xref: /openbmc/linux/arch/x86/events/intel/bts.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * BTS PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #undef DEBUG
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitops.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/debugfs.h>
23 #include <linux/device.h>
24 #include <linux/coredump.h>
25 
26 #include <linux/sizes.h>
27 #include <asm/perf_event.h>
28 
29 #include "../perf_event.h"
30 
31 struct bts_ctx {
32 	struct perf_output_handle	handle;
33 	struct debug_store		ds_back;
34 	int				state;
35 };
36 
37 /* BTS context states: */
38 enum {
39 	/* no ongoing AUX transactions */
40 	BTS_STATE_STOPPED = 0,
41 	/* AUX transaction is on, BTS tracing is disabled */
42 	BTS_STATE_INACTIVE,
43 	/* AUX transaction is on, BTS tracing is running */
44 	BTS_STATE_ACTIVE,
45 };
46 
47 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
48 
49 #define BTS_RECORD_SIZE		24
50 #define BTS_SAFETY_MARGIN	4080
51 
52 struct bts_phys {
53 	struct page	*page;
54 	unsigned long	size;
55 	unsigned long	offset;
56 	unsigned long	displacement;
57 };
58 
59 struct bts_buffer {
60 	size_t		real_size;	/* multiple of BTS_RECORD_SIZE */
61 	unsigned int	nr_pages;
62 	unsigned int	nr_bufs;
63 	unsigned int	cur_buf;
64 	bool		snapshot;
65 	local_t		data_size;
66 	local_t		head;
67 	unsigned long	end;
68 	void		**data_pages;
69 	struct bts_phys	buf[0];
70 };
71 
72 static struct pmu bts_pmu;
73 
74 static size_t buf_size(struct page *page)
75 {
76 	return 1 << (PAGE_SHIFT + page_private(page));
77 }
78 
79 static void *
80 bts_buffer_setup_aux(struct perf_event *event, void **pages,
81 		     int nr_pages, bool overwrite)
82 {
83 	struct bts_buffer *buf;
84 	struct page *page;
85 	int cpu = event->cpu;
86 	int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
87 	unsigned long offset;
88 	size_t size = nr_pages << PAGE_SHIFT;
89 	int pg, nbuf, pad;
90 
91 	/* count all the high order buffers */
92 	for (pg = 0, nbuf = 0; pg < nr_pages;) {
93 		page = virt_to_page(pages[pg]);
94 		if (WARN_ON_ONCE(!PagePrivate(page) && nr_pages > 1))
95 			return NULL;
96 		pg += 1 << page_private(page);
97 		nbuf++;
98 	}
99 
100 	/*
101 	 * to avoid interrupts in overwrite mode, only allow one physical
102 	 */
103 	if (overwrite && nbuf > 1)
104 		return NULL;
105 
106 	buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
107 	if (!buf)
108 		return NULL;
109 
110 	buf->nr_pages = nr_pages;
111 	buf->nr_bufs = nbuf;
112 	buf->snapshot = overwrite;
113 	buf->data_pages = pages;
114 	buf->real_size = size - size % BTS_RECORD_SIZE;
115 
116 	for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
117 		unsigned int __nr_pages;
118 
119 		page = virt_to_page(pages[pg]);
120 		__nr_pages = PagePrivate(page) ? 1 << page_private(page) : 1;
121 		buf->buf[nbuf].page = page;
122 		buf->buf[nbuf].offset = offset;
123 		buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
124 		buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
125 		pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
126 		buf->buf[nbuf].size -= pad;
127 
128 		pg += __nr_pages;
129 		offset += __nr_pages << PAGE_SHIFT;
130 	}
131 
132 	return buf;
133 }
134 
135 static void bts_buffer_free_aux(void *data)
136 {
137 	kfree(data);
138 }
139 
140 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
141 {
142 	return buf->buf[idx].offset + buf->buf[idx].displacement;
143 }
144 
145 static void
146 bts_config_buffer(struct bts_buffer *buf)
147 {
148 	int cpu = raw_smp_processor_id();
149 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
150 	struct bts_phys *phys = &buf->buf[buf->cur_buf];
151 	unsigned long index, thresh = 0, end = phys->size;
152 	struct page *page = phys->page;
153 
154 	index = local_read(&buf->head);
155 
156 	if (!buf->snapshot) {
157 		if (buf->end < phys->offset + buf_size(page))
158 			end = buf->end - phys->offset - phys->displacement;
159 
160 		index -= phys->offset + phys->displacement;
161 
162 		if (end - index > BTS_SAFETY_MARGIN)
163 			thresh = end - BTS_SAFETY_MARGIN;
164 		else if (end - index > BTS_RECORD_SIZE)
165 			thresh = end - BTS_RECORD_SIZE;
166 		else
167 			thresh = end;
168 	}
169 
170 	ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
171 	ds->bts_index = ds->bts_buffer_base + index;
172 	ds->bts_absolute_maximum = ds->bts_buffer_base + end;
173 	ds->bts_interrupt_threshold = !buf->snapshot
174 		? ds->bts_buffer_base + thresh
175 		: ds->bts_absolute_maximum + BTS_RECORD_SIZE;
176 }
177 
178 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
179 {
180 	unsigned long index = head - phys->offset;
181 
182 	memset(page_address(phys->page) + index, 0, phys->size - index);
183 }
184 
185 static void bts_update(struct bts_ctx *bts)
186 {
187 	int cpu = raw_smp_processor_id();
188 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
189 	struct bts_buffer *buf = perf_get_aux(&bts->handle);
190 	unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
191 
192 	if (!buf)
193 		return;
194 
195 	head = index + bts_buffer_offset(buf, buf->cur_buf);
196 	old = local_xchg(&buf->head, head);
197 
198 	if (!buf->snapshot) {
199 		if (old == head)
200 			return;
201 
202 		if (ds->bts_index >= ds->bts_absolute_maximum)
203 			perf_aux_output_flag(&bts->handle,
204 			                     PERF_AUX_FLAG_TRUNCATED);
205 
206 		/*
207 		 * old and head are always in the same physical buffer, so we
208 		 * can subtract them to get the data size.
209 		 */
210 		local_add(head - old, &buf->data_size);
211 	} else {
212 		local_set(&buf->data_size, head);
213 	}
214 }
215 
216 static int
217 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
218 
219 /*
220  * Ordering PMU callbacks wrt themselves and the PMI is done by means
221  * of bts::state, which:
222  *  - is set when bts::handle::event is valid, that is, between
223  *    perf_aux_output_begin() and perf_aux_output_end();
224  *  - is zero otherwise;
225  *  - is ordered against bts::handle::event with a compiler barrier.
226  */
227 
228 static void __bts_event_start(struct perf_event *event)
229 {
230 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
231 	struct bts_buffer *buf = perf_get_aux(&bts->handle);
232 	u64 config = 0;
233 
234 	if (!buf->snapshot)
235 		config |= ARCH_PERFMON_EVENTSEL_INT;
236 	if (!event->attr.exclude_kernel)
237 		config |= ARCH_PERFMON_EVENTSEL_OS;
238 	if (!event->attr.exclude_user)
239 		config |= ARCH_PERFMON_EVENTSEL_USR;
240 
241 	bts_config_buffer(buf);
242 
243 	/*
244 	 * local barrier to make sure that ds configuration made it
245 	 * before we enable BTS and bts::state goes ACTIVE
246 	 */
247 	wmb();
248 
249 	/* INACTIVE/STOPPED -> ACTIVE */
250 	WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
251 
252 	intel_pmu_enable_bts(config);
253 
254 }
255 
256 static void bts_event_start(struct perf_event *event, int flags)
257 {
258 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
259 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
260 	struct bts_buffer *buf;
261 
262 	buf = perf_aux_output_begin(&bts->handle, event);
263 	if (!buf)
264 		goto fail_stop;
265 
266 	if (bts_buffer_reset(buf, &bts->handle))
267 		goto fail_end_stop;
268 
269 	bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
270 	bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
271 	bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
272 
273 	perf_event_itrace_started(event);
274 	event->hw.state = 0;
275 
276 	__bts_event_start(event);
277 
278 	return;
279 
280 fail_end_stop:
281 	perf_aux_output_end(&bts->handle, 0);
282 
283 fail_stop:
284 	event->hw.state = PERF_HES_STOPPED;
285 }
286 
287 static void __bts_event_stop(struct perf_event *event, int state)
288 {
289 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
290 
291 	/* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
292 	WRITE_ONCE(bts->state, state);
293 
294 	/*
295 	 * No extra synchronization is mandated by the documentation to have
296 	 * BTS data stores globally visible.
297 	 */
298 	intel_pmu_disable_bts();
299 }
300 
301 static void bts_event_stop(struct perf_event *event, int flags)
302 {
303 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
304 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
305 	struct bts_buffer *buf = NULL;
306 	int state = READ_ONCE(bts->state);
307 
308 	if (state == BTS_STATE_ACTIVE)
309 		__bts_event_stop(event, BTS_STATE_STOPPED);
310 
311 	if (state != BTS_STATE_STOPPED)
312 		buf = perf_get_aux(&bts->handle);
313 
314 	event->hw.state |= PERF_HES_STOPPED;
315 
316 	if (flags & PERF_EF_UPDATE) {
317 		bts_update(bts);
318 
319 		if (buf) {
320 			if (buf->snapshot)
321 				bts->handle.head =
322 					local_xchg(&buf->data_size,
323 						   buf->nr_pages << PAGE_SHIFT);
324 			perf_aux_output_end(&bts->handle,
325 			                    local_xchg(&buf->data_size, 0));
326 		}
327 
328 		cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
329 		cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
330 		cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
331 		cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
332 	}
333 }
334 
335 void intel_bts_enable_local(void)
336 {
337 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
338 	int state = READ_ONCE(bts->state);
339 
340 	/*
341 	 * Here we transition from INACTIVE to ACTIVE;
342 	 * if we instead are STOPPED from the interrupt handler,
343 	 * stay that way. Can't be ACTIVE here though.
344 	 */
345 	if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
346 		return;
347 
348 	if (state == BTS_STATE_STOPPED)
349 		return;
350 
351 	if (bts->handle.event)
352 		__bts_event_start(bts->handle.event);
353 }
354 
355 void intel_bts_disable_local(void)
356 {
357 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
358 
359 	/*
360 	 * Here we transition from ACTIVE to INACTIVE;
361 	 * do nothing for STOPPED or INACTIVE.
362 	 */
363 	if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
364 		return;
365 
366 	if (bts->handle.event)
367 		__bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
368 }
369 
370 static int
371 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
372 {
373 	unsigned long head, space, next_space, pad, gap, skip, wakeup;
374 	unsigned int next_buf;
375 	struct bts_phys *phys, *next_phys;
376 	int ret;
377 
378 	if (buf->snapshot)
379 		return 0;
380 
381 	head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
382 
383 	phys = &buf->buf[buf->cur_buf];
384 	space = phys->offset + phys->displacement + phys->size - head;
385 	pad = space;
386 	if (space > handle->size) {
387 		space = handle->size;
388 		space -= space % BTS_RECORD_SIZE;
389 	}
390 	if (space <= BTS_SAFETY_MARGIN) {
391 		/* See if next phys buffer has more space */
392 		next_buf = buf->cur_buf + 1;
393 		if (next_buf >= buf->nr_bufs)
394 			next_buf = 0;
395 		next_phys = &buf->buf[next_buf];
396 		gap = buf_size(phys->page) - phys->displacement - phys->size +
397 		      next_phys->displacement;
398 		skip = pad + gap;
399 		if (handle->size >= skip) {
400 			next_space = next_phys->size;
401 			if (next_space + skip > handle->size) {
402 				next_space = handle->size - skip;
403 				next_space -= next_space % BTS_RECORD_SIZE;
404 			}
405 			if (next_space > space || !space) {
406 				if (pad)
407 					bts_buffer_pad_out(phys, head);
408 				ret = perf_aux_output_skip(handle, skip);
409 				if (ret)
410 					return ret;
411 				/* Advance to next phys buffer */
412 				phys = next_phys;
413 				space = next_space;
414 				head = phys->offset + phys->displacement;
415 				/*
416 				 * After this, cur_buf and head won't match ds
417 				 * anymore, so we must not be racing with
418 				 * bts_update().
419 				 */
420 				buf->cur_buf = next_buf;
421 				local_set(&buf->head, head);
422 			}
423 		}
424 	}
425 
426 	/* Don't go far beyond wakeup watermark */
427 	wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
428 		 handle->head;
429 	if (space > wakeup) {
430 		space = wakeup;
431 		space -= space % BTS_RECORD_SIZE;
432 	}
433 
434 	buf->end = head + space;
435 
436 	/*
437 	 * If we have no space, the lost notification would have been sent when
438 	 * we hit absolute_maximum - see bts_update()
439 	 */
440 	if (!space)
441 		return -ENOSPC;
442 
443 	return 0;
444 }
445 
446 int intel_bts_interrupt(void)
447 {
448 	struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
449 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
450 	struct perf_event *event = bts->handle.event;
451 	struct bts_buffer *buf;
452 	s64 old_head;
453 	int err = -ENOSPC, handled = 0;
454 
455 	/*
456 	 * The only surefire way of knowing if this NMI is ours is by checking
457 	 * the write ptr against the PMI threshold.
458 	 */
459 	if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
460 		handled = 1;
461 
462 	/*
463 	 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
464 	 * so we can only be INACTIVE or STOPPED
465 	 */
466 	if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
467 		return handled;
468 
469 	buf = perf_get_aux(&bts->handle);
470 	if (!buf)
471 		return handled;
472 
473 	/*
474 	 * Skip snapshot counters: they don't use the interrupt, but
475 	 * there's no other way of telling, because the pointer will
476 	 * keep moving
477 	 */
478 	if (buf->snapshot)
479 		return 0;
480 
481 	old_head = local_read(&buf->head);
482 	bts_update(bts);
483 
484 	/* no new data */
485 	if (old_head == local_read(&buf->head))
486 		return handled;
487 
488 	perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
489 
490 	buf = perf_aux_output_begin(&bts->handle, event);
491 	if (buf)
492 		err = bts_buffer_reset(buf, &bts->handle);
493 
494 	if (err) {
495 		WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
496 
497 		if (buf) {
498 			/*
499 			 * BTS_STATE_STOPPED should be visible before
500 			 * cleared handle::event
501 			 */
502 			barrier();
503 			perf_aux_output_end(&bts->handle, 0);
504 		}
505 	}
506 
507 	return 1;
508 }
509 
510 static void bts_event_del(struct perf_event *event, int mode)
511 {
512 	bts_event_stop(event, PERF_EF_UPDATE);
513 }
514 
515 static int bts_event_add(struct perf_event *event, int mode)
516 {
517 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
518 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
519 	struct hw_perf_event *hwc = &event->hw;
520 
521 	event->hw.state = PERF_HES_STOPPED;
522 
523 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
524 		return -EBUSY;
525 
526 	if (bts->handle.event)
527 		return -EBUSY;
528 
529 	if (mode & PERF_EF_START) {
530 		bts_event_start(event, 0);
531 		if (hwc->state & PERF_HES_STOPPED)
532 			return -EINVAL;
533 	}
534 
535 	return 0;
536 }
537 
538 static void bts_event_destroy(struct perf_event *event)
539 {
540 	x86_release_hardware();
541 	x86_del_exclusive(x86_lbr_exclusive_bts);
542 }
543 
544 static int bts_event_init(struct perf_event *event)
545 {
546 	int ret;
547 
548 	if (event->attr.type != bts_pmu.type)
549 		return -ENOENT;
550 
551 	/*
552 	 * BTS leaks kernel addresses even when CPL0 tracing is
553 	 * disabled, so disallow intel_bts driver for unprivileged
554 	 * users on paranoid systems since it provides trace data
555 	 * to the user in a zero-copy fashion.
556 	 *
557 	 * Note that the default paranoia setting permits unprivileged
558 	 * users to profile the kernel.
559 	 */
560 	if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
561 	    !capable(CAP_SYS_ADMIN))
562 		return -EACCES;
563 
564 	if (x86_add_exclusive(x86_lbr_exclusive_bts))
565 		return -EBUSY;
566 
567 	ret = x86_reserve_hardware();
568 	if (ret) {
569 		x86_del_exclusive(x86_lbr_exclusive_bts);
570 		return ret;
571 	}
572 
573 	event->destroy = bts_event_destroy;
574 
575 	return 0;
576 }
577 
578 static void bts_event_read(struct perf_event *event)
579 {
580 }
581 
582 static __init int bts_init(void)
583 {
584 	if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
585 		return -ENODEV;
586 
587 	if (boot_cpu_has(X86_FEATURE_PTI)) {
588 		/*
589 		 * BTS hardware writes through a virtual memory map we must
590 		 * either use the kernel physical map, or the user mapping of
591 		 * the AUX buffer.
592 		 *
593 		 * However, since this driver supports per-CPU and per-task inherit
594 		 * we cannot use the user mapping since it will not be available
595 		 * if we're not running the owning process.
596 		 *
597 		 * With PTI we can't use the kernal map either, because its not
598 		 * there when we run userspace.
599 		 *
600 		 * For now, disable this driver when using PTI.
601 		 */
602 		return -ENODEV;
603 	}
604 
605 	bts_pmu.capabilities	= PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
606 				  PERF_PMU_CAP_EXCLUSIVE;
607 	bts_pmu.task_ctx_nr	= perf_sw_context;
608 	bts_pmu.event_init	= bts_event_init;
609 	bts_pmu.add		= bts_event_add;
610 	bts_pmu.del		= bts_event_del;
611 	bts_pmu.start		= bts_event_start;
612 	bts_pmu.stop		= bts_event_stop;
613 	bts_pmu.read		= bts_event_read;
614 	bts_pmu.setup_aux	= bts_buffer_setup_aux;
615 	bts_pmu.free_aux	= bts_buffer_free_aux;
616 
617 	return perf_pmu_register(&bts_pmu, "intel_bts", -1);
618 }
619 arch_initcall(bts_init);
620