xref: /openbmc/linux/arch/x86/events/intel/bts.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * BTS PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #undef DEBUG
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitops.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/debugfs.h>
23 #include <linux/device.h>
24 #include <linux/coredump.h>
25 
26 #include <asm-generic/sizes.h>
27 #include <asm/perf_event.h>
28 
29 #include "../perf_event.h"
30 
31 struct bts_ctx {
32 	struct perf_output_handle	handle;
33 	struct debug_store		ds_back;
34 	int				state;
35 };
36 
37 /* BTS context states: */
38 enum {
39 	/* no ongoing AUX transactions */
40 	BTS_STATE_STOPPED = 0,
41 	/* AUX transaction is on, BTS tracing is disabled */
42 	BTS_STATE_INACTIVE,
43 	/* AUX transaction is on, BTS tracing is running */
44 	BTS_STATE_ACTIVE,
45 };
46 
47 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
48 
49 #define BTS_RECORD_SIZE		24
50 #define BTS_SAFETY_MARGIN	4080
51 
52 struct bts_phys {
53 	struct page	*page;
54 	unsigned long	size;
55 	unsigned long	offset;
56 	unsigned long	displacement;
57 };
58 
59 struct bts_buffer {
60 	size_t		real_size;	/* multiple of BTS_RECORD_SIZE */
61 	unsigned int	nr_pages;
62 	unsigned int	nr_bufs;
63 	unsigned int	cur_buf;
64 	bool		snapshot;
65 	local_t		data_size;
66 	local_t		head;
67 	unsigned long	end;
68 	void		**data_pages;
69 	struct bts_phys	buf[0];
70 };
71 
72 static struct pmu bts_pmu;
73 
74 static size_t buf_size(struct page *page)
75 {
76 	return 1 << (PAGE_SHIFT + page_private(page));
77 }
78 
79 static void *
80 bts_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool overwrite)
81 {
82 	struct bts_buffer *buf;
83 	struct page *page;
84 	int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
85 	unsigned long offset;
86 	size_t size = nr_pages << PAGE_SHIFT;
87 	int pg, nbuf, pad;
88 
89 	/* count all the high order buffers */
90 	for (pg = 0, nbuf = 0; pg < nr_pages;) {
91 		page = virt_to_page(pages[pg]);
92 		if (WARN_ON_ONCE(!PagePrivate(page) && nr_pages > 1))
93 			return NULL;
94 		pg += 1 << page_private(page);
95 		nbuf++;
96 	}
97 
98 	/*
99 	 * to avoid interrupts in overwrite mode, only allow one physical
100 	 */
101 	if (overwrite && nbuf > 1)
102 		return NULL;
103 
104 	buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
105 	if (!buf)
106 		return NULL;
107 
108 	buf->nr_pages = nr_pages;
109 	buf->nr_bufs = nbuf;
110 	buf->snapshot = overwrite;
111 	buf->data_pages = pages;
112 	buf->real_size = size - size % BTS_RECORD_SIZE;
113 
114 	for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
115 		unsigned int __nr_pages;
116 
117 		page = virt_to_page(pages[pg]);
118 		__nr_pages = PagePrivate(page) ? 1 << page_private(page) : 1;
119 		buf->buf[nbuf].page = page;
120 		buf->buf[nbuf].offset = offset;
121 		buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
122 		buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
123 		pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
124 		buf->buf[nbuf].size -= pad;
125 
126 		pg += __nr_pages;
127 		offset += __nr_pages << PAGE_SHIFT;
128 	}
129 
130 	return buf;
131 }
132 
133 static void bts_buffer_free_aux(void *data)
134 {
135 	kfree(data);
136 }
137 
138 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
139 {
140 	return buf->buf[idx].offset + buf->buf[idx].displacement;
141 }
142 
143 static void
144 bts_config_buffer(struct bts_buffer *buf)
145 {
146 	int cpu = raw_smp_processor_id();
147 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
148 	struct bts_phys *phys = &buf->buf[buf->cur_buf];
149 	unsigned long index, thresh = 0, end = phys->size;
150 	struct page *page = phys->page;
151 
152 	index = local_read(&buf->head);
153 
154 	if (!buf->snapshot) {
155 		if (buf->end < phys->offset + buf_size(page))
156 			end = buf->end - phys->offset - phys->displacement;
157 
158 		index -= phys->offset + phys->displacement;
159 
160 		if (end - index > BTS_SAFETY_MARGIN)
161 			thresh = end - BTS_SAFETY_MARGIN;
162 		else if (end - index > BTS_RECORD_SIZE)
163 			thresh = end - BTS_RECORD_SIZE;
164 		else
165 			thresh = end;
166 	}
167 
168 	ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
169 	ds->bts_index = ds->bts_buffer_base + index;
170 	ds->bts_absolute_maximum = ds->bts_buffer_base + end;
171 	ds->bts_interrupt_threshold = !buf->snapshot
172 		? ds->bts_buffer_base + thresh
173 		: ds->bts_absolute_maximum + BTS_RECORD_SIZE;
174 }
175 
176 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
177 {
178 	unsigned long index = head - phys->offset;
179 
180 	memset(page_address(phys->page) + index, 0, phys->size - index);
181 }
182 
183 static void bts_update(struct bts_ctx *bts)
184 {
185 	int cpu = raw_smp_processor_id();
186 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
187 	struct bts_buffer *buf = perf_get_aux(&bts->handle);
188 	unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
189 
190 	if (!buf)
191 		return;
192 
193 	head = index + bts_buffer_offset(buf, buf->cur_buf);
194 	old = local_xchg(&buf->head, head);
195 
196 	if (!buf->snapshot) {
197 		if (old == head)
198 			return;
199 
200 		if (ds->bts_index >= ds->bts_absolute_maximum)
201 			perf_aux_output_flag(&bts->handle,
202 			                     PERF_AUX_FLAG_TRUNCATED);
203 
204 		/*
205 		 * old and head are always in the same physical buffer, so we
206 		 * can subtract them to get the data size.
207 		 */
208 		local_add(head - old, &buf->data_size);
209 	} else {
210 		local_set(&buf->data_size, head);
211 	}
212 }
213 
214 static int
215 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
216 
217 /*
218  * Ordering PMU callbacks wrt themselves and the PMI is done by means
219  * of bts::state, which:
220  *  - is set when bts::handle::event is valid, that is, between
221  *    perf_aux_output_begin() and perf_aux_output_end();
222  *  - is zero otherwise;
223  *  - is ordered against bts::handle::event with a compiler barrier.
224  */
225 
226 static void __bts_event_start(struct perf_event *event)
227 {
228 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
229 	struct bts_buffer *buf = perf_get_aux(&bts->handle);
230 	u64 config = 0;
231 
232 	if (!buf->snapshot)
233 		config |= ARCH_PERFMON_EVENTSEL_INT;
234 	if (!event->attr.exclude_kernel)
235 		config |= ARCH_PERFMON_EVENTSEL_OS;
236 	if (!event->attr.exclude_user)
237 		config |= ARCH_PERFMON_EVENTSEL_USR;
238 
239 	bts_config_buffer(buf);
240 
241 	/*
242 	 * local barrier to make sure that ds configuration made it
243 	 * before we enable BTS and bts::state goes ACTIVE
244 	 */
245 	wmb();
246 
247 	/* INACTIVE/STOPPED -> ACTIVE */
248 	WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
249 
250 	intel_pmu_enable_bts(config);
251 
252 }
253 
254 static void bts_event_start(struct perf_event *event, int flags)
255 {
256 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
257 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
258 	struct bts_buffer *buf;
259 
260 	buf = perf_aux_output_begin(&bts->handle, event);
261 	if (!buf)
262 		goto fail_stop;
263 
264 	if (bts_buffer_reset(buf, &bts->handle))
265 		goto fail_end_stop;
266 
267 	bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
268 	bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
269 	bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
270 
271 	perf_event_itrace_started(event);
272 	event->hw.state = 0;
273 
274 	__bts_event_start(event);
275 
276 	return;
277 
278 fail_end_stop:
279 	perf_aux_output_end(&bts->handle, 0);
280 
281 fail_stop:
282 	event->hw.state = PERF_HES_STOPPED;
283 }
284 
285 static void __bts_event_stop(struct perf_event *event, int state)
286 {
287 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
288 
289 	/* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
290 	WRITE_ONCE(bts->state, state);
291 
292 	/*
293 	 * No extra synchronization is mandated by the documentation to have
294 	 * BTS data stores globally visible.
295 	 */
296 	intel_pmu_disable_bts();
297 }
298 
299 static void bts_event_stop(struct perf_event *event, int flags)
300 {
301 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
302 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
303 	struct bts_buffer *buf = NULL;
304 	int state = READ_ONCE(bts->state);
305 
306 	if (state == BTS_STATE_ACTIVE)
307 		__bts_event_stop(event, BTS_STATE_STOPPED);
308 
309 	if (state != BTS_STATE_STOPPED)
310 		buf = perf_get_aux(&bts->handle);
311 
312 	event->hw.state |= PERF_HES_STOPPED;
313 
314 	if (flags & PERF_EF_UPDATE) {
315 		bts_update(bts);
316 
317 		if (buf) {
318 			if (buf->snapshot)
319 				bts->handle.head =
320 					local_xchg(&buf->data_size,
321 						   buf->nr_pages << PAGE_SHIFT);
322 			perf_aux_output_end(&bts->handle,
323 			                    local_xchg(&buf->data_size, 0));
324 		}
325 
326 		cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
327 		cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
328 		cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
329 		cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
330 	}
331 }
332 
333 void intel_bts_enable_local(void)
334 {
335 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
336 	int state = READ_ONCE(bts->state);
337 
338 	/*
339 	 * Here we transition from INACTIVE to ACTIVE;
340 	 * if we instead are STOPPED from the interrupt handler,
341 	 * stay that way. Can't be ACTIVE here though.
342 	 */
343 	if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
344 		return;
345 
346 	if (state == BTS_STATE_STOPPED)
347 		return;
348 
349 	if (bts->handle.event)
350 		__bts_event_start(bts->handle.event);
351 }
352 
353 void intel_bts_disable_local(void)
354 {
355 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
356 
357 	/*
358 	 * Here we transition from ACTIVE to INACTIVE;
359 	 * do nothing for STOPPED or INACTIVE.
360 	 */
361 	if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
362 		return;
363 
364 	if (bts->handle.event)
365 		__bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
366 }
367 
368 static int
369 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
370 {
371 	unsigned long head, space, next_space, pad, gap, skip, wakeup;
372 	unsigned int next_buf;
373 	struct bts_phys *phys, *next_phys;
374 	int ret;
375 
376 	if (buf->snapshot)
377 		return 0;
378 
379 	head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
380 
381 	phys = &buf->buf[buf->cur_buf];
382 	space = phys->offset + phys->displacement + phys->size - head;
383 	pad = space;
384 	if (space > handle->size) {
385 		space = handle->size;
386 		space -= space % BTS_RECORD_SIZE;
387 	}
388 	if (space <= BTS_SAFETY_MARGIN) {
389 		/* See if next phys buffer has more space */
390 		next_buf = buf->cur_buf + 1;
391 		if (next_buf >= buf->nr_bufs)
392 			next_buf = 0;
393 		next_phys = &buf->buf[next_buf];
394 		gap = buf_size(phys->page) - phys->displacement - phys->size +
395 		      next_phys->displacement;
396 		skip = pad + gap;
397 		if (handle->size >= skip) {
398 			next_space = next_phys->size;
399 			if (next_space + skip > handle->size) {
400 				next_space = handle->size - skip;
401 				next_space -= next_space % BTS_RECORD_SIZE;
402 			}
403 			if (next_space > space || !space) {
404 				if (pad)
405 					bts_buffer_pad_out(phys, head);
406 				ret = perf_aux_output_skip(handle, skip);
407 				if (ret)
408 					return ret;
409 				/* Advance to next phys buffer */
410 				phys = next_phys;
411 				space = next_space;
412 				head = phys->offset + phys->displacement;
413 				/*
414 				 * After this, cur_buf and head won't match ds
415 				 * anymore, so we must not be racing with
416 				 * bts_update().
417 				 */
418 				buf->cur_buf = next_buf;
419 				local_set(&buf->head, head);
420 			}
421 		}
422 	}
423 
424 	/* Don't go far beyond wakeup watermark */
425 	wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
426 		 handle->head;
427 	if (space > wakeup) {
428 		space = wakeup;
429 		space -= space % BTS_RECORD_SIZE;
430 	}
431 
432 	buf->end = head + space;
433 
434 	/*
435 	 * If we have no space, the lost notification would have been sent when
436 	 * we hit absolute_maximum - see bts_update()
437 	 */
438 	if (!space)
439 		return -ENOSPC;
440 
441 	return 0;
442 }
443 
444 int intel_bts_interrupt(void)
445 {
446 	struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
447 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
448 	struct perf_event *event = bts->handle.event;
449 	struct bts_buffer *buf;
450 	s64 old_head;
451 	int err = -ENOSPC, handled = 0;
452 
453 	/*
454 	 * The only surefire way of knowing if this NMI is ours is by checking
455 	 * the write ptr against the PMI threshold.
456 	 */
457 	if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
458 		handled = 1;
459 
460 	/*
461 	 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
462 	 * so we can only be INACTIVE or STOPPED
463 	 */
464 	if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
465 		return handled;
466 
467 	buf = perf_get_aux(&bts->handle);
468 	if (!buf)
469 		return handled;
470 
471 	/*
472 	 * Skip snapshot counters: they don't use the interrupt, but
473 	 * there's no other way of telling, because the pointer will
474 	 * keep moving
475 	 */
476 	if (buf->snapshot)
477 		return 0;
478 
479 	old_head = local_read(&buf->head);
480 	bts_update(bts);
481 
482 	/* no new data */
483 	if (old_head == local_read(&buf->head))
484 		return handled;
485 
486 	perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
487 
488 	buf = perf_aux_output_begin(&bts->handle, event);
489 	if (buf)
490 		err = bts_buffer_reset(buf, &bts->handle);
491 
492 	if (err) {
493 		WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
494 
495 		if (buf) {
496 			/*
497 			 * BTS_STATE_STOPPED should be visible before
498 			 * cleared handle::event
499 			 */
500 			barrier();
501 			perf_aux_output_end(&bts->handle, 0);
502 		}
503 	}
504 
505 	return 1;
506 }
507 
508 static void bts_event_del(struct perf_event *event, int mode)
509 {
510 	bts_event_stop(event, PERF_EF_UPDATE);
511 }
512 
513 static int bts_event_add(struct perf_event *event, int mode)
514 {
515 	struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
516 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517 	struct hw_perf_event *hwc = &event->hw;
518 
519 	event->hw.state = PERF_HES_STOPPED;
520 
521 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
522 		return -EBUSY;
523 
524 	if (bts->handle.event)
525 		return -EBUSY;
526 
527 	if (mode & PERF_EF_START) {
528 		bts_event_start(event, 0);
529 		if (hwc->state & PERF_HES_STOPPED)
530 			return -EINVAL;
531 	}
532 
533 	return 0;
534 }
535 
536 static void bts_event_destroy(struct perf_event *event)
537 {
538 	x86_release_hardware();
539 	x86_del_exclusive(x86_lbr_exclusive_bts);
540 }
541 
542 static int bts_event_init(struct perf_event *event)
543 {
544 	int ret;
545 
546 	if (event->attr.type != bts_pmu.type)
547 		return -ENOENT;
548 
549 	/*
550 	 * BTS leaks kernel addresses even when CPL0 tracing is
551 	 * disabled, so disallow intel_bts driver for unprivileged
552 	 * users on paranoid systems since it provides trace data
553 	 * to the user in a zero-copy fashion.
554 	 *
555 	 * Note that the default paranoia setting permits unprivileged
556 	 * users to profile the kernel.
557 	 */
558 	if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
559 	    !capable(CAP_SYS_ADMIN))
560 		return -EACCES;
561 
562 	if (x86_add_exclusive(x86_lbr_exclusive_bts))
563 		return -EBUSY;
564 
565 	ret = x86_reserve_hardware();
566 	if (ret) {
567 		x86_del_exclusive(x86_lbr_exclusive_bts);
568 		return ret;
569 	}
570 
571 	event->destroy = bts_event_destroy;
572 
573 	return 0;
574 }
575 
576 static void bts_event_read(struct perf_event *event)
577 {
578 }
579 
580 static __init int bts_init(void)
581 {
582 	if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
583 		return -ENODEV;
584 
585 	if (boot_cpu_has(X86_FEATURE_PTI)) {
586 		/*
587 		 * BTS hardware writes through a virtual memory map we must
588 		 * either use the kernel physical map, or the user mapping of
589 		 * the AUX buffer.
590 		 *
591 		 * However, since this driver supports per-CPU and per-task inherit
592 		 * we cannot use the user mapping since it will not be availble
593 		 * if we're not running the owning process.
594 		 *
595 		 * With PTI we can't use the kernal map either, because its not
596 		 * there when we run userspace.
597 		 *
598 		 * For now, disable this driver when using PTI.
599 		 */
600 		return -ENODEV;
601 	}
602 
603 	bts_pmu.capabilities	= PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
604 				  PERF_PMU_CAP_EXCLUSIVE;
605 	bts_pmu.task_ctx_nr	= perf_sw_context;
606 	bts_pmu.event_init	= bts_event_init;
607 	bts_pmu.add		= bts_event_add;
608 	bts_pmu.del		= bts_event_del;
609 	bts_pmu.start		= bts_event_start;
610 	bts_pmu.stop		= bts_event_stop;
611 	bts_pmu.read		= bts_event_read;
612 	bts_pmu.setup_aux	= bts_buffer_setup_aux;
613 	bts_pmu.free_aux	= bts_buffer_free_aux;
614 
615 	return perf_pmu_register(&bts_pmu, "intel_bts", -1);
616 }
617 arch_initcall(bts_init);
618