xref: /openbmc/linux/arch/x86/events/core.c (revision a44e4f3a)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53 
54 u64 __read_mostly hw_cache_event_ids
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 				[PERF_COUNT_HW_CACHE_MAX]
60 				[PERF_COUNT_HW_CACHE_OP_MAX]
61 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
62 
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 	struct hw_perf_event *hwc = &event->hw;
71 	int shift = 64 - x86_pmu.cntval_bits;
72 	u64 prev_raw_count, new_raw_count;
73 	int idx = hwc->idx;
74 	u64 delta;
75 
76 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 		/* Check if the extra msrs can be safely accessed*/
130 		if (!er->extra_msr_access)
131 			return -ENXIO;
132 
133 		reg->idx = er->idx;
134 		reg->config = event->attr.config1;
135 		reg->reg = er->msr;
136 		break;
137 	}
138 	return 0;
139 }
140 
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144 
145 #ifdef CONFIG_X86_LOCAL_APIC
146 
147 static bool reserve_pmc_hardware(void)
148 {
149 	int i;
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 			goto perfctr_fail;
154 	}
155 
156 	for (i = 0; i < x86_pmu.num_counters; i++) {
157 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 			goto eventsel_fail;
159 	}
160 
161 	return true;
162 
163 eventsel_fail:
164 	for (i--; i >= 0; i--)
165 		release_evntsel_nmi(x86_pmu_config_addr(i));
166 
167 	i = x86_pmu.num_counters;
168 
169 perfctr_fail:
170 	for (i--; i >= 0; i--)
171 		release_perfctr_nmi(x86_pmu_event_addr(i));
172 
173 	return false;
174 }
175 
176 static void release_pmc_hardware(void)
177 {
178 	int i;
179 
180 	for (i = 0; i < x86_pmu.num_counters; i++) {
181 		release_perfctr_nmi(x86_pmu_event_addr(i));
182 		release_evntsel_nmi(x86_pmu_config_addr(i));
183 	}
184 }
185 
186 #else
187 
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190 
191 #endif
192 
193 static bool check_hw_exists(void)
194 {
195 	u64 val, val_fail = -1, val_new= ~0;
196 	int i, reg, reg_fail = -1, ret = 0;
197 	int bios_fail = 0;
198 	int reg_safe = -1;
199 
200 	/*
201 	 * Check to see if the BIOS enabled any of the counters, if so
202 	 * complain and bail.
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		reg = x86_pmu_config_addr(i);
206 		ret = rdmsrl_safe(reg, &val);
207 		if (ret)
208 			goto msr_fail;
209 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 			bios_fail = 1;
211 			val_fail = val;
212 			reg_fail = reg;
213 		} else {
214 			reg_safe = i;
215 		}
216 	}
217 
218 	if (x86_pmu.num_counters_fixed) {
219 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 		ret = rdmsrl_safe(reg, &val);
221 		if (ret)
222 			goto msr_fail;
223 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 			if (val & (0x03 << i*4)) {
225 				bios_fail = 1;
226 				val_fail = val;
227 				reg_fail = reg;
228 			}
229 		}
230 	}
231 
232 	/*
233 	 * If all the counters are enabled, the below test will always
234 	 * fail.  The tools will also become useless in this scenario.
235 	 * Just fail and disable the hardware counters.
236 	 */
237 
238 	if (reg_safe == -1) {
239 		reg = reg_safe;
240 		goto msr_fail;
241 	}
242 
243 	/*
244 	 * Read the current value, change it and read it back to see if it
245 	 * matches, this is needed to detect certain hardware emulators
246 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 	 */
248 	reg = x86_pmu_event_addr(reg_safe);
249 	if (rdmsrl_safe(reg, &val))
250 		goto msr_fail;
251 	val ^= 0xffffUL;
252 	ret = wrmsrl_safe(reg, val);
253 	ret |= rdmsrl_safe(reg, &val_new);
254 	if (ret || val != val_new)
255 		goto msr_fail;
256 
257 	/*
258 	 * We still allow the PMU driver to operate:
259 	 */
260 	if (bios_fail) {
261 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 			      reg_fail, val_fail);
264 	}
265 
266 	return true;
267 
268 msr_fail:
269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 		pr_cont("PMU not available due to virtualization, using software events only.\n");
271 	} else {
272 		pr_cont("Broken PMU hardware detected, using software events only.\n");
273 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 		       reg, val_new);
275 	}
276 
277 	return false;
278 }
279 
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 	x86_release_hardware();
283 	atomic_dec(&active_events);
284 }
285 
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 	hw_perf_event_destroy(event);
289 
290 	/* undo the lbr/bts event accounting */
291 	x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293 
294 static inline int x86_pmu_initialized(void)
295 {
296 	return x86_pmu.handle_irq != NULL;
297 }
298 
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	unsigned int cache_type, cache_op, cache_result;
304 	u64 config, val;
305 
306 	config = attr->config;
307 
308 	cache_type = (config >> 0) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 
313 	cache_op = (config >>  8) & 0xff;
314 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 		return -EINVAL;
316 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 
318 	cache_result = (config >> 16) & 0xff;
319 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 		return -EINVAL;
321 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 
323 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 
325 	if (val == 0)
326 		return -ENOENT;
327 
328 	if (val == -1)
329 		return -EINVAL;
330 
331 	hwc->config |= val;
332 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 	return x86_pmu_extra_regs(val, event);
334 }
335 
336 int x86_reserve_hardware(void)
337 {
338 	int err = 0;
339 
340 	if (!atomic_inc_not_zero(&pmc_refcount)) {
341 		mutex_lock(&pmc_reserve_mutex);
342 		if (atomic_read(&pmc_refcount) == 0) {
343 			if (!reserve_pmc_hardware())
344 				err = -EBUSY;
345 			else
346 				reserve_ds_buffers();
347 		}
348 		if (!err)
349 			atomic_inc(&pmc_refcount);
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 
353 	return err;
354 }
355 
356 void x86_release_hardware(void)
357 {
358 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 		release_pmc_hardware();
360 		release_ds_buffers();
361 		mutex_unlock(&pmc_reserve_mutex);
362 	}
363 }
364 
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371 	int i;
372 
373 	/*
374 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 	 * LBR and BTS are still mutually exclusive.
376 	 */
377 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 		return 0;
379 
380 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 		mutex_lock(&pmc_reserve_mutex);
382 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 				goto fail_unlock;
385 		}
386 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 		mutex_unlock(&pmc_reserve_mutex);
388 	}
389 
390 	atomic_inc(&active_events);
391 	return 0;
392 
393 fail_unlock:
394 	mutex_unlock(&pmc_reserve_mutex);
395 	return -EBUSY;
396 }
397 
398 void x86_del_exclusive(unsigned int what)
399 {
400 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 		return;
402 
403 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 	atomic_dec(&active_events);
405 }
406 
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409 	struct perf_event_attr *attr = &event->attr;
410 	struct hw_perf_event *hwc = &event->hw;
411 	u64 config;
412 
413 	if (!is_sampling_event(event)) {
414 		hwc->sample_period = x86_pmu.max_period;
415 		hwc->last_period = hwc->sample_period;
416 		local64_set(&hwc->period_left, hwc->sample_period);
417 	}
418 
419 	if (attr->type == PERF_TYPE_RAW)
420 		return x86_pmu_extra_regs(event->attr.config, event);
421 
422 	if (attr->type == PERF_TYPE_HW_CACHE)
423 		return set_ext_hw_attr(hwc, event);
424 
425 	if (attr->config >= x86_pmu.max_events)
426 		return -EINVAL;
427 
428 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429 
430 	/*
431 	 * The generic map:
432 	 */
433 	config = x86_pmu.event_map(attr->config);
434 
435 	if (config == 0)
436 		return -ENOENT;
437 
438 	if (config == -1LL)
439 		return -EINVAL;
440 
441 	hwc->config |= config;
442 
443 	return 0;
444 }
445 
446 /*
447  * check that branch_sample_type is compatible with
448  * settings needed for precise_ip > 1 which implies
449  * using the LBR to capture ALL taken branches at the
450  * priv levels of the measurement
451  */
452 static inline int precise_br_compat(struct perf_event *event)
453 {
454 	u64 m = event->attr.branch_sample_type;
455 	u64 b = 0;
456 
457 	/* must capture all branches */
458 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
459 		return 0;
460 
461 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462 
463 	if (!event->attr.exclude_user)
464 		b |= PERF_SAMPLE_BRANCH_USER;
465 
466 	if (!event->attr.exclude_kernel)
467 		b |= PERF_SAMPLE_BRANCH_KERNEL;
468 
469 	/*
470 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471 	 */
472 
473 	return m == b;
474 }
475 
476 int x86_pmu_max_precise(void)
477 {
478 	int precise = 0;
479 
480 	/* Support for constant skid */
481 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 		precise++;
483 
484 		/* Support for IP fixup */
485 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486 			precise++;
487 
488 		if (x86_pmu.pebs_prec_dist)
489 			precise++;
490 	}
491 	return precise;
492 }
493 
494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496 	if (event->attr.precise_ip) {
497 		int precise = x86_pmu_max_precise();
498 
499 		if (event->attr.precise_ip > precise)
500 			return -EOPNOTSUPP;
501 
502 		/* There's no sense in having PEBS for non sampling events: */
503 		if (!is_sampling_event(event))
504 			return -EINVAL;
505 	}
506 	/*
507 	 * check that PEBS LBR correction does not conflict with
508 	 * whatever the user is asking with attr->branch_sample_type
509 	 */
510 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 		u64 *br_type = &event->attr.branch_sample_type;
512 
513 		if (has_branch_stack(event)) {
514 			if (!precise_br_compat(event))
515 				return -EOPNOTSUPP;
516 
517 			/* branch_sample_type is compatible */
518 
519 		} else {
520 			/*
521 			 * user did not specify  branch_sample_type
522 			 *
523 			 * For PEBS fixups, we capture all
524 			 * the branches at the priv level of the
525 			 * event.
526 			 */
527 			*br_type = PERF_SAMPLE_BRANCH_ANY;
528 
529 			if (!event->attr.exclude_user)
530 				*br_type |= PERF_SAMPLE_BRANCH_USER;
531 
532 			if (!event->attr.exclude_kernel)
533 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534 		}
535 	}
536 
537 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 		event->attach_state |= PERF_ATTACH_TASK_DATA;
539 
540 	/*
541 	 * Generate PMC IRQs:
542 	 * (keep 'enabled' bit clear for now)
543 	 */
544 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545 
546 	/*
547 	 * Count user and OS events unless requested not to
548 	 */
549 	if (!event->attr.exclude_user)
550 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 	if (!event->attr.exclude_kernel)
552 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553 
554 	if (event->attr.type == PERF_TYPE_RAW)
555 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556 
557 	if (event->attr.sample_period && x86_pmu.limit_period) {
558 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 				event->attr.sample_period)
560 			return -EINVAL;
561 	}
562 
563 	/* sample_regs_user never support XMM registers */
564 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
565 		return -EINVAL;
566 	/*
567 	 * Besides the general purpose registers, XMM registers may
568 	 * be collected in PEBS on some platforms, e.g. Icelake
569 	 */
570 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
571 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
572 			return -EINVAL;
573 
574 		if (!event->attr.precise_ip)
575 			return -EINVAL;
576 	}
577 
578 	return x86_setup_perfctr(event);
579 }
580 
581 /*
582  * Setup the hardware configuration for a given attr_type
583  */
584 static int __x86_pmu_event_init(struct perf_event *event)
585 {
586 	int err;
587 
588 	if (!x86_pmu_initialized())
589 		return -ENODEV;
590 
591 	err = x86_reserve_hardware();
592 	if (err)
593 		return err;
594 
595 	atomic_inc(&active_events);
596 	event->destroy = hw_perf_event_destroy;
597 
598 	event->hw.idx = -1;
599 	event->hw.last_cpu = -1;
600 	event->hw.last_tag = ~0ULL;
601 
602 	/* mark unused */
603 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
604 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
605 
606 	return x86_pmu.hw_config(event);
607 }
608 
609 void x86_pmu_disable_all(void)
610 {
611 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612 	int idx;
613 
614 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
615 		u64 val;
616 
617 		if (!test_bit(idx, cpuc->active_mask))
618 			continue;
619 		rdmsrl(x86_pmu_config_addr(idx), val);
620 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
621 			continue;
622 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
623 		wrmsrl(x86_pmu_config_addr(idx), val);
624 	}
625 }
626 
627 /*
628  * There may be PMI landing after enabled=0. The PMI hitting could be before or
629  * after disable_all.
630  *
631  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
632  * It will not be re-enabled in the NMI handler again, because enabled=0. After
633  * handling the NMI, disable_all will be called, which will not change the
634  * state either. If PMI hits after disable_all, the PMU is already disabled
635  * before entering NMI handler. The NMI handler will not change the state
636  * either.
637  *
638  * So either situation is harmless.
639  */
640 static void x86_pmu_disable(struct pmu *pmu)
641 {
642 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
643 
644 	if (!x86_pmu_initialized())
645 		return;
646 
647 	if (!cpuc->enabled)
648 		return;
649 
650 	cpuc->n_added = 0;
651 	cpuc->enabled = 0;
652 	barrier();
653 
654 	x86_pmu.disable_all();
655 }
656 
657 void x86_pmu_enable_all(int added)
658 {
659 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
660 	int idx;
661 
662 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
663 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
664 
665 		if (!test_bit(idx, cpuc->active_mask))
666 			continue;
667 
668 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
669 	}
670 }
671 
672 static struct pmu pmu;
673 
674 static inline int is_x86_event(struct perf_event *event)
675 {
676 	return event->pmu == &pmu;
677 }
678 
679 struct pmu *x86_get_pmu(void)
680 {
681 	return &pmu;
682 }
683 /*
684  * Event scheduler state:
685  *
686  * Assign events iterating over all events and counters, beginning
687  * with events with least weights first. Keep the current iterator
688  * state in struct sched_state.
689  */
690 struct sched_state {
691 	int	weight;
692 	int	event;		/* event index */
693 	int	counter;	/* counter index */
694 	int	unassigned;	/* number of events to be assigned left */
695 	int	nr_gp;		/* number of GP counters used */
696 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
697 };
698 
699 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
700 #define	SCHED_STATES_MAX	2
701 
702 struct perf_sched {
703 	int			max_weight;
704 	int			max_events;
705 	int			max_gp;
706 	int			saved_states;
707 	struct event_constraint	**constraints;
708 	struct sched_state	state;
709 	struct sched_state	saved[SCHED_STATES_MAX];
710 };
711 
712 /*
713  * Initialize interator that runs through all events and counters.
714  */
715 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
716 			    int num, int wmin, int wmax, int gpmax)
717 {
718 	int idx;
719 
720 	memset(sched, 0, sizeof(*sched));
721 	sched->max_events	= num;
722 	sched->max_weight	= wmax;
723 	sched->max_gp		= gpmax;
724 	sched->constraints	= constraints;
725 
726 	for (idx = 0; idx < num; idx++) {
727 		if (constraints[idx]->weight == wmin)
728 			break;
729 	}
730 
731 	sched->state.event	= idx;		/* start with min weight */
732 	sched->state.weight	= wmin;
733 	sched->state.unassigned	= num;
734 }
735 
736 static void perf_sched_save_state(struct perf_sched *sched)
737 {
738 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
739 		return;
740 
741 	sched->saved[sched->saved_states] = sched->state;
742 	sched->saved_states++;
743 }
744 
745 static bool perf_sched_restore_state(struct perf_sched *sched)
746 {
747 	if (!sched->saved_states)
748 		return false;
749 
750 	sched->saved_states--;
751 	sched->state = sched->saved[sched->saved_states];
752 
753 	/* continue with next counter: */
754 	clear_bit(sched->state.counter++, sched->state.used);
755 
756 	return true;
757 }
758 
759 /*
760  * Select a counter for the current event to schedule. Return true on
761  * success.
762  */
763 static bool __perf_sched_find_counter(struct perf_sched *sched)
764 {
765 	struct event_constraint *c;
766 	int idx;
767 
768 	if (!sched->state.unassigned)
769 		return false;
770 
771 	if (sched->state.event >= sched->max_events)
772 		return false;
773 
774 	c = sched->constraints[sched->state.event];
775 	/* Prefer fixed purpose counters */
776 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
777 		idx = INTEL_PMC_IDX_FIXED;
778 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
779 			if (!__test_and_set_bit(idx, sched->state.used))
780 				goto done;
781 		}
782 	}
783 
784 	/* Grab the first unused counter starting with idx */
785 	idx = sched->state.counter;
786 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
787 		if (!__test_and_set_bit(idx, sched->state.used)) {
788 			if (sched->state.nr_gp++ >= sched->max_gp)
789 				return false;
790 
791 			goto done;
792 		}
793 	}
794 
795 	return false;
796 
797 done:
798 	sched->state.counter = idx;
799 
800 	if (c->overlap)
801 		perf_sched_save_state(sched);
802 
803 	return true;
804 }
805 
806 static bool perf_sched_find_counter(struct perf_sched *sched)
807 {
808 	while (!__perf_sched_find_counter(sched)) {
809 		if (!perf_sched_restore_state(sched))
810 			return false;
811 	}
812 
813 	return true;
814 }
815 
816 /*
817  * Go through all unassigned events and find the next one to schedule.
818  * Take events with the least weight first. Return true on success.
819  */
820 static bool perf_sched_next_event(struct perf_sched *sched)
821 {
822 	struct event_constraint *c;
823 
824 	if (!sched->state.unassigned || !--sched->state.unassigned)
825 		return false;
826 
827 	do {
828 		/* next event */
829 		sched->state.event++;
830 		if (sched->state.event >= sched->max_events) {
831 			/* next weight */
832 			sched->state.event = 0;
833 			sched->state.weight++;
834 			if (sched->state.weight > sched->max_weight)
835 				return false;
836 		}
837 		c = sched->constraints[sched->state.event];
838 	} while (c->weight != sched->state.weight);
839 
840 	sched->state.counter = 0;	/* start with first counter */
841 
842 	return true;
843 }
844 
845 /*
846  * Assign a counter for each event.
847  */
848 int perf_assign_events(struct event_constraint **constraints, int n,
849 			int wmin, int wmax, int gpmax, int *assign)
850 {
851 	struct perf_sched sched;
852 
853 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
854 
855 	do {
856 		if (!perf_sched_find_counter(&sched))
857 			break;	/* failed */
858 		if (assign)
859 			assign[sched.state.event] = sched.state.counter;
860 	} while (perf_sched_next_event(&sched));
861 
862 	return sched.state.unassigned;
863 }
864 EXPORT_SYMBOL_GPL(perf_assign_events);
865 
866 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
867 {
868 	struct event_constraint *c;
869 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
870 	struct perf_event *e;
871 	int n0, i, wmin, wmax, unsched = 0;
872 	struct hw_perf_event *hwc;
873 
874 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
875 
876 	/*
877 	 * Compute the number of events already present; see x86_pmu_add(),
878 	 * validate_group() and x86_pmu_commit_txn(). For the former two
879 	 * cpuc->n_events hasn't been updated yet, while for the latter
880 	 * cpuc->n_txn contains the number of events added in the current
881 	 * transaction.
882 	 */
883 	n0 = cpuc->n_events;
884 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
885 		n0 -= cpuc->n_txn;
886 
887 	if (x86_pmu.start_scheduling)
888 		x86_pmu.start_scheduling(cpuc);
889 
890 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
891 		c = cpuc->event_constraint[i];
892 
893 		/*
894 		 * Previously scheduled events should have a cached constraint,
895 		 * while new events should not have one.
896 		 */
897 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
898 
899 		/*
900 		 * Request constraints for new events; or for those events that
901 		 * have a dynamic constraint -- for those the constraint can
902 		 * change due to external factors (sibling state, allow_tfa).
903 		 */
904 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
905 			c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
906 			cpuc->event_constraint[i] = c;
907 		}
908 
909 		wmin = min(wmin, c->weight);
910 		wmax = max(wmax, c->weight);
911 	}
912 
913 	/*
914 	 * fastpath, try to reuse previous register
915 	 */
916 	for (i = 0; i < n; i++) {
917 		hwc = &cpuc->event_list[i]->hw;
918 		c = cpuc->event_constraint[i];
919 
920 		/* never assigned */
921 		if (hwc->idx == -1)
922 			break;
923 
924 		/* constraint still honored */
925 		if (!test_bit(hwc->idx, c->idxmsk))
926 			break;
927 
928 		/* not already used */
929 		if (test_bit(hwc->idx, used_mask))
930 			break;
931 
932 		__set_bit(hwc->idx, used_mask);
933 		if (assign)
934 			assign[i] = hwc->idx;
935 	}
936 
937 	/* slow path */
938 	if (i != n) {
939 		int gpmax = x86_pmu.num_counters;
940 
941 		/*
942 		 * Do not allow scheduling of more than half the available
943 		 * generic counters.
944 		 *
945 		 * This helps avoid counter starvation of sibling thread by
946 		 * ensuring at most half the counters cannot be in exclusive
947 		 * mode. There is no designated counters for the limits. Any
948 		 * N/2 counters can be used. This helps with events with
949 		 * specific counter constraints.
950 		 */
951 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
952 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
953 			gpmax /= 2;
954 
955 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
956 					     wmax, gpmax, assign);
957 	}
958 
959 	/*
960 	 * In case of success (unsched = 0), mark events as committed,
961 	 * so we do not put_constraint() in case new events are added
962 	 * and fail to be scheduled
963 	 *
964 	 * We invoke the lower level commit callback to lock the resource
965 	 *
966 	 * We do not need to do all of this in case we are called to
967 	 * validate an event group (assign == NULL)
968 	 */
969 	if (!unsched && assign) {
970 		for (i = 0; i < n; i++) {
971 			e = cpuc->event_list[i];
972 			if (x86_pmu.commit_scheduling)
973 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
974 		}
975 	} else {
976 		for (i = n0; i < n; i++) {
977 			e = cpuc->event_list[i];
978 
979 			/*
980 			 * release events that failed scheduling
981 			 */
982 			if (x86_pmu.put_event_constraints)
983 				x86_pmu.put_event_constraints(cpuc, e);
984 
985 			cpuc->event_constraint[i] = NULL;
986 		}
987 	}
988 
989 	if (x86_pmu.stop_scheduling)
990 		x86_pmu.stop_scheduling(cpuc);
991 
992 	return unsched ? -EINVAL : 0;
993 }
994 
995 /*
996  * dogrp: true if must collect siblings events (group)
997  * returns total number of events and error code
998  */
999 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000 {
1001 	struct perf_event *event;
1002 	int n, max_count;
1003 
1004 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1005 
1006 	/* current number of events already accepted */
1007 	n = cpuc->n_events;
1008 	if (!cpuc->n_events)
1009 		cpuc->pebs_output = 0;
1010 
1011 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1012 		/*
1013 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1014 		 * away, the group was broken down and this singleton event
1015 		 * can't schedule any more.
1016 		 */
1017 		if (is_pebs_pt(leader) && !leader->aux_event)
1018 			return -EINVAL;
1019 
1020 		/*
1021 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1022 		 */
1023 		if (cpuc->pebs_output &&
1024 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1025 			return -EINVAL;
1026 
1027 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1028 	}
1029 
1030 	if (is_x86_event(leader)) {
1031 		if (n >= max_count)
1032 			return -EINVAL;
1033 		cpuc->event_list[n] = leader;
1034 		n++;
1035 	}
1036 	if (!dogrp)
1037 		return n;
1038 
1039 	for_each_sibling_event(event, leader) {
1040 		if (!is_x86_event(event) ||
1041 		    event->state <= PERF_EVENT_STATE_OFF)
1042 			continue;
1043 
1044 		if (n >= max_count)
1045 			return -EINVAL;
1046 
1047 		cpuc->event_list[n] = event;
1048 		n++;
1049 	}
1050 	return n;
1051 }
1052 
1053 static inline void x86_assign_hw_event(struct perf_event *event,
1054 				struct cpu_hw_events *cpuc, int i)
1055 {
1056 	struct hw_perf_event *hwc = &event->hw;
1057 
1058 	hwc->idx = cpuc->assign[i];
1059 	hwc->last_cpu = smp_processor_id();
1060 	hwc->last_tag = ++cpuc->tags[i];
1061 
1062 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1063 		hwc->config_base = 0;
1064 		hwc->event_base	= 0;
1065 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1066 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1067 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1068 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1069 	} else {
1070 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1071 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1072 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1073 	}
1074 }
1075 
1076 /**
1077  * x86_perf_rdpmc_index - Return PMC counter used for event
1078  * @event: the perf_event to which the PMC counter was assigned
1079  *
1080  * The counter assigned to this performance event may change if interrupts
1081  * are enabled. This counter should thus never be used while interrupts are
1082  * enabled. Before this function is used to obtain the assigned counter the
1083  * event should be checked for validity using, for example,
1084  * perf_event_read_local(), within the same interrupt disabled section in
1085  * which this counter is planned to be used.
1086  *
1087  * Return: The index of the performance monitoring counter assigned to
1088  * @perf_event.
1089  */
1090 int x86_perf_rdpmc_index(struct perf_event *event)
1091 {
1092 	lockdep_assert_irqs_disabled();
1093 
1094 	return event->hw.event_base_rdpmc;
1095 }
1096 
1097 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1098 					struct cpu_hw_events *cpuc,
1099 					int i)
1100 {
1101 	return hwc->idx == cpuc->assign[i] &&
1102 		hwc->last_cpu == smp_processor_id() &&
1103 		hwc->last_tag == cpuc->tags[i];
1104 }
1105 
1106 static void x86_pmu_start(struct perf_event *event, int flags);
1107 
1108 static void x86_pmu_enable(struct pmu *pmu)
1109 {
1110 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1111 	struct perf_event *event;
1112 	struct hw_perf_event *hwc;
1113 	int i, added = cpuc->n_added;
1114 
1115 	if (!x86_pmu_initialized())
1116 		return;
1117 
1118 	if (cpuc->enabled)
1119 		return;
1120 
1121 	if (cpuc->n_added) {
1122 		int n_running = cpuc->n_events - cpuc->n_added;
1123 		/*
1124 		 * apply assignment obtained either from
1125 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1126 		 *
1127 		 * step1: save events moving to new counters
1128 		 */
1129 		for (i = 0; i < n_running; i++) {
1130 			event = cpuc->event_list[i];
1131 			hwc = &event->hw;
1132 
1133 			/*
1134 			 * we can avoid reprogramming counter if:
1135 			 * - assigned same counter as last time
1136 			 * - running on same CPU as last time
1137 			 * - no other event has used the counter since
1138 			 */
1139 			if (hwc->idx == -1 ||
1140 			    match_prev_assignment(hwc, cpuc, i))
1141 				continue;
1142 
1143 			/*
1144 			 * Ensure we don't accidentally enable a stopped
1145 			 * counter simply because we rescheduled.
1146 			 */
1147 			if (hwc->state & PERF_HES_STOPPED)
1148 				hwc->state |= PERF_HES_ARCH;
1149 
1150 			x86_pmu_stop(event, PERF_EF_UPDATE);
1151 		}
1152 
1153 		/*
1154 		 * step2: reprogram moved events into new counters
1155 		 */
1156 		for (i = 0; i < cpuc->n_events; i++) {
1157 			event = cpuc->event_list[i];
1158 			hwc = &event->hw;
1159 
1160 			if (!match_prev_assignment(hwc, cpuc, i))
1161 				x86_assign_hw_event(event, cpuc, i);
1162 			else if (i < n_running)
1163 				continue;
1164 
1165 			if (hwc->state & PERF_HES_ARCH)
1166 				continue;
1167 
1168 			x86_pmu_start(event, PERF_EF_RELOAD);
1169 		}
1170 		cpuc->n_added = 0;
1171 		perf_events_lapic_init();
1172 	}
1173 
1174 	cpuc->enabled = 1;
1175 	barrier();
1176 
1177 	x86_pmu.enable_all(added);
1178 }
1179 
1180 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1181 
1182 /*
1183  * Set the next IRQ period, based on the hwc->period_left value.
1184  * To be called with the event disabled in hw:
1185  */
1186 int x86_perf_event_set_period(struct perf_event *event)
1187 {
1188 	struct hw_perf_event *hwc = &event->hw;
1189 	s64 left = local64_read(&hwc->period_left);
1190 	s64 period = hwc->sample_period;
1191 	int ret = 0, idx = hwc->idx;
1192 
1193 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1194 		return 0;
1195 
1196 	/*
1197 	 * If we are way outside a reasonable range then just skip forward:
1198 	 */
1199 	if (unlikely(left <= -period)) {
1200 		left = period;
1201 		local64_set(&hwc->period_left, left);
1202 		hwc->last_period = period;
1203 		ret = 1;
1204 	}
1205 
1206 	if (unlikely(left <= 0)) {
1207 		left += period;
1208 		local64_set(&hwc->period_left, left);
1209 		hwc->last_period = period;
1210 		ret = 1;
1211 	}
1212 	/*
1213 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1214 	 */
1215 	if (unlikely(left < 2))
1216 		left = 2;
1217 
1218 	if (left > x86_pmu.max_period)
1219 		left = x86_pmu.max_period;
1220 
1221 	if (x86_pmu.limit_period)
1222 		left = x86_pmu.limit_period(event, left);
1223 
1224 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1225 
1226 	/*
1227 	 * The hw event starts counting from this event offset,
1228 	 * mark it to be able to extra future deltas:
1229 	 */
1230 	local64_set(&hwc->prev_count, (u64)-left);
1231 
1232 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1233 
1234 	/*
1235 	 * Due to erratum on certan cpu we need
1236 	 * a second write to be sure the register
1237 	 * is updated properly
1238 	 */
1239 	if (x86_pmu.perfctr_second_write) {
1240 		wrmsrl(hwc->event_base,
1241 			(u64)(-left) & x86_pmu.cntval_mask);
1242 	}
1243 
1244 	perf_event_update_userpage(event);
1245 
1246 	return ret;
1247 }
1248 
1249 void x86_pmu_enable_event(struct perf_event *event)
1250 {
1251 	if (__this_cpu_read(cpu_hw_events.enabled))
1252 		__x86_pmu_enable_event(&event->hw,
1253 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1254 }
1255 
1256 /*
1257  * Add a single event to the PMU.
1258  *
1259  * The event is added to the group of enabled events
1260  * but only if it can be scheduled with existing events.
1261  */
1262 static int x86_pmu_add(struct perf_event *event, int flags)
1263 {
1264 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265 	struct hw_perf_event *hwc;
1266 	int assign[X86_PMC_IDX_MAX];
1267 	int n, n0, ret;
1268 
1269 	hwc = &event->hw;
1270 
1271 	n0 = cpuc->n_events;
1272 	ret = n = collect_events(cpuc, event, false);
1273 	if (ret < 0)
1274 		goto out;
1275 
1276 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1277 	if (!(flags & PERF_EF_START))
1278 		hwc->state |= PERF_HES_ARCH;
1279 
1280 	/*
1281 	 * If group events scheduling transaction was started,
1282 	 * skip the schedulability test here, it will be performed
1283 	 * at commit time (->commit_txn) as a whole.
1284 	 *
1285 	 * If commit fails, we'll call ->del() on all events
1286 	 * for which ->add() was called.
1287 	 */
1288 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1289 		goto done_collect;
1290 
1291 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1292 	if (ret)
1293 		goto out;
1294 	/*
1295 	 * copy new assignment, now we know it is possible
1296 	 * will be used by hw_perf_enable()
1297 	 */
1298 	memcpy(cpuc->assign, assign, n*sizeof(int));
1299 
1300 done_collect:
1301 	/*
1302 	 * Commit the collect_events() state. See x86_pmu_del() and
1303 	 * x86_pmu_*_txn().
1304 	 */
1305 	cpuc->n_events = n;
1306 	cpuc->n_added += n - n0;
1307 	cpuc->n_txn += n - n0;
1308 
1309 	if (x86_pmu.add) {
1310 		/*
1311 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1312 		 * so we enable LBRs before an event needs them etc..
1313 		 */
1314 		x86_pmu.add(event);
1315 	}
1316 
1317 	ret = 0;
1318 out:
1319 	return ret;
1320 }
1321 
1322 static void x86_pmu_start(struct perf_event *event, int flags)
1323 {
1324 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1325 	int idx = event->hw.idx;
1326 
1327 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1328 		return;
1329 
1330 	if (WARN_ON_ONCE(idx == -1))
1331 		return;
1332 
1333 	if (flags & PERF_EF_RELOAD) {
1334 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1335 		x86_perf_event_set_period(event);
1336 	}
1337 
1338 	event->hw.state = 0;
1339 
1340 	cpuc->events[idx] = event;
1341 	__set_bit(idx, cpuc->active_mask);
1342 	__set_bit(idx, cpuc->running);
1343 	x86_pmu.enable(event);
1344 	perf_event_update_userpage(event);
1345 }
1346 
1347 void perf_event_print_debug(void)
1348 {
1349 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1350 	u64 pebs, debugctl;
1351 	struct cpu_hw_events *cpuc;
1352 	unsigned long flags;
1353 	int cpu, idx;
1354 
1355 	if (!x86_pmu.num_counters)
1356 		return;
1357 
1358 	local_irq_save(flags);
1359 
1360 	cpu = smp_processor_id();
1361 	cpuc = &per_cpu(cpu_hw_events, cpu);
1362 
1363 	if (x86_pmu.version >= 2) {
1364 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1365 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1366 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1367 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1368 
1369 		pr_info("\n");
1370 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1371 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1372 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1373 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1374 		if (x86_pmu.pebs_constraints) {
1375 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1376 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1377 		}
1378 		if (x86_pmu.lbr_nr) {
1379 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1380 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1381 		}
1382 	}
1383 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1384 
1385 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1386 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1387 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1388 
1389 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1390 
1391 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1392 			cpu, idx, pmc_ctrl);
1393 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1394 			cpu, idx, pmc_count);
1395 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1396 			cpu, idx, prev_left);
1397 	}
1398 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1399 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1400 
1401 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1402 			cpu, idx, pmc_count);
1403 	}
1404 	local_irq_restore(flags);
1405 }
1406 
1407 void x86_pmu_stop(struct perf_event *event, int flags)
1408 {
1409 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1410 	struct hw_perf_event *hwc = &event->hw;
1411 
1412 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1413 		x86_pmu.disable(event);
1414 		__clear_bit(hwc->idx, cpuc->active_mask);
1415 		cpuc->events[hwc->idx] = NULL;
1416 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1417 		hwc->state |= PERF_HES_STOPPED;
1418 	}
1419 
1420 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1421 		/*
1422 		 * Drain the remaining delta count out of a event
1423 		 * that we are disabling:
1424 		 */
1425 		x86_perf_event_update(event);
1426 		hwc->state |= PERF_HES_UPTODATE;
1427 	}
1428 }
1429 
1430 static void x86_pmu_del(struct perf_event *event, int flags)
1431 {
1432 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1433 	int i;
1434 
1435 	/*
1436 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1437 	 * The events never got scheduled and ->cancel_txn will truncate
1438 	 * the event_list.
1439 	 *
1440 	 * XXX assumes any ->del() called during a TXN will only be on
1441 	 * an event added during that same TXN.
1442 	 */
1443 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1444 		goto do_del;
1445 
1446 	/*
1447 	 * Not a TXN, therefore cleanup properly.
1448 	 */
1449 	x86_pmu_stop(event, PERF_EF_UPDATE);
1450 
1451 	for (i = 0; i < cpuc->n_events; i++) {
1452 		if (event == cpuc->event_list[i])
1453 			break;
1454 	}
1455 
1456 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1457 		return;
1458 
1459 	/* If we have a newly added event; make sure to decrease n_added. */
1460 	if (i >= cpuc->n_events - cpuc->n_added)
1461 		--cpuc->n_added;
1462 
1463 	if (x86_pmu.put_event_constraints)
1464 		x86_pmu.put_event_constraints(cpuc, event);
1465 
1466 	/* Delete the array entry. */
1467 	while (++i < cpuc->n_events) {
1468 		cpuc->event_list[i-1] = cpuc->event_list[i];
1469 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1470 	}
1471 	cpuc->event_constraint[i-1] = NULL;
1472 	--cpuc->n_events;
1473 
1474 	perf_event_update_userpage(event);
1475 
1476 do_del:
1477 	if (x86_pmu.del) {
1478 		/*
1479 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1480 		 * event can need them etc..
1481 		 */
1482 		x86_pmu.del(event);
1483 	}
1484 }
1485 
1486 int x86_pmu_handle_irq(struct pt_regs *regs)
1487 {
1488 	struct perf_sample_data data;
1489 	struct cpu_hw_events *cpuc;
1490 	struct perf_event *event;
1491 	int idx, handled = 0;
1492 	u64 val;
1493 
1494 	cpuc = this_cpu_ptr(&cpu_hw_events);
1495 
1496 	/*
1497 	 * Some chipsets need to unmask the LVTPC in a particular spot
1498 	 * inside the nmi handler.  As a result, the unmasking was pushed
1499 	 * into all the nmi handlers.
1500 	 *
1501 	 * This generic handler doesn't seem to have any issues where the
1502 	 * unmasking occurs so it was left at the top.
1503 	 */
1504 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1505 
1506 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1507 		if (!test_bit(idx, cpuc->active_mask))
1508 			continue;
1509 
1510 		event = cpuc->events[idx];
1511 
1512 		val = x86_perf_event_update(event);
1513 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1514 			continue;
1515 
1516 		/*
1517 		 * event overflow
1518 		 */
1519 		handled++;
1520 		perf_sample_data_init(&data, 0, event->hw.last_period);
1521 
1522 		if (!x86_perf_event_set_period(event))
1523 			continue;
1524 
1525 		if (perf_event_overflow(event, &data, regs))
1526 			x86_pmu_stop(event, 0);
1527 	}
1528 
1529 	if (handled)
1530 		inc_irq_stat(apic_perf_irqs);
1531 
1532 	return handled;
1533 }
1534 
1535 void perf_events_lapic_init(void)
1536 {
1537 	if (!x86_pmu.apic || !x86_pmu_initialized())
1538 		return;
1539 
1540 	/*
1541 	 * Always use NMI for PMU
1542 	 */
1543 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1544 }
1545 
1546 static int
1547 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1548 {
1549 	u64 start_clock;
1550 	u64 finish_clock;
1551 	int ret;
1552 
1553 	/*
1554 	 * All PMUs/events that share this PMI handler should make sure to
1555 	 * increment active_events for their events.
1556 	 */
1557 	if (!atomic_read(&active_events))
1558 		return NMI_DONE;
1559 
1560 	start_clock = sched_clock();
1561 	ret = x86_pmu.handle_irq(regs);
1562 	finish_clock = sched_clock();
1563 
1564 	perf_sample_event_took(finish_clock - start_clock);
1565 
1566 	return ret;
1567 }
1568 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1569 
1570 struct event_constraint emptyconstraint;
1571 struct event_constraint unconstrained;
1572 
1573 static int x86_pmu_prepare_cpu(unsigned int cpu)
1574 {
1575 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1576 	int i;
1577 
1578 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1579 		cpuc->kfree_on_online[i] = NULL;
1580 	if (x86_pmu.cpu_prepare)
1581 		return x86_pmu.cpu_prepare(cpu);
1582 	return 0;
1583 }
1584 
1585 static int x86_pmu_dead_cpu(unsigned int cpu)
1586 {
1587 	if (x86_pmu.cpu_dead)
1588 		x86_pmu.cpu_dead(cpu);
1589 	return 0;
1590 }
1591 
1592 static int x86_pmu_online_cpu(unsigned int cpu)
1593 {
1594 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1595 	int i;
1596 
1597 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1598 		kfree(cpuc->kfree_on_online[i]);
1599 		cpuc->kfree_on_online[i] = NULL;
1600 	}
1601 	return 0;
1602 }
1603 
1604 static int x86_pmu_starting_cpu(unsigned int cpu)
1605 {
1606 	if (x86_pmu.cpu_starting)
1607 		x86_pmu.cpu_starting(cpu);
1608 	return 0;
1609 }
1610 
1611 static int x86_pmu_dying_cpu(unsigned int cpu)
1612 {
1613 	if (x86_pmu.cpu_dying)
1614 		x86_pmu.cpu_dying(cpu);
1615 	return 0;
1616 }
1617 
1618 static void __init pmu_check_apic(void)
1619 {
1620 	if (boot_cpu_has(X86_FEATURE_APIC))
1621 		return;
1622 
1623 	x86_pmu.apic = 0;
1624 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1625 	pr_info("no hardware sampling interrupt available.\n");
1626 
1627 	/*
1628 	 * If we have a PMU initialized but no APIC
1629 	 * interrupts, we cannot sample hardware
1630 	 * events (user-space has to fall back and
1631 	 * sample via a hrtimer based software event):
1632 	 */
1633 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1634 
1635 }
1636 
1637 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1638 	.name = "format",
1639 	.attrs = NULL,
1640 };
1641 
1642 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1643 {
1644 	struct perf_pmu_events_attr *pmu_attr = \
1645 		container_of(attr, struct perf_pmu_events_attr, attr);
1646 	u64 config = x86_pmu.event_map(pmu_attr->id);
1647 
1648 	/* string trumps id */
1649 	if (pmu_attr->event_str)
1650 		return sprintf(page, "%s", pmu_attr->event_str);
1651 
1652 	return x86_pmu.events_sysfs_show(page, config);
1653 }
1654 EXPORT_SYMBOL_GPL(events_sysfs_show);
1655 
1656 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1657 			  char *page)
1658 {
1659 	struct perf_pmu_events_ht_attr *pmu_attr =
1660 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1661 
1662 	/*
1663 	 * Report conditional events depending on Hyper-Threading.
1664 	 *
1665 	 * This is overly conservative as usually the HT special
1666 	 * handling is not needed if the other CPU thread is idle.
1667 	 *
1668 	 * Note this does not (and cannot) handle the case when thread
1669 	 * siblings are invisible, for example with virtualization
1670 	 * if they are owned by some other guest.  The user tool
1671 	 * has to re-read when a thread sibling gets onlined later.
1672 	 */
1673 	return sprintf(page, "%s",
1674 			topology_max_smt_threads() > 1 ?
1675 			pmu_attr->event_str_ht :
1676 			pmu_attr->event_str_noht);
1677 }
1678 
1679 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1680 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1681 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1682 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1683 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1684 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1685 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1686 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1687 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1688 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1689 
1690 static struct attribute *empty_attrs;
1691 
1692 static struct attribute *events_attr[] = {
1693 	EVENT_PTR(CPU_CYCLES),
1694 	EVENT_PTR(INSTRUCTIONS),
1695 	EVENT_PTR(CACHE_REFERENCES),
1696 	EVENT_PTR(CACHE_MISSES),
1697 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1698 	EVENT_PTR(BRANCH_MISSES),
1699 	EVENT_PTR(BUS_CYCLES),
1700 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1701 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1702 	EVENT_PTR(REF_CPU_CYCLES),
1703 	NULL,
1704 };
1705 
1706 /*
1707  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1708  * out of events_attr attributes.
1709  */
1710 static umode_t
1711 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1712 {
1713 	struct perf_pmu_events_attr *pmu_attr;
1714 
1715 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1716 	/* str trumps id */
1717 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1718 }
1719 
1720 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1721 	.name = "events",
1722 	.attrs = events_attr,
1723 	.is_visible = is_visible,
1724 };
1725 
1726 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1727 {
1728 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1729 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1730 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1731 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1732 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1733 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1734 	ssize_t ret;
1735 
1736 	/*
1737 	* We have whole page size to spend and just little data
1738 	* to write, so we can safely use sprintf.
1739 	*/
1740 	ret = sprintf(page, "event=0x%02llx", event);
1741 
1742 	if (umask)
1743 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1744 
1745 	if (edge)
1746 		ret += sprintf(page + ret, ",edge");
1747 
1748 	if (pc)
1749 		ret += sprintf(page + ret, ",pc");
1750 
1751 	if (any)
1752 		ret += sprintf(page + ret, ",any");
1753 
1754 	if (inv)
1755 		ret += sprintf(page + ret, ",inv");
1756 
1757 	if (cmask)
1758 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1759 
1760 	ret += sprintf(page + ret, "\n");
1761 
1762 	return ret;
1763 }
1764 
1765 static struct attribute_group x86_pmu_attr_group;
1766 static struct attribute_group x86_pmu_caps_group;
1767 
1768 static int __init init_hw_perf_events(void)
1769 {
1770 	struct x86_pmu_quirk *quirk;
1771 	int err;
1772 
1773 	pr_info("Performance Events: ");
1774 
1775 	switch (boot_cpu_data.x86_vendor) {
1776 	case X86_VENDOR_INTEL:
1777 		err = intel_pmu_init();
1778 		break;
1779 	case X86_VENDOR_AMD:
1780 		err = amd_pmu_init();
1781 		break;
1782 	case X86_VENDOR_HYGON:
1783 		err = amd_pmu_init();
1784 		x86_pmu.name = "HYGON";
1785 		break;
1786 	default:
1787 		err = -ENOTSUPP;
1788 	}
1789 	if (err != 0) {
1790 		pr_cont("no PMU driver, software events only.\n");
1791 		return 0;
1792 	}
1793 
1794 	pmu_check_apic();
1795 
1796 	/* sanity check that the hardware exists or is emulated */
1797 	if (!check_hw_exists())
1798 		return 0;
1799 
1800 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1801 
1802 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1803 
1804 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1805 		quirk->func();
1806 
1807 	if (!x86_pmu.intel_ctrl)
1808 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1809 
1810 	perf_events_lapic_init();
1811 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1812 
1813 	unconstrained = (struct event_constraint)
1814 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1815 				   0, x86_pmu.num_counters, 0, 0);
1816 
1817 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1818 
1819 	if (!x86_pmu.events_sysfs_show)
1820 		x86_pmu_events_group.attrs = &empty_attrs;
1821 
1822 	pmu.attr_update = x86_pmu.attr_update;
1823 
1824 	pr_info("... version:                %d\n",     x86_pmu.version);
1825 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1826 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1827 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1828 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1829 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1830 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1831 
1832 	/*
1833 	 * Install callbacks. Core will call them for each online
1834 	 * cpu.
1835 	 */
1836 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1837 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1838 	if (err)
1839 		return err;
1840 
1841 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1842 				"perf/x86:starting", x86_pmu_starting_cpu,
1843 				x86_pmu_dying_cpu);
1844 	if (err)
1845 		goto out;
1846 
1847 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1848 				x86_pmu_online_cpu, NULL);
1849 	if (err)
1850 		goto out1;
1851 
1852 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1853 	if (err)
1854 		goto out2;
1855 
1856 	return 0;
1857 
1858 out2:
1859 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1860 out1:
1861 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1862 out:
1863 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1864 	return err;
1865 }
1866 early_initcall(init_hw_perf_events);
1867 
1868 static inline void x86_pmu_read(struct perf_event *event)
1869 {
1870 	if (x86_pmu.read)
1871 		return x86_pmu.read(event);
1872 	x86_perf_event_update(event);
1873 }
1874 
1875 /*
1876  * Start group events scheduling transaction
1877  * Set the flag to make pmu::enable() not perform the
1878  * schedulability test, it will be performed at commit time
1879  *
1880  * We only support PERF_PMU_TXN_ADD transactions. Save the
1881  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1882  * transactions.
1883  */
1884 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1885 {
1886 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1887 
1888 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1889 
1890 	cpuc->txn_flags = txn_flags;
1891 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1892 		return;
1893 
1894 	perf_pmu_disable(pmu);
1895 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1896 }
1897 
1898 /*
1899  * Stop group events scheduling transaction
1900  * Clear the flag and pmu::enable() will perform the
1901  * schedulability test.
1902  */
1903 static void x86_pmu_cancel_txn(struct pmu *pmu)
1904 {
1905 	unsigned int txn_flags;
1906 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1907 
1908 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1909 
1910 	txn_flags = cpuc->txn_flags;
1911 	cpuc->txn_flags = 0;
1912 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1913 		return;
1914 
1915 	/*
1916 	 * Truncate collected array by the number of events added in this
1917 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1918 	 */
1919 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1920 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1921 	perf_pmu_enable(pmu);
1922 }
1923 
1924 /*
1925  * Commit group events scheduling transaction
1926  * Perform the group schedulability test as a whole
1927  * Return 0 if success
1928  *
1929  * Does not cancel the transaction on failure; expects the caller to do this.
1930  */
1931 static int x86_pmu_commit_txn(struct pmu *pmu)
1932 {
1933 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934 	int assign[X86_PMC_IDX_MAX];
1935 	int n, ret;
1936 
1937 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1938 
1939 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1940 		cpuc->txn_flags = 0;
1941 		return 0;
1942 	}
1943 
1944 	n = cpuc->n_events;
1945 
1946 	if (!x86_pmu_initialized())
1947 		return -EAGAIN;
1948 
1949 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1950 	if (ret)
1951 		return ret;
1952 
1953 	/*
1954 	 * copy new assignment, now we know it is possible
1955 	 * will be used by hw_perf_enable()
1956 	 */
1957 	memcpy(cpuc->assign, assign, n*sizeof(int));
1958 
1959 	cpuc->txn_flags = 0;
1960 	perf_pmu_enable(pmu);
1961 	return 0;
1962 }
1963 /*
1964  * a fake_cpuc is used to validate event groups. Due to
1965  * the extra reg logic, we need to also allocate a fake
1966  * per_core and per_cpu structure. Otherwise, group events
1967  * using extra reg may conflict without the kernel being
1968  * able to catch this when the last event gets added to
1969  * the group.
1970  */
1971 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1972 {
1973 	intel_cpuc_finish(cpuc);
1974 	kfree(cpuc);
1975 }
1976 
1977 static struct cpu_hw_events *allocate_fake_cpuc(void)
1978 {
1979 	struct cpu_hw_events *cpuc;
1980 	int cpu = raw_smp_processor_id();
1981 
1982 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1983 	if (!cpuc)
1984 		return ERR_PTR(-ENOMEM);
1985 	cpuc->is_fake = 1;
1986 
1987 	if (intel_cpuc_prepare(cpuc, cpu))
1988 		goto error;
1989 
1990 	return cpuc;
1991 error:
1992 	free_fake_cpuc(cpuc);
1993 	return ERR_PTR(-ENOMEM);
1994 }
1995 
1996 /*
1997  * validate that we can schedule this event
1998  */
1999 static int validate_event(struct perf_event *event)
2000 {
2001 	struct cpu_hw_events *fake_cpuc;
2002 	struct event_constraint *c;
2003 	int ret = 0;
2004 
2005 	fake_cpuc = allocate_fake_cpuc();
2006 	if (IS_ERR(fake_cpuc))
2007 		return PTR_ERR(fake_cpuc);
2008 
2009 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2010 
2011 	if (!c || !c->weight)
2012 		ret = -EINVAL;
2013 
2014 	if (x86_pmu.put_event_constraints)
2015 		x86_pmu.put_event_constraints(fake_cpuc, event);
2016 
2017 	free_fake_cpuc(fake_cpuc);
2018 
2019 	return ret;
2020 }
2021 
2022 /*
2023  * validate a single event group
2024  *
2025  * validation include:
2026  *	- check events are compatible which each other
2027  *	- events do not compete for the same counter
2028  *	- number of events <= number of counters
2029  *
2030  * validation ensures the group can be loaded onto the
2031  * PMU if it was the only group available.
2032  */
2033 static int validate_group(struct perf_event *event)
2034 {
2035 	struct perf_event *leader = event->group_leader;
2036 	struct cpu_hw_events *fake_cpuc;
2037 	int ret = -EINVAL, n;
2038 
2039 	fake_cpuc = allocate_fake_cpuc();
2040 	if (IS_ERR(fake_cpuc))
2041 		return PTR_ERR(fake_cpuc);
2042 	/*
2043 	 * the event is not yet connected with its
2044 	 * siblings therefore we must first collect
2045 	 * existing siblings, then add the new event
2046 	 * before we can simulate the scheduling
2047 	 */
2048 	n = collect_events(fake_cpuc, leader, true);
2049 	if (n < 0)
2050 		goto out;
2051 
2052 	fake_cpuc->n_events = n;
2053 	n = collect_events(fake_cpuc, event, false);
2054 	if (n < 0)
2055 		goto out;
2056 
2057 	fake_cpuc->n_events = 0;
2058 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2059 
2060 out:
2061 	free_fake_cpuc(fake_cpuc);
2062 	return ret;
2063 }
2064 
2065 static int x86_pmu_event_init(struct perf_event *event)
2066 {
2067 	struct pmu *tmp;
2068 	int err;
2069 
2070 	switch (event->attr.type) {
2071 	case PERF_TYPE_RAW:
2072 	case PERF_TYPE_HARDWARE:
2073 	case PERF_TYPE_HW_CACHE:
2074 		break;
2075 
2076 	default:
2077 		return -ENOENT;
2078 	}
2079 
2080 	err = __x86_pmu_event_init(event);
2081 	if (!err) {
2082 		/*
2083 		 * we temporarily connect event to its pmu
2084 		 * such that validate_group() can classify
2085 		 * it as an x86 event using is_x86_event()
2086 		 */
2087 		tmp = event->pmu;
2088 		event->pmu = &pmu;
2089 
2090 		if (event->group_leader != event)
2091 			err = validate_group(event);
2092 		else
2093 			err = validate_event(event);
2094 
2095 		event->pmu = tmp;
2096 	}
2097 	if (err) {
2098 		if (event->destroy)
2099 			event->destroy(event);
2100 	}
2101 
2102 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2103 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2104 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2105 
2106 	return err;
2107 }
2108 
2109 static void refresh_pce(void *ignored)
2110 {
2111 	load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2112 }
2113 
2114 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2115 {
2116 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2117 		return;
2118 
2119 	/*
2120 	 * This function relies on not being called concurrently in two
2121 	 * tasks in the same mm.  Otherwise one task could observe
2122 	 * perf_rdpmc_allowed > 1 and return all the way back to
2123 	 * userspace with CR4.PCE clear while another task is still
2124 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2125 	 *
2126 	 * For now, this can't happen because all callers hold mmap_sem
2127 	 * for write.  If this changes, we'll need a different solution.
2128 	 */
2129 	lockdep_assert_held_write(&mm->mmap_sem);
2130 
2131 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2132 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2133 }
2134 
2135 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2136 {
2137 
2138 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2139 		return;
2140 
2141 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2142 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2143 }
2144 
2145 static int x86_pmu_event_idx(struct perf_event *event)
2146 {
2147 	int idx = event->hw.idx;
2148 
2149 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2150 		return 0;
2151 
2152 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2153 		idx -= INTEL_PMC_IDX_FIXED;
2154 		idx |= 1 << 30;
2155 	}
2156 
2157 	return idx + 1;
2158 }
2159 
2160 static ssize_t get_attr_rdpmc(struct device *cdev,
2161 			      struct device_attribute *attr,
2162 			      char *buf)
2163 {
2164 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2165 }
2166 
2167 static ssize_t set_attr_rdpmc(struct device *cdev,
2168 			      struct device_attribute *attr,
2169 			      const char *buf, size_t count)
2170 {
2171 	unsigned long val;
2172 	ssize_t ret;
2173 
2174 	ret = kstrtoul(buf, 0, &val);
2175 	if (ret)
2176 		return ret;
2177 
2178 	if (val > 2)
2179 		return -EINVAL;
2180 
2181 	if (x86_pmu.attr_rdpmc_broken)
2182 		return -ENOTSUPP;
2183 
2184 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2185 		/*
2186 		 * Changing into or out of always available, aka
2187 		 * perf-event-bypassing mode.  This path is extremely slow,
2188 		 * but only root can trigger it, so it's okay.
2189 		 */
2190 		if (val == 2)
2191 			static_branch_inc(&rdpmc_always_available_key);
2192 		else
2193 			static_branch_dec(&rdpmc_always_available_key);
2194 		on_each_cpu(refresh_pce, NULL, 1);
2195 	}
2196 
2197 	x86_pmu.attr_rdpmc = val;
2198 
2199 	return count;
2200 }
2201 
2202 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2203 
2204 static struct attribute *x86_pmu_attrs[] = {
2205 	&dev_attr_rdpmc.attr,
2206 	NULL,
2207 };
2208 
2209 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2210 	.attrs = x86_pmu_attrs,
2211 };
2212 
2213 static ssize_t max_precise_show(struct device *cdev,
2214 				  struct device_attribute *attr,
2215 				  char *buf)
2216 {
2217 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2218 }
2219 
2220 static DEVICE_ATTR_RO(max_precise);
2221 
2222 static struct attribute *x86_pmu_caps_attrs[] = {
2223 	&dev_attr_max_precise.attr,
2224 	NULL
2225 };
2226 
2227 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2228 	.name = "caps",
2229 	.attrs = x86_pmu_caps_attrs,
2230 };
2231 
2232 static const struct attribute_group *x86_pmu_attr_groups[] = {
2233 	&x86_pmu_attr_group,
2234 	&x86_pmu_format_group,
2235 	&x86_pmu_events_group,
2236 	&x86_pmu_caps_group,
2237 	NULL,
2238 };
2239 
2240 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2241 {
2242 	if (x86_pmu.sched_task)
2243 		x86_pmu.sched_task(ctx, sched_in);
2244 }
2245 
2246 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2247 				  struct perf_event_context *next)
2248 {
2249 	if (x86_pmu.swap_task_ctx)
2250 		x86_pmu.swap_task_ctx(prev, next);
2251 }
2252 
2253 void perf_check_microcode(void)
2254 {
2255 	if (x86_pmu.check_microcode)
2256 		x86_pmu.check_microcode();
2257 }
2258 
2259 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2260 {
2261 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2262 		return -EINVAL;
2263 
2264 	if (value && x86_pmu.limit_period) {
2265 		if (x86_pmu.limit_period(event, value) > value)
2266 			return -EINVAL;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int x86_pmu_aux_output_match(struct perf_event *event)
2273 {
2274 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2275 		return 0;
2276 
2277 	if (x86_pmu.aux_output_match)
2278 		return x86_pmu.aux_output_match(event);
2279 
2280 	return 0;
2281 }
2282 
2283 static struct pmu pmu = {
2284 	.pmu_enable		= x86_pmu_enable,
2285 	.pmu_disable		= x86_pmu_disable,
2286 
2287 	.attr_groups		= x86_pmu_attr_groups,
2288 
2289 	.event_init		= x86_pmu_event_init,
2290 
2291 	.event_mapped		= x86_pmu_event_mapped,
2292 	.event_unmapped		= x86_pmu_event_unmapped,
2293 
2294 	.add			= x86_pmu_add,
2295 	.del			= x86_pmu_del,
2296 	.start			= x86_pmu_start,
2297 	.stop			= x86_pmu_stop,
2298 	.read			= x86_pmu_read,
2299 
2300 	.start_txn		= x86_pmu_start_txn,
2301 	.cancel_txn		= x86_pmu_cancel_txn,
2302 	.commit_txn		= x86_pmu_commit_txn,
2303 
2304 	.event_idx		= x86_pmu_event_idx,
2305 	.sched_task		= x86_pmu_sched_task,
2306 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2307 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2308 	.check_period		= x86_pmu_check_period,
2309 
2310 	.aux_output_match	= x86_pmu_aux_output_match,
2311 };
2312 
2313 void arch_perf_update_userpage(struct perf_event *event,
2314 			       struct perf_event_mmap_page *userpg, u64 now)
2315 {
2316 	struct cyc2ns_data data;
2317 	u64 offset;
2318 
2319 	userpg->cap_user_time = 0;
2320 	userpg->cap_user_time_zero = 0;
2321 	userpg->cap_user_rdpmc =
2322 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2323 	userpg->pmc_width = x86_pmu.cntval_bits;
2324 
2325 	if (!using_native_sched_clock() || !sched_clock_stable())
2326 		return;
2327 
2328 	cyc2ns_read_begin(&data);
2329 
2330 	offset = data.cyc2ns_offset + __sched_clock_offset;
2331 
2332 	/*
2333 	 * Internal timekeeping for enabled/running/stopped times
2334 	 * is always in the local_clock domain.
2335 	 */
2336 	userpg->cap_user_time = 1;
2337 	userpg->time_mult = data.cyc2ns_mul;
2338 	userpg->time_shift = data.cyc2ns_shift;
2339 	userpg->time_offset = offset - now;
2340 
2341 	/*
2342 	 * cap_user_time_zero doesn't make sense when we're using a different
2343 	 * time base for the records.
2344 	 */
2345 	if (!event->attr.use_clockid) {
2346 		userpg->cap_user_time_zero = 1;
2347 		userpg->time_zero = offset;
2348 	}
2349 
2350 	cyc2ns_read_end();
2351 }
2352 
2353 /*
2354  * Determine whether the regs were taken from an irq/exception handler rather
2355  * than from perf_arch_fetch_caller_regs().
2356  */
2357 static bool perf_hw_regs(struct pt_regs *regs)
2358 {
2359 	return regs->flags & X86_EFLAGS_FIXED;
2360 }
2361 
2362 void
2363 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2364 {
2365 	struct unwind_state state;
2366 	unsigned long addr;
2367 
2368 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2369 		/* TODO: We don't support guest os callchain now */
2370 		return;
2371 	}
2372 
2373 	if (perf_callchain_store(entry, regs->ip))
2374 		return;
2375 
2376 	if (perf_hw_regs(regs))
2377 		unwind_start(&state, current, regs, NULL);
2378 	else
2379 		unwind_start(&state, current, NULL, (void *)regs->sp);
2380 
2381 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2382 		addr = unwind_get_return_address(&state);
2383 		if (!addr || perf_callchain_store(entry, addr))
2384 			return;
2385 	}
2386 }
2387 
2388 static inline int
2389 valid_user_frame(const void __user *fp, unsigned long size)
2390 {
2391 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2392 }
2393 
2394 static unsigned long get_segment_base(unsigned int segment)
2395 {
2396 	struct desc_struct *desc;
2397 	unsigned int idx = segment >> 3;
2398 
2399 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2400 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2401 		struct ldt_struct *ldt;
2402 
2403 		/* IRQs are off, so this synchronizes with smp_store_release */
2404 		ldt = READ_ONCE(current->active_mm->context.ldt);
2405 		if (!ldt || idx >= ldt->nr_entries)
2406 			return 0;
2407 
2408 		desc = &ldt->entries[idx];
2409 #else
2410 		return 0;
2411 #endif
2412 	} else {
2413 		if (idx >= GDT_ENTRIES)
2414 			return 0;
2415 
2416 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2417 	}
2418 
2419 	return get_desc_base(desc);
2420 }
2421 
2422 #ifdef CONFIG_IA32_EMULATION
2423 
2424 #include <linux/compat.h>
2425 
2426 static inline int
2427 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2428 {
2429 	/* 32-bit process in 64-bit kernel. */
2430 	unsigned long ss_base, cs_base;
2431 	struct stack_frame_ia32 frame;
2432 	const void __user *fp;
2433 
2434 	if (!test_thread_flag(TIF_IA32))
2435 		return 0;
2436 
2437 	cs_base = get_segment_base(regs->cs);
2438 	ss_base = get_segment_base(regs->ss);
2439 
2440 	fp = compat_ptr(ss_base + regs->bp);
2441 	pagefault_disable();
2442 	while (entry->nr < entry->max_stack) {
2443 		unsigned long bytes;
2444 		frame.next_frame     = 0;
2445 		frame.return_address = 0;
2446 
2447 		if (!valid_user_frame(fp, sizeof(frame)))
2448 			break;
2449 
2450 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2451 		if (bytes != 0)
2452 			break;
2453 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2454 		if (bytes != 0)
2455 			break;
2456 
2457 		perf_callchain_store(entry, cs_base + frame.return_address);
2458 		fp = compat_ptr(ss_base + frame.next_frame);
2459 	}
2460 	pagefault_enable();
2461 	return 1;
2462 }
2463 #else
2464 static inline int
2465 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2466 {
2467     return 0;
2468 }
2469 #endif
2470 
2471 void
2472 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2473 {
2474 	struct stack_frame frame;
2475 	const unsigned long __user *fp;
2476 
2477 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2478 		/* TODO: We don't support guest os callchain now */
2479 		return;
2480 	}
2481 
2482 	/*
2483 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2484 	 */
2485 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2486 		return;
2487 
2488 	fp = (unsigned long __user *)regs->bp;
2489 
2490 	perf_callchain_store(entry, regs->ip);
2491 
2492 	if (!nmi_uaccess_okay())
2493 		return;
2494 
2495 	if (perf_callchain_user32(regs, entry))
2496 		return;
2497 
2498 	pagefault_disable();
2499 	while (entry->nr < entry->max_stack) {
2500 		unsigned long bytes;
2501 
2502 		frame.next_frame	     = NULL;
2503 		frame.return_address = 0;
2504 
2505 		if (!valid_user_frame(fp, sizeof(frame)))
2506 			break;
2507 
2508 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2509 		if (bytes != 0)
2510 			break;
2511 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2512 		if (bytes != 0)
2513 			break;
2514 
2515 		perf_callchain_store(entry, frame.return_address);
2516 		fp = (void __user *)frame.next_frame;
2517 	}
2518 	pagefault_enable();
2519 }
2520 
2521 /*
2522  * Deal with code segment offsets for the various execution modes:
2523  *
2524  *   VM86 - the good olde 16 bit days, where the linear address is
2525  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2526  *
2527  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2528  *          to figure out what the 32bit base address is.
2529  *
2530  *    X32 - has TIF_X32 set, but is running in x86_64
2531  *
2532  * X86_64 - CS,DS,SS,ES are all zero based.
2533  */
2534 static unsigned long code_segment_base(struct pt_regs *regs)
2535 {
2536 	/*
2537 	 * For IA32 we look at the GDT/LDT segment base to convert the
2538 	 * effective IP to a linear address.
2539 	 */
2540 
2541 #ifdef CONFIG_X86_32
2542 	/*
2543 	 * If we are in VM86 mode, add the segment offset to convert to a
2544 	 * linear address.
2545 	 */
2546 	if (regs->flags & X86_VM_MASK)
2547 		return 0x10 * regs->cs;
2548 
2549 	if (user_mode(regs) && regs->cs != __USER_CS)
2550 		return get_segment_base(regs->cs);
2551 #else
2552 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2553 	    regs->cs != __USER32_CS)
2554 		return get_segment_base(regs->cs);
2555 #endif
2556 	return 0;
2557 }
2558 
2559 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2560 {
2561 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2562 		return perf_guest_cbs->get_guest_ip();
2563 
2564 	return regs->ip + code_segment_base(regs);
2565 }
2566 
2567 unsigned long perf_misc_flags(struct pt_regs *regs)
2568 {
2569 	int misc = 0;
2570 
2571 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2572 		if (perf_guest_cbs->is_user_mode())
2573 			misc |= PERF_RECORD_MISC_GUEST_USER;
2574 		else
2575 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2576 	} else {
2577 		if (user_mode(regs))
2578 			misc |= PERF_RECORD_MISC_USER;
2579 		else
2580 			misc |= PERF_RECORD_MISC_KERNEL;
2581 	}
2582 
2583 	if (regs->flags & PERF_EFLAGS_EXACT)
2584 		misc |= PERF_RECORD_MISC_EXACT_IP;
2585 
2586 	return misc;
2587 }
2588 
2589 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2590 {
2591 	cap->version		= x86_pmu.version;
2592 	cap->num_counters_gp	= x86_pmu.num_counters;
2593 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2594 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2595 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2596 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2597 	cap->events_mask_len	= x86_pmu.events_mask_len;
2598 }
2599 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2600