xref: /openbmc/linux/arch/x86/events/core.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58 
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68 
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74 
75 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
78 
79 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
82 
83 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
85 
86 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
88 
89 /*
90  * This one is magic, it will get called even when PMU init fails (because
91  * there is no PMU), in which case it should simply return NULL.
92  */
93 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
94 
95 u64 __read_mostly hw_cache_event_ids
96 				[PERF_COUNT_HW_CACHE_MAX]
97 				[PERF_COUNT_HW_CACHE_OP_MAX]
98 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99 u64 __read_mostly hw_cache_extra_regs
100 				[PERF_COUNT_HW_CACHE_MAX]
101 				[PERF_COUNT_HW_CACHE_OP_MAX]
102 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
103 
104 /*
105  * Propagate event elapsed time into the generic event.
106  * Can only be executed on the CPU where the event is active.
107  * Returns the delta events processed.
108  */
109 u64 x86_perf_event_update(struct perf_event *event)
110 {
111 	struct hw_perf_event *hwc = &event->hw;
112 	int shift = 64 - x86_pmu.cntval_bits;
113 	u64 prev_raw_count, new_raw_count;
114 	u64 delta;
115 
116 	if (unlikely(!hwc->event_base))
117 		return 0;
118 
119 	if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
120 		return x86_pmu.update_topdown_event(event);
121 
122 	/*
123 	 * Careful: an NMI might modify the previous event value.
124 	 *
125 	 * Our tactic to handle this is to first atomically read and
126 	 * exchange a new raw count - then add that new-prev delta
127 	 * count to the generic event atomically:
128 	 */
129 again:
130 	prev_raw_count = local64_read(&hwc->prev_count);
131 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
132 
133 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
134 					new_raw_count) != prev_raw_count)
135 		goto again;
136 
137 	/*
138 	 * Now we have the new raw value and have updated the prev
139 	 * timestamp already. We can now calculate the elapsed delta
140 	 * (event-)time and add that to the generic event.
141 	 *
142 	 * Careful, not all hw sign-extends above the physical width
143 	 * of the count.
144 	 */
145 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
146 	delta >>= shift;
147 
148 	local64_add(delta, &event->count);
149 	local64_sub(delta, &hwc->period_left);
150 
151 	return new_raw_count;
152 }
153 
154 /*
155  * Find and validate any extra registers to set up.
156  */
157 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
158 {
159 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
160 	struct hw_perf_event_extra *reg;
161 	struct extra_reg *er;
162 
163 	reg = &event->hw.extra_reg;
164 
165 	if (!extra_regs)
166 		return 0;
167 
168 	for (er = extra_regs; er->msr; er++) {
169 		if (er->event != (config & er->config_mask))
170 			continue;
171 		if (event->attr.config1 & ~er->valid_mask)
172 			return -EINVAL;
173 		/* Check if the extra msrs can be safely accessed*/
174 		if (!er->extra_msr_access)
175 			return -ENXIO;
176 
177 		reg->idx = er->idx;
178 		reg->config = event->attr.config1;
179 		reg->reg = er->msr;
180 		break;
181 	}
182 	return 0;
183 }
184 
185 static atomic_t active_events;
186 static atomic_t pmc_refcount;
187 static DEFINE_MUTEX(pmc_reserve_mutex);
188 
189 #ifdef CONFIG_X86_LOCAL_APIC
190 
191 static inline int get_possible_num_counters(void)
192 {
193 	int i, num_counters = x86_pmu.num_counters;
194 
195 	if (!is_hybrid())
196 		return num_counters;
197 
198 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
199 		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
200 
201 	return num_counters;
202 }
203 
204 static bool reserve_pmc_hardware(void)
205 {
206 	int i, num_counters = get_possible_num_counters();
207 
208 	for (i = 0; i < num_counters; i++) {
209 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
210 			goto perfctr_fail;
211 	}
212 
213 	for (i = 0; i < num_counters; i++) {
214 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
215 			goto eventsel_fail;
216 	}
217 
218 	return true;
219 
220 eventsel_fail:
221 	for (i--; i >= 0; i--)
222 		release_evntsel_nmi(x86_pmu_config_addr(i));
223 
224 	i = num_counters;
225 
226 perfctr_fail:
227 	for (i--; i >= 0; i--)
228 		release_perfctr_nmi(x86_pmu_event_addr(i));
229 
230 	return false;
231 }
232 
233 static void release_pmc_hardware(void)
234 {
235 	int i, num_counters = get_possible_num_counters();
236 
237 	for (i = 0; i < num_counters; i++) {
238 		release_perfctr_nmi(x86_pmu_event_addr(i));
239 		release_evntsel_nmi(x86_pmu_config_addr(i));
240 	}
241 }
242 
243 #else
244 
245 static bool reserve_pmc_hardware(void) { return true; }
246 static void release_pmc_hardware(void) {}
247 
248 #endif
249 
250 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
251 {
252 	u64 val, val_fail = -1, val_new= ~0;
253 	int i, reg, reg_fail = -1, ret = 0;
254 	int bios_fail = 0;
255 	int reg_safe = -1;
256 
257 	/*
258 	 * Check to see if the BIOS enabled any of the counters, if so
259 	 * complain and bail.
260 	 */
261 	for (i = 0; i < num_counters; i++) {
262 		reg = x86_pmu_config_addr(i);
263 		ret = rdmsrl_safe(reg, &val);
264 		if (ret)
265 			goto msr_fail;
266 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
267 			bios_fail = 1;
268 			val_fail = val;
269 			reg_fail = reg;
270 		} else {
271 			reg_safe = i;
272 		}
273 	}
274 
275 	if (num_counters_fixed) {
276 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
277 		ret = rdmsrl_safe(reg, &val);
278 		if (ret)
279 			goto msr_fail;
280 		for (i = 0; i < num_counters_fixed; i++) {
281 			if (fixed_counter_disabled(i, pmu))
282 				continue;
283 			if (val & (0x03ULL << i*4)) {
284 				bios_fail = 1;
285 				val_fail = val;
286 				reg_fail = reg;
287 			}
288 		}
289 	}
290 
291 	/*
292 	 * If all the counters are enabled, the below test will always
293 	 * fail.  The tools will also become useless in this scenario.
294 	 * Just fail and disable the hardware counters.
295 	 */
296 
297 	if (reg_safe == -1) {
298 		reg = reg_safe;
299 		goto msr_fail;
300 	}
301 
302 	/*
303 	 * Read the current value, change it and read it back to see if it
304 	 * matches, this is needed to detect certain hardware emulators
305 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
306 	 */
307 	reg = x86_pmu_event_addr(reg_safe);
308 	if (rdmsrl_safe(reg, &val))
309 		goto msr_fail;
310 	val ^= 0xffffUL;
311 	ret = wrmsrl_safe(reg, val);
312 	ret |= rdmsrl_safe(reg, &val_new);
313 	if (ret || val != val_new)
314 		goto msr_fail;
315 
316 	/*
317 	 * We still allow the PMU driver to operate:
318 	 */
319 	if (bios_fail) {
320 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
321 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
322 			      reg_fail, val_fail);
323 	}
324 
325 	return true;
326 
327 msr_fail:
328 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
329 		pr_cont("PMU not available due to virtualization, using software events only.\n");
330 	} else {
331 		pr_cont("Broken PMU hardware detected, using software events only.\n");
332 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
333 		       reg, val_new);
334 	}
335 
336 	return false;
337 }
338 
339 static void hw_perf_event_destroy(struct perf_event *event)
340 {
341 	x86_release_hardware();
342 	atomic_dec(&active_events);
343 }
344 
345 void hw_perf_lbr_event_destroy(struct perf_event *event)
346 {
347 	hw_perf_event_destroy(event);
348 
349 	/* undo the lbr/bts event accounting */
350 	x86_del_exclusive(x86_lbr_exclusive_lbr);
351 }
352 
353 static inline int x86_pmu_initialized(void)
354 {
355 	return x86_pmu.handle_irq != NULL;
356 }
357 
358 static inline int
359 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
360 {
361 	struct perf_event_attr *attr = &event->attr;
362 	unsigned int cache_type, cache_op, cache_result;
363 	u64 config, val;
364 
365 	config = attr->config;
366 
367 	cache_type = (config >> 0) & 0xff;
368 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
369 		return -EINVAL;
370 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
371 
372 	cache_op = (config >>  8) & 0xff;
373 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
374 		return -EINVAL;
375 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
376 
377 	cache_result = (config >> 16) & 0xff;
378 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
379 		return -EINVAL;
380 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
381 
382 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
383 	if (val == 0)
384 		return -ENOENT;
385 
386 	if (val == -1)
387 		return -EINVAL;
388 
389 	hwc->config |= val;
390 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
391 	return x86_pmu_extra_regs(val, event);
392 }
393 
394 int x86_reserve_hardware(void)
395 {
396 	int err = 0;
397 
398 	if (!atomic_inc_not_zero(&pmc_refcount)) {
399 		mutex_lock(&pmc_reserve_mutex);
400 		if (atomic_read(&pmc_refcount) == 0) {
401 			if (!reserve_pmc_hardware()) {
402 				err = -EBUSY;
403 			} else {
404 				reserve_ds_buffers();
405 				reserve_lbr_buffers();
406 			}
407 		}
408 		if (!err)
409 			atomic_inc(&pmc_refcount);
410 		mutex_unlock(&pmc_reserve_mutex);
411 	}
412 
413 	return err;
414 }
415 
416 void x86_release_hardware(void)
417 {
418 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
419 		release_pmc_hardware();
420 		release_ds_buffers();
421 		release_lbr_buffers();
422 		mutex_unlock(&pmc_reserve_mutex);
423 	}
424 }
425 
426 /*
427  * Check if we can create event of a certain type (that no conflicting events
428  * are present).
429  */
430 int x86_add_exclusive(unsigned int what)
431 {
432 	int i;
433 
434 	/*
435 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
436 	 * LBR and BTS are still mutually exclusive.
437 	 */
438 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
439 		goto out;
440 
441 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
442 		mutex_lock(&pmc_reserve_mutex);
443 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
444 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
445 				goto fail_unlock;
446 		}
447 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
448 		mutex_unlock(&pmc_reserve_mutex);
449 	}
450 
451 out:
452 	atomic_inc(&active_events);
453 	return 0;
454 
455 fail_unlock:
456 	mutex_unlock(&pmc_reserve_mutex);
457 	return -EBUSY;
458 }
459 
460 void x86_del_exclusive(unsigned int what)
461 {
462 	atomic_dec(&active_events);
463 
464 	/*
465 	 * See the comment in x86_add_exclusive().
466 	 */
467 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
468 		return;
469 
470 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
471 }
472 
473 int x86_setup_perfctr(struct perf_event *event)
474 {
475 	struct perf_event_attr *attr = &event->attr;
476 	struct hw_perf_event *hwc = &event->hw;
477 	u64 config;
478 
479 	if (!is_sampling_event(event)) {
480 		hwc->sample_period = x86_pmu.max_period;
481 		hwc->last_period = hwc->sample_period;
482 		local64_set(&hwc->period_left, hwc->sample_period);
483 	}
484 
485 	if (attr->type == event->pmu->type)
486 		return x86_pmu_extra_regs(event->attr.config, event);
487 
488 	if (attr->type == PERF_TYPE_HW_CACHE)
489 		return set_ext_hw_attr(hwc, event);
490 
491 	if (attr->config >= x86_pmu.max_events)
492 		return -EINVAL;
493 
494 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
495 
496 	/*
497 	 * The generic map:
498 	 */
499 	config = x86_pmu.event_map(attr->config);
500 
501 	if (config == 0)
502 		return -ENOENT;
503 
504 	if (config == -1LL)
505 		return -EINVAL;
506 
507 	hwc->config |= config;
508 
509 	return 0;
510 }
511 
512 /*
513  * check that branch_sample_type is compatible with
514  * settings needed for precise_ip > 1 which implies
515  * using the LBR to capture ALL taken branches at the
516  * priv levels of the measurement
517  */
518 static inline int precise_br_compat(struct perf_event *event)
519 {
520 	u64 m = event->attr.branch_sample_type;
521 	u64 b = 0;
522 
523 	/* must capture all branches */
524 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
525 		return 0;
526 
527 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
528 
529 	if (!event->attr.exclude_user)
530 		b |= PERF_SAMPLE_BRANCH_USER;
531 
532 	if (!event->attr.exclude_kernel)
533 		b |= PERF_SAMPLE_BRANCH_KERNEL;
534 
535 	/*
536 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
537 	 */
538 
539 	return m == b;
540 }
541 
542 int x86_pmu_max_precise(void)
543 {
544 	int precise = 0;
545 
546 	/* Support for constant skid */
547 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
548 		precise++;
549 
550 		/* Support for IP fixup */
551 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
552 			precise++;
553 
554 		if (x86_pmu.pebs_prec_dist)
555 			precise++;
556 	}
557 	return precise;
558 }
559 
560 int x86_pmu_hw_config(struct perf_event *event)
561 {
562 	if (event->attr.precise_ip) {
563 		int precise = x86_pmu_max_precise();
564 
565 		if (event->attr.precise_ip > precise)
566 			return -EOPNOTSUPP;
567 
568 		/* There's no sense in having PEBS for non sampling events: */
569 		if (!is_sampling_event(event))
570 			return -EINVAL;
571 	}
572 	/*
573 	 * check that PEBS LBR correction does not conflict with
574 	 * whatever the user is asking with attr->branch_sample_type
575 	 */
576 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
577 		u64 *br_type = &event->attr.branch_sample_type;
578 
579 		if (has_branch_stack(event)) {
580 			if (!precise_br_compat(event))
581 				return -EOPNOTSUPP;
582 
583 			/* branch_sample_type is compatible */
584 
585 		} else {
586 			/*
587 			 * user did not specify  branch_sample_type
588 			 *
589 			 * For PEBS fixups, we capture all
590 			 * the branches at the priv level of the
591 			 * event.
592 			 */
593 			*br_type = PERF_SAMPLE_BRANCH_ANY;
594 
595 			if (!event->attr.exclude_user)
596 				*br_type |= PERF_SAMPLE_BRANCH_USER;
597 
598 			if (!event->attr.exclude_kernel)
599 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
600 		}
601 	}
602 
603 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
604 		event->attach_state |= PERF_ATTACH_TASK_DATA;
605 
606 	/*
607 	 * Generate PMC IRQs:
608 	 * (keep 'enabled' bit clear for now)
609 	 */
610 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
611 
612 	/*
613 	 * Count user and OS events unless requested not to
614 	 */
615 	if (!event->attr.exclude_user)
616 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
617 	if (!event->attr.exclude_kernel)
618 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
619 
620 	if (event->attr.type == event->pmu->type)
621 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
622 
623 	if (event->attr.sample_period && x86_pmu.limit_period) {
624 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
625 				event->attr.sample_period)
626 			return -EINVAL;
627 	}
628 
629 	/* sample_regs_user never support XMM registers */
630 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
631 		return -EINVAL;
632 	/*
633 	 * Besides the general purpose registers, XMM registers may
634 	 * be collected in PEBS on some platforms, e.g. Icelake
635 	 */
636 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
637 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
638 			return -EINVAL;
639 
640 		if (!event->attr.precise_ip)
641 			return -EINVAL;
642 	}
643 
644 	return x86_setup_perfctr(event);
645 }
646 
647 /*
648  * Setup the hardware configuration for a given attr_type
649  */
650 static int __x86_pmu_event_init(struct perf_event *event)
651 {
652 	int err;
653 
654 	if (!x86_pmu_initialized())
655 		return -ENODEV;
656 
657 	err = x86_reserve_hardware();
658 	if (err)
659 		return err;
660 
661 	atomic_inc(&active_events);
662 	event->destroy = hw_perf_event_destroy;
663 
664 	event->hw.idx = -1;
665 	event->hw.last_cpu = -1;
666 	event->hw.last_tag = ~0ULL;
667 
668 	/* mark unused */
669 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
670 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
671 
672 	return x86_pmu.hw_config(event);
673 }
674 
675 void x86_pmu_disable_all(void)
676 {
677 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
678 	int idx;
679 
680 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
681 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
682 		u64 val;
683 
684 		if (!test_bit(idx, cpuc->active_mask))
685 			continue;
686 		rdmsrl(x86_pmu_config_addr(idx), val);
687 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
688 			continue;
689 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
690 		wrmsrl(x86_pmu_config_addr(idx), val);
691 		if (is_counter_pair(hwc))
692 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
693 	}
694 }
695 
696 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
697 {
698 	return static_call(x86_pmu_guest_get_msrs)(nr);
699 }
700 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
701 
702 /*
703  * There may be PMI landing after enabled=0. The PMI hitting could be before or
704  * after disable_all.
705  *
706  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
707  * It will not be re-enabled in the NMI handler again, because enabled=0. After
708  * handling the NMI, disable_all will be called, which will not change the
709  * state either. If PMI hits after disable_all, the PMU is already disabled
710  * before entering NMI handler. The NMI handler will not change the state
711  * either.
712  *
713  * So either situation is harmless.
714  */
715 static void x86_pmu_disable(struct pmu *pmu)
716 {
717 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
718 
719 	if (!x86_pmu_initialized())
720 		return;
721 
722 	if (!cpuc->enabled)
723 		return;
724 
725 	cpuc->n_added = 0;
726 	cpuc->enabled = 0;
727 	barrier();
728 
729 	static_call(x86_pmu_disable_all)();
730 }
731 
732 void x86_pmu_enable_all(int added)
733 {
734 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
735 	int idx;
736 
737 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
738 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
739 
740 		if (!test_bit(idx, cpuc->active_mask))
741 			continue;
742 
743 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
744 	}
745 }
746 
747 static inline int is_x86_event(struct perf_event *event)
748 {
749 	int i;
750 
751 	if (!is_hybrid())
752 		return event->pmu == &pmu;
753 
754 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
755 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
756 			return true;
757 	}
758 
759 	return false;
760 }
761 
762 struct pmu *x86_get_pmu(unsigned int cpu)
763 {
764 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
765 
766 	/*
767 	 * All CPUs of the hybrid type have been offline.
768 	 * The x86_get_pmu() should not be invoked.
769 	 */
770 	if (WARN_ON_ONCE(!cpuc->pmu))
771 		return &pmu;
772 
773 	return cpuc->pmu;
774 }
775 /*
776  * Event scheduler state:
777  *
778  * Assign events iterating over all events and counters, beginning
779  * with events with least weights first. Keep the current iterator
780  * state in struct sched_state.
781  */
782 struct sched_state {
783 	int	weight;
784 	int	event;		/* event index */
785 	int	counter;	/* counter index */
786 	int	unassigned;	/* number of events to be assigned left */
787 	int	nr_gp;		/* number of GP counters used */
788 	u64	used;
789 };
790 
791 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
792 #define	SCHED_STATES_MAX	2
793 
794 struct perf_sched {
795 	int			max_weight;
796 	int			max_events;
797 	int			max_gp;
798 	int			saved_states;
799 	struct event_constraint	**constraints;
800 	struct sched_state	state;
801 	struct sched_state	saved[SCHED_STATES_MAX];
802 };
803 
804 /*
805  * Initialize iterator that runs through all events and counters.
806  */
807 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
808 			    int num, int wmin, int wmax, int gpmax)
809 {
810 	int idx;
811 
812 	memset(sched, 0, sizeof(*sched));
813 	sched->max_events	= num;
814 	sched->max_weight	= wmax;
815 	sched->max_gp		= gpmax;
816 	sched->constraints	= constraints;
817 
818 	for (idx = 0; idx < num; idx++) {
819 		if (constraints[idx]->weight == wmin)
820 			break;
821 	}
822 
823 	sched->state.event	= idx;		/* start with min weight */
824 	sched->state.weight	= wmin;
825 	sched->state.unassigned	= num;
826 }
827 
828 static void perf_sched_save_state(struct perf_sched *sched)
829 {
830 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
831 		return;
832 
833 	sched->saved[sched->saved_states] = sched->state;
834 	sched->saved_states++;
835 }
836 
837 static bool perf_sched_restore_state(struct perf_sched *sched)
838 {
839 	if (!sched->saved_states)
840 		return false;
841 
842 	sched->saved_states--;
843 	sched->state = sched->saved[sched->saved_states];
844 
845 	/* this assignment didn't work out */
846 	/* XXX broken vs EVENT_PAIR */
847 	sched->state.used &= ~BIT_ULL(sched->state.counter);
848 
849 	/* try the next one */
850 	sched->state.counter++;
851 
852 	return true;
853 }
854 
855 /*
856  * Select a counter for the current event to schedule. Return true on
857  * success.
858  */
859 static bool __perf_sched_find_counter(struct perf_sched *sched)
860 {
861 	struct event_constraint *c;
862 	int idx;
863 
864 	if (!sched->state.unassigned)
865 		return false;
866 
867 	if (sched->state.event >= sched->max_events)
868 		return false;
869 
870 	c = sched->constraints[sched->state.event];
871 	/* Prefer fixed purpose counters */
872 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
873 		idx = INTEL_PMC_IDX_FIXED;
874 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
875 			u64 mask = BIT_ULL(idx);
876 
877 			if (sched->state.used & mask)
878 				continue;
879 
880 			sched->state.used |= mask;
881 			goto done;
882 		}
883 	}
884 
885 	/* Grab the first unused counter starting with idx */
886 	idx = sched->state.counter;
887 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
888 		u64 mask = BIT_ULL(idx);
889 
890 		if (c->flags & PERF_X86_EVENT_PAIR)
891 			mask |= mask << 1;
892 
893 		if (sched->state.used & mask)
894 			continue;
895 
896 		if (sched->state.nr_gp++ >= sched->max_gp)
897 			return false;
898 
899 		sched->state.used |= mask;
900 		goto done;
901 	}
902 
903 	return false;
904 
905 done:
906 	sched->state.counter = idx;
907 
908 	if (c->overlap)
909 		perf_sched_save_state(sched);
910 
911 	return true;
912 }
913 
914 static bool perf_sched_find_counter(struct perf_sched *sched)
915 {
916 	while (!__perf_sched_find_counter(sched)) {
917 		if (!perf_sched_restore_state(sched))
918 			return false;
919 	}
920 
921 	return true;
922 }
923 
924 /*
925  * Go through all unassigned events and find the next one to schedule.
926  * Take events with the least weight first. Return true on success.
927  */
928 static bool perf_sched_next_event(struct perf_sched *sched)
929 {
930 	struct event_constraint *c;
931 
932 	if (!sched->state.unassigned || !--sched->state.unassigned)
933 		return false;
934 
935 	do {
936 		/* next event */
937 		sched->state.event++;
938 		if (sched->state.event >= sched->max_events) {
939 			/* next weight */
940 			sched->state.event = 0;
941 			sched->state.weight++;
942 			if (sched->state.weight > sched->max_weight)
943 				return false;
944 		}
945 		c = sched->constraints[sched->state.event];
946 	} while (c->weight != sched->state.weight);
947 
948 	sched->state.counter = 0;	/* start with first counter */
949 
950 	return true;
951 }
952 
953 /*
954  * Assign a counter for each event.
955  */
956 int perf_assign_events(struct event_constraint **constraints, int n,
957 			int wmin, int wmax, int gpmax, int *assign)
958 {
959 	struct perf_sched sched;
960 
961 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
962 
963 	do {
964 		if (!perf_sched_find_counter(&sched))
965 			break;	/* failed */
966 		if (assign)
967 			assign[sched.state.event] = sched.state.counter;
968 	} while (perf_sched_next_event(&sched));
969 
970 	return sched.state.unassigned;
971 }
972 EXPORT_SYMBOL_GPL(perf_assign_events);
973 
974 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
975 {
976 	int num_counters = hybrid(cpuc->pmu, num_counters);
977 	struct event_constraint *c;
978 	struct perf_event *e;
979 	int n0, i, wmin, wmax, unsched = 0;
980 	struct hw_perf_event *hwc;
981 	u64 used_mask = 0;
982 
983 	/*
984 	 * Compute the number of events already present; see x86_pmu_add(),
985 	 * validate_group() and x86_pmu_commit_txn(). For the former two
986 	 * cpuc->n_events hasn't been updated yet, while for the latter
987 	 * cpuc->n_txn contains the number of events added in the current
988 	 * transaction.
989 	 */
990 	n0 = cpuc->n_events;
991 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
992 		n0 -= cpuc->n_txn;
993 
994 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
995 
996 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
997 		c = cpuc->event_constraint[i];
998 
999 		/*
1000 		 * Previously scheduled events should have a cached constraint,
1001 		 * while new events should not have one.
1002 		 */
1003 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004 
1005 		/*
1006 		 * Request constraints for new events; or for those events that
1007 		 * have a dynamic constraint -- for those the constraint can
1008 		 * change due to external factors (sibling state, allow_tfa).
1009 		 */
1010 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012 			cpuc->event_constraint[i] = c;
1013 		}
1014 
1015 		wmin = min(wmin, c->weight);
1016 		wmax = max(wmax, c->weight);
1017 	}
1018 
1019 	/*
1020 	 * fastpath, try to reuse previous register
1021 	 */
1022 	for (i = 0; i < n; i++) {
1023 		u64 mask;
1024 
1025 		hwc = &cpuc->event_list[i]->hw;
1026 		c = cpuc->event_constraint[i];
1027 
1028 		/* never assigned */
1029 		if (hwc->idx == -1)
1030 			break;
1031 
1032 		/* constraint still honored */
1033 		if (!test_bit(hwc->idx, c->idxmsk))
1034 			break;
1035 
1036 		mask = BIT_ULL(hwc->idx);
1037 		if (is_counter_pair(hwc))
1038 			mask |= mask << 1;
1039 
1040 		/* not already used */
1041 		if (used_mask & mask)
1042 			break;
1043 
1044 		used_mask |= mask;
1045 
1046 		if (assign)
1047 			assign[i] = hwc->idx;
1048 	}
1049 
1050 	/* slow path */
1051 	if (i != n) {
1052 		int gpmax = num_counters;
1053 
1054 		/*
1055 		 * Do not allow scheduling of more than half the available
1056 		 * generic counters.
1057 		 *
1058 		 * This helps avoid counter starvation of sibling thread by
1059 		 * ensuring at most half the counters cannot be in exclusive
1060 		 * mode. There is no designated counters for the limits. Any
1061 		 * N/2 counters can be used. This helps with events with
1062 		 * specific counter constraints.
1063 		 */
1064 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066 			gpmax /= 2;
1067 
1068 		/*
1069 		 * Reduce the amount of available counters to allow fitting
1070 		 * the extra Merge events needed by large increment events.
1071 		 */
1072 		if (x86_pmu.flags & PMU_FL_PAIR) {
1073 			gpmax = num_counters - cpuc->n_pair;
1074 			WARN_ON(gpmax <= 0);
1075 		}
1076 
1077 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078 					     wmax, gpmax, assign);
1079 	}
1080 
1081 	/*
1082 	 * In case of success (unsched = 0), mark events as committed,
1083 	 * so we do not put_constraint() in case new events are added
1084 	 * and fail to be scheduled
1085 	 *
1086 	 * We invoke the lower level commit callback to lock the resource
1087 	 *
1088 	 * We do not need to do all of this in case we are called to
1089 	 * validate an event group (assign == NULL)
1090 	 */
1091 	if (!unsched && assign) {
1092 		for (i = 0; i < n; i++)
1093 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094 	} else {
1095 		for (i = n0; i < n; i++) {
1096 			e = cpuc->event_list[i];
1097 
1098 			/*
1099 			 * release events that failed scheduling
1100 			 */
1101 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102 
1103 			cpuc->event_constraint[i] = NULL;
1104 		}
1105 	}
1106 
1107 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108 
1109 	return unsched ? -EINVAL : 0;
1110 }
1111 
1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113 			       struct perf_event *event)
1114 {
1115 	if (is_metric_event(event)) {
1116 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117 			return -EINVAL;
1118 		cpuc->n_metric++;
1119 		cpuc->n_txn_metric++;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126 				struct perf_event *event)
1127 {
1128 	if (is_metric_event(event))
1129 		cpuc->n_metric--;
1130 }
1131 
1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133 			 int max_count, int n)
1134 {
1135 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136 
1137 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138 		return -EINVAL;
1139 
1140 	if (n >= max_count + cpuc->n_metric)
1141 		return -EINVAL;
1142 
1143 	cpuc->event_list[n] = event;
1144 	if (is_counter_pair(&event->hw)) {
1145 		cpuc->n_pair++;
1146 		cpuc->n_txn_pair++;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * dogrp: true if must collect siblings events (group)
1154  * returns total number of events and error code
1155  */
1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158 	int num_counters = hybrid(cpuc->pmu, num_counters);
1159 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160 	struct perf_event *event;
1161 	int n, max_count;
1162 
1163 	max_count = num_counters + num_counters_fixed;
1164 
1165 	/* current number of events already accepted */
1166 	n = cpuc->n_events;
1167 	if (!cpuc->n_events)
1168 		cpuc->pebs_output = 0;
1169 
1170 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1171 		/*
1172 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173 		 * away, the group was broken down and this singleton event
1174 		 * can't schedule any more.
1175 		 */
1176 		if (is_pebs_pt(leader) && !leader->aux_event)
1177 			return -EINVAL;
1178 
1179 		/*
1180 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181 		 */
1182 		if (cpuc->pebs_output &&
1183 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184 			return -EINVAL;
1185 
1186 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187 	}
1188 
1189 	if (is_x86_event(leader)) {
1190 		if (collect_event(cpuc, leader, max_count, n))
1191 			return -EINVAL;
1192 		n++;
1193 	}
1194 
1195 	if (!dogrp)
1196 		return n;
1197 
1198 	for_each_sibling_event(event, leader) {
1199 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200 			continue;
1201 
1202 		if (collect_event(cpuc, event, max_count, n))
1203 			return -EINVAL;
1204 
1205 		n++;
1206 	}
1207 	return n;
1208 }
1209 
1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211 				struct cpu_hw_events *cpuc, int i)
1212 {
1213 	struct hw_perf_event *hwc = &event->hw;
1214 	int idx;
1215 
1216 	idx = hwc->idx = cpuc->assign[i];
1217 	hwc->last_cpu = smp_processor_id();
1218 	hwc->last_tag = ++cpuc->tags[i];
1219 
1220 	static_call_cond(x86_pmu_assign)(event, idx);
1221 
1222 	switch (hwc->idx) {
1223 	case INTEL_PMC_IDX_FIXED_BTS:
1224 	case INTEL_PMC_IDX_FIXED_VLBR:
1225 		hwc->config_base = 0;
1226 		hwc->event_base	= 0;
1227 		break;
1228 
1229 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230 		/* All the metric events are mapped onto the fixed counter 3. */
1231 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232 		fallthrough;
1233 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236 				(idx - INTEL_PMC_IDX_FIXED);
1237 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238 					INTEL_PMC_FIXED_RDPMC_BASE;
1239 		break;
1240 
1241 	default:
1242 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1244 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245 		break;
1246 	}
1247 }
1248 
1249 /**
1250  * x86_perf_rdpmc_index - Return PMC counter used for event
1251  * @event: the perf_event to which the PMC counter was assigned
1252  *
1253  * The counter assigned to this performance event may change if interrupts
1254  * are enabled. This counter should thus never be used while interrupts are
1255  * enabled. Before this function is used to obtain the assigned counter the
1256  * event should be checked for validity using, for example,
1257  * perf_event_read_local(), within the same interrupt disabled section in
1258  * which this counter is planned to be used.
1259  *
1260  * Return: The index of the performance monitoring counter assigned to
1261  * @perf_event.
1262  */
1263 int x86_perf_rdpmc_index(struct perf_event *event)
1264 {
1265 	lockdep_assert_irqs_disabled();
1266 
1267 	return event->hw.event_base_rdpmc;
1268 }
1269 
1270 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271 					struct cpu_hw_events *cpuc,
1272 					int i)
1273 {
1274 	return hwc->idx == cpuc->assign[i] &&
1275 		hwc->last_cpu == smp_processor_id() &&
1276 		hwc->last_tag == cpuc->tags[i];
1277 }
1278 
1279 static void x86_pmu_start(struct perf_event *event, int flags);
1280 
1281 static void x86_pmu_enable(struct pmu *pmu)
1282 {
1283 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284 	struct perf_event *event;
1285 	struct hw_perf_event *hwc;
1286 	int i, added = cpuc->n_added;
1287 
1288 	if (!x86_pmu_initialized())
1289 		return;
1290 
1291 	if (cpuc->enabled)
1292 		return;
1293 
1294 	if (cpuc->n_added) {
1295 		int n_running = cpuc->n_events - cpuc->n_added;
1296 		/*
1297 		 * apply assignment obtained either from
1298 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1299 		 *
1300 		 * step1: save events moving to new counters
1301 		 */
1302 		for (i = 0; i < n_running; i++) {
1303 			event = cpuc->event_list[i];
1304 			hwc = &event->hw;
1305 
1306 			/*
1307 			 * we can avoid reprogramming counter if:
1308 			 * - assigned same counter as last time
1309 			 * - running on same CPU as last time
1310 			 * - no other event has used the counter since
1311 			 */
1312 			if (hwc->idx == -1 ||
1313 			    match_prev_assignment(hwc, cpuc, i))
1314 				continue;
1315 
1316 			/*
1317 			 * Ensure we don't accidentally enable a stopped
1318 			 * counter simply because we rescheduled.
1319 			 */
1320 			if (hwc->state & PERF_HES_STOPPED)
1321 				hwc->state |= PERF_HES_ARCH;
1322 
1323 			x86_pmu_stop(event, PERF_EF_UPDATE);
1324 		}
1325 
1326 		/*
1327 		 * step2: reprogram moved events into new counters
1328 		 */
1329 		for (i = 0; i < cpuc->n_events; i++) {
1330 			event = cpuc->event_list[i];
1331 			hwc = &event->hw;
1332 
1333 			if (!match_prev_assignment(hwc, cpuc, i))
1334 				x86_assign_hw_event(event, cpuc, i);
1335 			else if (i < n_running)
1336 				continue;
1337 
1338 			if (hwc->state & PERF_HES_ARCH)
1339 				continue;
1340 
1341 			/*
1342 			 * if cpuc->enabled = 0, then no wrmsr as
1343 			 * per x86_pmu_enable_event()
1344 			 */
1345 			x86_pmu_start(event, PERF_EF_RELOAD);
1346 		}
1347 		cpuc->n_added = 0;
1348 		perf_events_lapic_init();
1349 	}
1350 
1351 	cpuc->enabled = 1;
1352 	barrier();
1353 
1354 	static_call(x86_pmu_enable_all)(added);
1355 }
1356 
1357 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1358 
1359 /*
1360  * Set the next IRQ period, based on the hwc->period_left value.
1361  * To be called with the event disabled in hw:
1362  */
1363 int x86_perf_event_set_period(struct perf_event *event)
1364 {
1365 	struct hw_perf_event *hwc = &event->hw;
1366 	s64 left = local64_read(&hwc->period_left);
1367 	s64 period = hwc->sample_period;
1368 	int ret = 0, idx = hwc->idx;
1369 
1370 	if (unlikely(!hwc->event_base))
1371 		return 0;
1372 
1373 	if (unlikely(is_topdown_count(event)) &&
1374 	    x86_pmu.set_topdown_event_period)
1375 		return x86_pmu.set_topdown_event_period(event);
1376 
1377 	/*
1378 	 * If we are way outside a reasonable range then just skip forward:
1379 	 */
1380 	if (unlikely(left <= -period)) {
1381 		left = period;
1382 		local64_set(&hwc->period_left, left);
1383 		hwc->last_period = period;
1384 		ret = 1;
1385 	}
1386 
1387 	if (unlikely(left <= 0)) {
1388 		left += period;
1389 		local64_set(&hwc->period_left, left);
1390 		hwc->last_period = period;
1391 		ret = 1;
1392 	}
1393 	/*
1394 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395 	 */
1396 	if (unlikely(left < 2))
1397 		left = 2;
1398 
1399 	if (left > x86_pmu.max_period)
1400 		left = x86_pmu.max_period;
1401 
1402 	if (x86_pmu.limit_period)
1403 		left = x86_pmu.limit_period(event, left);
1404 
1405 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1406 
1407 	/*
1408 	 * The hw event starts counting from this event offset,
1409 	 * mark it to be able to extra future deltas:
1410 	 */
1411 	local64_set(&hwc->prev_count, (u64)-left);
1412 
1413 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414 
1415 	/*
1416 	 * Sign extend the Merge event counter's upper 16 bits since
1417 	 * we currently declare a 48-bit counter width
1418 	 */
1419 	if (is_counter_pair(hwc))
1420 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421 
1422 	/*
1423 	 * Due to erratum on certan cpu we need
1424 	 * a second write to be sure the register
1425 	 * is updated properly
1426 	 */
1427 	if (x86_pmu.perfctr_second_write) {
1428 		wrmsrl(hwc->event_base,
1429 			(u64)(-left) & x86_pmu.cntval_mask);
1430 	}
1431 
1432 	perf_event_update_userpage(event);
1433 
1434 	return ret;
1435 }
1436 
1437 void x86_pmu_enable_event(struct perf_event *event)
1438 {
1439 	if (__this_cpu_read(cpu_hw_events.enabled))
1440 		__x86_pmu_enable_event(&event->hw,
1441 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1442 }
1443 
1444 /*
1445  * Add a single event to the PMU.
1446  *
1447  * The event is added to the group of enabled events
1448  * but only if it can be scheduled with existing events.
1449  */
1450 static int x86_pmu_add(struct perf_event *event, int flags)
1451 {
1452 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453 	struct hw_perf_event *hwc;
1454 	int assign[X86_PMC_IDX_MAX];
1455 	int n, n0, ret;
1456 
1457 	hwc = &event->hw;
1458 
1459 	n0 = cpuc->n_events;
1460 	ret = n = collect_events(cpuc, event, false);
1461 	if (ret < 0)
1462 		goto out;
1463 
1464 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1465 	if (!(flags & PERF_EF_START))
1466 		hwc->state |= PERF_HES_ARCH;
1467 
1468 	/*
1469 	 * If group events scheduling transaction was started,
1470 	 * skip the schedulability test here, it will be performed
1471 	 * at commit time (->commit_txn) as a whole.
1472 	 *
1473 	 * If commit fails, we'll call ->del() on all events
1474 	 * for which ->add() was called.
1475 	 */
1476 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1477 		goto done_collect;
1478 
1479 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1480 	if (ret)
1481 		goto out;
1482 	/*
1483 	 * copy new assignment, now we know it is possible
1484 	 * will be used by hw_perf_enable()
1485 	 */
1486 	memcpy(cpuc->assign, assign, n*sizeof(int));
1487 
1488 done_collect:
1489 	/*
1490 	 * Commit the collect_events() state. See x86_pmu_del() and
1491 	 * x86_pmu_*_txn().
1492 	 */
1493 	cpuc->n_events = n;
1494 	cpuc->n_added += n - n0;
1495 	cpuc->n_txn += n - n0;
1496 
1497 	/*
1498 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1499 	 * so we enable LBRs before an event needs them etc..
1500 	 */
1501 	static_call_cond(x86_pmu_add)(event);
1502 
1503 	ret = 0;
1504 out:
1505 	return ret;
1506 }
1507 
1508 static void x86_pmu_start(struct perf_event *event, int flags)
1509 {
1510 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511 	int idx = event->hw.idx;
1512 
1513 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1514 		return;
1515 
1516 	if (WARN_ON_ONCE(idx == -1))
1517 		return;
1518 
1519 	if (flags & PERF_EF_RELOAD) {
1520 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1521 		x86_perf_event_set_period(event);
1522 	}
1523 
1524 	event->hw.state = 0;
1525 
1526 	cpuc->events[idx] = event;
1527 	__set_bit(idx, cpuc->active_mask);
1528 	static_call(x86_pmu_enable)(event);
1529 	perf_event_update_userpage(event);
1530 }
1531 
1532 void perf_event_print_debug(void)
1533 {
1534 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1535 	u64 pebs, debugctl;
1536 	int cpu = smp_processor_id();
1537 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1538 	int num_counters = hybrid(cpuc->pmu, num_counters);
1539 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1540 	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1541 	unsigned long flags;
1542 	int idx;
1543 
1544 	if (!num_counters)
1545 		return;
1546 
1547 	local_irq_save(flags);
1548 
1549 	if (x86_pmu.version >= 2) {
1550 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1551 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1552 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1553 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1554 
1555 		pr_info("\n");
1556 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1557 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1558 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1559 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1560 		if (pebs_constraints) {
1561 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1562 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1563 		}
1564 		if (x86_pmu.lbr_nr) {
1565 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1566 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1567 		}
1568 	}
1569 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1570 
1571 	for (idx = 0; idx < num_counters; idx++) {
1572 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1573 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1574 
1575 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1576 
1577 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1578 			cpu, idx, pmc_ctrl);
1579 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1580 			cpu, idx, pmc_count);
1581 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1582 			cpu, idx, prev_left);
1583 	}
1584 	for (idx = 0; idx < num_counters_fixed; idx++) {
1585 		if (fixed_counter_disabled(idx, cpuc->pmu))
1586 			continue;
1587 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1588 
1589 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1590 			cpu, idx, pmc_count);
1591 	}
1592 	local_irq_restore(flags);
1593 }
1594 
1595 void x86_pmu_stop(struct perf_event *event, int flags)
1596 {
1597 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1598 	struct hw_perf_event *hwc = &event->hw;
1599 
1600 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1601 		static_call(x86_pmu_disable)(event);
1602 		__clear_bit(hwc->idx, cpuc->active_mask);
1603 		cpuc->events[hwc->idx] = NULL;
1604 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1605 		hwc->state |= PERF_HES_STOPPED;
1606 	}
1607 
1608 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1609 		/*
1610 		 * Drain the remaining delta count out of a event
1611 		 * that we are disabling:
1612 		 */
1613 		x86_perf_event_update(event);
1614 		hwc->state |= PERF_HES_UPTODATE;
1615 	}
1616 }
1617 
1618 static void x86_pmu_del(struct perf_event *event, int flags)
1619 {
1620 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1622 	int i;
1623 
1624 	/*
1625 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1626 	 * The events never got scheduled and ->cancel_txn will truncate
1627 	 * the event_list.
1628 	 *
1629 	 * XXX assumes any ->del() called during a TXN will only be on
1630 	 * an event added during that same TXN.
1631 	 */
1632 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1633 		goto do_del;
1634 
1635 	__set_bit(event->hw.idx, cpuc->dirty);
1636 
1637 	/*
1638 	 * Not a TXN, therefore cleanup properly.
1639 	 */
1640 	x86_pmu_stop(event, PERF_EF_UPDATE);
1641 
1642 	for (i = 0; i < cpuc->n_events; i++) {
1643 		if (event == cpuc->event_list[i])
1644 			break;
1645 	}
1646 
1647 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1648 		return;
1649 
1650 	/* If we have a newly added event; make sure to decrease n_added. */
1651 	if (i >= cpuc->n_events - cpuc->n_added)
1652 		--cpuc->n_added;
1653 
1654 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1655 
1656 	/* Delete the array entry. */
1657 	while (++i < cpuc->n_events) {
1658 		cpuc->event_list[i-1] = cpuc->event_list[i];
1659 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1660 	}
1661 	cpuc->event_constraint[i-1] = NULL;
1662 	--cpuc->n_events;
1663 	if (intel_cap.perf_metrics)
1664 		del_nr_metric_event(cpuc, event);
1665 
1666 	perf_event_update_userpage(event);
1667 
1668 do_del:
1669 
1670 	/*
1671 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1672 	 * event can need them etc..
1673 	 */
1674 	static_call_cond(x86_pmu_del)(event);
1675 }
1676 
1677 int x86_pmu_handle_irq(struct pt_regs *regs)
1678 {
1679 	struct perf_sample_data data;
1680 	struct cpu_hw_events *cpuc;
1681 	struct perf_event *event;
1682 	int idx, handled = 0;
1683 	u64 val;
1684 
1685 	cpuc = this_cpu_ptr(&cpu_hw_events);
1686 
1687 	/*
1688 	 * Some chipsets need to unmask the LVTPC in a particular spot
1689 	 * inside the nmi handler.  As a result, the unmasking was pushed
1690 	 * into all the nmi handlers.
1691 	 *
1692 	 * This generic handler doesn't seem to have any issues where the
1693 	 * unmasking occurs so it was left at the top.
1694 	 */
1695 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1696 
1697 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1698 		if (!test_bit(idx, cpuc->active_mask))
1699 			continue;
1700 
1701 		event = cpuc->events[idx];
1702 
1703 		val = x86_perf_event_update(event);
1704 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1705 			continue;
1706 
1707 		/*
1708 		 * event overflow
1709 		 */
1710 		handled++;
1711 
1712 		if (!x86_perf_event_set_period(event))
1713 			continue;
1714 
1715 		perf_sample_data_init(&data, 0, event->hw.last_period);
1716 
1717 		if (has_branch_stack(event))
1718 			data.br_stack = &cpuc->lbr_stack;
1719 
1720 		if (perf_event_overflow(event, &data, regs))
1721 			x86_pmu_stop(event, 0);
1722 	}
1723 
1724 	if (handled)
1725 		inc_irq_stat(apic_perf_irqs);
1726 
1727 	return handled;
1728 }
1729 
1730 void perf_events_lapic_init(void)
1731 {
1732 	if (!x86_pmu.apic || !x86_pmu_initialized())
1733 		return;
1734 
1735 	/*
1736 	 * Always use NMI for PMU
1737 	 */
1738 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1739 }
1740 
1741 static int
1742 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1743 {
1744 	u64 start_clock;
1745 	u64 finish_clock;
1746 	int ret;
1747 
1748 	/*
1749 	 * All PMUs/events that share this PMI handler should make sure to
1750 	 * increment active_events for their events.
1751 	 */
1752 	if (!atomic_read(&active_events))
1753 		return NMI_DONE;
1754 
1755 	start_clock = sched_clock();
1756 	ret = static_call(x86_pmu_handle_irq)(regs);
1757 	finish_clock = sched_clock();
1758 
1759 	perf_sample_event_took(finish_clock - start_clock);
1760 
1761 	return ret;
1762 }
1763 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1764 
1765 struct event_constraint emptyconstraint;
1766 struct event_constraint unconstrained;
1767 
1768 static int x86_pmu_prepare_cpu(unsigned int cpu)
1769 {
1770 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1771 	int i;
1772 
1773 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1774 		cpuc->kfree_on_online[i] = NULL;
1775 	if (x86_pmu.cpu_prepare)
1776 		return x86_pmu.cpu_prepare(cpu);
1777 	return 0;
1778 }
1779 
1780 static int x86_pmu_dead_cpu(unsigned int cpu)
1781 {
1782 	if (x86_pmu.cpu_dead)
1783 		x86_pmu.cpu_dead(cpu);
1784 	return 0;
1785 }
1786 
1787 static int x86_pmu_online_cpu(unsigned int cpu)
1788 {
1789 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1790 	int i;
1791 
1792 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1793 		kfree(cpuc->kfree_on_online[i]);
1794 		cpuc->kfree_on_online[i] = NULL;
1795 	}
1796 	return 0;
1797 }
1798 
1799 static int x86_pmu_starting_cpu(unsigned int cpu)
1800 {
1801 	if (x86_pmu.cpu_starting)
1802 		x86_pmu.cpu_starting(cpu);
1803 	return 0;
1804 }
1805 
1806 static int x86_pmu_dying_cpu(unsigned int cpu)
1807 {
1808 	if (x86_pmu.cpu_dying)
1809 		x86_pmu.cpu_dying(cpu);
1810 	return 0;
1811 }
1812 
1813 static void __init pmu_check_apic(void)
1814 {
1815 	if (boot_cpu_has(X86_FEATURE_APIC))
1816 		return;
1817 
1818 	x86_pmu.apic = 0;
1819 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1820 	pr_info("no hardware sampling interrupt available.\n");
1821 
1822 	/*
1823 	 * If we have a PMU initialized but no APIC
1824 	 * interrupts, we cannot sample hardware
1825 	 * events (user-space has to fall back and
1826 	 * sample via a hrtimer based software event):
1827 	 */
1828 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1829 
1830 }
1831 
1832 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1833 	.name = "format",
1834 	.attrs = NULL,
1835 };
1836 
1837 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1838 {
1839 	struct perf_pmu_events_attr *pmu_attr =
1840 		container_of(attr, struct perf_pmu_events_attr, attr);
1841 	u64 config = 0;
1842 
1843 	if (pmu_attr->id < x86_pmu.max_events)
1844 		config = x86_pmu.event_map(pmu_attr->id);
1845 
1846 	/* string trumps id */
1847 	if (pmu_attr->event_str)
1848 		return sprintf(page, "%s\n", pmu_attr->event_str);
1849 
1850 	return x86_pmu.events_sysfs_show(page, config);
1851 }
1852 EXPORT_SYMBOL_GPL(events_sysfs_show);
1853 
1854 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1855 			  char *page)
1856 {
1857 	struct perf_pmu_events_ht_attr *pmu_attr =
1858 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1859 
1860 	/*
1861 	 * Report conditional events depending on Hyper-Threading.
1862 	 *
1863 	 * This is overly conservative as usually the HT special
1864 	 * handling is not needed if the other CPU thread is idle.
1865 	 *
1866 	 * Note this does not (and cannot) handle the case when thread
1867 	 * siblings are invisible, for example with virtualization
1868 	 * if they are owned by some other guest.  The user tool
1869 	 * has to re-read when a thread sibling gets onlined later.
1870 	 */
1871 	return sprintf(page, "%s",
1872 			topology_max_smt_threads() > 1 ?
1873 			pmu_attr->event_str_ht :
1874 			pmu_attr->event_str_noht);
1875 }
1876 
1877 ssize_t events_hybrid_sysfs_show(struct device *dev,
1878 				 struct device_attribute *attr,
1879 				 char *page)
1880 {
1881 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1882 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1883 	struct x86_hybrid_pmu *pmu;
1884 	const char *str, *next_str;
1885 	int i;
1886 
1887 	if (hweight64(pmu_attr->pmu_type) == 1)
1888 		return sprintf(page, "%s", pmu_attr->event_str);
1889 
1890 	/*
1891 	 * Hybrid PMUs may support the same event name, but with different
1892 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1893 	 * different event encoding from a Core PMU.
1894 	 *
1895 	 * The event_str includes all event encodings. Each event encoding
1896 	 * is divided by ";". The order of the event encodings must follow
1897 	 * the order of the hybrid PMU index.
1898 	 */
1899 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1900 
1901 	str = pmu_attr->event_str;
1902 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1903 		if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1904 			continue;
1905 		if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1906 			next_str = strchr(str, ';');
1907 			if (next_str)
1908 				return snprintf(page, next_str - str + 1, "%s", str);
1909 			else
1910 				return sprintf(page, "%s", str);
1911 		}
1912 		str = strchr(str, ';');
1913 		str++;
1914 	}
1915 
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1919 
1920 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1921 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1922 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1923 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1924 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1925 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1926 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1927 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1928 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1929 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1930 
1931 static struct attribute *empty_attrs;
1932 
1933 static struct attribute *events_attr[] = {
1934 	EVENT_PTR(CPU_CYCLES),
1935 	EVENT_PTR(INSTRUCTIONS),
1936 	EVENT_PTR(CACHE_REFERENCES),
1937 	EVENT_PTR(CACHE_MISSES),
1938 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1939 	EVENT_PTR(BRANCH_MISSES),
1940 	EVENT_PTR(BUS_CYCLES),
1941 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1942 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1943 	EVENT_PTR(REF_CPU_CYCLES),
1944 	NULL,
1945 };
1946 
1947 /*
1948  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1949  * out of events_attr attributes.
1950  */
1951 static umode_t
1952 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1953 {
1954 	struct perf_pmu_events_attr *pmu_attr;
1955 
1956 	if (idx >= x86_pmu.max_events)
1957 		return 0;
1958 
1959 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1960 	/* str trumps id */
1961 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1962 }
1963 
1964 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1965 	.name = "events",
1966 	.attrs = events_attr,
1967 	.is_visible = is_visible,
1968 };
1969 
1970 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1971 {
1972 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1973 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1974 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1975 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1976 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1977 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1978 	ssize_t ret;
1979 
1980 	/*
1981 	* We have whole page size to spend and just little data
1982 	* to write, so we can safely use sprintf.
1983 	*/
1984 	ret = sprintf(page, "event=0x%02llx", event);
1985 
1986 	if (umask)
1987 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1988 
1989 	if (edge)
1990 		ret += sprintf(page + ret, ",edge");
1991 
1992 	if (pc)
1993 		ret += sprintf(page + ret, ",pc");
1994 
1995 	if (any)
1996 		ret += sprintf(page + ret, ",any");
1997 
1998 	if (inv)
1999 		ret += sprintf(page + ret, ",inv");
2000 
2001 	if (cmask)
2002 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2003 
2004 	ret += sprintf(page + ret, "\n");
2005 
2006 	return ret;
2007 }
2008 
2009 static struct attribute_group x86_pmu_attr_group;
2010 static struct attribute_group x86_pmu_caps_group;
2011 
2012 static void x86_pmu_static_call_update(void)
2013 {
2014 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2015 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2016 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2017 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2018 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2019 
2020 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2021 
2022 	static_call_update(x86_pmu_add, x86_pmu.add);
2023 	static_call_update(x86_pmu_del, x86_pmu.del);
2024 	static_call_update(x86_pmu_read, x86_pmu.read);
2025 
2026 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2027 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2028 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2029 
2030 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2031 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2032 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2033 
2034 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2035 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2036 
2037 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2038 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2039 
2040 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2041 }
2042 
2043 static void _x86_pmu_read(struct perf_event *event)
2044 {
2045 	x86_perf_event_update(event);
2046 }
2047 
2048 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2049 			  u64 intel_ctrl)
2050 {
2051 	pr_info("... version:                %d\n",     x86_pmu.version);
2052 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2053 	pr_info("... generic registers:      %d\n",     num_counters);
2054 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2055 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2056 	pr_info("... fixed-purpose events:   %lu\n",
2057 			hweight64((((1ULL << num_counters_fixed) - 1)
2058 					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2059 	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2060 }
2061 
2062 /*
2063  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2064  * of the first registered PMU is unconditionally assigned to
2065  * each possible cpuctx->ctx.pmu.
2066  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2067  */
2068 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2069 {
2070 	struct perf_cpu_context *cpuctx;
2071 
2072 	if (!pmu->pmu_cpu_context)
2073 		return;
2074 
2075 	cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2076 	cpuctx->ctx.pmu = pmu;
2077 }
2078 
2079 static int __init init_hw_perf_events(void)
2080 {
2081 	struct x86_pmu_quirk *quirk;
2082 	int err;
2083 
2084 	pr_info("Performance Events: ");
2085 
2086 	switch (boot_cpu_data.x86_vendor) {
2087 	case X86_VENDOR_INTEL:
2088 		err = intel_pmu_init();
2089 		break;
2090 	case X86_VENDOR_AMD:
2091 		err = amd_pmu_init();
2092 		break;
2093 	case X86_VENDOR_HYGON:
2094 		err = amd_pmu_init();
2095 		x86_pmu.name = "HYGON";
2096 		break;
2097 	case X86_VENDOR_ZHAOXIN:
2098 	case X86_VENDOR_CENTAUR:
2099 		err = zhaoxin_pmu_init();
2100 		break;
2101 	default:
2102 		err = -ENOTSUPP;
2103 	}
2104 	if (err != 0) {
2105 		pr_cont("no PMU driver, software events only.\n");
2106 		return 0;
2107 	}
2108 
2109 	pmu_check_apic();
2110 
2111 	/* sanity check that the hardware exists or is emulated */
2112 	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2113 		return 0;
2114 
2115 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2116 
2117 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2118 
2119 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2120 		quirk->func();
2121 
2122 	if (!x86_pmu.intel_ctrl)
2123 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2124 
2125 	perf_events_lapic_init();
2126 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2127 
2128 	unconstrained = (struct event_constraint)
2129 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2130 				   0, x86_pmu.num_counters, 0, 0);
2131 
2132 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2133 
2134 	if (!x86_pmu.events_sysfs_show)
2135 		x86_pmu_events_group.attrs = &empty_attrs;
2136 
2137 	pmu.attr_update = x86_pmu.attr_update;
2138 
2139 	if (!is_hybrid()) {
2140 		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2141 				     x86_pmu.num_counters_fixed,
2142 				     x86_pmu.intel_ctrl);
2143 	}
2144 
2145 	if (!x86_pmu.read)
2146 		x86_pmu.read = _x86_pmu_read;
2147 
2148 	if (!x86_pmu.guest_get_msrs)
2149 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2150 
2151 	x86_pmu_static_call_update();
2152 
2153 	/*
2154 	 * Install callbacks. Core will call them for each online
2155 	 * cpu.
2156 	 */
2157 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2158 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2159 	if (err)
2160 		return err;
2161 
2162 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2163 				"perf/x86:starting", x86_pmu_starting_cpu,
2164 				x86_pmu_dying_cpu);
2165 	if (err)
2166 		goto out;
2167 
2168 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2169 				x86_pmu_online_cpu, NULL);
2170 	if (err)
2171 		goto out1;
2172 
2173 	if (!is_hybrid()) {
2174 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2175 		if (err)
2176 			goto out2;
2177 	} else {
2178 		u8 cpu_type = get_this_hybrid_cpu_type();
2179 		struct x86_hybrid_pmu *hybrid_pmu;
2180 		int i, j;
2181 
2182 		if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2183 			cpu_type = x86_pmu.get_hybrid_cpu_type();
2184 
2185 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2186 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2187 
2188 			hybrid_pmu->pmu = pmu;
2189 			hybrid_pmu->pmu.type = -1;
2190 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2191 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2192 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2193 
2194 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2195 						(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2196 			if (err)
2197 				break;
2198 
2199 			if (cpu_type == hybrid_pmu->cpu_type)
2200 				x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2201 		}
2202 
2203 		if (i < x86_pmu.num_hybrid_pmus) {
2204 			for (j = 0; j < i; j++)
2205 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2206 			pr_warn("Failed to register hybrid PMUs\n");
2207 			kfree(x86_pmu.hybrid_pmu);
2208 			x86_pmu.hybrid_pmu = NULL;
2209 			x86_pmu.num_hybrid_pmus = 0;
2210 			goto out2;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 
2216 out2:
2217 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2218 out1:
2219 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2220 out:
2221 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2222 	return err;
2223 }
2224 early_initcall(init_hw_perf_events);
2225 
2226 static void x86_pmu_read(struct perf_event *event)
2227 {
2228 	static_call(x86_pmu_read)(event);
2229 }
2230 
2231 /*
2232  * Start group events scheduling transaction
2233  * Set the flag to make pmu::enable() not perform the
2234  * schedulability test, it will be performed at commit time
2235  *
2236  * We only support PERF_PMU_TXN_ADD transactions. Save the
2237  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2238  * transactions.
2239  */
2240 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2241 {
2242 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2243 
2244 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2245 
2246 	cpuc->txn_flags = txn_flags;
2247 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2248 		return;
2249 
2250 	perf_pmu_disable(pmu);
2251 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2252 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2253 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2254 }
2255 
2256 /*
2257  * Stop group events scheduling transaction
2258  * Clear the flag and pmu::enable() will perform the
2259  * schedulability test.
2260  */
2261 static void x86_pmu_cancel_txn(struct pmu *pmu)
2262 {
2263 	unsigned int txn_flags;
2264 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2265 
2266 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2267 
2268 	txn_flags = cpuc->txn_flags;
2269 	cpuc->txn_flags = 0;
2270 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2271 		return;
2272 
2273 	/*
2274 	 * Truncate collected array by the number of events added in this
2275 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2276 	 */
2277 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2278 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2279 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2280 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2281 	perf_pmu_enable(pmu);
2282 }
2283 
2284 /*
2285  * Commit group events scheduling transaction
2286  * Perform the group schedulability test as a whole
2287  * Return 0 if success
2288  *
2289  * Does not cancel the transaction on failure; expects the caller to do this.
2290  */
2291 static int x86_pmu_commit_txn(struct pmu *pmu)
2292 {
2293 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2294 	int assign[X86_PMC_IDX_MAX];
2295 	int n, ret;
2296 
2297 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2298 
2299 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2300 		cpuc->txn_flags = 0;
2301 		return 0;
2302 	}
2303 
2304 	n = cpuc->n_events;
2305 
2306 	if (!x86_pmu_initialized())
2307 		return -EAGAIN;
2308 
2309 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2310 	if (ret)
2311 		return ret;
2312 
2313 	/*
2314 	 * copy new assignment, now we know it is possible
2315 	 * will be used by hw_perf_enable()
2316 	 */
2317 	memcpy(cpuc->assign, assign, n*sizeof(int));
2318 
2319 	cpuc->txn_flags = 0;
2320 	perf_pmu_enable(pmu);
2321 	return 0;
2322 }
2323 /*
2324  * a fake_cpuc is used to validate event groups. Due to
2325  * the extra reg logic, we need to also allocate a fake
2326  * per_core and per_cpu structure. Otherwise, group events
2327  * using extra reg may conflict without the kernel being
2328  * able to catch this when the last event gets added to
2329  * the group.
2330  */
2331 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2332 {
2333 	intel_cpuc_finish(cpuc);
2334 	kfree(cpuc);
2335 }
2336 
2337 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2338 {
2339 	struct cpu_hw_events *cpuc;
2340 	int cpu;
2341 
2342 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2343 	if (!cpuc)
2344 		return ERR_PTR(-ENOMEM);
2345 	cpuc->is_fake = 1;
2346 
2347 	if (is_hybrid()) {
2348 		struct x86_hybrid_pmu *h_pmu;
2349 
2350 		h_pmu = hybrid_pmu(event_pmu);
2351 		if (cpumask_empty(&h_pmu->supported_cpus))
2352 			goto error;
2353 		cpu = cpumask_first(&h_pmu->supported_cpus);
2354 	} else
2355 		cpu = raw_smp_processor_id();
2356 	cpuc->pmu = event_pmu;
2357 
2358 	if (intel_cpuc_prepare(cpuc, cpu))
2359 		goto error;
2360 
2361 	return cpuc;
2362 error:
2363 	free_fake_cpuc(cpuc);
2364 	return ERR_PTR(-ENOMEM);
2365 }
2366 
2367 /*
2368  * validate that we can schedule this event
2369  */
2370 static int validate_event(struct perf_event *event)
2371 {
2372 	struct cpu_hw_events *fake_cpuc;
2373 	struct event_constraint *c;
2374 	int ret = 0;
2375 
2376 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2377 	if (IS_ERR(fake_cpuc))
2378 		return PTR_ERR(fake_cpuc);
2379 
2380 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2381 
2382 	if (!c || !c->weight)
2383 		ret = -EINVAL;
2384 
2385 	if (x86_pmu.put_event_constraints)
2386 		x86_pmu.put_event_constraints(fake_cpuc, event);
2387 
2388 	free_fake_cpuc(fake_cpuc);
2389 
2390 	return ret;
2391 }
2392 
2393 /*
2394  * validate a single event group
2395  *
2396  * validation include:
2397  *	- check events are compatible which each other
2398  *	- events do not compete for the same counter
2399  *	- number of events <= number of counters
2400  *
2401  * validation ensures the group can be loaded onto the
2402  * PMU if it was the only group available.
2403  */
2404 static int validate_group(struct perf_event *event)
2405 {
2406 	struct perf_event *leader = event->group_leader;
2407 	struct cpu_hw_events *fake_cpuc;
2408 	int ret = -EINVAL, n;
2409 
2410 	/*
2411 	 * Reject events from different hybrid PMUs.
2412 	 */
2413 	if (is_hybrid()) {
2414 		struct perf_event *sibling;
2415 		struct pmu *pmu = NULL;
2416 
2417 		if (is_x86_event(leader))
2418 			pmu = leader->pmu;
2419 
2420 		for_each_sibling_event(sibling, leader) {
2421 			if (!is_x86_event(sibling))
2422 				continue;
2423 			if (!pmu)
2424 				pmu = sibling->pmu;
2425 			else if (pmu != sibling->pmu)
2426 				return ret;
2427 		}
2428 	}
2429 
2430 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2431 	if (IS_ERR(fake_cpuc))
2432 		return PTR_ERR(fake_cpuc);
2433 	/*
2434 	 * the event is not yet connected with its
2435 	 * siblings therefore we must first collect
2436 	 * existing siblings, then add the new event
2437 	 * before we can simulate the scheduling
2438 	 */
2439 	n = collect_events(fake_cpuc, leader, true);
2440 	if (n < 0)
2441 		goto out;
2442 
2443 	fake_cpuc->n_events = n;
2444 	n = collect_events(fake_cpuc, event, false);
2445 	if (n < 0)
2446 		goto out;
2447 
2448 	fake_cpuc->n_events = 0;
2449 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2450 
2451 out:
2452 	free_fake_cpuc(fake_cpuc);
2453 	return ret;
2454 }
2455 
2456 static int x86_pmu_event_init(struct perf_event *event)
2457 {
2458 	struct x86_hybrid_pmu *pmu = NULL;
2459 	int err;
2460 
2461 	if ((event->attr.type != event->pmu->type) &&
2462 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2463 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2464 		return -ENOENT;
2465 
2466 	if (is_hybrid() && (event->cpu != -1)) {
2467 		pmu = hybrid_pmu(event->pmu);
2468 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2469 			return -ENOENT;
2470 	}
2471 
2472 	err = __x86_pmu_event_init(event);
2473 	if (!err) {
2474 		if (event->group_leader != event)
2475 			err = validate_group(event);
2476 		else
2477 			err = validate_event(event);
2478 	}
2479 	if (err) {
2480 		if (event->destroy)
2481 			event->destroy(event);
2482 		event->destroy = NULL;
2483 	}
2484 
2485 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2486 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2487 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2488 
2489 	return err;
2490 }
2491 
2492 void perf_clear_dirty_counters(void)
2493 {
2494 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2495 	int i;
2496 
2497 	 /* Don't need to clear the assigned counter. */
2498 	for (i = 0; i < cpuc->n_events; i++)
2499 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2500 
2501 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2502 		return;
2503 
2504 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2505 		if (i >= INTEL_PMC_IDX_FIXED) {
2506 			/* Metrics and fake events don't have corresponding HW counters. */
2507 			if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2508 				continue;
2509 
2510 			wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2511 		} else {
2512 			wrmsrl(x86_pmu_event_addr(i), 0);
2513 		}
2514 	}
2515 
2516 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2517 }
2518 
2519 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522 		return;
2523 
2524 	/*
2525 	 * This function relies on not being called concurrently in two
2526 	 * tasks in the same mm.  Otherwise one task could observe
2527 	 * perf_rdpmc_allowed > 1 and return all the way back to
2528 	 * userspace with CR4.PCE clear while another task is still
2529 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2530 	 *
2531 	 * For now, this can't happen because all callers hold mmap_lock
2532 	 * for write.  If this changes, we'll need a different solution.
2533 	 */
2534 	mmap_assert_write_locked(mm);
2535 
2536 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2537 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2538 }
2539 
2540 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2541 {
2542 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2543 		return;
2544 
2545 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2546 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2547 }
2548 
2549 static int x86_pmu_event_idx(struct perf_event *event)
2550 {
2551 	struct hw_perf_event *hwc = &event->hw;
2552 
2553 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2554 		return 0;
2555 
2556 	if (is_metric_idx(hwc->idx))
2557 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2558 	else
2559 		return hwc->event_base_rdpmc + 1;
2560 }
2561 
2562 static ssize_t get_attr_rdpmc(struct device *cdev,
2563 			      struct device_attribute *attr,
2564 			      char *buf)
2565 {
2566 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2567 }
2568 
2569 static ssize_t set_attr_rdpmc(struct device *cdev,
2570 			      struct device_attribute *attr,
2571 			      const char *buf, size_t count)
2572 {
2573 	unsigned long val;
2574 	ssize_t ret;
2575 
2576 	ret = kstrtoul(buf, 0, &val);
2577 	if (ret)
2578 		return ret;
2579 
2580 	if (val > 2)
2581 		return -EINVAL;
2582 
2583 	if (x86_pmu.attr_rdpmc_broken)
2584 		return -ENOTSUPP;
2585 
2586 	if (val != x86_pmu.attr_rdpmc) {
2587 		/*
2588 		 * Changing into or out of never available or always available,
2589 		 * aka perf-event-bypassing mode. This path is extremely slow,
2590 		 * but only root can trigger it, so it's okay.
2591 		 */
2592 		if (val == 0)
2593 			static_branch_inc(&rdpmc_never_available_key);
2594 		else if (x86_pmu.attr_rdpmc == 0)
2595 			static_branch_dec(&rdpmc_never_available_key);
2596 
2597 		if (val == 2)
2598 			static_branch_inc(&rdpmc_always_available_key);
2599 		else if (x86_pmu.attr_rdpmc == 2)
2600 			static_branch_dec(&rdpmc_always_available_key);
2601 
2602 		on_each_cpu(cr4_update_pce, NULL, 1);
2603 		x86_pmu.attr_rdpmc = val;
2604 	}
2605 
2606 	return count;
2607 }
2608 
2609 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2610 
2611 static struct attribute *x86_pmu_attrs[] = {
2612 	&dev_attr_rdpmc.attr,
2613 	NULL,
2614 };
2615 
2616 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2617 	.attrs = x86_pmu_attrs,
2618 };
2619 
2620 static ssize_t max_precise_show(struct device *cdev,
2621 				  struct device_attribute *attr,
2622 				  char *buf)
2623 {
2624 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2625 }
2626 
2627 static DEVICE_ATTR_RO(max_precise);
2628 
2629 static struct attribute *x86_pmu_caps_attrs[] = {
2630 	&dev_attr_max_precise.attr,
2631 	NULL
2632 };
2633 
2634 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2635 	.name = "caps",
2636 	.attrs = x86_pmu_caps_attrs,
2637 };
2638 
2639 static const struct attribute_group *x86_pmu_attr_groups[] = {
2640 	&x86_pmu_attr_group,
2641 	&x86_pmu_format_group,
2642 	&x86_pmu_events_group,
2643 	&x86_pmu_caps_group,
2644 	NULL,
2645 };
2646 
2647 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2648 {
2649 	static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2650 }
2651 
2652 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2653 				  struct perf_event_context *next)
2654 {
2655 	static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2656 }
2657 
2658 void perf_check_microcode(void)
2659 {
2660 	if (x86_pmu.check_microcode)
2661 		x86_pmu.check_microcode();
2662 }
2663 
2664 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2665 {
2666 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2667 		return -EINVAL;
2668 
2669 	if (value && x86_pmu.limit_period) {
2670 		if (x86_pmu.limit_period(event, value) > value)
2671 			return -EINVAL;
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int x86_pmu_aux_output_match(struct perf_event *event)
2678 {
2679 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2680 		return 0;
2681 
2682 	if (x86_pmu.aux_output_match)
2683 		return x86_pmu.aux_output_match(event);
2684 
2685 	return 0;
2686 }
2687 
2688 static int x86_pmu_filter_match(struct perf_event *event)
2689 {
2690 	if (x86_pmu.filter_match)
2691 		return x86_pmu.filter_match(event);
2692 
2693 	return 1;
2694 }
2695 
2696 static struct pmu pmu = {
2697 	.pmu_enable		= x86_pmu_enable,
2698 	.pmu_disable		= x86_pmu_disable,
2699 
2700 	.attr_groups		= x86_pmu_attr_groups,
2701 
2702 	.event_init		= x86_pmu_event_init,
2703 
2704 	.event_mapped		= x86_pmu_event_mapped,
2705 	.event_unmapped		= x86_pmu_event_unmapped,
2706 
2707 	.add			= x86_pmu_add,
2708 	.del			= x86_pmu_del,
2709 	.start			= x86_pmu_start,
2710 	.stop			= x86_pmu_stop,
2711 	.read			= x86_pmu_read,
2712 
2713 	.start_txn		= x86_pmu_start_txn,
2714 	.cancel_txn		= x86_pmu_cancel_txn,
2715 	.commit_txn		= x86_pmu_commit_txn,
2716 
2717 	.event_idx		= x86_pmu_event_idx,
2718 	.sched_task		= x86_pmu_sched_task,
2719 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2720 	.check_period		= x86_pmu_check_period,
2721 
2722 	.aux_output_match	= x86_pmu_aux_output_match,
2723 
2724 	.filter_match		= x86_pmu_filter_match,
2725 };
2726 
2727 void arch_perf_update_userpage(struct perf_event *event,
2728 			       struct perf_event_mmap_page *userpg, u64 now)
2729 {
2730 	struct cyc2ns_data data;
2731 	u64 offset;
2732 
2733 	userpg->cap_user_time = 0;
2734 	userpg->cap_user_time_zero = 0;
2735 	userpg->cap_user_rdpmc =
2736 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2737 	userpg->pmc_width = x86_pmu.cntval_bits;
2738 
2739 	if (!using_native_sched_clock() || !sched_clock_stable())
2740 		return;
2741 
2742 	cyc2ns_read_begin(&data);
2743 
2744 	offset = data.cyc2ns_offset + __sched_clock_offset;
2745 
2746 	/*
2747 	 * Internal timekeeping for enabled/running/stopped times
2748 	 * is always in the local_clock domain.
2749 	 */
2750 	userpg->cap_user_time = 1;
2751 	userpg->time_mult = data.cyc2ns_mul;
2752 	userpg->time_shift = data.cyc2ns_shift;
2753 	userpg->time_offset = offset - now;
2754 
2755 	/*
2756 	 * cap_user_time_zero doesn't make sense when we're using a different
2757 	 * time base for the records.
2758 	 */
2759 	if (!event->attr.use_clockid) {
2760 		userpg->cap_user_time_zero = 1;
2761 		userpg->time_zero = offset;
2762 	}
2763 
2764 	cyc2ns_read_end();
2765 }
2766 
2767 /*
2768  * Determine whether the regs were taken from an irq/exception handler rather
2769  * than from perf_arch_fetch_caller_regs().
2770  */
2771 static bool perf_hw_regs(struct pt_regs *regs)
2772 {
2773 	return regs->flags & X86_EFLAGS_FIXED;
2774 }
2775 
2776 void
2777 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2778 {
2779 	struct unwind_state state;
2780 	unsigned long addr;
2781 
2782 	if (perf_guest_state()) {
2783 		/* TODO: We don't support guest os callchain now */
2784 		return;
2785 	}
2786 
2787 	if (perf_callchain_store(entry, regs->ip))
2788 		return;
2789 
2790 	if (perf_hw_regs(regs))
2791 		unwind_start(&state, current, regs, NULL);
2792 	else
2793 		unwind_start(&state, current, NULL, (void *)regs->sp);
2794 
2795 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2796 		addr = unwind_get_return_address(&state);
2797 		if (!addr || perf_callchain_store(entry, addr))
2798 			return;
2799 	}
2800 }
2801 
2802 static inline int
2803 valid_user_frame(const void __user *fp, unsigned long size)
2804 {
2805 	return __access_ok(fp, size);
2806 }
2807 
2808 static unsigned long get_segment_base(unsigned int segment)
2809 {
2810 	struct desc_struct *desc;
2811 	unsigned int idx = segment >> 3;
2812 
2813 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2814 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2815 		struct ldt_struct *ldt;
2816 
2817 		/* IRQs are off, so this synchronizes with smp_store_release */
2818 		ldt = READ_ONCE(current->active_mm->context.ldt);
2819 		if (!ldt || idx >= ldt->nr_entries)
2820 			return 0;
2821 
2822 		desc = &ldt->entries[idx];
2823 #else
2824 		return 0;
2825 #endif
2826 	} else {
2827 		if (idx >= GDT_ENTRIES)
2828 			return 0;
2829 
2830 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2831 	}
2832 
2833 	return get_desc_base(desc);
2834 }
2835 
2836 #ifdef CONFIG_IA32_EMULATION
2837 
2838 #include <linux/compat.h>
2839 
2840 static inline int
2841 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2842 {
2843 	/* 32-bit process in 64-bit kernel. */
2844 	unsigned long ss_base, cs_base;
2845 	struct stack_frame_ia32 frame;
2846 	const struct stack_frame_ia32 __user *fp;
2847 
2848 	if (user_64bit_mode(regs))
2849 		return 0;
2850 
2851 	cs_base = get_segment_base(regs->cs);
2852 	ss_base = get_segment_base(regs->ss);
2853 
2854 	fp = compat_ptr(ss_base + regs->bp);
2855 	pagefault_disable();
2856 	while (entry->nr < entry->max_stack) {
2857 		if (!valid_user_frame(fp, sizeof(frame)))
2858 			break;
2859 
2860 		if (__get_user(frame.next_frame, &fp->next_frame))
2861 			break;
2862 		if (__get_user(frame.return_address, &fp->return_address))
2863 			break;
2864 
2865 		perf_callchain_store(entry, cs_base + frame.return_address);
2866 		fp = compat_ptr(ss_base + frame.next_frame);
2867 	}
2868 	pagefault_enable();
2869 	return 1;
2870 }
2871 #else
2872 static inline int
2873 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2874 {
2875     return 0;
2876 }
2877 #endif
2878 
2879 void
2880 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2881 {
2882 	struct stack_frame frame;
2883 	const struct stack_frame __user *fp;
2884 
2885 	if (perf_guest_state()) {
2886 		/* TODO: We don't support guest os callchain now */
2887 		return;
2888 	}
2889 
2890 	/*
2891 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2892 	 */
2893 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2894 		return;
2895 
2896 	fp = (void __user *)regs->bp;
2897 
2898 	perf_callchain_store(entry, regs->ip);
2899 
2900 	if (!nmi_uaccess_okay())
2901 		return;
2902 
2903 	if (perf_callchain_user32(regs, entry))
2904 		return;
2905 
2906 	pagefault_disable();
2907 	while (entry->nr < entry->max_stack) {
2908 		if (!valid_user_frame(fp, sizeof(frame)))
2909 			break;
2910 
2911 		if (__get_user(frame.next_frame, &fp->next_frame))
2912 			break;
2913 		if (__get_user(frame.return_address, &fp->return_address))
2914 			break;
2915 
2916 		perf_callchain_store(entry, frame.return_address);
2917 		fp = (void __user *)frame.next_frame;
2918 	}
2919 	pagefault_enable();
2920 }
2921 
2922 /*
2923  * Deal with code segment offsets for the various execution modes:
2924  *
2925  *   VM86 - the good olde 16 bit days, where the linear address is
2926  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2927  *
2928  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2929  *          to figure out what the 32bit base address is.
2930  *
2931  *    X32 - has TIF_X32 set, but is running in x86_64
2932  *
2933  * X86_64 - CS,DS,SS,ES are all zero based.
2934  */
2935 static unsigned long code_segment_base(struct pt_regs *regs)
2936 {
2937 	/*
2938 	 * For IA32 we look at the GDT/LDT segment base to convert the
2939 	 * effective IP to a linear address.
2940 	 */
2941 
2942 #ifdef CONFIG_X86_32
2943 	/*
2944 	 * If we are in VM86 mode, add the segment offset to convert to a
2945 	 * linear address.
2946 	 */
2947 	if (regs->flags & X86_VM_MASK)
2948 		return 0x10 * regs->cs;
2949 
2950 	if (user_mode(regs) && regs->cs != __USER_CS)
2951 		return get_segment_base(regs->cs);
2952 #else
2953 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2954 	    regs->cs != __USER32_CS)
2955 		return get_segment_base(regs->cs);
2956 #endif
2957 	return 0;
2958 }
2959 
2960 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2961 {
2962 	if (perf_guest_state())
2963 		return perf_guest_get_ip();
2964 
2965 	return regs->ip + code_segment_base(regs);
2966 }
2967 
2968 unsigned long perf_misc_flags(struct pt_regs *regs)
2969 {
2970 	unsigned int guest_state = perf_guest_state();
2971 	int misc = 0;
2972 
2973 	if (guest_state) {
2974 		if (guest_state & PERF_GUEST_USER)
2975 			misc |= PERF_RECORD_MISC_GUEST_USER;
2976 		else
2977 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2978 	} else {
2979 		if (user_mode(regs))
2980 			misc |= PERF_RECORD_MISC_USER;
2981 		else
2982 			misc |= PERF_RECORD_MISC_KERNEL;
2983 	}
2984 
2985 	if (regs->flags & PERF_EFLAGS_EXACT)
2986 		misc |= PERF_RECORD_MISC_EXACT_IP;
2987 
2988 	return misc;
2989 }
2990 
2991 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2992 {
2993 	cap->version		= x86_pmu.version;
2994 	/*
2995 	 * KVM doesn't support the hybrid PMU yet.
2996 	 * Return the common value in global x86_pmu,
2997 	 * which available for all cores.
2998 	 */
2999 	cap->num_counters_gp	= x86_pmu.num_counters;
3000 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
3001 	cap->bit_width_gp	= x86_pmu.cntval_bits;
3002 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
3003 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
3004 	cap->events_mask_len	= x86_pmu.events_mask_len;
3005 }
3006 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3007