xref: /openbmc/linux/arch/x86/events/core.c (revision f7d84fa7)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
42 
43 #include "perf_event.h"
44 
45 struct x86_pmu x86_pmu __read_mostly;
46 
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 	.enabled = 1,
49 };
50 
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52 
53 u64 __read_mostly hw_cache_event_ids
54 				[PERF_COUNT_HW_CACHE_MAX]
55 				[PERF_COUNT_HW_CACHE_OP_MAX]
56 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58 				[PERF_COUNT_HW_CACHE_MAX]
59 				[PERF_COUNT_HW_CACHE_OP_MAX]
60 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
61 
62 /*
63  * Propagate event elapsed time into the generic event.
64  * Can only be executed on the CPU where the event is active.
65  * Returns the delta events processed.
66  */
67 u64 x86_perf_event_update(struct perf_event *event)
68 {
69 	struct hw_perf_event *hwc = &event->hw;
70 	int shift = 64 - x86_pmu.cntval_bits;
71 	u64 prev_raw_count, new_raw_count;
72 	int idx = hwc->idx;
73 	u64 delta;
74 
75 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 		return 0;
77 
78 	/*
79 	 * Careful: an NMI might modify the previous event value.
80 	 *
81 	 * Our tactic to handle this is to first atomically read and
82 	 * exchange a new raw count - then add that new-prev delta
83 	 * count to the generic event atomically:
84 	 */
85 again:
86 	prev_raw_count = local64_read(&hwc->prev_count);
87 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
88 
89 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 					new_raw_count) != prev_raw_count)
91 		goto again;
92 
93 	/*
94 	 * Now we have the new raw value and have updated the prev
95 	 * timestamp already. We can now calculate the elapsed delta
96 	 * (event-)time and add that to the generic event.
97 	 *
98 	 * Careful, not all hw sign-extends above the physical width
99 	 * of the count.
100 	 */
101 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 	delta >>= shift;
103 
104 	local64_add(delta, &event->count);
105 	local64_sub(delta, &hwc->period_left);
106 
107 	return new_raw_count;
108 }
109 
110 /*
111  * Find and validate any extra registers to set up.
112  */
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114 {
115 	struct hw_perf_event_extra *reg;
116 	struct extra_reg *er;
117 
118 	reg = &event->hw.extra_reg;
119 
120 	if (!x86_pmu.extra_regs)
121 		return 0;
122 
123 	for (er = x86_pmu.extra_regs; er->msr; er++) {
124 		if (er->event != (config & er->config_mask))
125 			continue;
126 		if (event->attr.config1 & ~er->valid_mask)
127 			return -EINVAL;
128 		/* Check if the extra msrs can be safely accessed*/
129 		if (!er->extra_msr_access)
130 			return -ENXIO;
131 
132 		reg->idx = er->idx;
133 		reg->config = event->attr.config1;
134 		reg->reg = er->msr;
135 		break;
136 	}
137 	return 0;
138 }
139 
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
143 
144 #ifdef CONFIG_X86_LOCAL_APIC
145 
146 static bool reserve_pmc_hardware(void)
147 {
148 	int i;
149 
150 	for (i = 0; i < x86_pmu.num_counters; i++) {
151 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152 			goto perfctr_fail;
153 	}
154 
155 	for (i = 0; i < x86_pmu.num_counters; i++) {
156 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157 			goto eventsel_fail;
158 	}
159 
160 	return true;
161 
162 eventsel_fail:
163 	for (i--; i >= 0; i--)
164 		release_evntsel_nmi(x86_pmu_config_addr(i));
165 
166 	i = x86_pmu.num_counters;
167 
168 perfctr_fail:
169 	for (i--; i >= 0; i--)
170 		release_perfctr_nmi(x86_pmu_event_addr(i));
171 
172 	return false;
173 }
174 
175 static void release_pmc_hardware(void)
176 {
177 	int i;
178 
179 	for (i = 0; i < x86_pmu.num_counters; i++) {
180 		release_perfctr_nmi(x86_pmu_event_addr(i));
181 		release_evntsel_nmi(x86_pmu_config_addr(i));
182 	}
183 }
184 
185 #else
186 
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
189 
190 #endif
191 
192 static bool check_hw_exists(void)
193 {
194 	u64 val, val_fail, val_new= ~0;
195 	int i, reg, reg_fail, ret = 0;
196 	int bios_fail = 0;
197 	int reg_safe = -1;
198 
199 	/*
200 	 * Check to see if the BIOS enabled any of the counters, if so
201 	 * complain and bail.
202 	 */
203 	for (i = 0; i < x86_pmu.num_counters; i++) {
204 		reg = x86_pmu_config_addr(i);
205 		ret = rdmsrl_safe(reg, &val);
206 		if (ret)
207 			goto msr_fail;
208 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 			bios_fail = 1;
210 			val_fail = val;
211 			reg_fail = reg;
212 		} else {
213 			reg_safe = i;
214 		}
215 	}
216 
217 	if (x86_pmu.num_counters_fixed) {
218 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 		ret = rdmsrl_safe(reg, &val);
220 		if (ret)
221 			goto msr_fail;
222 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 			if (val & (0x03 << i*4)) {
224 				bios_fail = 1;
225 				val_fail = val;
226 				reg_fail = reg;
227 			}
228 		}
229 	}
230 
231 	/*
232 	 * If all the counters are enabled, the below test will always
233 	 * fail.  The tools will also become useless in this scenario.
234 	 * Just fail and disable the hardware counters.
235 	 */
236 
237 	if (reg_safe == -1) {
238 		reg = reg_safe;
239 		goto msr_fail;
240 	}
241 
242 	/*
243 	 * Read the current value, change it and read it back to see if it
244 	 * matches, this is needed to detect certain hardware emulators
245 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
246 	 */
247 	reg = x86_pmu_event_addr(reg_safe);
248 	if (rdmsrl_safe(reg, &val))
249 		goto msr_fail;
250 	val ^= 0xffffUL;
251 	ret = wrmsrl_safe(reg, val);
252 	ret |= rdmsrl_safe(reg, &val_new);
253 	if (ret || val != val_new)
254 		goto msr_fail;
255 
256 	/*
257 	 * We still allow the PMU driver to operate:
258 	 */
259 	if (bios_fail) {
260 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 			      reg_fail, val_fail);
263 	}
264 
265 	return true;
266 
267 msr_fail:
268 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 		pr_cont("PMU not available due to virtualization, using software events only.\n");
270 	} else {
271 		pr_cont("Broken PMU hardware detected, using software events only.\n");
272 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 		       reg, val_new);
274 	}
275 
276 	return false;
277 }
278 
279 static void hw_perf_event_destroy(struct perf_event *event)
280 {
281 	x86_release_hardware();
282 	atomic_dec(&active_events);
283 }
284 
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
286 {
287 	hw_perf_event_destroy(event);
288 
289 	/* undo the lbr/bts event accounting */
290 	x86_del_exclusive(x86_lbr_exclusive_lbr);
291 }
292 
293 static inline int x86_pmu_initialized(void)
294 {
295 	return x86_pmu.handle_irq != NULL;
296 }
297 
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
300 {
301 	struct perf_event_attr *attr = &event->attr;
302 	unsigned int cache_type, cache_op, cache_result;
303 	u64 config, val;
304 
305 	config = attr->config;
306 
307 	cache_type = (config >>  0) & 0xff;
308 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 		return -EINVAL;
310 
311 	cache_op = (config >>  8) & 0xff;
312 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313 		return -EINVAL;
314 
315 	cache_result = (config >> 16) & 0xff;
316 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317 		return -EINVAL;
318 
319 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
320 
321 	if (val == 0)
322 		return -ENOENT;
323 
324 	if (val == -1)
325 		return -EINVAL;
326 
327 	hwc->config |= val;
328 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329 	return x86_pmu_extra_regs(val, event);
330 }
331 
332 int x86_reserve_hardware(void)
333 {
334 	int err = 0;
335 
336 	if (!atomic_inc_not_zero(&pmc_refcount)) {
337 		mutex_lock(&pmc_reserve_mutex);
338 		if (atomic_read(&pmc_refcount) == 0) {
339 			if (!reserve_pmc_hardware())
340 				err = -EBUSY;
341 			else
342 				reserve_ds_buffers();
343 		}
344 		if (!err)
345 			atomic_inc(&pmc_refcount);
346 		mutex_unlock(&pmc_reserve_mutex);
347 	}
348 
349 	return err;
350 }
351 
352 void x86_release_hardware(void)
353 {
354 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
355 		release_pmc_hardware();
356 		release_ds_buffers();
357 		mutex_unlock(&pmc_reserve_mutex);
358 	}
359 }
360 
361 /*
362  * Check if we can create event of a certain type (that no conflicting events
363  * are present).
364  */
365 int x86_add_exclusive(unsigned int what)
366 {
367 	int i;
368 
369 	/*
370 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 	 * LBR and BTS are still mutually exclusive.
372 	 */
373 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
374 		return 0;
375 
376 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377 		mutex_lock(&pmc_reserve_mutex);
378 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380 				goto fail_unlock;
381 		}
382 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
383 		mutex_unlock(&pmc_reserve_mutex);
384 	}
385 
386 	atomic_inc(&active_events);
387 	return 0;
388 
389 fail_unlock:
390 	mutex_unlock(&pmc_reserve_mutex);
391 	return -EBUSY;
392 }
393 
394 void x86_del_exclusive(unsigned int what)
395 {
396 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
397 		return;
398 
399 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
400 	atomic_dec(&active_events);
401 }
402 
403 int x86_setup_perfctr(struct perf_event *event)
404 {
405 	struct perf_event_attr *attr = &event->attr;
406 	struct hw_perf_event *hwc = &event->hw;
407 	u64 config;
408 
409 	if (!is_sampling_event(event)) {
410 		hwc->sample_period = x86_pmu.max_period;
411 		hwc->last_period = hwc->sample_period;
412 		local64_set(&hwc->period_left, hwc->sample_period);
413 	}
414 
415 	if (attr->type == PERF_TYPE_RAW)
416 		return x86_pmu_extra_regs(event->attr.config, event);
417 
418 	if (attr->type == PERF_TYPE_HW_CACHE)
419 		return set_ext_hw_attr(hwc, event);
420 
421 	if (attr->config >= x86_pmu.max_events)
422 		return -EINVAL;
423 
424 	/*
425 	 * The generic map:
426 	 */
427 	config = x86_pmu.event_map(attr->config);
428 
429 	if (config == 0)
430 		return -ENOENT;
431 
432 	if (config == -1LL)
433 		return -EINVAL;
434 
435 	/*
436 	 * Branch tracing:
437 	 */
438 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439 	    !attr->freq && hwc->sample_period == 1) {
440 		/* BTS is not supported by this architecture. */
441 		if (!x86_pmu.bts_active)
442 			return -EOPNOTSUPP;
443 
444 		/* BTS is currently only allowed for user-mode. */
445 		if (!attr->exclude_kernel)
446 			return -EOPNOTSUPP;
447 
448 		/* disallow bts if conflicting events are present */
449 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450 			return -EBUSY;
451 
452 		event->destroy = hw_perf_lbr_event_destroy;
453 	}
454 
455 	hwc->config |= config;
456 
457 	return 0;
458 }
459 
460 /*
461  * check that branch_sample_type is compatible with
462  * settings needed for precise_ip > 1 which implies
463  * using the LBR to capture ALL taken branches at the
464  * priv levels of the measurement
465  */
466 static inline int precise_br_compat(struct perf_event *event)
467 {
468 	u64 m = event->attr.branch_sample_type;
469 	u64 b = 0;
470 
471 	/* must capture all branches */
472 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
473 		return 0;
474 
475 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
476 
477 	if (!event->attr.exclude_user)
478 		b |= PERF_SAMPLE_BRANCH_USER;
479 
480 	if (!event->attr.exclude_kernel)
481 		b |= PERF_SAMPLE_BRANCH_KERNEL;
482 
483 	/*
484 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
485 	 */
486 
487 	return m == b;
488 }
489 
490 int x86_pmu_hw_config(struct perf_event *event)
491 {
492 	if (event->attr.precise_ip) {
493 		int precise = 0;
494 
495 		/* Support for constant skid */
496 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
497 			precise++;
498 
499 			/* Support for IP fixup */
500 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
501 				precise++;
502 
503 			if (x86_pmu.pebs_prec_dist)
504 				precise++;
505 		}
506 
507 		if (event->attr.precise_ip > precise)
508 			return -EOPNOTSUPP;
509 
510 		/* There's no sense in having PEBS for non sampling events: */
511 		if (!is_sampling_event(event))
512 			return -EINVAL;
513 	}
514 	/*
515 	 * check that PEBS LBR correction does not conflict with
516 	 * whatever the user is asking with attr->branch_sample_type
517 	 */
518 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
519 		u64 *br_type = &event->attr.branch_sample_type;
520 
521 		if (has_branch_stack(event)) {
522 			if (!precise_br_compat(event))
523 				return -EOPNOTSUPP;
524 
525 			/* branch_sample_type is compatible */
526 
527 		} else {
528 			/*
529 			 * user did not specify  branch_sample_type
530 			 *
531 			 * For PEBS fixups, we capture all
532 			 * the branches at the priv level of the
533 			 * event.
534 			 */
535 			*br_type = PERF_SAMPLE_BRANCH_ANY;
536 
537 			if (!event->attr.exclude_user)
538 				*br_type |= PERF_SAMPLE_BRANCH_USER;
539 
540 			if (!event->attr.exclude_kernel)
541 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
542 		}
543 	}
544 
545 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
546 		event->attach_state |= PERF_ATTACH_TASK_DATA;
547 
548 	/*
549 	 * Generate PMC IRQs:
550 	 * (keep 'enabled' bit clear for now)
551 	 */
552 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
553 
554 	/*
555 	 * Count user and OS events unless requested not to
556 	 */
557 	if (!event->attr.exclude_user)
558 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
559 	if (!event->attr.exclude_kernel)
560 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
561 
562 	if (event->attr.type == PERF_TYPE_RAW)
563 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
564 
565 	if (event->attr.sample_period && x86_pmu.limit_period) {
566 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
567 				event->attr.sample_period)
568 			return -EINVAL;
569 	}
570 
571 	return x86_setup_perfctr(event);
572 }
573 
574 /*
575  * Setup the hardware configuration for a given attr_type
576  */
577 static int __x86_pmu_event_init(struct perf_event *event)
578 {
579 	int err;
580 
581 	if (!x86_pmu_initialized())
582 		return -ENODEV;
583 
584 	err = x86_reserve_hardware();
585 	if (err)
586 		return err;
587 
588 	atomic_inc(&active_events);
589 	event->destroy = hw_perf_event_destroy;
590 
591 	event->hw.idx = -1;
592 	event->hw.last_cpu = -1;
593 	event->hw.last_tag = ~0ULL;
594 
595 	/* mark unused */
596 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
597 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
598 
599 	return x86_pmu.hw_config(event);
600 }
601 
602 void x86_pmu_disable_all(void)
603 {
604 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
605 	int idx;
606 
607 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608 		u64 val;
609 
610 		if (!test_bit(idx, cpuc->active_mask))
611 			continue;
612 		rdmsrl(x86_pmu_config_addr(idx), val);
613 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
614 			continue;
615 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
616 		wrmsrl(x86_pmu_config_addr(idx), val);
617 	}
618 }
619 
620 /*
621  * There may be PMI landing after enabled=0. The PMI hitting could be before or
622  * after disable_all.
623  *
624  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
625  * It will not be re-enabled in the NMI handler again, because enabled=0. After
626  * handling the NMI, disable_all will be called, which will not change the
627  * state either. If PMI hits after disable_all, the PMU is already disabled
628  * before entering NMI handler. The NMI handler will not change the state
629  * either.
630  *
631  * So either situation is harmless.
632  */
633 static void x86_pmu_disable(struct pmu *pmu)
634 {
635 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
636 
637 	if (!x86_pmu_initialized())
638 		return;
639 
640 	if (!cpuc->enabled)
641 		return;
642 
643 	cpuc->n_added = 0;
644 	cpuc->enabled = 0;
645 	barrier();
646 
647 	x86_pmu.disable_all();
648 }
649 
650 void x86_pmu_enable_all(int added)
651 {
652 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 	int idx;
654 
655 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
656 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
657 
658 		if (!test_bit(idx, cpuc->active_mask))
659 			continue;
660 
661 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
662 	}
663 }
664 
665 static struct pmu pmu;
666 
667 static inline int is_x86_event(struct perf_event *event)
668 {
669 	return event->pmu == &pmu;
670 }
671 
672 /*
673  * Event scheduler state:
674  *
675  * Assign events iterating over all events and counters, beginning
676  * with events with least weights first. Keep the current iterator
677  * state in struct sched_state.
678  */
679 struct sched_state {
680 	int	weight;
681 	int	event;		/* event index */
682 	int	counter;	/* counter index */
683 	int	unassigned;	/* number of events to be assigned left */
684 	int	nr_gp;		/* number of GP counters used */
685 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
686 };
687 
688 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
689 #define	SCHED_STATES_MAX	2
690 
691 struct perf_sched {
692 	int			max_weight;
693 	int			max_events;
694 	int			max_gp;
695 	int			saved_states;
696 	struct event_constraint	**constraints;
697 	struct sched_state	state;
698 	struct sched_state	saved[SCHED_STATES_MAX];
699 };
700 
701 /*
702  * Initialize interator that runs through all events and counters.
703  */
704 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
705 			    int num, int wmin, int wmax, int gpmax)
706 {
707 	int idx;
708 
709 	memset(sched, 0, sizeof(*sched));
710 	sched->max_events	= num;
711 	sched->max_weight	= wmax;
712 	sched->max_gp		= gpmax;
713 	sched->constraints	= constraints;
714 
715 	for (idx = 0; idx < num; idx++) {
716 		if (constraints[idx]->weight == wmin)
717 			break;
718 	}
719 
720 	sched->state.event	= idx;		/* start with min weight */
721 	sched->state.weight	= wmin;
722 	sched->state.unassigned	= num;
723 }
724 
725 static void perf_sched_save_state(struct perf_sched *sched)
726 {
727 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
728 		return;
729 
730 	sched->saved[sched->saved_states] = sched->state;
731 	sched->saved_states++;
732 }
733 
734 static bool perf_sched_restore_state(struct perf_sched *sched)
735 {
736 	if (!sched->saved_states)
737 		return false;
738 
739 	sched->saved_states--;
740 	sched->state = sched->saved[sched->saved_states];
741 
742 	/* continue with next counter: */
743 	clear_bit(sched->state.counter++, sched->state.used);
744 
745 	return true;
746 }
747 
748 /*
749  * Select a counter for the current event to schedule. Return true on
750  * success.
751  */
752 static bool __perf_sched_find_counter(struct perf_sched *sched)
753 {
754 	struct event_constraint *c;
755 	int idx;
756 
757 	if (!sched->state.unassigned)
758 		return false;
759 
760 	if (sched->state.event >= sched->max_events)
761 		return false;
762 
763 	c = sched->constraints[sched->state.event];
764 	/* Prefer fixed purpose counters */
765 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
766 		idx = INTEL_PMC_IDX_FIXED;
767 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
768 			if (!__test_and_set_bit(idx, sched->state.used))
769 				goto done;
770 		}
771 	}
772 
773 	/* Grab the first unused counter starting with idx */
774 	idx = sched->state.counter;
775 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
776 		if (!__test_and_set_bit(idx, sched->state.used)) {
777 			if (sched->state.nr_gp++ >= sched->max_gp)
778 				return false;
779 
780 			goto done;
781 		}
782 	}
783 
784 	return false;
785 
786 done:
787 	sched->state.counter = idx;
788 
789 	if (c->overlap)
790 		perf_sched_save_state(sched);
791 
792 	return true;
793 }
794 
795 static bool perf_sched_find_counter(struct perf_sched *sched)
796 {
797 	while (!__perf_sched_find_counter(sched)) {
798 		if (!perf_sched_restore_state(sched))
799 			return false;
800 	}
801 
802 	return true;
803 }
804 
805 /*
806  * Go through all unassigned events and find the next one to schedule.
807  * Take events with the least weight first. Return true on success.
808  */
809 static bool perf_sched_next_event(struct perf_sched *sched)
810 {
811 	struct event_constraint *c;
812 
813 	if (!sched->state.unassigned || !--sched->state.unassigned)
814 		return false;
815 
816 	do {
817 		/* next event */
818 		sched->state.event++;
819 		if (sched->state.event >= sched->max_events) {
820 			/* next weight */
821 			sched->state.event = 0;
822 			sched->state.weight++;
823 			if (sched->state.weight > sched->max_weight)
824 				return false;
825 		}
826 		c = sched->constraints[sched->state.event];
827 	} while (c->weight != sched->state.weight);
828 
829 	sched->state.counter = 0;	/* start with first counter */
830 
831 	return true;
832 }
833 
834 /*
835  * Assign a counter for each event.
836  */
837 int perf_assign_events(struct event_constraint **constraints, int n,
838 			int wmin, int wmax, int gpmax, int *assign)
839 {
840 	struct perf_sched sched;
841 
842 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
843 
844 	do {
845 		if (!perf_sched_find_counter(&sched))
846 			break;	/* failed */
847 		if (assign)
848 			assign[sched.state.event] = sched.state.counter;
849 	} while (perf_sched_next_event(&sched));
850 
851 	return sched.state.unassigned;
852 }
853 EXPORT_SYMBOL_GPL(perf_assign_events);
854 
855 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
856 {
857 	struct event_constraint *c;
858 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
859 	struct perf_event *e;
860 	int i, wmin, wmax, unsched = 0;
861 	struct hw_perf_event *hwc;
862 
863 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
864 
865 	if (x86_pmu.start_scheduling)
866 		x86_pmu.start_scheduling(cpuc);
867 
868 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
869 		cpuc->event_constraint[i] = NULL;
870 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
871 		cpuc->event_constraint[i] = c;
872 
873 		wmin = min(wmin, c->weight);
874 		wmax = max(wmax, c->weight);
875 	}
876 
877 	/*
878 	 * fastpath, try to reuse previous register
879 	 */
880 	for (i = 0; i < n; i++) {
881 		hwc = &cpuc->event_list[i]->hw;
882 		c = cpuc->event_constraint[i];
883 
884 		/* never assigned */
885 		if (hwc->idx == -1)
886 			break;
887 
888 		/* constraint still honored */
889 		if (!test_bit(hwc->idx, c->idxmsk))
890 			break;
891 
892 		/* not already used */
893 		if (test_bit(hwc->idx, used_mask))
894 			break;
895 
896 		__set_bit(hwc->idx, used_mask);
897 		if (assign)
898 			assign[i] = hwc->idx;
899 	}
900 
901 	/* slow path */
902 	if (i != n) {
903 		int gpmax = x86_pmu.num_counters;
904 
905 		/*
906 		 * Do not allow scheduling of more than half the available
907 		 * generic counters.
908 		 *
909 		 * This helps avoid counter starvation of sibling thread by
910 		 * ensuring at most half the counters cannot be in exclusive
911 		 * mode. There is no designated counters for the limits. Any
912 		 * N/2 counters can be used. This helps with events with
913 		 * specific counter constraints.
914 		 */
915 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
916 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
917 			gpmax /= 2;
918 
919 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
920 					     wmax, gpmax, assign);
921 	}
922 
923 	/*
924 	 * In case of success (unsched = 0), mark events as committed,
925 	 * so we do not put_constraint() in case new events are added
926 	 * and fail to be scheduled
927 	 *
928 	 * We invoke the lower level commit callback to lock the resource
929 	 *
930 	 * We do not need to do all of this in case we are called to
931 	 * validate an event group (assign == NULL)
932 	 */
933 	if (!unsched && assign) {
934 		for (i = 0; i < n; i++) {
935 			e = cpuc->event_list[i];
936 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
937 			if (x86_pmu.commit_scheduling)
938 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
939 		}
940 	} else {
941 		for (i = 0; i < n; i++) {
942 			e = cpuc->event_list[i];
943 			/*
944 			 * do not put_constraint() on comitted events,
945 			 * because they are good to go
946 			 */
947 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
948 				continue;
949 
950 			/*
951 			 * release events that failed scheduling
952 			 */
953 			if (x86_pmu.put_event_constraints)
954 				x86_pmu.put_event_constraints(cpuc, e);
955 		}
956 	}
957 
958 	if (x86_pmu.stop_scheduling)
959 		x86_pmu.stop_scheduling(cpuc);
960 
961 	return unsched ? -EINVAL : 0;
962 }
963 
964 /*
965  * dogrp: true if must collect siblings events (group)
966  * returns total number of events and error code
967  */
968 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
969 {
970 	struct perf_event *event;
971 	int n, max_count;
972 
973 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
974 
975 	/* current number of events already accepted */
976 	n = cpuc->n_events;
977 
978 	if (is_x86_event(leader)) {
979 		if (n >= max_count)
980 			return -EINVAL;
981 		cpuc->event_list[n] = leader;
982 		n++;
983 	}
984 	if (!dogrp)
985 		return n;
986 
987 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
988 		if (!is_x86_event(event) ||
989 		    event->state <= PERF_EVENT_STATE_OFF)
990 			continue;
991 
992 		if (n >= max_count)
993 			return -EINVAL;
994 
995 		cpuc->event_list[n] = event;
996 		n++;
997 	}
998 	return n;
999 }
1000 
1001 static inline void x86_assign_hw_event(struct perf_event *event,
1002 				struct cpu_hw_events *cpuc, int i)
1003 {
1004 	struct hw_perf_event *hwc = &event->hw;
1005 
1006 	hwc->idx = cpuc->assign[i];
1007 	hwc->last_cpu = smp_processor_id();
1008 	hwc->last_tag = ++cpuc->tags[i];
1009 
1010 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1011 		hwc->config_base = 0;
1012 		hwc->event_base	= 0;
1013 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1014 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1015 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1016 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1017 	} else {
1018 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1019 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1020 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1021 	}
1022 }
1023 
1024 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1025 					struct cpu_hw_events *cpuc,
1026 					int i)
1027 {
1028 	return hwc->idx == cpuc->assign[i] &&
1029 		hwc->last_cpu == smp_processor_id() &&
1030 		hwc->last_tag == cpuc->tags[i];
1031 }
1032 
1033 static void x86_pmu_start(struct perf_event *event, int flags);
1034 
1035 static void x86_pmu_enable(struct pmu *pmu)
1036 {
1037 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038 	struct perf_event *event;
1039 	struct hw_perf_event *hwc;
1040 	int i, added = cpuc->n_added;
1041 
1042 	if (!x86_pmu_initialized())
1043 		return;
1044 
1045 	if (cpuc->enabled)
1046 		return;
1047 
1048 	if (cpuc->n_added) {
1049 		int n_running = cpuc->n_events - cpuc->n_added;
1050 		/*
1051 		 * apply assignment obtained either from
1052 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1053 		 *
1054 		 * step1: save events moving to new counters
1055 		 */
1056 		for (i = 0; i < n_running; i++) {
1057 			event = cpuc->event_list[i];
1058 			hwc = &event->hw;
1059 
1060 			/*
1061 			 * we can avoid reprogramming counter if:
1062 			 * - assigned same counter as last time
1063 			 * - running on same CPU as last time
1064 			 * - no other event has used the counter since
1065 			 */
1066 			if (hwc->idx == -1 ||
1067 			    match_prev_assignment(hwc, cpuc, i))
1068 				continue;
1069 
1070 			/*
1071 			 * Ensure we don't accidentally enable a stopped
1072 			 * counter simply because we rescheduled.
1073 			 */
1074 			if (hwc->state & PERF_HES_STOPPED)
1075 				hwc->state |= PERF_HES_ARCH;
1076 
1077 			x86_pmu_stop(event, PERF_EF_UPDATE);
1078 		}
1079 
1080 		/*
1081 		 * step2: reprogram moved events into new counters
1082 		 */
1083 		for (i = 0; i < cpuc->n_events; i++) {
1084 			event = cpuc->event_list[i];
1085 			hwc = &event->hw;
1086 
1087 			if (!match_prev_assignment(hwc, cpuc, i))
1088 				x86_assign_hw_event(event, cpuc, i);
1089 			else if (i < n_running)
1090 				continue;
1091 
1092 			if (hwc->state & PERF_HES_ARCH)
1093 				continue;
1094 
1095 			x86_pmu_start(event, PERF_EF_RELOAD);
1096 		}
1097 		cpuc->n_added = 0;
1098 		perf_events_lapic_init();
1099 	}
1100 
1101 	cpuc->enabled = 1;
1102 	barrier();
1103 
1104 	x86_pmu.enable_all(added);
1105 }
1106 
1107 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1108 
1109 /*
1110  * Set the next IRQ period, based on the hwc->period_left value.
1111  * To be called with the event disabled in hw:
1112  */
1113 int x86_perf_event_set_period(struct perf_event *event)
1114 {
1115 	struct hw_perf_event *hwc = &event->hw;
1116 	s64 left = local64_read(&hwc->period_left);
1117 	s64 period = hwc->sample_period;
1118 	int ret = 0, idx = hwc->idx;
1119 
1120 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1121 		return 0;
1122 
1123 	/*
1124 	 * If we are way outside a reasonable range then just skip forward:
1125 	 */
1126 	if (unlikely(left <= -period)) {
1127 		left = period;
1128 		local64_set(&hwc->period_left, left);
1129 		hwc->last_period = period;
1130 		ret = 1;
1131 	}
1132 
1133 	if (unlikely(left <= 0)) {
1134 		left += period;
1135 		local64_set(&hwc->period_left, left);
1136 		hwc->last_period = period;
1137 		ret = 1;
1138 	}
1139 	/*
1140 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1141 	 */
1142 	if (unlikely(left < 2))
1143 		left = 2;
1144 
1145 	if (left > x86_pmu.max_period)
1146 		left = x86_pmu.max_period;
1147 
1148 	if (x86_pmu.limit_period)
1149 		left = x86_pmu.limit_period(event, left);
1150 
1151 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1152 
1153 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1154 	    local64_read(&hwc->prev_count) != (u64)-left) {
1155 		/*
1156 		 * The hw event starts counting from this event offset,
1157 		 * mark it to be able to extra future deltas:
1158 		 */
1159 		local64_set(&hwc->prev_count, (u64)-left);
1160 
1161 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1162 	}
1163 
1164 	/*
1165 	 * Due to erratum on certan cpu we need
1166 	 * a second write to be sure the register
1167 	 * is updated properly
1168 	 */
1169 	if (x86_pmu.perfctr_second_write) {
1170 		wrmsrl(hwc->event_base,
1171 			(u64)(-left) & x86_pmu.cntval_mask);
1172 	}
1173 
1174 	perf_event_update_userpage(event);
1175 
1176 	return ret;
1177 }
1178 
1179 void x86_pmu_enable_event(struct perf_event *event)
1180 {
1181 	if (__this_cpu_read(cpu_hw_events.enabled))
1182 		__x86_pmu_enable_event(&event->hw,
1183 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1184 }
1185 
1186 /*
1187  * Add a single event to the PMU.
1188  *
1189  * The event is added to the group of enabled events
1190  * but only if it can be scehduled with existing events.
1191  */
1192 static int x86_pmu_add(struct perf_event *event, int flags)
1193 {
1194 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195 	struct hw_perf_event *hwc;
1196 	int assign[X86_PMC_IDX_MAX];
1197 	int n, n0, ret;
1198 
1199 	hwc = &event->hw;
1200 
1201 	n0 = cpuc->n_events;
1202 	ret = n = collect_events(cpuc, event, false);
1203 	if (ret < 0)
1204 		goto out;
1205 
1206 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1207 	if (!(flags & PERF_EF_START))
1208 		hwc->state |= PERF_HES_ARCH;
1209 
1210 	/*
1211 	 * If group events scheduling transaction was started,
1212 	 * skip the schedulability test here, it will be performed
1213 	 * at commit time (->commit_txn) as a whole.
1214 	 *
1215 	 * If commit fails, we'll call ->del() on all events
1216 	 * for which ->add() was called.
1217 	 */
1218 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1219 		goto done_collect;
1220 
1221 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1222 	if (ret)
1223 		goto out;
1224 	/*
1225 	 * copy new assignment, now we know it is possible
1226 	 * will be used by hw_perf_enable()
1227 	 */
1228 	memcpy(cpuc->assign, assign, n*sizeof(int));
1229 
1230 done_collect:
1231 	/*
1232 	 * Commit the collect_events() state. See x86_pmu_del() and
1233 	 * x86_pmu_*_txn().
1234 	 */
1235 	cpuc->n_events = n;
1236 	cpuc->n_added += n - n0;
1237 	cpuc->n_txn += n - n0;
1238 
1239 	if (x86_pmu.add) {
1240 		/*
1241 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1242 		 * so we enable LBRs before an event needs them etc..
1243 		 */
1244 		x86_pmu.add(event);
1245 	}
1246 
1247 	ret = 0;
1248 out:
1249 	return ret;
1250 }
1251 
1252 static void x86_pmu_start(struct perf_event *event, int flags)
1253 {
1254 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1255 	int idx = event->hw.idx;
1256 
1257 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1258 		return;
1259 
1260 	if (WARN_ON_ONCE(idx == -1))
1261 		return;
1262 
1263 	if (flags & PERF_EF_RELOAD) {
1264 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1265 		x86_perf_event_set_period(event);
1266 	}
1267 
1268 	event->hw.state = 0;
1269 
1270 	cpuc->events[idx] = event;
1271 	__set_bit(idx, cpuc->active_mask);
1272 	__set_bit(idx, cpuc->running);
1273 	x86_pmu.enable(event);
1274 	perf_event_update_userpage(event);
1275 }
1276 
1277 void perf_event_print_debug(void)
1278 {
1279 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1280 	u64 pebs, debugctl;
1281 	struct cpu_hw_events *cpuc;
1282 	unsigned long flags;
1283 	int cpu, idx;
1284 
1285 	if (!x86_pmu.num_counters)
1286 		return;
1287 
1288 	local_irq_save(flags);
1289 
1290 	cpu = smp_processor_id();
1291 	cpuc = &per_cpu(cpu_hw_events, cpu);
1292 
1293 	if (x86_pmu.version >= 2) {
1294 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1295 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1296 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1297 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1298 
1299 		pr_info("\n");
1300 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1301 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1302 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1303 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1304 		if (x86_pmu.pebs_constraints) {
1305 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1306 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1307 		}
1308 		if (x86_pmu.lbr_nr) {
1309 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1310 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1311 		}
1312 	}
1313 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1314 
1315 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1316 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1317 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1318 
1319 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1320 
1321 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1322 			cpu, idx, pmc_ctrl);
1323 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1324 			cpu, idx, pmc_count);
1325 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1326 			cpu, idx, prev_left);
1327 	}
1328 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1329 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1330 
1331 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1332 			cpu, idx, pmc_count);
1333 	}
1334 	local_irq_restore(flags);
1335 }
1336 
1337 void x86_pmu_stop(struct perf_event *event, int flags)
1338 {
1339 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1340 	struct hw_perf_event *hwc = &event->hw;
1341 
1342 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1343 		x86_pmu.disable(event);
1344 		cpuc->events[hwc->idx] = NULL;
1345 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1346 		hwc->state |= PERF_HES_STOPPED;
1347 	}
1348 
1349 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1350 		/*
1351 		 * Drain the remaining delta count out of a event
1352 		 * that we are disabling:
1353 		 */
1354 		x86_perf_event_update(event);
1355 		hwc->state |= PERF_HES_UPTODATE;
1356 	}
1357 }
1358 
1359 static void x86_pmu_del(struct perf_event *event, int flags)
1360 {
1361 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1362 	int i;
1363 
1364 	/*
1365 	 * event is descheduled
1366 	 */
1367 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1368 
1369 	/*
1370 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1371 	 * The events never got scheduled and ->cancel_txn will truncate
1372 	 * the event_list.
1373 	 *
1374 	 * XXX assumes any ->del() called during a TXN will only be on
1375 	 * an event added during that same TXN.
1376 	 */
1377 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1378 		goto do_del;
1379 
1380 	/*
1381 	 * Not a TXN, therefore cleanup properly.
1382 	 */
1383 	x86_pmu_stop(event, PERF_EF_UPDATE);
1384 
1385 	for (i = 0; i < cpuc->n_events; i++) {
1386 		if (event == cpuc->event_list[i])
1387 			break;
1388 	}
1389 
1390 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1391 		return;
1392 
1393 	/* If we have a newly added event; make sure to decrease n_added. */
1394 	if (i >= cpuc->n_events - cpuc->n_added)
1395 		--cpuc->n_added;
1396 
1397 	if (x86_pmu.put_event_constraints)
1398 		x86_pmu.put_event_constraints(cpuc, event);
1399 
1400 	/* Delete the array entry. */
1401 	while (++i < cpuc->n_events) {
1402 		cpuc->event_list[i-1] = cpuc->event_list[i];
1403 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1404 	}
1405 	--cpuc->n_events;
1406 
1407 	perf_event_update_userpage(event);
1408 
1409 do_del:
1410 	if (x86_pmu.del) {
1411 		/*
1412 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1413 		 * event can need them etc..
1414 		 */
1415 		x86_pmu.del(event);
1416 	}
1417 }
1418 
1419 int x86_pmu_handle_irq(struct pt_regs *regs)
1420 {
1421 	struct perf_sample_data data;
1422 	struct cpu_hw_events *cpuc;
1423 	struct perf_event *event;
1424 	int idx, handled = 0;
1425 	u64 val;
1426 
1427 	cpuc = this_cpu_ptr(&cpu_hw_events);
1428 
1429 	/*
1430 	 * Some chipsets need to unmask the LVTPC in a particular spot
1431 	 * inside the nmi handler.  As a result, the unmasking was pushed
1432 	 * into all the nmi handlers.
1433 	 *
1434 	 * This generic handler doesn't seem to have any issues where the
1435 	 * unmasking occurs so it was left at the top.
1436 	 */
1437 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1438 
1439 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1440 		if (!test_bit(idx, cpuc->active_mask)) {
1441 			/*
1442 			 * Though we deactivated the counter some cpus
1443 			 * might still deliver spurious interrupts still
1444 			 * in flight. Catch them:
1445 			 */
1446 			if (__test_and_clear_bit(idx, cpuc->running))
1447 				handled++;
1448 			continue;
1449 		}
1450 
1451 		event = cpuc->events[idx];
1452 
1453 		val = x86_perf_event_update(event);
1454 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1455 			continue;
1456 
1457 		/*
1458 		 * event overflow
1459 		 */
1460 		handled++;
1461 		perf_sample_data_init(&data, 0, event->hw.last_period);
1462 
1463 		if (!x86_perf_event_set_period(event))
1464 			continue;
1465 
1466 		if (perf_event_overflow(event, &data, regs))
1467 			x86_pmu_stop(event, 0);
1468 	}
1469 
1470 	if (handled)
1471 		inc_irq_stat(apic_perf_irqs);
1472 
1473 	return handled;
1474 }
1475 
1476 void perf_events_lapic_init(void)
1477 {
1478 	if (!x86_pmu.apic || !x86_pmu_initialized())
1479 		return;
1480 
1481 	/*
1482 	 * Always use NMI for PMU
1483 	 */
1484 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1485 }
1486 
1487 static int
1488 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1489 {
1490 	u64 start_clock;
1491 	u64 finish_clock;
1492 	int ret;
1493 
1494 	/*
1495 	 * All PMUs/events that share this PMI handler should make sure to
1496 	 * increment active_events for their events.
1497 	 */
1498 	if (!atomic_read(&active_events))
1499 		return NMI_DONE;
1500 
1501 	start_clock = sched_clock();
1502 	ret = x86_pmu.handle_irq(regs);
1503 	finish_clock = sched_clock();
1504 
1505 	perf_sample_event_took(finish_clock - start_clock);
1506 
1507 	return ret;
1508 }
1509 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1510 
1511 struct event_constraint emptyconstraint;
1512 struct event_constraint unconstrained;
1513 
1514 static int x86_pmu_prepare_cpu(unsigned int cpu)
1515 {
1516 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1517 	int i;
1518 
1519 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1520 		cpuc->kfree_on_online[i] = NULL;
1521 	if (x86_pmu.cpu_prepare)
1522 		return x86_pmu.cpu_prepare(cpu);
1523 	return 0;
1524 }
1525 
1526 static int x86_pmu_dead_cpu(unsigned int cpu)
1527 {
1528 	if (x86_pmu.cpu_dead)
1529 		x86_pmu.cpu_dead(cpu);
1530 	return 0;
1531 }
1532 
1533 static int x86_pmu_online_cpu(unsigned int cpu)
1534 {
1535 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1536 	int i;
1537 
1538 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1539 		kfree(cpuc->kfree_on_online[i]);
1540 		cpuc->kfree_on_online[i] = NULL;
1541 	}
1542 	return 0;
1543 }
1544 
1545 static int x86_pmu_starting_cpu(unsigned int cpu)
1546 {
1547 	if (x86_pmu.cpu_starting)
1548 		x86_pmu.cpu_starting(cpu);
1549 	return 0;
1550 }
1551 
1552 static int x86_pmu_dying_cpu(unsigned int cpu)
1553 {
1554 	if (x86_pmu.cpu_dying)
1555 		x86_pmu.cpu_dying(cpu);
1556 	return 0;
1557 }
1558 
1559 static void __init pmu_check_apic(void)
1560 {
1561 	if (boot_cpu_has(X86_FEATURE_APIC))
1562 		return;
1563 
1564 	x86_pmu.apic = 0;
1565 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1566 	pr_info("no hardware sampling interrupt available.\n");
1567 
1568 	/*
1569 	 * If we have a PMU initialized but no APIC
1570 	 * interrupts, we cannot sample hardware
1571 	 * events (user-space has to fall back and
1572 	 * sample via a hrtimer based software event):
1573 	 */
1574 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1575 
1576 }
1577 
1578 static struct attribute_group x86_pmu_format_group = {
1579 	.name = "format",
1580 	.attrs = NULL,
1581 };
1582 
1583 /*
1584  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1585  * out of events_attr attributes.
1586  */
1587 static void __init filter_events(struct attribute **attrs)
1588 {
1589 	struct device_attribute *d;
1590 	struct perf_pmu_events_attr *pmu_attr;
1591 	int offset = 0;
1592 	int i, j;
1593 
1594 	for (i = 0; attrs[i]; i++) {
1595 		d = (struct device_attribute *)attrs[i];
1596 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1597 		/* str trumps id */
1598 		if (pmu_attr->event_str)
1599 			continue;
1600 		if (x86_pmu.event_map(i + offset))
1601 			continue;
1602 
1603 		for (j = i; attrs[j]; j++)
1604 			attrs[j] = attrs[j + 1];
1605 
1606 		/* Check the shifted attr. */
1607 		i--;
1608 
1609 		/*
1610 		 * event_map() is index based, the attrs array is organized
1611 		 * by increasing event index. If we shift the events, then
1612 		 * we need to compensate for the event_map(), otherwise
1613 		 * we are looking up the wrong event in the map
1614 		 */
1615 		offset++;
1616 	}
1617 }
1618 
1619 /* Merge two pointer arrays */
1620 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1621 {
1622 	struct attribute **new;
1623 	int j, i;
1624 
1625 	for (j = 0; a[j]; j++)
1626 		;
1627 	for (i = 0; b[i]; i++)
1628 		j++;
1629 	j++;
1630 
1631 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1632 	if (!new)
1633 		return NULL;
1634 
1635 	j = 0;
1636 	for (i = 0; a[i]; i++)
1637 		new[j++] = a[i];
1638 	for (i = 0; b[i]; i++)
1639 		new[j++] = b[i];
1640 	new[j] = NULL;
1641 
1642 	return new;
1643 }
1644 
1645 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1646 {
1647 	struct perf_pmu_events_attr *pmu_attr = \
1648 		container_of(attr, struct perf_pmu_events_attr, attr);
1649 	u64 config = x86_pmu.event_map(pmu_attr->id);
1650 
1651 	/* string trumps id */
1652 	if (pmu_attr->event_str)
1653 		return sprintf(page, "%s", pmu_attr->event_str);
1654 
1655 	return x86_pmu.events_sysfs_show(page, config);
1656 }
1657 EXPORT_SYMBOL_GPL(events_sysfs_show);
1658 
1659 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1660 			  char *page)
1661 {
1662 	struct perf_pmu_events_ht_attr *pmu_attr =
1663 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1664 
1665 	/*
1666 	 * Report conditional events depending on Hyper-Threading.
1667 	 *
1668 	 * This is overly conservative as usually the HT special
1669 	 * handling is not needed if the other CPU thread is idle.
1670 	 *
1671 	 * Note this does not (and cannot) handle the case when thread
1672 	 * siblings are invisible, for example with virtualization
1673 	 * if they are owned by some other guest.  The user tool
1674 	 * has to re-read when a thread sibling gets onlined later.
1675 	 */
1676 	return sprintf(page, "%s",
1677 			topology_max_smt_threads() > 1 ?
1678 			pmu_attr->event_str_ht :
1679 			pmu_attr->event_str_noht);
1680 }
1681 
1682 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1683 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1684 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1685 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1686 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1687 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1688 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1689 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1690 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1691 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1692 
1693 static struct attribute *empty_attrs;
1694 
1695 static struct attribute *events_attr[] = {
1696 	EVENT_PTR(CPU_CYCLES),
1697 	EVENT_PTR(INSTRUCTIONS),
1698 	EVENT_PTR(CACHE_REFERENCES),
1699 	EVENT_PTR(CACHE_MISSES),
1700 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1701 	EVENT_PTR(BRANCH_MISSES),
1702 	EVENT_PTR(BUS_CYCLES),
1703 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1704 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1705 	EVENT_PTR(REF_CPU_CYCLES),
1706 	NULL,
1707 };
1708 
1709 static struct attribute_group x86_pmu_events_group = {
1710 	.name = "events",
1711 	.attrs = events_attr,
1712 };
1713 
1714 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1715 {
1716 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1717 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1718 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1719 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1720 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1721 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1722 	ssize_t ret;
1723 
1724 	/*
1725 	* We have whole page size to spend and just little data
1726 	* to write, so we can safely use sprintf.
1727 	*/
1728 	ret = sprintf(page, "event=0x%02llx", event);
1729 
1730 	if (umask)
1731 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1732 
1733 	if (edge)
1734 		ret += sprintf(page + ret, ",edge");
1735 
1736 	if (pc)
1737 		ret += sprintf(page + ret, ",pc");
1738 
1739 	if (any)
1740 		ret += sprintf(page + ret, ",any");
1741 
1742 	if (inv)
1743 		ret += sprintf(page + ret, ",inv");
1744 
1745 	if (cmask)
1746 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1747 
1748 	ret += sprintf(page + ret, "\n");
1749 
1750 	return ret;
1751 }
1752 
1753 static int __init init_hw_perf_events(void)
1754 {
1755 	struct x86_pmu_quirk *quirk;
1756 	int err;
1757 
1758 	pr_info("Performance Events: ");
1759 
1760 	switch (boot_cpu_data.x86_vendor) {
1761 	case X86_VENDOR_INTEL:
1762 		err = intel_pmu_init();
1763 		break;
1764 	case X86_VENDOR_AMD:
1765 		err = amd_pmu_init();
1766 		break;
1767 	default:
1768 		err = -ENOTSUPP;
1769 	}
1770 	if (err != 0) {
1771 		pr_cont("no PMU driver, software events only.\n");
1772 		return 0;
1773 	}
1774 
1775 	pmu_check_apic();
1776 
1777 	/* sanity check that the hardware exists or is emulated */
1778 	if (!check_hw_exists())
1779 		return 0;
1780 
1781 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1782 
1783 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1784 
1785 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1786 		quirk->func();
1787 
1788 	if (!x86_pmu.intel_ctrl)
1789 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1790 
1791 	perf_events_lapic_init();
1792 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1793 
1794 	unconstrained = (struct event_constraint)
1795 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1796 				   0, x86_pmu.num_counters, 0, 0);
1797 
1798 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1799 
1800 	if (x86_pmu.event_attrs)
1801 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1802 
1803 	if (!x86_pmu.events_sysfs_show)
1804 		x86_pmu_events_group.attrs = &empty_attrs;
1805 	else
1806 		filter_events(x86_pmu_events_group.attrs);
1807 
1808 	if (x86_pmu.cpu_events) {
1809 		struct attribute **tmp;
1810 
1811 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1812 		if (!WARN_ON(!tmp))
1813 			x86_pmu_events_group.attrs = tmp;
1814 	}
1815 
1816 	pr_info("... version:                %d\n",     x86_pmu.version);
1817 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1818 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1819 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1820 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1821 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1822 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1823 
1824 	/*
1825 	 * Install callbacks. Core will call them for each online
1826 	 * cpu.
1827 	 */
1828 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1829 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1830 	if (err)
1831 		return err;
1832 
1833 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1834 				"perf/x86:starting", x86_pmu_starting_cpu,
1835 				x86_pmu_dying_cpu);
1836 	if (err)
1837 		goto out;
1838 
1839 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1840 				x86_pmu_online_cpu, NULL);
1841 	if (err)
1842 		goto out1;
1843 
1844 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1845 	if (err)
1846 		goto out2;
1847 
1848 	return 0;
1849 
1850 out2:
1851 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1852 out1:
1853 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1854 out:
1855 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1856 	return err;
1857 }
1858 early_initcall(init_hw_perf_events);
1859 
1860 static inline void x86_pmu_read(struct perf_event *event)
1861 {
1862 	x86_perf_event_update(event);
1863 }
1864 
1865 /*
1866  * Start group events scheduling transaction
1867  * Set the flag to make pmu::enable() not perform the
1868  * schedulability test, it will be performed at commit time
1869  *
1870  * We only support PERF_PMU_TXN_ADD transactions. Save the
1871  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1872  * transactions.
1873  */
1874 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1875 {
1876 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877 
1878 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1879 
1880 	cpuc->txn_flags = txn_flags;
1881 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1882 		return;
1883 
1884 	perf_pmu_disable(pmu);
1885 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1886 }
1887 
1888 /*
1889  * Stop group events scheduling transaction
1890  * Clear the flag and pmu::enable() will perform the
1891  * schedulability test.
1892  */
1893 static void x86_pmu_cancel_txn(struct pmu *pmu)
1894 {
1895 	unsigned int txn_flags;
1896 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1897 
1898 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1899 
1900 	txn_flags = cpuc->txn_flags;
1901 	cpuc->txn_flags = 0;
1902 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1903 		return;
1904 
1905 	/*
1906 	 * Truncate collected array by the number of events added in this
1907 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1908 	 */
1909 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1910 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1911 	perf_pmu_enable(pmu);
1912 }
1913 
1914 /*
1915  * Commit group events scheduling transaction
1916  * Perform the group schedulability test as a whole
1917  * Return 0 if success
1918  *
1919  * Does not cancel the transaction on failure; expects the caller to do this.
1920  */
1921 static int x86_pmu_commit_txn(struct pmu *pmu)
1922 {
1923 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1924 	int assign[X86_PMC_IDX_MAX];
1925 	int n, ret;
1926 
1927 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1928 
1929 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1930 		cpuc->txn_flags = 0;
1931 		return 0;
1932 	}
1933 
1934 	n = cpuc->n_events;
1935 
1936 	if (!x86_pmu_initialized())
1937 		return -EAGAIN;
1938 
1939 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1940 	if (ret)
1941 		return ret;
1942 
1943 	/*
1944 	 * copy new assignment, now we know it is possible
1945 	 * will be used by hw_perf_enable()
1946 	 */
1947 	memcpy(cpuc->assign, assign, n*sizeof(int));
1948 
1949 	cpuc->txn_flags = 0;
1950 	perf_pmu_enable(pmu);
1951 	return 0;
1952 }
1953 /*
1954  * a fake_cpuc is used to validate event groups. Due to
1955  * the extra reg logic, we need to also allocate a fake
1956  * per_core and per_cpu structure. Otherwise, group events
1957  * using extra reg may conflict without the kernel being
1958  * able to catch this when the last event gets added to
1959  * the group.
1960  */
1961 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1962 {
1963 	kfree(cpuc->shared_regs);
1964 	kfree(cpuc);
1965 }
1966 
1967 static struct cpu_hw_events *allocate_fake_cpuc(void)
1968 {
1969 	struct cpu_hw_events *cpuc;
1970 	int cpu = raw_smp_processor_id();
1971 
1972 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1973 	if (!cpuc)
1974 		return ERR_PTR(-ENOMEM);
1975 
1976 	/* only needed, if we have extra_regs */
1977 	if (x86_pmu.extra_regs) {
1978 		cpuc->shared_regs = allocate_shared_regs(cpu);
1979 		if (!cpuc->shared_regs)
1980 			goto error;
1981 	}
1982 	cpuc->is_fake = 1;
1983 	return cpuc;
1984 error:
1985 	free_fake_cpuc(cpuc);
1986 	return ERR_PTR(-ENOMEM);
1987 }
1988 
1989 /*
1990  * validate that we can schedule this event
1991  */
1992 static int validate_event(struct perf_event *event)
1993 {
1994 	struct cpu_hw_events *fake_cpuc;
1995 	struct event_constraint *c;
1996 	int ret = 0;
1997 
1998 	fake_cpuc = allocate_fake_cpuc();
1999 	if (IS_ERR(fake_cpuc))
2000 		return PTR_ERR(fake_cpuc);
2001 
2002 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2003 
2004 	if (!c || !c->weight)
2005 		ret = -EINVAL;
2006 
2007 	if (x86_pmu.put_event_constraints)
2008 		x86_pmu.put_event_constraints(fake_cpuc, event);
2009 
2010 	free_fake_cpuc(fake_cpuc);
2011 
2012 	return ret;
2013 }
2014 
2015 /*
2016  * validate a single event group
2017  *
2018  * validation include:
2019  *	- check events are compatible which each other
2020  *	- events do not compete for the same counter
2021  *	- number of events <= number of counters
2022  *
2023  * validation ensures the group can be loaded onto the
2024  * PMU if it was the only group available.
2025  */
2026 static int validate_group(struct perf_event *event)
2027 {
2028 	struct perf_event *leader = event->group_leader;
2029 	struct cpu_hw_events *fake_cpuc;
2030 	int ret = -EINVAL, n;
2031 
2032 	fake_cpuc = allocate_fake_cpuc();
2033 	if (IS_ERR(fake_cpuc))
2034 		return PTR_ERR(fake_cpuc);
2035 	/*
2036 	 * the event is not yet connected with its
2037 	 * siblings therefore we must first collect
2038 	 * existing siblings, then add the new event
2039 	 * before we can simulate the scheduling
2040 	 */
2041 	n = collect_events(fake_cpuc, leader, true);
2042 	if (n < 0)
2043 		goto out;
2044 
2045 	fake_cpuc->n_events = n;
2046 	n = collect_events(fake_cpuc, event, false);
2047 	if (n < 0)
2048 		goto out;
2049 
2050 	fake_cpuc->n_events = n;
2051 
2052 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2053 
2054 out:
2055 	free_fake_cpuc(fake_cpuc);
2056 	return ret;
2057 }
2058 
2059 static int x86_pmu_event_init(struct perf_event *event)
2060 {
2061 	struct pmu *tmp;
2062 	int err;
2063 
2064 	switch (event->attr.type) {
2065 	case PERF_TYPE_RAW:
2066 	case PERF_TYPE_HARDWARE:
2067 	case PERF_TYPE_HW_CACHE:
2068 		break;
2069 
2070 	default:
2071 		return -ENOENT;
2072 	}
2073 
2074 	err = __x86_pmu_event_init(event);
2075 	if (!err) {
2076 		/*
2077 		 * we temporarily connect event to its pmu
2078 		 * such that validate_group() can classify
2079 		 * it as an x86 event using is_x86_event()
2080 		 */
2081 		tmp = event->pmu;
2082 		event->pmu = &pmu;
2083 
2084 		if (event->group_leader != event)
2085 			err = validate_group(event);
2086 		else
2087 			err = validate_event(event);
2088 
2089 		event->pmu = tmp;
2090 	}
2091 	if (err) {
2092 		if (event->destroy)
2093 			event->destroy(event);
2094 	}
2095 
2096 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2097 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2098 
2099 	return err;
2100 }
2101 
2102 static void refresh_pce(void *ignored)
2103 {
2104 	if (current->active_mm)
2105 		load_mm_cr4(current->active_mm);
2106 }
2107 
2108 static void x86_pmu_event_mapped(struct perf_event *event)
2109 {
2110 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2111 		return;
2112 
2113 	/*
2114 	 * This function relies on not being called concurrently in two
2115 	 * tasks in the same mm.  Otherwise one task could observe
2116 	 * perf_rdpmc_allowed > 1 and return all the way back to
2117 	 * userspace with CR4.PCE clear while another task is still
2118 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2119 	 *
2120 	 * For now, this can't happen because all callers hold mmap_sem
2121 	 * for write.  If this changes, we'll need a different solution.
2122 	 */
2123 	lockdep_assert_held_exclusive(&current->mm->mmap_sem);
2124 
2125 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2126 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2127 }
2128 
2129 static void x86_pmu_event_unmapped(struct perf_event *event)
2130 {
2131 	if (!current->mm)
2132 		return;
2133 
2134 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 		return;
2136 
2137 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2138 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2139 }
2140 
2141 static int x86_pmu_event_idx(struct perf_event *event)
2142 {
2143 	int idx = event->hw.idx;
2144 
2145 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2146 		return 0;
2147 
2148 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2149 		idx -= INTEL_PMC_IDX_FIXED;
2150 		idx |= 1 << 30;
2151 	}
2152 
2153 	return idx + 1;
2154 }
2155 
2156 static ssize_t get_attr_rdpmc(struct device *cdev,
2157 			      struct device_attribute *attr,
2158 			      char *buf)
2159 {
2160 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2161 }
2162 
2163 static ssize_t set_attr_rdpmc(struct device *cdev,
2164 			      struct device_attribute *attr,
2165 			      const char *buf, size_t count)
2166 {
2167 	unsigned long val;
2168 	ssize_t ret;
2169 
2170 	ret = kstrtoul(buf, 0, &val);
2171 	if (ret)
2172 		return ret;
2173 
2174 	if (val > 2)
2175 		return -EINVAL;
2176 
2177 	if (x86_pmu.attr_rdpmc_broken)
2178 		return -ENOTSUPP;
2179 
2180 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2181 		/*
2182 		 * Changing into or out of always available, aka
2183 		 * perf-event-bypassing mode.  This path is extremely slow,
2184 		 * but only root can trigger it, so it's okay.
2185 		 */
2186 		if (val == 2)
2187 			static_key_slow_inc(&rdpmc_always_available);
2188 		else
2189 			static_key_slow_dec(&rdpmc_always_available);
2190 		on_each_cpu(refresh_pce, NULL, 1);
2191 	}
2192 
2193 	x86_pmu.attr_rdpmc = val;
2194 
2195 	return count;
2196 }
2197 
2198 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2199 
2200 static struct attribute *x86_pmu_attrs[] = {
2201 	&dev_attr_rdpmc.attr,
2202 	NULL,
2203 };
2204 
2205 static struct attribute_group x86_pmu_attr_group = {
2206 	.attrs = x86_pmu_attrs,
2207 };
2208 
2209 static const struct attribute_group *x86_pmu_attr_groups[] = {
2210 	&x86_pmu_attr_group,
2211 	&x86_pmu_format_group,
2212 	&x86_pmu_events_group,
2213 	NULL,
2214 };
2215 
2216 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2217 {
2218 	if (x86_pmu.sched_task)
2219 		x86_pmu.sched_task(ctx, sched_in);
2220 }
2221 
2222 void perf_check_microcode(void)
2223 {
2224 	if (x86_pmu.check_microcode)
2225 		x86_pmu.check_microcode();
2226 }
2227 EXPORT_SYMBOL_GPL(perf_check_microcode);
2228 
2229 static struct pmu pmu = {
2230 	.pmu_enable		= x86_pmu_enable,
2231 	.pmu_disable		= x86_pmu_disable,
2232 
2233 	.attr_groups		= x86_pmu_attr_groups,
2234 
2235 	.event_init		= x86_pmu_event_init,
2236 
2237 	.event_mapped		= x86_pmu_event_mapped,
2238 	.event_unmapped		= x86_pmu_event_unmapped,
2239 
2240 	.add			= x86_pmu_add,
2241 	.del			= x86_pmu_del,
2242 	.start			= x86_pmu_start,
2243 	.stop			= x86_pmu_stop,
2244 	.read			= x86_pmu_read,
2245 
2246 	.start_txn		= x86_pmu_start_txn,
2247 	.cancel_txn		= x86_pmu_cancel_txn,
2248 	.commit_txn		= x86_pmu_commit_txn,
2249 
2250 	.event_idx		= x86_pmu_event_idx,
2251 	.sched_task		= x86_pmu_sched_task,
2252 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2253 };
2254 
2255 void arch_perf_update_userpage(struct perf_event *event,
2256 			       struct perf_event_mmap_page *userpg, u64 now)
2257 {
2258 	struct cyc2ns_data *data;
2259 	u64 offset;
2260 
2261 	userpg->cap_user_time = 0;
2262 	userpg->cap_user_time_zero = 0;
2263 	userpg->cap_user_rdpmc =
2264 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2265 	userpg->pmc_width = x86_pmu.cntval_bits;
2266 
2267 	if (!using_native_sched_clock() || !sched_clock_stable())
2268 		return;
2269 
2270 	data = cyc2ns_read_begin();
2271 
2272 	offset = data->cyc2ns_offset + __sched_clock_offset;
2273 
2274 	/*
2275 	 * Internal timekeeping for enabled/running/stopped times
2276 	 * is always in the local_clock domain.
2277 	 */
2278 	userpg->cap_user_time = 1;
2279 	userpg->time_mult = data->cyc2ns_mul;
2280 	userpg->time_shift = data->cyc2ns_shift;
2281 	userpg->time_offset = offset - now;
2282 
2283 	/*
2284 	 * cap_user_time_zero doesn't make sense when we're using a different
2285 	 * time base for the records.
2286 	 */
2287 	if (!event->attr.use_clockid) {
2288 		userpg->cap_user_time_zero = 1;
2289 		userpg->time_zero = offset;
2290 	}
2291 
2292 	cyc2ns_read_end(data);
2293 }
2294 
2295 void
2296 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2297 {
2298 	struct unwind_state state;
2299 	unsigned long addr;
2300 
2301 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2302 		/* TODO: We don't support guest os callchain now */
2303 		return;
2304 	}
2305 
2306 	if (perf_callchain_store(entry, regs->ip))
2307 		return;
2308 
2309 	for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2310 	     unwind_next_frame(&state)) {
2311 		addr = unwind_get_return_address(&state);
2312 		if (!addr || perf_callchain_store(entry, addr))
2313 			return;
2314 	}
2315 }
2316 
2317 static inline int
2318 valid_user_frame(const void __user *fp, unsigned long size)
2319 {
2320 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2321 }
2322 
2323 static unsigned long get_segment_base(unsigned int segment)
2324 {
2325 	struct desc_struct *desc;
2326 	unsigned int idx = segment >> 3;
2327 
2328 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2329 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2330 		struct ldt_struct *ldt;
2331 
2332 		if (idx > LDT_ENTRIES)
2333 			return 0;
2334 
2335 		/* IRQs are off, so this synchronizes with smp_store_release */
2336 		ldt = lockless_dereference(current->active_mm->context.ldt);
2337 		if (!ldt || idx > ldt->size)
2338 			return 0;
2339 
2340 		desc = &ldt->entries[idx];
2341 #else
2342 		return 0;
2343 #endif
2344 	} else {
2345 		if (idx > GDT_ENTRIES)
2346 			return 0;
2347 
2348 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2349 	}
2350 
2351 	return get_desc_base(desc);
2352 }
2353 
2354 #ifdef CONFIG_IA32_EMULATION
2355 
2356 #include <asm/compat.h>
2357 
2358 static inline int
2359 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2360 {
2361 	/* 32-bit process in 64-bit kernel. */
2362 	unsigned long ss_base, cs_base;
2363 	struct stack_frame_ia32 frame;
2364 	const void __user *fp;
2365 
2366 	if (!test_thread_flag(TIF_IA32))
2367 		return 0;
2368 
2369 	cs_base = get_segment_base(regs->cs);
2370 	ss_base = get_segment_base(regs->ss);
2371 
2372 	fp = compat_ptr(ss_base + regs->bp);
2373 	pagefault_disable();
2374 	while (entry->nr < entry->max_stack) {
2375 		unsigned long bytes;
2376 		frame.next_frame     = 0;
2377 		frame.return_address = 0;
2378 
2379 		if (!valid_user_frame(fp, sizeof(frame)))
2380 			break;
2381 
2382 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2383 		if (bytes != 0)
2384 			break;
2385 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2386 		if (bytes != 0)
2387 			break;
2388 
2389 		perf_callchain_store(entry, cs_base + frame.return_address);
2390 		fp = compat_ptr(ss_base + frame.next_frame);
2391 	}
2392 	pagefault_enable();
2393 	return 1;
2394 }
2395 #else
2396 static inline int
2397 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2398 {
2399     return 0;
2400 }
2401 #endif
2402 
2403 void
2404 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2405 {
2406 	struct stack_frame frame;
2407 	const unsigned long __user *fp;
2408 
2409 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2410 		/* TODO: We don't support guest os callchain now */
2411 		return;
2412 	}
2413 
2414 	/*
2415 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2416 	 */
2417 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2418 		return;
2419 
2420 	fp = (unsigned long __user *)regs->bp;
2421 
2422 	perf_callchain_store(entry, regs->ip);
2423 
2424 	if (!current->mm)
2425 		return;
2426 
2427 	if (perf_callchain_user32(regs, entry))
2428 		return;
2429 
2430 	pagefault_disable();
2431 	while (entry->nr < entry->max_stack) {
2432 		unsigned long bytes;
2433 
2434 		frame.next_frame	     = NULL;
2435 		frame.return_address = 0;
2436 
2437 		if (!valid_user_frame(fp, sizeof(frame)))
2438 			break;
2439 
2440 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2441 		if (bytes != 0)
2442 			break;
2443 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2444 		if (bytes != 0)
2445 			break;
2446 
2447 		perf_callchain_store(entry, frame.return_address);
2448 		fp = (void __user *)frame.next_frame;
2449 	}
2450 	pagefault_enable();
2451 }
2452 
2453 /*
2454  * Deal with code segment offsets for the various execution modes:
2455  *
2456  *   VM86 - the good olde 16 bit days, where the linear address is
2457  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2458  *
2459  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2460  *          to figure out what the 32bit base address is.
2461  *
2462  *    X32 - has TIF_X32 set, but is running in x86_64
2463  *
2464  * X86_64 - CS,DS,SS,ES are all zero based.
2465  */
2466 static unsigned long code_segment_base(struct pt_regs *regs)
2467 {
2468 	/*
2469 	 * For IA32 we look at the GDT/LDT segment base to convert the
2470 	 * effective IP to a linear address.
2471 	 */
2472 
2473 #ifdef CONFIG_X86_32
2474 	/*
2475 	 * If we are in VM86 mode, add the segment offset to convert to a
2476 	 * linear address.
2477 	 */
2478 	if (regs->flags & X86_VM_MASK)
2479 		return 0x10 * regs->cs;
2480 
2481 	if (user_mode(regs) && regs->cs != __USER_CS)
2482 		return get_segment_base(regs->cs);
2483 #else
2484 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2485 	    regs->cs != __USER32_CS)
2486 		return get_segment_base(regs->cs);
2487 #endif
2488 	return 0;
2489 }
2490 
2491 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2492 {
2493 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2494 		return perf_guest_cbs->get_guest_ip();
2495 
2496 	return regs->ip + code_segment_base(regs);
2497 }
2498 
2499 unsigned long perf_misc_flags(struct pt_regs *regs)
2500 {
2501 	int misc = 0;
2502 
2503 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2504 		if (perf_guest_cbs->is_user_mode())
2505 			misc |= PERF_RECORD_MISC_GUEST_USER;
2506 		else
2507 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2508 	} else {
2509 		if (user_mode(regs))
2510 			misc |= PERF_RECORD_MISC_USER;
2511 		else
2512 			misc |= PERF_RECORD_MISC_KERNEL;
2513 	}
2514 
2515 	if (regs->flags & PERF_EFLAGS_EXACT)
2516 		misc |= PERF_RECORD_MISC_EXACT_IP;
2517 
2518 	return misc;
2519 }
2520 
2521 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2522 {
2523 	cap->version		= x86_pmu.version;
2524 	cap->num_counters_gp	= x86_pmu.num_counters;
2525 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2526 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2527 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2528 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2529 	cap->events_mask_len	= x86_pmu.events_mask_len;
2530 }
2531 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2532