1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/nmi.h> 36 #include <asm/smp.h> 37 #include <asm/alternative.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/timer.h> 41 #include <asm/desc.h> 42 #include <asm/ldt.h> 43 #include <asm/unwind.h> 44 45 #include "perf_event.h" 46 47 struct x86_pmu x86_pmu __read_mostly; 48 static struct pmu pmu; 49 50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 51 .enabled = 1, 52 .pmu = &pmu, 53 }; 54 55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 58 59 /* 60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 61 * from just a typename, as opposed to an actual function. 62 */ 63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 68 69 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 70 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 72 73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 76 77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 80 81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx); 83 84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 86 87 /* 88 * This one is magic, it will get called even when PMU init fails (because 89 * there is no PMU), in which case it should simply return NULL. 90 */ 91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 92 93 u64 __read_mostly hw_cache_event_ids 94 [PERF_COUNT_HW_CACHE_MAX] 95 [PERF_COUNT_HW_CACHE_OP_MAX] 96 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 97 u64 __read_mostly hw_cache_extra_regs 98 [PERF_COUNT_HW_CACHE_MAX] 99 [PERF_COUNT_HW_CACHE_OP_MAX] 100 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 101 102 /* 103 * Propagate event elapsed time into the generic event. 104 * Can only be executed on the CPU where the event is active. 105 * Returns the delta events processed. 106 */ 107 u64 x86_perf_event_update(struct perf_event *event) 108 { 109 struct hw_perf_event *hwc = &event->hw; 110 int shift = 64 - x86_pmu.cntval_bits; 111 u64 prev_raw_count, new_raw_count; 112 u64 delta; 113 114 if (unlikely(!hwc->event_base)) 115 return 0; 116 117 if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event) 118 return x86_pmu.update_topdown_event(event); 119 120 /* 121 * Careful: an NMI might modify the previous event value. 122 * 123 * Our tactic to handle this is to first atomically read and 124 * exchange a new raw count - then add that new-prev delta 125 * count to the generic event atomically: 126 */ 127 again: 128 prev_raw_count = local64_read(&hwc->prev_count); 129 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 130 131 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 132 new_raw_count) != prev_raw_count) 133 goto again; 134 135 /* 136 * Now we have the new raw value and have updated the prev 137 * timestamp already. We can now calculate the elapsed delta 138 * (event-)time and add that to the generic event. 139 * 140 * Careful, not all hw sign-extends above the physical width 141 * of the count. 142 */ 143 delta = (new_raw_count << shift) - (prev_raw_count << shift); 144 delta >>= shift; 145 146 local64_add(delta, &event->count); 147 local64_sub(delta, &hwc->period_left); 148 149 return new_raw_count; 150 } 151 152 /* 153 * Find and validate any extra registers to set up. 154 */ 155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 156 { 157 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 158 struct hw_perf_event_extra *reg; 159 struct extra_reg *er; 160 161 reg = &event->hw.extra_reg; 162 163 if (!extra_regs) 164 return 0; 165 166 for (er = extra_regs; er->msr; er++) { 167 if (er->event != (config & er->config_mask)) 168 continue; 169 if (event->attr.config1 & ~er->valid_mask) 170 return -EINVAL; 171 /* Check if the extra msrs can be safely accessed*/ 172 if (!er->extra_msr_access) 173 return -ENXIO; 174 175 reg->idx = er->idx; 176 reg->config = event->attr.config1; 177 reg->reg = er->msr; 178 break; 179 } 180 return 0; 181 } 182 183 static atomic_t active_events; 184 static atomic_t pmc_refcount; 185 static DEFINE_MUTEX(pmc_reserve_mutex); 186 187 #ifdef CONFIG_X86_LOCAL_APIC 188 189 static inline int get_possible_num_counters(void) 190 { 191 int i, num_counters = x86_pmu.num_counters; 192 193 if (!is_hybrid()) 194 return num_counters; 195 196 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 197 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters); 198 199 return num_counters; 200 } 201 202 static bool reserve_pmc_hardware(void) 203 { 204 int i, num_counters = get_possible_num_counters(); 205 206 for (i = 0; i < num_counters; i++) { 207 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 208 goto perfctr_fail; 209 } 210 211 for (i = 0; i < num_counters; i++) { 212 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 213 goto eventsel_fail; 214 } 215 216 return true; 217 218 eventsel_fail: 219 for (i--; i >= 0; i--) 220 release_evntsel_nmi(x86_pmu_config_addr(i)); 221 222 i = num_counters; 223 224 perfctr_fail: 225 for (i--; i >= 0; i--) 226 release_perfctr_nmi(x86_pmu_event_addr(i)); 227 228 return false; 229 } 230 231 static void release_pmc_hardware(void) 232 { 233 int i, num_counters = get_possible_num_counters(); 234 235 for (i = 0; i < num_counters; i++) { 236 release_perfctr_nmi(x86_pmu_event_addr(i)); 237 release_evntsel_nmi(x86_pmu_config_addr(i)); 238 } 239 } 240 241 #else 242 243 static bool reserve_pmc_hardware(void) { return true; } 244 static void release_pmc_hardware(void) {} 245 246 #endif 247 248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed) 249 { 250 u64 val, val_fail = -1, val_new= ~0; 251 int i, reg, reg_fail = -1, ret = 0; 252 int bios_fail = 0; 253 int reg_safe = -1; 254 255 /* 256 * Check to see if the BIOS enabled any of the counters, if so 257 * complain and bail. 258 */ 259 for (i = 0; i < num_counters; i++) { 260 reg = x86_pmu_config_addr(i); 261 ret = rdmsrl_safe(reg, &val); 262 if (ret) 263 goto msr_fail; 264 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 265 bios_fail = 1; 266 val_fail = val; 267 reg_fail = reg; 268 } else { 269 reg_safe = i; 270 } 271 } 272 273 if (num_counters_fixed) { 274 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 275 ret = rdmsrl_safe(reg, &val); 276 if (ret) 277 goto msr_fail; 278 for (i = 0; i < num_counters_fixed; i++) { 279 if (fixed_counter_disabled(i, pmu)) 280 continue; 281 if (val & (0x03ULL << i*4)) { 282 bios_fail = 1; 283 val_fail = val; 284 reg_fail = reg; 285 } 286 } 287 } 288 289 /* 290 * If all the counters are enabled, the below test will always 291 * fail. The tools will also become useless in this scenario. 292 * Just fail and disable the hardware counters. 293 */ 294 295 if (reg_safe == -1) { 296 reg = reg_safe; 297 goto msr_fail; 298 } 299 300 /* 301 * Read the current value, change it and read it back to see if it 302 * matches, this is needed to detect certain hardware emulators 303 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 304 */ 305 reg = x86_pmu_event_addr(reg_safe); 306 if (rdmsrl_safe(reg, &val)) 307 goto msr_fail; 308 val ^= 0xffffUL; 309 ret = wrmsrl_safe(reg, val); 310 ret |= rdmsrl_safe(reg, &val_new); 311 if (ret || val != val_new) 312 goto msr_fail; 313 314 /* 315 * We still allow the PMU driver to operate: 316 */ 317 if (bios_fail) { 318 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 319 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 320 reg_fail, val_fail); 321 } 322 323 return true; 324 325 msr_fail: 326 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 327 pr_cont("PMU not available due to virtualization, using software events only.\n"); 328 } else { 329 pr_cont("Broken PMU hardware detected, using software events only.\n"); 330 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 331 reg, val_new); 332 } 333 334 return false; 335 } 336 337 static void hw_perf_event_destroy(struct perf_event *event) 338 { 339 x86_release_hardware(); 340 atomic_dec(&active_events); 341 } 342 343 void hw_perf_lbr_event_destroy(struct perf_event *event) 344 { 345 hw_perf_event_destroy(event); 346 347 /* undo the lbr/bts event accounting */ 348 x86_del_exclusive(x86_lbr_exclusive_lbr); 349 } 350 351 static inline int x86_pmu_initialized(void) 352 { 353 return x86_pmu.handle_irq != NULL; 354 } 355 356 static inline int 357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 358 { 359 struct perf_event_attr *attr = &event->attr; 360 unsigned int cache_type, cache_op, cache_result; 361 u64 config, val; 362 363 config = attr->config; 364 365 cache_type = (config >> 0) & 0xff; 366 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 367 return -EINVAL; 368 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 369 370 cache_op = (config >> 8) & 0xff; 371 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 372 return -EINVAL; 373 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 374 375 cache_result = (config >> 16) & 0xff; 376 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 377 return -EINVAL; 378 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 379 380 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 381 if (val == 0) 382 return -ENOENT; 383 384 if (val == -1) 385 return -EINVAL; 386 387 hwc->config |= val; 388 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 389 return x86_pmu_extra_regs(val, event); 390 } 391 392 int x86_reserve_hardware(void) 393 { 394 int err = 0; 395 396 if (!atomic_inc_not_zero(&pmc_refcount)) { 397 mutex_lock(&pmc_reserve_mutex); 398 if (atomic_read(&pmc_refcount) == 0) { 399 if (!reserve_pmc_hardware()) 400 err = -EBUSY; 401 else 402 reserve_ds_buffers(); 403 } 404 if (!err) 405 atomic_inc(&pmc_refcount); 406 mutex_unlock(&pmc_reserve_mutex); 407 } 408 409 return err; 410 } 411 412 void x86_release_hardware(void) 413 { 414 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 415 release_pmc_hardware(); 416 release_ds_buffers(); 417 release_lbr_buffers(); 418 mutex_unlock(&pmc_reserve_mutex); 419 } 420 } 421 422 /* 423 * Check if we can create event of a certain type (that no conflicting events 424 * are present). 425 */ 426 int x86_add_exclusive(unsigned int what) 427 { 428 int i; 429 430 /* 431 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 432 * LBR and BTS are still mutually exclusive. 433 */ 434 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 435 goto out; 436 437 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 438 mutex_lock(&pmc_reserve_mutex); 439 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 440 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 441 goto fail_unlock; 442 } 443 atomic_inc(&x86_pmu.lbr_exclusive[what]); 444 mutex_unlock(&pmc_reserve_mutex); 445 } 446 447 out: 448 atomic_inc(&active_events); 449 return 0; 450 451 fail_unlock: 452 mutex_unlock(&pmc_reserve_mutex); 453 return -EBUSY; 454 } 455 456 void x86_del_exclusive(unsigned int what) 457 { 458 atomic_dec(&active_events); 459 460 /* 461 * See the comment in x86_add_exclusive(). 462 */ 463 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 464 return; 465 466 atomic_dec(&x86_pmu.lbr_exclusive[what]); 467 } 468 469 int x86_setup_perfctr(struct perf_event *event) 470 { 471 struct perf_event_attr *attr = &event->attr; 472 struct hw_perf_event *hwc = &event->hw; 473 u64 config; 474 475 if (!is_sampling_event(event)) { 476 hwc->sample_period = x86_pmu.max_period; 477 hwc->last_period = hwc->sample_period; 478 local64_set(&hwc->period_left, hwc->sample_period); 479 } 480 481 if (attr->type == event->pmu->type) 482 return x86_pmu_extra_regs(event->attr.config, event); 483 484 if (attr->type == PERF_TYPE_HW_CACHE) 485 return set_ext_hw_attr(hwc, event); 486 487 if (attr->config >= x86_pmu.max_events) 488 return -EINVAL; 489 490 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 491 492 /* 493 * The generic map: 494 */ 495 config = x86_pmu.event_map(attr->config); 496 497 if (config == 0) 498 return -ENOENT; 499 500 if (config == -1LL) 501 return -EINVAL; 502 503 hwc->config |= config; 504 505 return 0; 506 } 507 508 /* 509 * check that branch_sample_type is compatible with 510 * settings needed for precise_ip > 1 which implies 511 * using the LBR to capture ALL taken branches at the 512 * priv levels of the measurement 513 */ 514 static inline int precise_br_compat(struct perf_event *event) 515 { 516 u64 m = event->attr.branch_sample_type; 517 u64 b = 0; 518 519 /* must capture all branches */ 520 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 521 return 0; 522 523 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 524 525 if (!event->attr.exclude_user) 526 b |= PERF_SAMPLE_BRANCH_USER; 527 528 if (!event->attr.exclude_kernel) 529 b |= PERF_SAMPLE_BRANCH_KERNEL; 530 531 /* 532 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 533 */ 534 535 return m == b; 536 } 537 538 int x86_pmu_max_precise(void) 539 { 540 int precise = 0; 541 542 /* Support for constant skid */ 543 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 544 precise++; 545 546 /* Support for IP fixup */ 547 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 548 precise++; 549 550 if (x86_pmu.pebs_prec_dist) 551 precise++; 552 } 553 return precise; 554 } 555 556 int x86_pmu_hw_config(struct perf_event *event) 557 { 558 if (event->attr.precise_ip) { 559 int precise = x86_pmu_max_precise(); 560 561 if (event->attr.precise_ip > precise) 562 return -EOPNOTSUPP; 563 564 /* There's no sense in having PEBS for non sampling events: */ 565 if (!is_sampling_event(event)) 566 return -EINVAL; 567 } 568 /* 569 * check that PEBS LBR correction does not conflict with 570 * whatever the user is asking with attr->branch_sample_type 571 */ 572 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 573 u64 *br_type = &event->attr.branch_sample_type; 574 575 if (has_branch_stack(event)) { 576 if (!precise_br_compat(event)) 577 return -EOPNOTSUPP; 578 579 /* branch_sample_type is compatible */ 580 581 } else { 582 /* 583 * user did not specify branch_sample_type 584 * 585 * For PEBS fixups, we capture all 586 * the branches at the priv level of the 587 * event. 588 */ 589 *br_type = PERF_SAMPLE_BRANCH_ANY; 590 591 if (!event->attr.exclude_user) 592 *br_type |= PERF_SAMPLE_BRANCH_USER; 593 594 if (!event->attr.exclude_kernel) 595 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 596 } 597 } 598 599 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) 600 event->attach_state |= PERF_ATTACH_TASK_DATA; 601 602 /* 603 * Generate PMC IRQs: 604 * (keep 'enabled' bit clear for now) 605 */ 606 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 607 608 /* 609 * Count user and OS events unless requested not to 610 */ 611 if (!event->attr.exclude_user) 612 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 613 if (!event->attr.exclude_kernel) 614 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 615 616 if (event->attr.type == event->pmu->type) 617 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; 618 619 if (event->attr.sample_period && x86_pmu.limit_period) { 620 if (x86_pmu.limit_period(event, event->attr.sample_period) > 621 event->attr.sample_period) 622 return -EINVAL; 623 } 624 625 /* sample_regs_user never support XMM registers */ 626 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 627 return -EINVAL; 628 /* 629 * Besides the general purpose registers, XMM registers may 630 * be collected in PEBS on some platforms, e.g. Icelake 631 */ 632 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 633 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 634 return -EINVAL; 635 636 if (!event->attr.precise_ip) 637 return -EINVAL; 638 } 639 640 return x86_setup_perfctr(event); 641 } 642 643 /* 644 * Setup the hardware configuration for a given attr_type 645 */ 646 static int __x86_pmu_event_init(struct perf_event *event) 647 { 648 int err; 649 650 if (!x86_pmu_initialized()) 651 return -ENODEV; 652 653 err = x86_reserve_hardware(); 654 if (err) 655 return err; 656 657 atomic_inc(&active_events); 658 event->destroy = hw_perf_event_destroy; 659 660 event->hw.idx = -1; 661 event->hw.last_cpu = -1; 662 event->hw.last_tag = ~0ULL; 663 664 /* mark unused */ 665 event->hw.extra_reg.idx = EXTRA_REG_NONE; 666 event->hw.branch_reg.idx = EXTRA_REG_NONE; 667 668 return x86_pmu.hw_config(event); 669 } 670 671 void x86_pmu_disable_all(void) 672 { 673 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 674 int idx; 675 676 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 677 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 678 u64 val; 679 680 if (!test_bit(idx, cpuc->active_mask)) 681 continue; 682 rdmsrl(x86_pmu_config_addr(idx), val); 683 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 684 continue; 685 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 686 wrmsrl(x86_pmu_config_addr(idx), val); 687 if (is_counter_pair(hwc)) 688 wrmsrl(x86_pmu_config_addr(idx + 1), 0); 689 } 690 } 691 692 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 693 { 694 return static_call(x86_pmu_guest_get_msrs)(nr); 695 } 696 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 697 698 /* 699 * There may be PMI landing after enabled=0. The PMI hitting could be before or 700 * after disable_all. 701 * 702 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 703 * It will not be re-enabled in the NMI handler again, because enabled=0. After 704 * handling the NMI, disable_all will be called, which will not change the 705 * state either. If PMI hits after disable_all, the PMU is already disabled 706 * before entering NMI handler. The NMI handler will not change the state 707 * either. 708 * 709 * So either situation is harmless. 710 */ 711 static void x86_pmu_disable(struct pmu *pmu) 712 { 713 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 714 715 if (!x86_pmu_initialized()) 716 return; 717 718 if (!cpuc->enabled) 719 return; 720 721 cpuc->n_added = 0; 722 cpuc->enabled = 0; 723 barrier(); 724 725 static_call(x86_pmu_disable_all)(); 726 } 727 728 void x86_pmu_enable_all(int added) 729 { 730 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 731 int idx; 732 733 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 734 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 735 736 if (!test_bit(idx, cpuc->active_mask)) 737 continue; 738 739 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 740 } 741 } 742 743 static inline int is_x86_event(struct perf_event *event) 744 { 745 int i; 746 747 if (!is_hybrid()) 748 return event->pmu == &pmu; 749 750 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 751 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) 752 return true; 753 } 754 755 return false; 756 } 757 758 struct pmu *x86_get_pmu(unsigned int cpu) 759 { 760 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 761 762 /* 763 * All CPUs of the hybrid type have been offline. 764 * The x86_get_pmu() should not be invoked. 765 */ 766 if (WARN_ON_ONCE(!cpuc->pmu)) 767 return &pmu; 768 769 return cpuc->pmu; 770 } 771 /* 772 * Event scheduler state: 773 * 774 * Assign events iterating over all events and counters, beginning 775 * with events with least weights first. Keep the current iterator 776 * state in struct sched_state. 777 */ 778 struct sched_state { 779 int weight; 780 int event; /* event index */ 781 int counter; /* counter index */ 782 int unassigned; /* number of events to be assigned left */ 783 int nr_gp; /* number of GP counters used */ 784 u64 used; 785 }; 786 787 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 788 #define SCHED_STATES_MAX 2 789 790 struct perf_sched { 791 int max_weight; 792 int max_events; 793 int max_gp; 794 int saved_states; 795 struct event_constraint **constraints; 796 struct sched_state state; 797 struct sched_state saved[SCHED_STATES_MAX]; 798 }; 799 800 /* 801 * Initialize iterator that runs through all events and counters. 802 */ 803 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 804 int num, int wmin, int wmax, int gpmax) 805 { 806 int idx; 807 808 memset(sched, 0, sizeof(*sched)); 809 sched->max_events = num; 810 sched->max_weight = wmax; 811 sched->max_gp = gpmax; 812 sched->constraints = constraints; 813 814 for (idx = 0; idx < num; idx++) { 815 if (constraints[idx]->weight == wmin) 816 break; 817 } 818 819 sched->state.event = idx; /* start with min weight */ 820 sched->state.weight = wmin; 821 sched->state.unassigned = num; 822 } 823 824 static void perf_sched_save_state(struct perf_sched *sched) 825 { 826 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 827 return; 828 829 sched->saved[sched->saved_states] = sched->state; 830 sched->saved_states++; 831 } 832 833 static bool perf_sched_restore_state(struct perf_sched *sched) 834 { 835 if (!sched->saved_states) 836 return false; 837 838 sched->saved_states--; 839 sched->state = sched->saved[sched->saved_states]; 840 841 /* this assignment didn't work out */ 842 /* XXX broken vs EVENT_PAIR */ 843 sched->state.used &= ~BIT_ULL(sched->state.counter); 844 845 /* try the next one */ 846 sched->state.counter++; 847 848 return true; 849 } 850 851 /* 852 * Select a counter for the current event to schedule. Return true on 853 * success. 854 */ 855 static bool __perf_sched_find_counter(struct perf_sched *sched) 856 { 857 struct event_constraint *c; 858 int idx; 859 860 if (!sched->state.unassigned) 861 return false; 862 863 if (sched->state.event >= sched->max_events) 864 return false; 865 866 c = sched->constraints[sched->state.event]; 867 /* Prefer fixed purpose counters */ 868 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 869 idx = INTEL_PMC_IDX_FIXED; 870 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 871 u64 mask = BIT_ULL(idx); 872 873 if (sched->state.used & mask) 874 continue; 875 876 sched->state.used |= mask; 877 goto done; 878 } 879 } 880 881 /* Grab the first unused counter starting with idx */ 882 idx = sched->state.counter; 883 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 884 u64 mask = BIT_ULL(idx); 885 886 if (c->flags & PERF_X86_EVENT_PAIR) 887 mask |= mask << 1; 888 889 if (sched->state.used & mask) 890 continue; 891 892 if (sched->state.nr_gp++ >= sched->max_gp) 893 return false; 894 895 sched->state.used |= mask; 896 goto done; 897 } 898 899 return false; 900 901 done: 902 sched->state.counter = idx; 903 904 if (c->overlap) 905 perf_sched_save_state(sched); 906 907 return true; 908 } 909 910 static bool perf_sched_find_counter(struct perf_sched *sched) 911 { 912 while (!__perf_sched_find_counter(sched)) { 913 if (!perf_sched_restore_state(sched)) 914 return false; 915 } 916 917 return true; 918 } 919 920 /* 921 * Go through all unassigned events and find the next one to schedule. 922 * Take events with the least weight first. Return true on success. 923 */ 924 static bool perf_sched_next_event(struct perf_sched *sched) 925 { 926 struct event_constraint *c; 927 928 if (!sched->state.unassigned || !--sched->state.unassigned) 929 return false; 930 931 do { 932 /* next event */ 933 sched->state.event++; 934 if (sched->state.event >= sched->max_events) { 935 /* next weight */ 936 sched->state.event = 0; 937 sched->state.weight++; 938 if (sched->state.weight > sched->max_weight) 939 return false; 940 } 941 c = sched->constraints[sched->state.event]; 942 } while (c->weight != sched->state.weight); 943 944 sched->state.counter = 0; /* start with first counter */ 945 946 return true; 947 } 948 949 /* 950 * Assign a counter for each event. 951 */ 952 int perf_assign_events(struct event_constraint **constraints, int n, 953 int wmin, int wmax, int gpmax, int *assign) 954 { 955 struct perf_sched sched; 956 957 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 958 959 do { 960 if (!perf_sched_find_counter(&sched)) 961 break; /* failed */ 962 if (assign) 963 assign[sched.state.event] = sched.state.counter; 964 } while (perf_sched_next_event(&sched)); 965 966 return sched.state.unassigned; 967 } 968 EXPORT_SYMBOL_GPL(perf_assign_events); 969 970 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 971 { 972 int num_counters = hybrid(cpuc->pmu, num_counters); 973 struct event_constraint *c; 974 struct perf_event *e; 975 int n0, i, wmin, wmax, unsched = 0; 976 struct hw_perf_event *hwc; 977 u64 used_mask = 0; 978 979 /* 980 * Compute the number of events already present; see x86_pmu_add(), 981 * validate_group() and x86_pmu_commit_txn(). For the former two 982 * cpuc->n_events hasn't been updated yet, while for the latter 983 * cpuc->n_txn contains the number of events added in the current 984 * transaction. 985 */ 986 n0 = cpuc->n_events; 987 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 988 n0 -= cpuc->n_txn; 989 990 static_call_cond(x86_pmu_start_scheduling)(cpuc); 991 992 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 993 c = cpuc->event_constraint[i]; 994 995 /* 996 * Previously scheduled events should have a cached constraint, 997 * while new events should not have one. 998 */ 999 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1000 1001 /* 1002 * Request constraints for new events; or for those events that 1003 * have a dynamic constraint -- for those the constraint can 1004 * change due to external factors (sibling state, allow_tfa). 1005 */ 1006 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1007 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1008 cpuc->event_constraint[i] = c; 1009 } 1010 1011 wmin = min(wmin, c->weight); 1012 wmax = max(wmax, c->weight); 1013 } 1014 1015 /* 1016 * fastpath, try to reuse previous register 1017 */ 1018 for (i = 0; i < n; i++) { 1019 u64 mask; 1020 1021 hwc = &cpuc->event_list[i]->hw; 1022 c = cpuc->event_constraint[i]; 1023 1024 /* never assigned */ 1025 if (hwc->idx == -1) 1026 break; 1027 1028 /* constraint still honored */ 1029 if (!test_bit(hwc->idx, c->idxmsk)) 1030 break; 1031 1032 mask = BIT_ULL(hwc->idx); 1033 if (is_counter_pair(hwc)) 1034 mask |= mask << 1; 1035 1036 /* not already used */ 1037 if (used_mask & mask) 1038 break; 1039 1040 used_mask |= mask; 1041 1042 if (assign) 1043 assign[i] = hwc->idx; 1044 } 1045 1046 /* slow path */ 1047 if (i != n) { 1048 int gpmax = num_counters; 1049 1050 /* 1051 * Do not allow scheduling of more than half the available 1052 * generic counters. 1053 * 1054 * This helps avoid counter starvation of sibling thread by 1055 * ensuring at most half the counters cannot be in exclusive 1056 * mode. There is no designated counters for the limits. Any 1057 * N/2 counters can be used. This helps with events with 1058 * specific counter constraints. 1059 */ 1060 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1061 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1062 gpmax /= 2; 1063 1064 /* 1065 * Reduce the amount of available counters to allow fitting 1066 * the extra Merge events needed by large increment events. 1067 */ 1068 if (x86_pmu.flags & PMU_FL_PAIR) { 1069 gpmax = num_counters - cpuc->n_pair; 1070 WARN_ON(gpmax <= 0); 1071 } 1072 1073 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1074 wmax, gpmax, assign); 1075 } 1076 1077 /* 1078 * In case of success (unsched = 0), mark events as committed, 1079 * so we do not put_constraint() in case new events are added 1080 * and fail to be scheduled 1081 * 1082 * We invoke the lower level commit callback to lock the resource 1083 * 1084 * We do not need to do all of this in case we are called to 1085 * validate an event group (assign == NULL) 1086 */ 1087 if (!unsched && assign) { 1088 for (i = 0; i < n; i++) { 1089 e = cpuc->event_list[i]; 1090 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1091 } 1092 } else { 1093 for (i = n0; i < n; i++) { 1094 e = cpuc->event_list[i]; 1095 1096 /* 1097 * release events that failed scheduling 1098 */ 1099 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1100 1101 cpuc->event_constraint[i] = NULL; 1102 } 1103 } 1104 1105 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1106 1107 return unsched ? -EINVAL : 0; 1108 } 1109 1110 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1111 struct perf_event *event) 1112 { 1113 if (is_metric_event(event)) { 1114 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1115 return -EINVAL; 1116 cpuc->n_metric++; 1117 cpuc->n_txn_metric++; 1118 } 1119 1120 return 0; 1121 } 1122 1123 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1124 struct perf_event *event) 1125 { 1126 if (is_metric_event(event)) 1127 cpuc->n_metric--; 1128 } 1129 1130 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1131 int max_count, int n) 1132 { 1133 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1134 1135 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1136 return -EINVAL; 1137 1138 if (n >= max_count + cpuc->n_metric) 1139 return -EINVAL; 1140 1141 cpuc->event_list[n] = event; 1142 if (is_counter_pair(&event->hw)) { 1143 cpuc->n_pair++; 1144 cpuc->n_txn_pair++; 1145 } 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * dogrp: true if must collect siblings events (group) 1152 * returns total number of events and error code 1153 */ 1154 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1155 { 1156 int num_counters = hybrid(cpuc->pmu, num_counters); 1157 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1158 struct perf_event *event; 1159 int n, max_count; 1160 1161 max_count = num_counters + num_counters_fixed; 1162 1163 /* current number of events already accepted */ 1164 n = cpuc->n_events; 1165 if (!cpuc->n_events) 1166 cpuc->pebs_output = 0; 1167 1168 if (!cpuc->is_fake && leader->attr.precise_ip) { 1169 /* 1170 * For PEBS->PT, if !aux_event, the group leader (PT) went 1171 * away, the group was broken down and this singleton event 1172 * can't schedule any more. 1173 */ 1174 if (is_pebs_pt(leader) && !leader->aux_event) 1175 return -EINVAL; 1176 1177 /* 1178 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1179 */ 1180 if (cpuc->pebs_output && 1181 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1182 return -EINVAL; 1183 1184 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1185 } 1186 1187 if (is_x86_event(leader)) { 1188 if (collect_event(cpuc, leader, max_count, n)) 1189 return -EINVAL; 1190 n++; 1191 } 1192 1193 if (!dogrp) 1194 return n; 1195 1196 for_each_sibling_event(event, leader) { 1197 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1198 continue; 1199 1200 if (collect_event(cpuc, event, max_count, n)) 1201 return -EINVAL; 1202 1203 n++; 1204 } 1205 return n; 1206 } 1207 1208 static inline void x86_assign_hw_event(struct perf_event *event, 1209 struct cpu_hw_events *cpuc, int i) 1210 { 1211 struct hw_perf_event *hwc = &event->hw; 1212 int idx; 1213 1214 idx = hwc->idx = cpuc->assign[i]; 1215 hwc->last_cpu = smp_processor_id(); 1216 hwc->last_tag = ++cpuc->tags[i]; 1217 1218 switch (hwc->idx) { 1219 case INTEL_PMC_IDX_FIXED_BTS: 1220 case INTEL_PMC_IDX_FIXED_VLBR: 1221 hwc->config_base = 0; 1222 hwc->event_base = 0; 1223 break; 1224 1225 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1226 /* All the metric events are mapped onto the fixed counter 3. */ 1227 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1228 fallthrough; 1229 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1230 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1231 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + 1232 (idx - INTEL_PMC_IDX_FIXED); 1233 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1234 INTEL_PMC_FIXED_RDPMC_BASE; 1235 break; 1236 1237 default: 1238 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1239 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1240 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1241 break; 1242 } 1243 } 1244 1245 /** 1246 * x86_perf_rdpmc_index - Return PMC counter used for event 1247 * @event: the perf_event to which the PMC counter was assigned 1248 * 1249 * The counter assigned to this performance event may change if interrupts 1250 * are enabled. This counter should thus never be used while interrupts are 1251 * enabled. Before this function is used to obtain the assigned counter the 1252 * event should be checked for validity using, for example, 1253 * perf_event_read_local(), within the same interrupt disabled section in 1254 * which this counter is planned to be used. 1255 * 1256 * Return: The index of the performance monitoring counter assigned to 1257 * @perf_event. 1258 */ 1259 int x86_perf_rdpmc_index(struct perf_event *event) 1260 { 1261 lockdep_assert_irqs_disabled(); 1262 1263 return event->hw.event_base_rdpmc; 1264 } 1265 1266 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1267 struct cpu_hw_events *cpuc, 1268 int i) 1269 { 1270 return hwc->idx == cpuc->assign[i] && 1271 hwc->last_cpu == smp_processor_id() && 1272 hwc->last_tag == cpuc->tags[i]; 1273 } 1274 1275 static void x86_pmu_start(struct perf_event *event, int flags); 1276 1277 static void x86_pmu_enable(struct pmu *pmu) 1278 { 1279 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1280 struct perf_event *event; 1281 struct hw_perf_event *hwc; 1282 int i, added = cpuc->n_added; 1283 1284 if (!x86_pmu_initialized()) 1285 return; 1286 1287 if (cpuc->enabled) 1288 return; 1289 1290 if (cpuc->n_added) { 1291 int n_running = cpuc->n_events - cpuc->n_added; 1292 /* 1293 * apply assignment obtained either from 1294 * hw_perf_group_sched_in() or x86_pmu_enable() 1295 * 1296 * step1: save events moving to new counters 1297 */ 1298 for (i = 0; i < n_running; i++) { 1299 event = cpuc->event_list[i]; 1300 hwc = &event->hw; 1301 1302 /* 1303 * we can avoid reprogramming counter if: 1304 * - assigned same counter as last time 1305 * - running on same CPU as last time 1306 * - no other event has used the counter since 1307 */ 1308 if (hwc->idx == -1 || 1309 match_prev_assignment(hwc, cpuc, i)) 1310 continue; 1311 1312 /* 1313 * Ensure we don't accidentally enable a stopped 1314 * counter simply because we rescheduled. 1315 */ 1316 if (hwc->state & PERF_HES_STOPPED) 1317 hwc->state |= PERF_HES_ARCH; 1318 1319 x86_pmu_stop(event, PERF_EF_UPDATE); 1320 } 1321 1322 /* 1323 * step2: reprogram moved events into new counters 1324 */ 1325 for (i = 0; i < cpuc->n_events; i++) { 1326 event = cpuc->event_list[i]; 1327 hwc = &event->hw; 1328 1329 if (!match_prev_assignment(hwc, cpuc, i)) 1330 x86_assign_hw_event(event, cpuc, i); 1331 else if (i < n_running) 1332 continue; 1333 1334 if (hwc->state & PERF_HES_ARCH) 1335 continue; 1336 1337 x86_pmu_start(event, PERF_EF_RELOAD); 1338 } 1339 cpuc->n_added = 0; 1340 perf_events_lapic_init(); 1341 } 1342 1343 cpuc->enabled = 1; 1344 barrier(); 1345 1346 static_call(x86_pmu_enable_all)(added); 1347 } 1348 1349 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1350 1351 /* 1352 * Set the next IRQ period, based on the hwc->period_left value. 1353 * To be called with the event disabled in hw: 1354 */ 1355 int x86_perf_event_set_period(struct perf_event *event) 1356 { 1357 struct hw_perf_event *hwc = &event->hw; 1358 s64 left = local64_read(&hwc->period_left); 1359 s64 period = hwc->sample_period; 1360 int ret = 0, idx = hwc->idx; 1361 1362 if (unlikely(!hwc->event_base)) 1363 return 0; 1364 1365 if (unlikely(is_topdown_count(event)) && 1366 x86_pmu.set_topdown_event_period) 1367 return x86_pmu.set_topdown_event_period(event); 1368 1369 /* 1370 * If we are way outside a reasonable range then just skip forward: 1371 */ 1372 if (unlikely(left <= -period)) { 1373 left = period; 1374 local64_set(&hwc->period_left, left); 1375 hwc->last_period = period; 1376 ret = 1; 1377 } 1378 1379 if (unlikely(left <= 0)) { 1380 left += period; 1381 local64_set(&hwc->period_left, left); 1382 hwc->last_period = period; 1383 ret = 1; 1384 } 1385 /* 1386 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1387 */ 1388 if (unlikely(left < 2)) 1389 left = 2; 1390 1391 if (left > x86_pmu.max_period) 1392 left = x86_pmu.max_period; 1393 1394 if (x86_pmu.limit_period) 1395 left = x86_pmu.limit_period(event, left); 1396 1397 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; 1398 1399 /* 1400 * The hw event starts counting from this event offset, 1401 * mark it to be able to extra future deltas: 1402 */ 1403 local64_set(&hwc->prev_count, (u64)-left); 1404 1405 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1406 1407 /* 1408 * Sign extend the Merge event counter's upper 16 bits since 1409 * we currently declare a 48-bit counter width 1410 */ 1411 if (is_counter_pair(hwc)) 1412 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff); 1413 1414 /* 1415 * Due to erratum on certan cpu we need 1416 * a second write to be sure the register 1417 * is updated properly 1418 */ 1419 if (x86_pmu.perfctr_second_write) { 1420 wrmsrl(hwc->event_base, 1421 (u64)(-left) & x86_pmu.cntval_mask); 1422 } 1423 1424 perf_event_update_userpage(event); 1425 1426 return ret; 1427 } 1428 1429 void x86_pmu_enable_event(struct perf_event *event) 1430 { 1431 if (__this_cpu_read(cpu_hw_events.enabled)) 1432 __x86_pmu_enable_event(&event->hw, 1433 ARCH_PERFMON_EVENTSEL_ENABLE); 1434 } 1435 1436 /* 1437 * Add a single event to the PMU. 1438 * 1439 * The event is added to the group of enabled events 1440 * but only if it can be scheduled with existing events. 1441 */ 1442 static int x86_pmu_add(struct perf_event *event, int flags) 1443 { 1444 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1445 struct hw_perf_event *hwc; 1446 int assign[X86_PMC_IDX_MAX]; 1447 int n, n0, ret; 1448 1449 hwc = &event->hw; 1450 1451 n0 = cpuc->n_events; 1452 ret = n = collect_events(cpuc, event, false); 1453 if (ret < 0) 1454 goto out; 1455 1456 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1457 if (!(flags & PERF_EF_START)) 1458 hwc->state |= PERF_HES_ARCH; 1459 1460 /* 1461 * If group events scheduling transaction was started, 1462 * skip the schedulability test here, it will be performed 1463 * at commit time (->commit_txn) as a whole. 1464 * 1465 * If commit fails, we'll call ->del() on all events 1466 * for which ->add() was called. 1467 */ 1468 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1469 goto done_collect; 1470 1471 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1472 if (ret) 1473 goto out; 1474 /* 1475 * copy new assignment, now we know it is possible 1476 * will be used by hw_perf_enable() 1477 */ 1478 memcpy(cpuc->assign, assign, n*sizeof(int)); 1479 1480 done_collect: 1481 /* 1482 * Commit the collect_events() state. See x86_pmu_del() and 1483 * x86_pmu_*_txn(). 1484 */ 1485 cpuc->n_events = n; 1486 cpuc->n_added += n - n0; 1487 cpuc->n_txn += n - n0; 1488 1489 /* 1490 * This is before x86_pmu_enable() will call x86_pmu_start(), 1491 * so we enable LBRs before an event needs them etc.. 1492 */ 1493 static_call_cond(x86_pmu_add)(event); 1494 1495 ret = 0; 1496 out: 1497 return ret; 1498 } 1499 1500 static void x86_pmu_start(struct perf_event *event, int flags) 1501 { 1502 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1503 int idx = event->hw.idx; 1504 1505 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1506 return; 1507 1508 if (WARN_ON_ONCE(idx == -1)) 1509 return; 1510 1511 if (flags & PERF_EF_RELOAD) { 1512 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1513 x86_perf_event_set_period(event); 1514 } 1515 1516 event->hw.state = 0; 1517 1518 cpuc->events[idx] = event; 1519 __set_bit(idx, cpuc->active_mask); 1520 static_call(x86_pmu_enable)(event); 1521 perf_event_update_userpage(event); 1522 } 1523 1524 void perf_event_print_debug(void) 1525 { 1526 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1527 u64 pebs, debugctl; 1528 int cpu = smp_processor_id(); 1529 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1530 int num_counters = hybrid(cpuc->pmu, num_counters); 1531 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1532 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1533 unsigned long flags; 1534 int idx; 1535 1536 if (!num_counters) 1537 return; 1538 1539 local_irq_save(flags); 1540 1541 if (x86_pmu.version >= 2) { 1542 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1543 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1544 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1545 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1546 1547 pr_info("\n"); 1548 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1549 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1550 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1551 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1552 if (pebs_constraints) { 1553 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1554 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1555 } 1556 if (x86_pmu.lbr_nr) { 1557 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1558 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1559 } 1560 } 1561 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1562 1563 for (idx = 0; idx < num_counters; idx++) { 1564 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1565 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1566 1567 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1568 1569 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1570 cpu, idx, pmc_ctrl); 1571 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1572 cpu, idx, pmc_count); 1573 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1574 cpu, idx, prev_left); 1575 } 1576 for (idx = 0; idx < num_counters_fixed; idx++) { 1577 if (fixed_counter_disabled(idx, cpuc->pmu)) 1578 continue; 1579 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); 1580 1581 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1582 cpu, idx, pmc_count); 1583 } 1584 local_irq_restore(flags); 1585 } 1586 1587 void x86_pmu_stop(struct perf_event *event, int flags) 1588 { 1589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1590 struct hw_perf_event *hwc = &event->hw; 1591 1592 if (test_bit(hwc->idx, cpuc->active_mask)) { 1593 static_call(x86_pmu_disable)(event); 1594 __clear_bit(hwc->idx, cpuc->active_mask); 1595 cpuc->events[hwc->idx] = NULL; 1596 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1597 hwc->state |= PERF_HES_STOPPED; 1598 } 1599 1600 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1601 /* 1602 * Drain the remaining delta count out of a event 1603 * that we are disabling: 1604 */ 1605 x86_perf_event_update(event); 1606 hwc->state |= PERF_HES_UPTODATE; 1607 } 1608 } 1609 1610 static void x86_pmu_del(struct perf_event *event, int flags) 1611 { 1612 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1613 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1614 int i; 1615 1616 /* 1617 * If we're called during a txn, we only need to undo x86_pmu.add. 1618 * The events never got scheduled and ->cancel_txn will truncate 1619 * the event_list. 1620 * 1621 * XXX assumes any ->del() called during a TXN will only be on 1622 * an event added during that same TXN. 1623 */ 1624 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1625 goto do_del; 1626 1627 /* 1628 * Not a TXN, therefore cleanup properly. 1629 */ 1630 x86_pmu_stop(event, PERF_EF_UPDATE); 1631 1632 for (i = 0; i < cpuc->n_events; i++) { 1633 if (event == cpuc->event_list[i]) 1634 break; 1635 } 1636 1637 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1638 return; 1639 1640 /* If we have a newly added event; make sure to decrease n_added. */ 1641 if (i >= cpuc->n_events - cpuc->n_added) 1642 --cpuc->n_added; 1643 1644 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1645 1646 /* Delete the array entry. */ 1647 while (++i < cpuc->n_events) { 1648 cpuc->event_list[i-1] = cpuc->event_list[i]; 1649 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1650 } 1651 cpuc->event_constraint[i-1] = NULL; 1652 --cpuc->n_events; 1653 if (intel_cap.perf_metrics) 1654 del_nr_metric_event(cpuc, event); 1655 1656 perf_event_update_userpage(event); 1657 1658 do_del: 1659 1660 /* 1661 * This is after x86_pmu_stop(); so we disable LBRs after any 1662 * event can need them etc.. 1663 */ 1664 static_call_cond(x86_pmu_del)(event); 1665 } 1666 1667 int x86_pmu_handle_irq(struct pt_regs *regs) 1668 { 1669 struct perf_sample_data data; 1670 struct cpu_hw_events *cpuc; 1671 struct perf_event *event; 1672 int idx, handled = 0; 1673 u64 val; 1674 1675 cpuc = this_cpu_ptr(&cpu_hw_events); 1676 1677 /* 1678 * Some chipsets need to unmask the LVTPC in a particular spot 1679 * inside the nmi handler. As a result, the unmasking was pushed 1680 * into all the nmi handlers. 1681 * 1682 * This generic handler doesn't seem to have any issues where the 1683 * unmasking occurs so it was left at the top. 1684 */ 1685 apic_write(APIC_LVTPC, APIC_DM_NMI); 1686 1687 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1688 if (!test_bit(idx, cpuc->active_mask)) 1689 continue; 1690 1691 event = cpuc->events[idx]; 1692 1693 val = x86_perf_event_update(event); 1694 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1695 continue; 1696 1697 /* 1698 * event overflow 1699 */ 1700 handled++; 1701 perf_sample_data_init(&data, 0, event->hw.last_period); 1702 1703 if (!x86_perf_event_set_period(event)) 1704 continue; 1705 1706 if (perf_event_overflow(event, &data, regs)) 1707 x86_pmu_stop(event, 0); 1708 } 1709 1710 if (handled) 1711 inc_irq_stat(apic_perf_irqs); 1712 1713 return handled; 1714 } 1715 1716 void perf_events_lapic_init(void) 1717 { 1718 if (!x86_pmu.apic || !x86_pmu_initialized()) 1719 return; 1720 1721 /* 1722 * Always use NMI for PMU 1723 */ 1724 apic_write(APIC_LVTPC, APIC_DM_NMI); 1725 } 1726 1727 static int 1728 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1729 { 1730 u64 start_clock; 1731 u64 finish_clock; 1732 int ret; 1733 1734 /* 1735 * All PMUs/events that share this PMI handler should make sure to 1736 * increment active_events for their events. 1737 */ 1738 if (!atomic_read(&active_events)) 1739 return NMI_DONE; 1740 1741 start_clock = sched_clock(); 1742 ret = static_call(x86_pmu_handle_irq)(regs); 1743 finish_clock = sched_clock(); 1744 1745 perf_sample_event_took(finish_clock - start_clock); 1746 1747 return ret; 1748 } 1749 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1750 1751 struct event_constraint emptyconstraint; 1752 struct event_constraint unconstrained; 1753 1754 static int x86_pmu_prepare_cpu(unsigned int cpu) 1755 { 1756 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1757 int i; 1758 1759 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1760 cpuc->kfree_on_online[i] = NULL; 1761 if (x86_pmu.cpu_prepare) 1762 return x86_pmu.cpu_prepare(cpu); 1763 return 0; 1764 } 1765 1766 static int x86_pmu_dead_cpu(unsigned int cpu) 1767 { 1768 if (x86_pmu.cpu_dead) 1769 x86_pmu.cpu_dead(cpu); 1770 return 0; 1771 } 1772 1773 static int x86_pmu_online_cpu(unsigned int cpu) 1774 { 1775 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1776 int i; 1777 1778 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1779 kfree(cpuc->kfree_on_online[i]); 1780 cpuc->kfree_on_online[i] = NULL; 1781 } 1782 return 0; 1783 } 1784 1785 static int x86_pmu_starting_cpu(unsigned int cpu) 1786 { 1787 if (x86_pmu.cpu_starting) 1788 x86_pmu.cpu_starting(cpu); 1789 return 0; 1790 } 1791 1792 static int x86_pmu_dying_cpu(unsigned int cpu) 1793 { 1794 if (x86_pmu.cpu_dying) 1795 x86_pmu.cpu_dying(cpu); 1796 return 0; 1797 } 1798 1799 static void __init pmu_check_apic(void) 1800 { 1801 if (boot_cpu_has(X86_FEATURE_APIC)) 1802 return; 1803 1804 x86_pmu.apic = 0; 1805 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1806 pr_info("no hardware sampling interrupt available.\n"); 1807 1808 /* 1809 * If we have a PMU initialized but no APIC 1810 * interrupts, we cannot sample hardware 1811 * events (user-space has to fall back and 1812 * sample via a hrtimer based software event): 1813 */ 1814 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1815 1816 } 1817 1818 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1819 .name = "format", 1820 .attrs = NULL, 1821 }; 1822 1823 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1824 { 1825 struct perf_pmu_events_attr *pmu_attr = 1826 container_of(attr, struct perf_pmu_events_attr, attr); 1827 u64 config = 0; 1828 1829 if (pmu_attr->id < x86_pmu.max_events) 1830 config = x86_pmu.event_map(pmu_attr->id); 1831 1832 /* string trumps id */ 1833 if (pmu_attr->event_str) 1834 return sprintf(page, "%s", pmu_attr->event_str); 1835 1836 return x86_pmu.events_sysfs_show(page, config); 1837 } 1838 EXPORT_SYMBOL_GPL(events_sysfs_show); 1839 1840 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1841 char *page) 1842 { 1843 struct perf_pmu_events_ht_attr *pmu_attr = 1844 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1845 1846 /* 1847 * Report conditional events depending on Hyper-Threading. 1848 * 1849 * This is overly conservative as usually the HT special 1850 * handling is not needed if the other CPU thread is idle. 1851 * 1852 * Note this does not (and cannot) handle the case when thread 1853 * siblings are invisible, for example with virtualization 1854 * if they are owned by some other guest. The user tool 1855 * has to re-read when a thread sibling gets onlined later. 1856 */ 1857 return sprintf(page, "%s", 1858 topology_max_smt_threads() > 1 ? 1859 pmu_attr->event_str_ht : 1860 pmu_attr->event_str_noht); 1861 } 1862 1863 ssize_t events_hybrid_sysfs_show(struct device *dev, 1864 struct device_attribute *attr, 1865 char *page) 1866 { 1867 struct perf_pmu_events_hybrid_attr *pmu_attr = 1868 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1869 struct x86_hybrid_pmu *pmu; 1870 const char *str, *next_str; 1871 int i; 1872 1873 if (hweight64(pmu_attr->pmu_type) == 1) 1874 return sprintf(page, "%s", pmu_attr->event_str); 1875 1876 /* 1877 * Hybrid PMUs may support the same event name, but with different 1878 * event encoding, e.g., the mem-loads event on an Atom PMU has 1879 * different event encoding from a Core PMU. 1880 * 1881 * The event_str includes all event encodings. Each event encoding 1882 * is divided by ";". The order of the event encodings must follow 1883 * the order of the hybrid PMU index. 1884 */ 1885 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1886 1887 str = pmu_attr->event_str; 1888 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1889 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type)) 1890 continue; 1891 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) { 1892 next_str = strchr(str, ';'); 1893 if (next_str) 1894 return snprintf(page, next_str - str + 1, "%s", str); 1895 else 1896 return sprintf(page, "%s", str); 1897 } 1898 str = strchr(str, ';'); 1899 str++; 1900 } 1901 1902 return 0; 1903 } 1904 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1905 1906 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1907 EVENT_ATTR(instructions, INSTRUCTIONS ); 1908 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1909 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1910 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1911 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1912 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1913 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1914 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1915 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1916 1917 static struct attribute *empty_attrs; 1918 1919 static struct attribute *events_attr[] = { 1920 EVENT_PTR(CPU_CYCLES), 1921 EVENT_PTR(INSTRUCTIONS), 1922 EVENT_PTR(CACHE_REFERENCES), 1923 EVENT_PTR(CACHE_MISSES), 1924 EVENT_PTR(BRANCH_INSTRUCTIONS), 1925 EVENT_PTR(BRANCH_MISSES), 1926 EVENT_PTR(BUS_CYCLES), 1927 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1928 EVENT_PTR(STALLED_CYCLES_BACKEND), 1929 EVENT_PTR(REF_CPU_CYCLES), 1930 NULL, 1931 }; 1932 1933 /* 1934 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1935 * out of events_attr attributes. 1936 */ 1937 static umode_t 1938 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1939 { 1940 struct perf_pmu_events_attr *pmu_attr; 1941 1942 if (idx >= x86_pmu.max_events) 1943 return 0; 1944 1945 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1946 /* str trumps id */ 1947 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1948 } 1949 1950 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1951 .name = "events", 1952 .attrs = events_attr, 1953 .is_visible = is_visible, 1954 }; 1955 1956 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1957 { 1958 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1959 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1960 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1961 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1962 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1963 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1964 ssize_t ret; 1965 1966 /* 1967 * We have whole page size to spend and just little data 1968 * to write, so we can safely use sprintf. 1969 */ 1970 ret = sprintf(page, "event=0x%02llx", event); 1971 1972 if (umask) 1973 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1974 1975 if (edge) 1976 ret += sprintf(page + ret, ",edge"); 1977 1978 if (pc) 1979 ret += sprintf(page + ret, ",pc"); 1980 1981 if (any) 1982 ret += sprintf(page + ret, ",any"); 1983 1984 if (inv) 1985 ret += sprintf(page + ret, ",inv"); 1986 1987 if (cmask) 1988 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1989 1990 ret += sprintf(page + ret, "\n"); 1991 1992 return ret; 1993 } 1994 1995 static struct attribute_group x86_pmu_attr_group; 1996 static struct attribute_group x86_pmu_caps_group; 1997 1998 static void x86_pmu_static_call_update(void) 1999 { 2000 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2001 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2002 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2003 static_call_update(x86_pmu_enable, x86_pmu.enable); 2004 static_call_update(x86_pmu_disable, x86_pmu.disable); 2005 2006 static_call_update(x86_pmu_add, x86_pmu.add); 2007 static_call_update(x86_pmu_del, x86_pmu.del); 2008 static_call_update(x86_pmu_read, x86_pmu.read); 2009 2010 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2011 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2012 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2013 2014 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2015 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2016 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2017 2018 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2019 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx); 2020 2021 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2022 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2023 2024 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2025 } 2026 2027 static void _x86_pmu_read(struct perf_event *event) 2028 { 2029 x86_perf_event_update(event); 2030 } 2031 2032 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed, 2033 u64 intel_ctrl) 2034 { 2035 pr_info("... version: %d\n", x86_pmu.version); 2036 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2037 pr_info("... generic registers: %d\n", num_counters); 2038 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 2039 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 2040 pr_info("... fixed-purpose events: %lu\n", 2041 hweight64((((1ULL << num_counters_fixed) - 1) 2042 << INTEL_PMC_IDX_FIXED) & intel_ctrl)); 2043 pr_info("... event mask: %016Lx\n", intel_ctrl); 2044 } 2045 2046 /* 2047 * The generic code is not hybrid friendly. The hybrid_pmu->pmu 2048 * of the first registered PMU is unconditionally assigned to 2049 * each possible cpuctx->ctx.pmu. 2050 * Update the correct hybrid PMU to the cpuctx->ctx.pmu. 2051 */ 2052 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu) 2053 { 2054 struct perf_cpu_context *cpuctx; 2055 2056 if (!pmu->pmu_cpu_context) 2057 return; 2058 2059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2060 cpuctx->ctx.pmu = pmu; 2061 } 2062 2063 static int __init init_hw_perf_events(void) 2064 { 2065 struct x86_pmu_quirk *quirk; 2066 int err; 2067 2068 pr_info("Performance Events: "); 2069 2070 switch (boot_cpu_data.x86_vendor) { 2071 case X86_VENDOR_INTEL: 2072 err = intel_pmu_init(); 2073 break; 2074 case X86_VENDOR_AMD: 2075 err = amd_pmu_init(); 2076 break; 2077 case X86_VENDOR_HYGON: 2078 err = amd_pmu_init(); 2079 x86_pmu.name = "HYGON"; 2080 break; 2081 case X86_VENDOR_ZHAOXIN: 2082 case X86_VENDOR_CENTAUR: 2083 err = zhaoxin_pmu_init(); 2084 break; 2085 default: 2086 err = -ENOTSUPP; 2087 } 2088 if (err != 0) { 2089 pr_cont("no PMU driver, software events only.\n"); 2090 return 0; 2091 } 2092 2093 pmu_check_apic(); 2094 2095 /* sanity check that the hardware exists or is emulated */ 2096 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed)) 2097 return 0; 2098 2099 pr_cont("%s PMU driver.\n", x86_pmu.name); 2100 2101 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2102 2103 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2104 quirk->func(); 2105 2106 if (!x86_pmu.intel_ctrl) 2107 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 2108 2109 perf_events_lapic_init(); 2110 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2111 2112 unconstrained = (struct event_constraint) 2113 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, 2114 0, x86_pmu.num_counters, 0, 0); 2115 2116 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2117 2118 if (!x86_pmu.events_sysfs_show) 2119 x86_pmu_events_group.attrs = &empty_attrs; 2120 2121 pmu.attr_update = x86_pmu.attr_update; 2122 2123 if (!is_hybrid()) { 2124 x86_pmu_show_pmu_cap(x86_pmu.num_counters, 2125 x86_pmu.num_counters_fixed, 2126 x86_pmu.intel_ctrl); 2127 } 2128 2129 if (!x86_pmu.read) 2130 x86_pmu.read = _x86_pmu_read; 2131 2132 if (!x86_pmu.guest_get_msrs) 2133 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2134 2135 x86_pmu_static_call_update(); 2136 2137 /* 2138 * Install callbacks. Core will call them for each online 2139 * cpu. 2140 */ 2141 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2142 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2143 if (err) 2144 return err; 2145 2146 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2147 "perf/x86:starting", x86_pmu_starting_cpu, 2148 x86_pmu_dying_cpu); 2149 if (err) 2150 goto out; 2151 2152 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2153 x86_pmu_online_cpu, NULL); 2154 if (err) 2155 goto out1; 2156 2157 if (!is_hybrid()) { 2158 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2159 if (err) 2160 goto out2; 2161 } else { 2162 u8 cpu_type = get_this_hybrid_cpu_type(); 2163 struct x86_hybrid_pmu *hybrid_pmu; 2164 int i, j; 2165 2166 if (!cpu_type && x86_pmu.get_hybrid_cpu_type) 2167 cpu_type = x86_pmu.get_hybrid_cpu_type(); 2168 2169 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2170 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2171 2172 hybrid_pmu->pmu = pmu; 2173 hybrid_pmu->pmu.type = -1; 2174 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2175 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS; 2176 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2177 2178 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2179 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2180 if (err) 2181 break; 2182 2183 if (cpu_type == hybrid_pmu->cpu_type) 2184 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id()); 2185 } 2186 2187 if (i < x86_pmu.num_hybrid_pmus) { 2188 for (j = 0; j < i; j++) 2189 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2190 pr_warn("Failed to register hybrid PMUs\n"); 2191 kfree(x86_pmu.hybrid_pmu); 2192 x86_pmu.hybrid_pmu = NULL; 2193 x86_pmu.num_hybrid_pmus = 0; 2194 goto out2; 2195 } 2196 } 2197 2198 return 0; 2199 2200 out2: 2201 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2202 out1: 2203 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2204 out: 2205 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2206 return err; 2207 } 2208 early_initcall(init_hw_perf_events); 2209 2210 static void x86_pmu_read(struct perf_event *event) 2211 { 2212 static_call(x86_pmu_read)(event); 2213 } 2214 2215 /* 2216 * Start group events scheduling transaction 2217 * Set the flag to make pmu::enable() not perform the 2218 * schedulability test, it will be performed at commit time 2219 * 2220 * We only support PERF_PMU_TXN_ADD transactions. Save the 2221 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2222 * transactions. 2223 */ 2224 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2225 { 2226 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2227 2228 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2229 2230 cpuc->txn_flags = txn_flags; 2231 if (txn_flags & ~PERF_PMU_TXN_ADD) 2232 return; 2233 2234 perf_pmu_disable(pmu); 2235 __this_cpu_write(cpu_hw_events.n_txn, 0); 2236 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2237 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2238 } 2239 2240 /* 2241 * Stop group events scheduling transaction 2242 * Clear the flag and pmu::enable() will perform the 2243 * schedulability test. 2244 */ 2245 static void x86_pmu_cancel_txn(struct pmu *pmu) 2246 { 2247 unsigned int txn_flags; 2248 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2249 2250 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2251 2252 txn_flags = cpuc->txn_flags; 2253 cpuc->txn_flags = 0; 2254 if (txn_flags & ~PERF_PMU_TXN_ADD) 2255 return; 2256 2257 /* 2258 * Truncate collected array by the number of events added in this 2259 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2260 */ 2261 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2262 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2263 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2264 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2265 perf_pmu_enable(pmu); 2266 } 2267 2268 /* 2269 * Commit group events scheduling transaction 2270 * Perform the group schedulability test as a whole 2271 * Return 0 if success 2272 * 2273 * Does not cancel the transaction on failure; expects the caller to do this. 2274 */ 2275 static int x86_pmu_commit_txn(struct pmu *pmu) 2276 { 2277 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2278 int assign[X86_PMC_IDX_MAX]; 2279 int n, ret; 2280 2281 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2282 2283 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2284 cpuc->txn_flags = 0; 2285 return 0; 2286 } 2287 2288 n = cpuc->n_events; 2289 2290 if (!x86_pmu_initialized()) 2291 return -EAGAIN; 2292 2293 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2294 if (ret) 2295 return ret; 2296 2297 /* 2298 * copy new assignment, now we know it is possible 2299 * will be used by hw_perf_enable() 2300 */ 2301 memcpy(cpuc->assign, assign, n*sizeof(int)); 2302 2303 cpuc->txn_flags = 0; 2304 perf_pmu_enable(pmu); 2305 return 0; 2306 } 2307 /* 2308 * a fake_cpuc is used to validate event groups. Due to 2309 * the extra reg logic, we need to also allocate a fake 2310 * per_core and per_cpu structure. Otherwise, group events 2311 * using extra reg may conflict without the kernel being 2312 * able to catch this when the last event gets added to 2313 * the group. 2314 */ 2315 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2316 { 2317 intel_cpuc_finish(cpuc); 2318 kfree(cpuc); 2319 } 2320 2321 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2322 { 2323 struct cpu_hw_events *cpuc; 2324 int cpu; 2325 2326 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2327 if (!cpuc) 2328 return ERR_PTR(-ENOMEM); 2329 cpuc->is_fake = 1; 2330 2331 if (is_hybrid()) { 2332 struct x86_hybrid_pmu *h_pmu; 2333 2334 h_pmu = hybrid_pmu(event_pmu); 2335 if (cpumask_empty(&h_pmu->supported_cpus)) 2336 goto error; 2337 cpu = cpumask_first(&h_pmu->supported_cpus); 2338 } else 2339 cpu = raw_smp_processor_id(); 2340 cpuc->pmu = event_pmu; 2341 2342 if (intel_cpuc_prepare(cpuc, cpu)) 2343 goto error; 2344 2345 return cpuc; 2346 error: 2347 free_fake_cpuc(cpuc); 2348 return ERR_PTR(-ENOMEM); 2349 } 2350 2351 /* 2352 * validate that we can schedule this event 2353 */ 2354 static int validate_event(struct perf_event *event) 2355 { 2356 struct cpu_hw_events *fake_cpuc; 2357 struct event_constraint *c; 2358 int ret = 0; 2359 2360 fake_cpuc = allocate_fake_cpuc(event->pmu); 2361 if (IS_ERR(fake_cpuc)) 2362 return PTR_ERR(fake_cpuc); 2363 2364 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2365 2366 if (!c || !c->weight) 2367 ret = -EINVAL; 2368 2369 if (x86_pmu.put_event_constraints) 2370 x86_pmu.put_event_constraints(fake_cpuc, event); 2371 2372 free_fake_cpuc(fake_cpuc); 2373 2374 return ret; 2375 } 2376 2377 /* 2378 * validate a single event group 2379 * 2380 * validation include: 2381 * - check events are compatible which each other 2382 * - events do not compete for the same counter 2383 * - number of events <= number of counters 2384 * 2385 * validation ensures the group can be loaded onto the 2386 * PMU if it was the only group available. 2387 */ 2388 static int validate_group(struct perf_event *event) 2389 { 2390 struct perf_event *leader = event->group_leader; 2391 struct cpu_hw_events *fake_cpuc; 2392 int ret = -EINVAL, n; 2393 2394 /* 2395 * Reject events from different hybrid PMUs. 2396 */ 2397 if (is_hybrid()) { 2398 struct perf_event *sibling; 2399 struct pmu *pmu = NULL; 2400 2401 if (is_x86_event(leader)) 2402 pmu = leader->pmu; 2403 2404 for_each_sibling_event(sibling, leader) { 2405 if (!is_x86_event(sibling)) 2406 continue; 2407 if (!pmu) 2408 pmu = sibling->pmu; 2409 else if (pmu != sibling->pmu) 2410 return ret; 2411 } 2412 } 2413 2414 fake_cpuc = allocate_fake_cpuc(event->pmu); 2415 if (IS_ERR(fake_cpuc)) 2416 return PTR_ERR(fake_cpuc); 2417 /* 2418 * the event is not yet connected with its 2419 * siblings therefore we must first collect 2420 * existing siblings, then add the new event 2421 * before we can simulate the scheduling 2422 */ 2423 n = collect_events(fake_cpuc, leader, true); 2424 if (n < 0) 2425 goto out; 2426 2427 fake_cpuc->n_events = n; 2428 n = collect_events(fake_cpuc, event, false); 2429 if (n < 0) 2430 goto out; 2431 2432 fake_cpuc->n_events = 0; 2433 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2434 2435 out: 2436 free_fake_cpuc(fake_cpuc); 2437 return ret; 2438 } 2439 2440 static int x86_pmu_event_init(struct perf_event *event) 2441 { 2442 struct x86_hybrid_pmu *pmu = NULL; 2443 int err; 2444 2445 if ((event->attr.type != event->pmu->type) && 2446 (event->attr.type != PERF_TYPE_HARDWARE) && 2447 (event->attr.type != PERF_TYPE_HW_CACHE)) 2448 return -ENOENT; 2449 2450 if (is_hybrid() && (event->cpu != -1)) { 2451 pmu = hybrid_pmu(event->pmu); 2452 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2453 return -ENOENT; 2454 } 2455 2456 err = __x86_pmu_event_init(event); 2457 if (!err) { 2458 if (event->group_leader != event) 2459 err = validate_group(event); 2460 else 2461 err = validate_event(event); 2462 } 2463 if (err) { 2464 if (event->destroy) 2465 event->destroy(event); 2466 } 2467 2468 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2469 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2470 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED; 2471 2472 return err; 2473 } 2474 2475 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2476 { 2477 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2478 return; 2479 2480 /* 2481 * This function relies on not being called concurrently in two 2482 * tasks in the same mm. Otherwise one task could observe 2483 * perf_rdpmc_allowed > 1 and return all the way back to 2484 * userspace with CR4.PCE clear while another task is still 2485 * doing on_each_cpu_mask() to propagate CR4.PCE. 2486 * 2487 * For now, this can't happen because all callers hold mmap_lock 2488 * for write. If this changes, we'll need a different solution. 2489 */ 2490 mmap_assert_write_locked(mm); 2491 2492 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2493 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2494 } 2495 2496 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2497 { 2498 2499 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2500 return; 2501 2502 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2503 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2504 } 2505 2506 static int x86_pmu_event_idx(struct perf_event *event) 2507 { 2508 struct hw_perf_event *hwc = &event->hw; 2509 2510 if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2511 return 0; 2512 2513 if (is_metric_idx(hwc->idx)) 2514 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2515 else 2516 return hwc->event_base_rdpmc + 1; 2517 } 2518 2519 static ssize_t get_attr_rdpmc(struct device *cdev, 2520 struct device_attribute *attr, 2521 char *buf) 2522 { 2523 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2524 } 2525 2526 static ssize_t set_attr_rdpmc(struct device *cdev, 2527 struct device_attribute *attr, 2528 const char *buf, size_t count) 2529 { 2530 unsigned long val; 2531 ssize_t ret; 2532 2533 ret = kstrtoul(buf, 0, &val); 2534 if (ret) 2535 return ret; 2536 2537 if (val > 2) 2538 return -EINVAL; 2539 2540 if (x86_pmu.attr_rdpmc_broken) 2541 return -ENOTSUPP; 2542 2543 if (val != x86_pmu.attr_rdpmc) { 2544 /* 2545 * Changing into or out of never available or always available, 2546 * aka perf-event-bypassing mode. This path is extremely slow, 2547 * but only root can trigger it, so it's okay. 2548 */ 2549 if (val == 0) 2550 static_branch_inc(&rdpmc_never_available_key); 2551 else if (x86_pmu.attr_rdpmc == 0) 2552 static_branch_dec(&rdpmc_never_available_key); 2553 2554 if (val == 2) 2555 static_branch_inc(&rdpmc_always_available_key); 2556 else if (x86_pmu.attr_rdpmc == 2) 2557 static_branch_dec(&rdpmc_always_available_key); 2558 2559 on_each_cpu(cr4_update_pce, NULL, 1); 2560 x86_pmu.attr_rdpmc = val; 2561 } 2562 2563 return count; 2564 } 2565 2566 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2567 2568 static struct attribute *x86_pmu_attrs[] = { 2569 &dev_attr_rdpmc.attr, 2570 NULL, 2571 }; 2572 2573 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2574 .attrs = x86_pmu_attrs, 2575 }; 2576 2577 static ssize_t max_precise_show(struct device *cdev, 2578 struct device_attribute *attr, 2579 char *buf) 2580 { 2581 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2582 } 2583 2584 static DEVICE_ATTR_RO(max_precise); 2585 2586 static struct attribute *x86_pmu_caps_attrs[] = { 2587 &dev_attr_max_precise.attr, 2588 NULL 2589 }; 2590 2591 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2592 .name = "caps", 2593 .attrs = x86_pmu_caps_attrs, 2594 }; 2595 2596 static const struct attribute_group *x86_pmu_attr_groups[] = { 2597 &x86_pmu_attr_group, 2598 &x86_pmu_format_group, 2599 &x86_pmu_events_group, 2600 &x86_pmu_caps_group, 2601 NULL, 2602 }; 2603 2604 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 2605 { 2606 static_call_cond(x86_pmu_sched_task)(ctx, sched_in); 2607 } 2608 2609 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev, 2610 struct perf_event_context *next) 2611 { 2612 static_call_cond(x86_pmu_swap_task_ctx)(prev, next); 2613 } 2614 2615 void perf_check_microcode(void) 2616 { 2617 if (x86_pmu.check_microcode) 2618 x86_pmu.check_microcode(); 2619 } 2620 2621 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2622 { 2623 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2624 return -EINVAL; 2625 2626 if (value && x86_pmu.limit_period) { 2627 if (x86_pmu.limit_period(event, value) > value) 2628 return -EINVAL; 2629 } 2630 2631 return 0; 2632 } 2633 2634 static int x86_pmu_aux_output_match(struct perf_event *event) 2635 { 2636 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2637 return 0; 2638 2639 if (x86_pmu.aux_output_match) 2640 return x86_pmu.aux_output_match(event); 2641 2642 return 0; 2643 } 2644 2645 static int x86_pmu_filter_match(struct perf_event *event) 2646 { 2647 if (x86_pmu.filter_match) 2648 return x86_pmu.filter_match(event); 2649 2650 return 1; 2651 } 2652 2653 static struct pmu pmu = { 2654 .pmu_enable = x86_pmu_enable, 2655 .pmu_disable = x86_pmu_disable, 2656 2657 .attr_groups = x86_pmu_attr_groups, 2658 2659 .event_init = x86_pmu_event_init, 2660 2661 .event_mapped = x86_pmu_event_mapped, 2662 .event_unmapped = x86_pmu_event_unmapped, 2663 2664 .add = x86_pmu_add, 2665 .del = x86_pmu_del, 2666 .start = x86_pmu_start, 2667 .stop = x86_pmu_stop, 2668 .read = x86_pmu_read, 2669 2670 .start_txn = x86_pmu_start_txn, 2671 .cancel_txn = x86_pmu_cancel_txn, 2672 .commit_txn = x86_pmu_commit_txn, 2673 2674 .event_idx = x86_pmu_event_idx, 2675 .sched_task = x86_pmu_sched_task, 2676 .swap_task_ctx = x86_pmu_swap_task_ctx, 2677 .check_period = x86_pmu_check_period, 2678 2679 .aux_output_match = x86_pmu_aux_output_match, 2680 2681 .filter_match = x86_pmu_filter_match, 2682 }; 2683 2684 void arch_perf_update_userpage(struct perf_event *event, 2685 struct perf_event_mmap_page *userpg, u64 now) 2686 { 2687 struct cyc2ns_data data; 2688 u64 offset; 2689 2690 userpg->cap_user_time = 0; 2691 userpg->cap_user_time_zero = 0; 2692 userpg->cap_user_rdpmc = 2693 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED); 2694 userpg->pmc_width = x86_pmu.cntval_bits; 2695 2696 if (!using_native_sched_clock() || !sched_clock_stable()) 2697 return; 2698 2699 cyc2ns_read_begin(&data); 2700 2701 offset = data.cyc2ns_offset + __sched_clock_offset; 2702 2703 /* 2704 * Internal timekeeping for enabled/running/stopped times 2705 * is always in the local_clock domain. 2706 */ 2707 userpg->cap_user_time = 1; 2708 userpg->time_mult = data.cyc2ns_mul; 2709 userpg->time_shift = data.cyc2ns_shift; 2710 userpg->time_offset = offset - now; 2711 2712 /* 2713 * cap_user_time_zero doesn't make sense when we're using a different 2714 * time base for the records. 2715 */ 2716 if (!event->attr.use_clockid) { 2717 userpg->cap_user_time_zero = 1; 2718 userpg->time_zero = offset; 2719 } 2720 2721 cyc2ns_read_end(); 2722 } 2723 2724 /* 2725 * Determine whether the regs were taken from an irq/exception handler rather 2726 * than from perf_arch_fetch_caller_regs(). 2727 */ 2728 static bool perf_hw_regs(struct pt_regs *regs) 2729 { 2730 return regs->flags & X86_EFLAGS_FIXED; 2731 } 2732 2733 void 2734 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2735 { 2736 struct unwind_state state; 2737 unsigned long addr; 2738 2739 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2740 /* TODO: We don't support guest os callchain now */ 2741 return; 2742 } 2743 2744 if (perf_callchain_store(entry, regs->ip)) 2745 return; 2746 2747 if (perf_hw_regs(regs)) 2748 unwind_start(&state, current, regs, NULL); 2749 else 2750 unwind_start(&state, current, NULL, (void *)regs->sp); 2751 2752 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2753 addr = unwind_get_return_address(&state); 2754 if (!addr || perf_callchain_store(entry, addr)) 2755 return; 2756 } 2757 } 2758 2759 static inline int 2760 valid_user_frame(const void __user *fp, unsigned long size) 2761 { 2762 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 2763 } 2764 2765 static unsigned long get_segment_base(unsigned int segment) 2766 { 2767 struct desc_struct *desc; 2768 unsigned int idx = segment >> 3; 2769 2770 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2771 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2772 struct ldt_struct *ldt; 2773 2774 /* IRQs are off, so this synchronizes with smp_store_release */ 2775 ldt = READ_ONCE(current->active_mm->context.ldt); 2776 if (!ldt || idx >= ldt->nr_entries) 2777 return 0; 2778 2779 desc = &ldt->entries[idx]; 2780 #else 2781 return 0; 2782 #endif 2783 } else { 2784 if (idx >= GDT_ENTRIES) 2785 return 0; 2786 2787 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2788 } 2789 2790 return get_desc_base(desc); 2791 } 2792 2793 #ifdef CONFIG_IA32_EMULATION 2794 2795 #include <linux/compat.h> 2796 2797 static inline int 2798 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2799 { 2800 /* 32-bit process in 64-bit kernel. */ 2801 unsigned long ss_base, cs_base; 2802 struct stack_frame_ia32 frame; 2803 const struct stack_frame_ia32 __user *fp; 2804 2805 if (user_64bit_mode(regs)) 2806 return 0; 2807 2808 cs_base = get_segment_base(regs->cs); 2809 ss_base = get_segment_base(regs->ss); 2810 2811 fp = compat_ptr(ss_base + regs->bp); 2812 pagefault_disable(); 2813 while (entry->nr < entry->max_stack) { 2814 if (!valid_user_frame(fp, sizeof(frame))) 2815 break; 2816 2817 if (__get_user(frame.next_frame, &fp->next_frame)) 2818 break; 2819 if (__get_user(frame.return_address, &fp->return_address)) 2820 break; 2821 2822 perf_callchain_store(entry, cs_base + frame.return_address); 2823 fp = compat_ptr(ss_base + frame.next_frame); 2824 } 2825 pagefault_enable(); 2826 return 1; 2827 } 2828 #else 2829 static inline int 2830 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2831 { 2832 return 0; 2833 } 2834 #endif 2835 2836 void 2837 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2838 { 2839 struct stack_frame frame; 2840 const struct stack_frame __user *fp; 2841 2842 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2843 /* TODO: We don't support guest os callchain now */ 2844 return; 2845 } 2846 2847 /* 2848 * We don't know what to do with VM86 stacks.. ignore them for now. 2849 */ 2850 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2851 return; 2852 2853 fp = (void __user *)regs->bp; 2854 2855 perf_callchain_store(entry, regs->ip); 2856 2857 if (!nmi_uaccess_okay()) 2858 return; 2859 2860 if (perf_callchain_user32(regs, entry)) 2861 return; 2862 2863 pagefault_disable(); 2864 while (entry->nr < entry->max_stack) { 2865 if (!valid_user_frame(fp, sizeof(frame))) 2866 break; 2867 2868 if (__get_user(frame.next_frame, &fp->next_frame)) 2869 break; 2870 if (__get_user(frame.return_address, &fp->return_address)) 2871 break; 2872 2873 perf_callchain_store(entry, frame.return_address); 2874 fp = (void __user *)frame.next_frame; 2875 } 2876 pagefault_enable(); 2877 } 2878 2879 /* 2880 * Deal with code segment offsets for the various execution modes: 2881 * 2882 * VM86 - the good olde 16 bit days, where the linear address is 2883 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2884 * 2885 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2886 * to figure out what the 32bit base address is. 2887 * 2888 * X32 - has TIF_X32 set, but is running in x86_64 2889 * 2890 * X86_64 - CS,DS,SS,ES are all zero based. 2891 */ 2892 static unsigned long code_segment_base(struct pt_regs *regs) 2893 { 2894 /* 2895 * For IA32 we look at the GDT/LDT segment base to convert the 2896 * effective IP to a linear address. 2897 */ 2898 2899 #ifdef CONFIG_X86_32 2900 /* 2901 * If we are in VM86 mode, add the segment offset to convert to a 2902 * linear address. 2903 */ 2904 if (regs->flags & X86_VM_MASK) 2905 return 0x10 * regs->cs; 2906 2907 if (user_mode(regs) && regs->cs != __USER_CS) 2908 return get_segment_base(regs->cs); 2909 #else 2910 if (user_mode(regs) && !user_64bit_mode(regs) && 2911 regs->cs != __USER32_CS) 2912 return get_segment_base(regs->cs); 2913 #endif 2914 return 0; 2915 } 2916 2917 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2918 { 2919 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) 2920 return perf_guest_cbs->get_guest_ip(); 2921 2922 return regs->ip + code_segment_base(regs); 2923 } 2924 2925 unsigned long perf_misc_flags(struct pt_regs *regs) 2926 { 2927 int misc = 0; 2928 2929 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2930 if (perf_guest_cbs->is_user_mode()) 2931 misc |= PERF_RECORD_MISC_GUEST_USER; 2932 else 2933 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2934 } else { 2935 if (user_mode(regs)) 2936 misc |= PERF_RECORD_MISC_USER; 2937 else 2938 misc |= PERF_RECORD_MISC_KERNEL; 2939 } 2940 2941 if (regs->flags & PERF_EFLAGS_EXACT) 2942 misc |= PERF_RECORD_MISC_EXACT_IP; 2943 2944 return misc; 2945 } 2946 2947 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2948 { 2949 cap->version = x86_pmu.version; 2950 /* 2951 * KVM doesn't support the hybrid PMU yet. 2952 * Return the common value in global x86_pmu, 2953 * which available for all cores. 2954 */ 2955 cap->num_counters_gp = x86_pmu.num_counters; 2956 cap->num_counters_fixed = x86_pmu.num_counters_fixed; 2957 cap->bit_width_gp = x86_pmu.cntval_bits; 2958 cap->bit_width_fixed = x86_pmu.cntval_bits; 2959 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2960 cap->events_mask_len = x86_pmu.events_mask_len; 2961 } 2962 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2963