907 	struct attribute **extra_attr = &empty_attrs;
4908 	struct attribute **td_attr    = &empty_attrs;
4909 	struct attribute **mem_attr   = &empty_attrs;
4910 	struct attribute **tsx_attr   = &empty_attrs;
4911 	union cpuid10_edx edx;
4912 	union cpuid10_eax eax;
4913 	union cpuid10_ebx ebx;
4914 	struct event_constraint *c;
4915 	unsigned int unused;
4916 	struct extra_reg *er;
4917 	bool pmem = false;
4918 	int version, i;
4919 	char *name;
4920 
4921 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4922 		switch (boot_cpu_data.x86) {
4923 		case 0x6:
4924 			return p6_pmu_init();
4925 		case 0xb:
4926 			return knc_pmu_init();
4927 		case 0xf:
4928 			return p4_pmu_init();
4929 		}
4930 		return -ENODEV;
4931 	}
4932 
4933 	/*
4934 	 * Check whether the Architectural PerfMon supports
4935 	 * Branch Misses Retired hw_event or not.
4936 	 */
4937 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4938 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4939 		return -ENODEV;
4940 
4941 	version = eax.split.version_id;
4942 	if (version < 2)
4943 		x86_pmu = core_pmu;
4944 	else
4945 		x86_pmu = intel_pmu;
4946 
4947 	x86_pmu.version			= version;
4948 	x86_pmu.num_counters		= eax.split.num_counters;
4949 	x86_pmu.cntval_bits		= eax.split.bit_width;
4950 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4951 
4952 	x86_pmu.events_maskl		= ebx.full;
4953 	x86_pmu.events_mask_len		= eax.split.mask_length;
4954 
4955 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4956 
4957 	/*
4958 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4959 	 * assume at least 3 events, when not running in a hypervisor:
4960 	 */
4961 	if (version > 1) {
4962 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4963 
4964 		x86_pmu.num_counters_fixed =
4965 			max((int)edx.split.num_counters_fixed, assume);
4966 	}
4967 
4968 	if (version >= 4)
4969 		x86_pmu.counter_freezing = !disable_counter_freezing;
4970 
4971 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4972 		u64 capabilities;
4973 
4974 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4975 		x86_pmu.intel_cap.capabilities = capabilities;
4976 	}
4977 
4978 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4979 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4980 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4981 	}
4982 
4983 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4984 		intel_pmu_arch_lbr_init();
4985 
4986 	intel_ds_init();
4987 
4988 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4989 
4990 	if (version >= 5) {
4991 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
4992 		if (x86_pmu.intel_cap.anythread_deprecated)
4993 			pr_cont(" AnyThread deprecated, ");
4994 	}
4995 
4996 	/*
4997 	 * Install the hw-cache-events table:
4998 	 */
4999 	switch (boot_cpu_data.x86_model) {
5000 	case INTEL_FAM6_CORE_YONAH:
5001 		pr_cont("Core events, ");
5002 		name = "core";
5003 		break;
5004 
5005 	case INTEL_FAM6_CORE2_MEROM:
5006 		x86_add_quirk(intel_clovertown_quirk);
5007 		fallthrough;
5008 
5009 	case INTEL_FAM6_CORE2_MEROM_L:
5010 	case INTEL_FAM6_CORE2_PENRYN:
5011 	case INTEL_FAM6_CORE2_DUNNINGTON:
5012 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5013 		       sizeof(hw_cache_event_ids));
5014 
5015 		intel_pmu_lbr_init_core();
5016 
5017 		x86_pmu.event_constraints = intel_core2_event_constraints;
5018 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5019 		pr_cont("Core2 events, ");
5020 		name = "core2";
5021 		break;
5022 
5023 	case INTEL_FAM6_NEHALEM:
5024 	case INTEL_FAM6_NEHALEM_EP:
5025 	case INTEL_FAM6_NEHALEM_EX:
5026 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5027 		       sizeof(hw_cache_event_ids));
5028 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5029 		       sizeof(hw_cache_extra_regs));
5030 
5031 		intel_pmu_lbr_init_nhm();
5032 
5033 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5034 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5035 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5036 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5037 		x86_pmu.limit_period = nhm_limit_period;
5038 
5039 		mem_attr = nhm_mem_events_attrs;
5040 
5041 		/* UOPS_ISSUED.STALLED_CYCLES */
5042 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5043 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5044 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5045 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5046 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5047 
5048 		intel_pmu_pebs_data_source_nhm();
5049 		x86_add_quirk(intel_nehalem_quirk);
5050 		x86_pmu.pebs_no_tlb = 1;
5051 		extra_attr = nhm_format_attr;
5052 
5053 		pr_cont("Nehalem events, ");
5054 		name = "nehalem";
5055 		break;
5056 
5057 	case INTEL_FAM6_ATOM_BONNELL:
5058 	case INTEL_FAM6_ATOM_BONNELL_MID:
5059 	case INTEL_FAM6_ATOM_SALTWELL:
5060 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5061 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5062 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5063 		       sizeof(hw_cache_event_ids));
5064 
5065 		intel_pmu_lbr_init_atom();
5066 
5067 		x86_pmu.event_constraints = intel_gen_event_constraints;
5068 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5069 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5070 		pr_cont("Atom events, ");
5071 		name = "bonnell";
5072 		break;
5073 
5074 	case INTEL_FAM6_ATOM_SILVERMONT:
5075 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5076 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5077 	case INTEL_FAM6_ATOM_AIRMONT:
5078 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5079 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5080 			sizeof(hw_cache_event_ids));
5081 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5082 		       sizeof(hw_cache_extra_regs));
5083 
5084 		intel_pmu_lbr_init_slm();
5085 
5086 		x86_pmu.event_constraints = intel_slm_event_constraints;
5087 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5088 		x86_pmu.extra_regs = intel_slm_extra_regs;
5089 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5090 		td_attr = slm_events_attrs;
5091 		extra_attr = slm_format_attr;
5092 		pr_cont("Silvermont events, ");
5093 		name = "silvermont";
5094 		break;
5095 
5096 	case INTEL_FAM6_ATOM_GOLDMONT:
5097 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5098 		x86_add_quirk(intel_counter_freezing_quirk);
5099 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5100 		       sizeof(hw_cache_event_ids));
5101 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5102 		       sizeof(hw_cache_extra_regs));
5103 
5104 		intel_pmu_lbr_init_skl();
5105 
5106 		x86_pmu.event_constraints = intel_slm_event_constraints;
5107 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5108 		x86_pmu.extra_regs = intel_glm_extra_regs;
5109 		/*
5110 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5111 		 * for precise cycles.
5112 		 * :pp is identical to :ppp
5113 		 */
5114 		x86_pmu.pebs_aliases = NULL;
5115 		x86_pmu.pebs_prec_dist = true;
5116 		x86_pmu.lbr_pt_coexist = true;
5117 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5118 		td_attr = glm_events_attrs;
5119 		extra_attr = slm_format_attr;
5120 		pr_cont("Goldmont events, ");
5121 		name = "goldmont";
5122 		break;
5123 
5124 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5125 		x86_add_quirk(intel_counter_freezing_quirk);
5126 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5127 		       sizeof(hw_cache_event_ids));
5128 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5129 		       sizeof(hw_cache_extra_regs));
5130 
5131 		intel_pmu_lbr_init_skl();
5132 
5133 		x86_pmu.event_constraints = intel_slm_event_constraints;
5134 		x86_pmu.extra_regs = intel_glm_extra_regs;
5135 		/*
5136 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5137 		 * for precise cycles.
5138 		 */
5139 		x86_pmu.pebs_aliases = NULL;
5140 		x86_pmu.pebs_prec_dist = true;
5141 		x86_pmu.lbr_pt_coexist = true;
5142 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5143 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5144 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5145 		td_attr = glm_events_attrs;
5146 		/* Goldmont Plus has 4-wide pipeline */
5147 		event_attr_td_total_slots_scale_glm.event_str = "4";
5148 		extra_attr = slm_format_attr;
5149 		pr_cont("Goldmont plus events, ");
5150 		name = "goldmont_plus";
5151 		break;
5152 
5153 	case INTEL_FAM6_ATOM_TREMONT_D:
5154 	case INTEL_FAM6_ATOM_TREMONT:
5155 	case INTEL_FAM6_ATOM_TREMONT_L:
5156 		x86_pmu.late_ack = true;
5157 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5158 		       sizeof(hw_cache_event_ids));
5159 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5160 		       sizeof(hw_cache_extra_regs));
5161 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5162 
5163 		intel_pmu_lbr_init_skl();
5164 
5165 		x86_pmu.event_constraints = intel_slm_event_constraints;
5166 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5167 		/*
5168 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5169 		 * for precise cycles.
5170 		 */
5171 		x86_pmu.pebs_aliases = NULL;
5172 		x86_pmu.pebs_prec_dist = true;
5173 		x86_pmu.lbr_pt_coexist = true;
5174 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5175 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5176 		extra_attr = slm_format_attr;
5177 		pr_cont("Tremont events, ");
5178 		name = "Tremont";
5179 		break;
5180 
5181 	case INTEL_FAM6_WESTMERE:
5182 	case INTEL_FAM6_WESTMERE_EP:
5183 	case INTEL_FAM6_WESTMERE_EX:
5184 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5185 		       sizeof(hw_cache_event_ids));
5186 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5187 		       sizeof(hw_cache_extra_regs));
5188 
5189 		intel_pmu_lbr_init_nhm();
5190 
5191 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5192 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5193 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5194 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5195 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5196 
5197 		mem_attr = nhm_mem_events_attrs;
5198 
5199 		/* UOPS_ISSUED.STALLED_CYCLES */
5200 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5201 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5202 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5203 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5204 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5205 
5206 		intel_pmu_pebs_data_source_nhm();
5207 		extra_attr = nhm_format_attr;
5208 		pr_cont("Westmere events, ");
5209 		name = "westmere";
5210 		break;
5211 
5212 	case INTEL_FAM6_SANDYBRIDGE:
5213 	case INTEL_FAM6_SANDYBRIDGE_X:
5214 		x86_add_quirk(intel_sandybridge_quirk);
5215 		x86_add_quirk(intel_ht_bug);
5216 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5217 		       sizeof(hw_cache_event_ids));
5218 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5219 		       sizeof(hw_cache_extra_regs));
5220 
5221 		intel_pmu_lbr_init_snb();
5222 
5223 		x86_pmu.event_constraints = intel_snb_event_constraints;
5224 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5225 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5226 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5227 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5228 		else
5229 			x86_pmu.extra_regs = intel_snb_extra_regs;
5230 
5231 
5232 		/* all extra regs are per-cpu when HT is on */
5233 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5234 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5235 
5236 		td_attr  = snb_events_attrs;
5237 		mem_attr = snb_mem_events_attrs;
5238 
5239 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5240 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5241 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5242 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5243 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5244 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5245 
5246 		extra_attr = nhm_format_attr;
5247 
5248 		pr_cont("SandyBridge events, ");
5249 		name = "sandybridge";
5250 		break;
5251 
5252 	case INTEL_FAM6_IVYBRIDGE:
5253 	case INTEL_FAM6_IVYBRIDGE_X:
5254 		x86_add_quirk(intel_ht_bug);
5255 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5256 		       sizeof(hw_cache_event_ids));
5257 		/* dTLB-load-misses on IVB is different than SNB */
5258 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5259 
5260 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5261 		       sizeof(hw_cache_extra_regs));
5262 
5263 		intel_pmu_lbr_init_snb();
5264 
5265 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5266 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5267 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5268 		x86_pmu.pebs_prec_dist = true;
5269 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5270 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5271 		else
5272 			x86_pmu.extra_regs = intel_snb_extra_regs;
5273 		/* all extra regs are per-cpu when HT is on */
5274 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5275 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5276 
5277 		td_attr  = snb_events_attrs;
5278 		mem_attr = snb_mem_events_attrs;
5279 
5280 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5281 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5282 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5283 
5284 		extra_attr = nhm_format_attr;
5285 
5286 		pr_cont("IvyBridge events, ");
5287 		name = "ivybridge";
5288 		break;
5289 
5290 
5291 	case INTEL_FAM6_HASWELL:
5292 	case INTEL_FAM6_HASWELL_X:
5293 	case INTEL_FAM6_HASWELL_L:
5294 	case INTEL_FAM6_HASWELL_G:
5295 		x86_add_quirk(intel_ht_bug);
5296 		x86_add_quirk(intel_pebs_isolation_quirk);
5297 		x86_pmu.late_ack = true;
5298 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5299 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5300 
5301 		intel_pmu_lbr_init_hsw();
5302 
5303 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5304 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5305 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5306 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5307 		x86_pmu.pebs_prec_dist = true;
5308 		/* all extra regs are per-cpu when HT is on */
5309 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5310 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5311 
5312 		x86_pmu.hw_config = hsw_hw_config;
5313 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5314 		x86_pmu.lbr_double_abort = true;
5315 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5316 			hsw_format_attr : nhm_format_attr;
5317 		td_attr  = hsw_events_attrs;
5318 		mem_attr = hsw_mem_events_attrs;
5319 		tsx_attr = hsw_tsx_events_attrs;
5320 		pr_cont("Haswell events, ");
5321 		name = "haswell";
5322 		break;
5323 
5324 	case INTEL_FAM6_BROADWELL:
5325 	case INTEL_FAM6_BROADWELL_D:
5326 	case INTEL_FAM6_BROADWELL_G:
5327 	case INTEL_FAM6_BROADWELL_X:
5328 		x86_add_quirk(intel_pebs_isolation_quirk);
5329 		x86_pmu.late_ack = true;
5330 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5331 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5332 
5333 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5334 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5335 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5336 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5337 									  HSW_SNOOP_DRAM;
5338 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5339 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5340 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5341 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5342 
5343 		intel_pmu_lbr_init_hsw();
5344 
5345 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5346 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5347 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5348 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5349 		x86_pmu.pebs_prec_dist = true;
5350 		/* all extra regs are per-cpu when HT is on */
5351 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5352 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5353 
5354 		x86_pmu.hw_config = hsw_hw_config;
5355 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5356 		x86_pmu.limit_period = bdw_limit_period;
5357 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5358 			hsw_format_attr : nhm_format_attr;
5359 		td_attr  = hsw_events_attrs;
5360 		mem_attr = hsw_mem_events_attrs;
5361 		tsx_attr = hsw_tsx_events_attrs;
5362 		pr_cont("Broadwell events, ");
5363 		name = "broadwell";
5364 		break;
5365 
5366 	case INTEL_FAM6_XEON_PHI_KNL:
5367 	case INTEL_FAM6_XEON_PHI_KNM:
5368 		memcpy(hw_cache_event_ids,
5369 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5370 		memcpy(hw_cache_extra_regs,
5371 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5372 		intel_pmu_lbr_init_knl();
5373 
5374 		x86_pmu.event_constraints = intel_slm_event_constraints;
5375 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5376 		x86_pmu.extra_regs = intel_knl_extra_regs;
5377 
5378 		/* all extra regs are per-cpu when HT is on */
5379 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5380 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5381 		extra_attr = slm_format_attr;
5382 		pr_cont("Knights Landing/Mill events, ");
5383 		name = "knights-landing";
5384 		break;
5385 
5386 	case INTEL_FAM6_SKYLAKE_X:
5387 		pmem = true;
5388 		fallthrough;
5389 	case INTEL_FAM6_SKYLAKE_L:
5390 	case INTEL_FAM6_SKYLAKE:
5391 	case INTEL_FAM6_KABYLAKE_L:
5392 	case INTEL_FAM6_KABYLAKE:
5393 	case INTEL_FAM6_COMETLAKE_L:
5394 	case INTEL_FAM6_COMETLAKE:
5395 		x86_add_quirk(intel_pebs_isolation_quirk);
5396 		x86_pmu.late_ack = true;
5397 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5398 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5399 		intel_pmu_lbr_init_skl();
5400 
5401 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5402 		event_attr_td_recovery_bubbles.event_str_noht =
5403 			"event=0xd,umask=0x1,cmask=1";
5404 		event_attr_td_recovery_bubbles.event_str_ht =
5405 			"event=0xd,umask=0x1,cmask=1,any=1";
5406 
5407 		x86_pmu.event_constraints = intel_skl_event_constraints;
5408 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5409 		x86_pmu.extra_regs = intel_skl_extra_regs;
5410 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5411 		x86_pmu.pebs_prec_dist = true;
5412 		/* all extra regs are per-cpu when HT is on */
5413 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5414 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5415 
5416 		x86_pmu.hw_config = hsw_hw_config;
5417 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5418 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5419 			hsw_format_attr : nhm_format_attr;
5420 		extra_skl_attr = skl_format_attr;
5421 		td_attr  = hsw_events_attrs;
5422 		mem_attr = hsw_mem_events_attrs;
5423 		tsx_attr = hsw_tsx_events_attrs;
5424 		intel_pmu_pebs_data_source_skl(pmem);
5425 
5426 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5427 			x86_pmu.flags |= PMU_FL_TFA;
5428 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
5429 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5430 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5431 		}
5432 
5433 		pr_cont("Skylake events, ");
5434 		name = "skylake";
5435 		break;
5436 
5437 	case INTEL_FAM6_ICELAKE_X:
5438 	case INTEL_FAM6_ICELAKE_D:
5439 		pmem = true;
5440 		fallthrough;
5441 	case INTEL_FAM6_ICELAKE_L:
5442 	case INTEL_FAM6_ICELAKE:
5443 	case INTEL_FAM6_TIGERLAKE_L:
5444 	case INTEL_FAM6_TIGERLAKE:
5445 		x86_pmu.late_ack = true;
5446 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5447 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5448 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5449 		intel_pmu_lbr_init_skl();
5450 
5451 		x86_pmu.event_constraints = intel_icl_event_constraints;
5452 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5453 		x86_pmu.extra_regs = intel_icl_extra_regs;
5454 		x86_pmu.pebs_aliases = NULL;
5455 		x86_pmu.pebs_prec_dist = true;
5456 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5457 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5458 
5459 		x86_pmu.hw_config = hsw_hw_config;
5460 		x86_pmu.get_event_constraints = icl_get_event_constraints;
5461 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5462 			hsw_format_attr : nhm_format_attr;
5463 		extra_skl_attr = skl_format_attr;
5464 		mem_attr = icl_events_attrs;
5465 		td_attr = icl_td_events_attrs;
5466 		tsx_attr = icl_tsx_events_attrs;
5467 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5468 		x86_pmu.lbr_pt_coexist = true;
5469 		intel_pmu_pebs_data_source_skl(pmem);
5470 		x86_pmu.update_topdown_event = icl_update_topdown_event;
5471 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5472 		pr_cont("Icelake events, ");
5473 		name = "icelake";
5474 		break;
5475 
5476 	default:
5477 		switch (x86_pmu.version) {
5478 		case 1:
5479 			x86_pmu.event_constraints = intel_v1_event_constraints;
5480 			pr_cont("generic architected perfmon v1, ");
5481 			name = "generic_arch_v1";
5482 			break;
5483 		default:
5484 			/*
5485 			 * default constraints for v2 and up
5486 			 */
5487 			x86_pmu.event_constraints = intel_gen_event_constraints;
5488 			pr_cont("generic architected perfmon, ");
5489 			name = "generic_arch_v2+";
5490 			break;
5491 		}
5492 	}
5493 
5494 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5495 
5496 
5497 	group_events_td.attrs  = td_attr;
5498 	group_events_mem.attrs = mem_attr;
5499 	group_events_tsx.attrs = tsx_attr;
5500 	group_format_extra.attrs = extra_attr;
5501 	group_format_extra_skl.attrs = extra_skl_attr;
5502 
5503 	x86_pmu.attr_update = attr_update;
5504 
5505 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5506 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5507 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5508 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5509 	}
5510 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5511 
5512 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5513 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5514 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5515 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5516 	}
5517 
5518 	x86_pmu.intel_ctrl |=
5519 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5520 
5521 	/* AnyThread may be deprecated on arch perfmon v5 or later */
5522 	if (x86_pmu.intel_cap.anythread_deprecated)
5523 		x86_pmu.format_attrs = intel_arch_formats_attr;
5524 
5525 	if (x86_pmu.event_constraints) {
5526 		/*
5527 		 * event on fixed counter2 (REF_CYCLES) only works on this
5528 		 * counter, so do not extend mask to generic counters
5529 		 */
5530 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5531 			/*
5532 			 * Don't extend the topdown slots and metrics
5533 			 * events to the generic counters.
5534 			 */
5535 			if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5536 				c->weight = hweight64(c->idxmsk64);
5537 				continue;
5538 			}
5539 
5540 			if (c->cmask == FIXED_EVENT_FLAGS
5541 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5542 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5543 			}
5544 			c->idxmsk64 &=
5545 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5546 			c->weight = hweight64(c->idxmsk64);
5547 		}
5548 	}
5549 
5550 	/*
5551 	 * Access LBR MSR may cause #GP under certain circumstances.
5552 	 * E.g. KVM doesn't support LBR MSR
5553 	 * Check all LBT MSR here.
5554 	 * Disable LBR access if any LBR MSRs can not be accessed.
5555 	 */
5556 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5557 		x86_pmu.lbr_nr = 0;
5558 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5559 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5560 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5561 			x86_pmu.lbr_nr = 0;
5562 	}
5563 
5564 	if (x86_pmu.lbr_nr)
5565 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5566 
5567 	/*
5568 	 * Access extra MSR may cause #GP under certain circumstances.
5569 	 * E.g. KVM doesn't support offcore event
5570 	 * Check all extra_regs here.
5571 	 */
5572 	if (x86_pmu.extra_regs) {
5573 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5574 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5575 			/* Disable LBR select mapping */
5576 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5577 				x86_pmu.lbr_sel_map = NULL;
5578 		}
5579 	}
5580 
5581 	/* Support full width counters using alternative MSR range */
5582 	if (x86_pmu.intel_cap.full_width_write) {
5583 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5584 		x86_pmu.perfctr = MSR_IA32_PMC0;
5585 		pr_cont("full-width counters, ");
5586 	}
5587 
5588 	/*
5589 	 * For arch perfmon 4 use counter freezing to avoid
5590 	 * several MSR accesses in the PMI.
5591 	 */
5592 	if (x86_pmu.counter_freezing)
5593 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5594 
5595 	if (x86_pmu.intel_cap.perf_metrics)
5596 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5597 
5598 	return 0;
5599 }
5600 
5601 /*
5602  * HT bug: phase 2 init
5603  * Called once we have valid topology information to check
5604  * whether or not HT is enabled
5605  * If HT is off, then we disable the workaround
5606  */
5607 static __init int fixup_ht_bug(void)
5608 {
5609 	int c;
5610 	/*
5611 	 * problem not present on this CPU model, nothing to do
5612 	 */
5613 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5614 		return 0;
5615 
5616 	if (topology_max_smt_threads() > 1) {
5617 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5618 		return 0;
5619 	}
5620 
5621 	cpus_read_lock();
5622 
5623 	hardlockup_detector_perf_stop();
5624 
5625 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5626 
5627 	x86_pmu.start_scheduling = NULL;
5628 	x86_pmu.commit_scheduling = NULL;
5629 	x86_pmu.stop_scheduling = NULL;
5630 
5631 	hardlockup_detector_perf_restart();
5632 
5633 	for_each_online_cpu(c)
5634 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5635 
5636 	cpus_read_unlock();
5637 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5638 	return 0;
5639 }
5640 subsys_initcall(fixup_ht_bug)
5641