xref: /openbmc/linux/arch/x86/events/core.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58 
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68 
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72 
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76 
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
80 
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83 
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86 
87 /*
88  * This one is magic, it will get called even when PMU init fails (because
89  * there is no PMU), in which case it should simply return NULL.
90  */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92 
93 u64 __read_mostly hw_cache_event_ids
94 				[PERF_COUNT_HW_CACHE_MAX]
95 				[PERF_COUNT_HW_CACHE_OP_MAX]
96 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98 				[PERF_COUNT_HW_CACHE_MAX]
99 				[PERF_COUNT_HW_CACHE_OP_MAX]
100 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
101 
102 /*
103  * Propagate event elapsed time into the generic event.
104  * Can only be executed on the CPU where the event is active.
105  * Returns the delta events processed.
106  */
107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109 	struct hw_perf_event *hwc = &event->hw;
110 	int shift = 64 - x86_pmu.cntval_bits;
111 	u64 prev_raw_count, new_raw_count;
112 	u64 delta;
113 
114 	if (unlikely(!hwc->event_base))
115 		return 0;
116 
117 	if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118 		return x86_pmu.update_topdown_event(event);
119 
120 	/*
121 	 * Careful: an NMI might modify the previous event value.
122 	 *
123 	 * Our tactic to handle this is to first atomically read and
124 	 * exchange a new raw count - then add that new-prev delta
125 	 * count to the generic event atomically:
126 	 */
127 again:
128 	prev_raw_count = local64_read(&hwc->prev_count);
129 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130 
131 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132 					new_raw_count) != prev_raw_count)
133 		goto again;
134 
135 	/*
136 	 * Now we have the new raw value and have updated the prev
137 	 * timestamp already. We can now calculate the elapsed delta
138 	 * (event-)time and add that to the generic event.
139 	 *
140 	 * Careful, not all hw sign-extends above the physical width
141 	 * of the count.
142 	 */
143 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
144 	delta >>= shift;
145 
146 	local64_add(delta, &event->count);
147 	local64_sub(delta, &hwc->period_left);
148 
149 	return new_raw_count;
150 }
151 
152 /*
153  * Find and validate any extra registers to set up.
154  */
155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
158 	struct hw_perf_event_extra *reg;
159 	struct extra_reg *er;
160 
161 	reg = &event->hw.extra_reg;
162 
163 	if (!extra_regs)
164 		return 0;
165 
166 	for (er = extra_regs; er->msr; er++) {
167 		if (er->event != (config & er->config_mask))
168 			continue;
169 		if (event->attr.config1 & ~er->valid_mask)
170 			return -EINVAL;
171 		/* Check if the extra msrs can be safely accessed*/
172 		if (!er->extra_msr_access)
173 			return -ENXIO;
174 
175 		reg->idx = er->idx;
176 		reg->config = event->attr.config1;
177 		reg->reg = er->msr;
178 		break;
179 	}
180 	return 0;
181 }
182 
183 static atomic_t active_events;
184 static atomic_t pmc_refcount;
185 static DEFINE_MUTEX(pmc_reserve_mutex);
186 
187 #ifdef CONFIG_X86_LOCAL_APIC
188 
189 static inline int get_possible_num_counters(void)
190 {
191 	int i, num_counters = x86_pmu.num_counters;
192 
193 	if (!is_hybrid())
194 		return num_counters;
195 
196 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
197 		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
198 
199 	return num_counters;
200 }
201 
202 static bool reserve_pmc_hardware(void)
203 {
204 	int i, num_counters = get_possible_num_counters();
205 
206 	for (i = 0; i < num_counters; i++) {
207 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
208 			goto perfctr_fail;
209 	}
210 
211 	for (i = 0; i < num_counters; i++) {
212 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
213 			goto eventsel_fail;
214 	}
215 
216 	return true;
217 
218 eventsel_fail:
219 	for (i--; i >= 0; i--)
220 		release_evntsel_nmi(x86_pmu_config_addr(i));
221 
222 	i = num_counters;
223 
224 perfctr_fail:
225 	for (i--; i >= 0; i--)
226 		release_perfctr_nmi(x86_pmu_event_addr(i));
227 
228 	return false;
229 }
230 
231 static void release_pmc_hardware(void)
232 {
233 	int i, num_counters = get_possible_num_counters();
234 
235 	for (i = 0; i < num_counters; i++) {
236 		release_perfctr_nmi(x86_pmu_event_addr(i));
237 		release_evntsel_nmi(x86_pmu_config_addr(i));
238 	}
239 }
240 
241 #else
242 
243 static bool reserve_pmc_hardware(void) { return true; }
244 static void release_pmc_hardware(void) {}
245 
246 #endif
247 
248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
249 {
250 	u64 val, val_fail = -1, val_new= ~0;
251 	int i, reg, reg_fail = -1, ret = 0;
252 	int bios_fail = 0;
253 	int reg_safe = -1;
254 
255 	/*
256 	 * Check to see if the BIOS enabled any of the counters, if so
257 	 * complain and bail.
258 	 */
259 	for (i = 0; i < num_counters; i++) {
260 		reg = x86_pmu_config_addr(i);
261 		ret = rdmsrl_safe(reg, &val);
262 		if (ret)
263 			goto msr_fail;
264 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
265 			bios_fail = 1;
266 			val_fail = val;
267 			reg_fail = reg;
268 		} else {
269 			reg_safe = i;
270 		}
271 	}
272 
273 	if (num_counters_fixed) {
274 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
275 		ret = rdmsrl_safe(reg, &val);
276 		if (ret)
277 			goto msr_fail;
278 		for (i = 0; i < num_counters_fixed; i++) {
279 			if (fixed_counter_disabled(i, pmu))
280 				continue;
281 			if (val & (0x03ULL << i*4)) {
282 				bios_fail = 1;
283 				val_fail = val;
284 				reg_fail = reg;
285 			}
286 		}
287 	}
288 
289 	/*
290 	 * If all the counters are enabled, the below test will always
291 	 * fail.  The tools will also become useless in this scenario.
292 	 * Just fail and disable the hardware counters.
293 	 */
294 
295 	if (reg_safe == -1) {
296 		reg = reg_safe;
297 		goto msr_fail;
298 	}
299 
300 	/*
301 	 * Read the current value, change it and read it back to see if it
302 	 * matches, this is needed to detect certain hardware emulators
303 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
304 	 */
305 	reg = x86_pmu_event_addr(reg_safe);
306 	if (rdmsrl_safe(reg, &val))
307 		goto msr_fail;
308 	val ^= 0xffffUL;
309 	ret = wrmsrl_safe(reg, val);
310 	ret |= rdmsrl_safe(reg, &val_new);
311 	if (ret || val != val_new)
312 		goto msr_fail;
313 
314 	/*
315 	 * We still allow the PMU driver to operate:
316 	 */
317 	if (bios_fail) {
318 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
319 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
320 			      reg_fail, val_fail);
321 	}
322 
323 	return true;
324 
325 msr_fail:
326 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
327 		pr_cont("PMU not available due to virtualization, using software events only.\n");
328 	} else {
329 		pr_cont("Broken PMU hardware detected, using software events only.\n");
330 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
331 		       reg, val_new);
332 	}
333 
334 	return false;
335 }
336 
337 static void hw_perf_event_destroy(struct perf_event *event)
338 {
339 	x86_release_hardware();
340 	atomic_dec(&active_events);
341 }
342 
343 void hw_perf_lbr_event_destroy(struct perf_event *event)
344 {
345 	hw_perf_event_destroy(event);
346 
347 	/* undo the lbr/bts event accounting */
348 	x86_del_exclusive(x86_lbr_exclusive_lbr);
349 }
350 
351 static inline int x86_pmu_initialized(void)
352 {
353 	return x86_pmu.handle_irq != NULL;
354 }
355 
356 static inline int
357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
358 {
359 	struct perf_event_attr *attr = &event->attr;
360 	unsigned int cache_type, cache_op, cache_result;
361 	u64 config, val;
362 
363 	config = attr->config;
364 
365 	cache_type = (config >> 0) & 0xff;
366 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
367 		return -EINVAL;
368 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
369 
370 	cache_op = (config >>  8) & 0xff;
371 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
372 		return -EINVAL;
373 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
374 
375 	cache_result = (config >> 16) & 0xff;
376 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
377 		return -EINVAL;
378 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
379 
380 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
381 	if (val == 0)
382 		return -ENOENT;
383 
384 	if (val == -1)
385 		return -EINVAL;
386 
387 	hwc->config |= val;
388 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
389 	return x86_pmu_extra_regs(val, event);
390 }
391 
392 int x86_reserve_hardware(void)
393 {
394 	int err = 0;
395 
396 	if (!atomic_inc_not_zero(&pmc_refcount)) {
397 		mutex_lock(&pmc_reserve_mutex);
398 		if (atomic_read(&pmc_refcount) == 0) {
399 			if (!reserve_pmc_hardware())
400 				err = -EBUSY;
401 			else
402 				reserve_ds_buffers();
403 		}
404 		if (!err)
405 			atomic_inc(&pmc_refcount);
406 		mutex_unlock(&pmc_reserve_mutex);
407 	}
408 
409 	return err;
410 }
411 
412 void x86_release_hardware(void)
413 {
414 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
415 		release_pmc_hardware();
416 		release_ds_buffers();
417 		release_lbr_buffers();
418 		mutex_unlock(&pmc_reserve_mutex);
419 	}
420 }
421 
422 /*
423  * Check if we can create event of a certain type (that no conflicting events
424  * are present).
425  */
426 int x86_add_exclusive(unsigned int what)
427 {
428 	int i;
429 
430 	/*
431 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
432 	 * LBR and BTS are still mutually exclusive.
433 	 */
434 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
435 		goto out;
436 
437 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
438 		mutex_lock(&pmc_reserve_mutex);
439 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
440 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
441 				goto fail_unlock;
442 		}
443 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
444 		mutex_unlock(&pmc_reserve_mutex);
445 	}
446 
447 out:
448 	atomic_inc(&active_events);
449 	return 0;
450 
451 fail_unlock:
452 	mutex_unlock(&pmc_reserve_mutex);
453 	return -EBUSY;
454 }
455 
456 void x86_del_exclusive(unsigned int what)
457 {
458 	atomic_dec(&active_events);
459 
460 	/*
461 	 * See the comment in x86_add_exclusive().
462 	 */
463 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
464 		return;
465 
466 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
467 }
468 
469 int x86_setup_perfctr(struct perf_event *event)
470 {
471 	struct perf_event_attr *attr = &event->attr;
472 	struct hw_perf_event *hwc = &event->hw;
473 	u64 config;
474 
475 	if (!is_sampling_event(event)) {
476 		hwc->sample_period = x86_pmu.max_period;
477 		hwc->last_period = hwc->sample_period;
478 		local64_set(&hwc->period_left, hwc->sample_period);
479 	}
480 
481 	if (attr->type == event->pmu->type)
482 		return x86_pmu_extra_regs(event->attr.config, event);
483 
484 	if (attr->type == PERF_TYPE_HW_CACHE)
485 		return set_ext_hw_attr(hwc, event);
486 
487 	if (attr->config >= x86_pmu.max_events)
488 		return -EINVAL;
489 
490 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
491 
492 	/*
493 	 * The generic map:
494 	 */
495 	config = x86_pmu.event_map(attr->config);
496 
497 	if (config == 0)
498 		return -ENOENT;
499 
500 	if (config == -1LL)
501 		return -EINVAL;
502 
503 	hwc->config |= config;
504 
505 	return 0;
506 }
507 
508 /*
509  * check that branch_sample_type is compatible with
510  * settings needed for precise_ip > 1 which implies
511  * using the LBR to capture ALL taken branches at the
512  * priv levels of the measurement
513  */
514 static inline int precise_br_compat(struct perf_event *event)
515 {
516 	u64 m = event->attr.branch_sample_type;
517 	u64 b = 0;
518 
519 	/* must capture all branches */
520 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
521 		return 0;
522 
523 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
524 
525 	if (!event->attr.exclude_user)
526 		b |= PERF_SAMPLE_BRANCH_USER;
527 
528 	if (!event->attr.exclude_kernel)
529 		b |= PERF_SAMPLE_BRANCH_KERNEL;
530 
531 	/*
532 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
533 	 */
534 
535 	return m == b;
536 }
537 
538 int x86_pmu_max_precise(void)
539 {
540 	int precise = 0;
541 
542 	/* Support for constant skid */
543 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
544 		precise++;
545 
546 		/* Support for IP fixup */
547 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
548 			precise++;
549 
550 		if (x86_pmu.pebs_prec_dist)
551 			precise++;
552 	}
553 	return precise;
554 }
555 
556 int x86_pmu_hw_config(struct perf_event *event)
557 {
558 	if (event->attr.precise_ip) {
559 		int precise = x86_pmu_max_precise();
560 
561 		if (event->attr.precise_ip > precise)
562 			return -EOPNOTSUPP;
563 
564 		/* There's no sense in having PEBS for non sampling events: */
565 		if (!is_sampling_event(event))
566 			return -EINVAL;
567 	}
568 	/*
569 	 * check that PEBS LBR correction does not conflict with
570 	 * whatever the user is asking with attr->branch_sample_type
571 	 */
572 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
573 		u64 *br_type = &event->attr.branch_sample_type;
574 
575 		if (has_branch_stack(event)) {
576 			if (!precise_br_compat(event))
577 				return -EOPNOTSUPP;
578 
579 			/* branch_sample_type is compatible */
580 
581 		} else {
582 			/*
583 			 * user did not specify  branch_sample_type
584 			 *
585 			 * For PEBS fixups, we capture all
586 			 * the branches at the priv level of the
587 			 * event.
588 			 */
589 			*br_type = PERF_SAMPLE_BRANCH_ANY;
590 
591 			if (!event->attr.exclude_user)
592 				*br_type |= PERF_SAMPLE_BRANCH_USER;
593 
594 			if (!event->attr.exclude_kernel)
595 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
596 		}
597 	}
598 
599 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
600 		event->attach_state |= PERF_ATTACH_TASK_DATA;
601 
602 	/*
603 	 * Generate PMC IRQs:
604 	 * (keep 'enabled' bit clear for now)
605 	 */
606 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
607 
608 	/*
609 	 * Count user and OS events unless requested not to
610 	 */
611 	if (!event->attr.exclude_user)
612 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
613 	if (!event->attr.exclude_kernel)
614 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
615 
616 	if (event->attr.type == event->pmu->type)
617 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
618 
619 	if (event->attr.sample_period && x86_pmu.limit_period) {
620 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
621 				event->attr.sample_period)
622 			return -EINVAL;
623 	}
624 
625 	/* sample_regs_user never support XMM registers */
626 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
627 		return -EINVAL;
628 	/*
629 	 * Besides the general purpose registers, XMM registers may
630 	 * be collected in PEBS on some platforms, e.g. Icelake
631 	 */
632 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
633 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
634 			return -EINVAL;
635 
636 		if (!event->attr.precise_ip)
637 			return -EINVAL;
638 	}
639 
640 	return x86_setup_perfctr(event);
641 }
642 
643 /*
644  * Setup the hardware configuration for a given attr_type
645  */
646 static int __x86_pmu_event_init(struct perf_event *event)
647 {
648 	int err;
649 
650 	if (!x86_pmu_initialized())
651 		return -ENODEV;
652 
653 	err = x86_reserve_hardware();
654 	if (err)
655 		return err;
656 
657 	atomic_inc(&active_events);
658 	event->destroy = hw_perf_event_destroy;
659 
660 	event->hw.idx = -1;
661 	event->hw.last_cpu = -1;
662 	event->hw.last_tag = ~0ULL;
663 
664 	/* mark unused */
665 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
666 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
667 
668 	return x86_pmu.hw_config(event);
669 }
670 
671 void x86_pmu_disable_all(void)
672 {
673 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
674 	int idx;
675 
676 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
677 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
678 		u64 val;
679 
680 		if (!test_bit(idx, cpuc->active_mask))
681 			continue;
682 		rdmsrl(x86_pmu_config_addr(idx), val);
683 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
684 			continue;
685 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
686 		wrmsrl(x86_pmu_config_addr(idx), val);
687 		if (is_counter_pair(hwc))
688 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
689 	}
690 }
691 
692 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
693 {
694 	return static_call(x86_pmu_guest_get_msrs)(nr);
695 }
696 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
697 
698 /*
699  * There may be PMI landing after enabled=0. The PMI hitting could be before or
700  * after disable_all.
701  *
702  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
703  * It will not be re-enabled in the NMI handler again, because enabled=0. After
704  * handling the NMI, disable_all will be called, which will not change the
705  * state either. If PMI hits after disable_all, the PMU is already disabled
706  * before entering NMI handler. The NMI handler will not change the state
707  * either.
708  *
709  * So either situation is harmless.
710  */
711 static void x86_pmu_disable(struct pmu *pmu)
712 {
713 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
714 
715 	if (!x86_pmu_initialized())
716 		return;
717 
718 	if (!cpuc->enabled)
719 		return;
720 
721 	cpuc->n_added = 0;
722 	cpuc->enabled = 0;
723 	barrier();
724 
725 	static_call(x86_pmu_disable_all)();
726 }
727 
728 void x86_pmu_enable_all(int added)
729 {
730 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
731 	int idx;
732 
733 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
734 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
735 
736 		if (!test_bit(idx, cpuc->active_mask))
737 			continue;
738 
739 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
740 	}
741 }
742 
743 static inline int is_x86_event(struct perf_event *event)
744 {
745 	int i;
746 
747 	if (!is_hybrid())
748 		return event->pmu == &pmu;
749 
750 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
751 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
752 			return true;
753 	}
754 
755 	return false;
756 }
757 
758 struct pmu *x86_get_pmu(unsigned int cpu)
759 {
760 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
761 
762 	/*
763 	 * All CPUs of the hybrid type have been offline.
764 	 * The x86_get_pmu() should not be invoked.
765 	 */
766 	if (WARN_ON_ONCE(!cpuc->pmu))
767 		return &pmu;
768 
769 	return cpuc->pmu;
770 }
771 /*
772  * Event scheduler state:
773  *
774  * Assign events iterating over all events and counters, beginning
775  * with events with least weights first. Keep the current iterator
776  * state in struct sched_state.
777  */
778 struct sched_state {
779 	int	weight;
780 	int	event;		/* event index */
781 	int	counter;	/* counter index */
782 	int	unassigned;	/* number of events to be assigned left */
783 	int	nr_gp;		/* number of GP counters used */
784 	u64	used;
785 };
786 
787 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
788 #define	SCHED_STATES_MAX	2
789 
790 struct perf_sched {
791 	int			max_weight;
792 	int			max_events;
793 	int			max_gp;
794 	int			saved_states;
795 	struct event_constraint	**constraints;
796 	struct sched_state	state;
797 	struct sched_state	saved[SCHED_STATES_MAX];
798 };
799 
800 /*
801  * Initialize iterator that runs through all events and counters.
802  */
803 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
804 			    int num, int wmin, int wmax, int gpmax)
805 {
806 	int idx;
807 
808 	memset(sched, 0, sizeof(*sched));
809 	sched->max_events	= num;
810 	sched->max_weight	= wmax;
811 	sched->max_gp		= gpmax;
812 	sched->constraints	= constraints;
813 
814 	for (idx = 0; idx < num; idx++) {
815 		if (constraints[idx]->weight == wmin)
816 			break;
817 	}
818 
819 	sched->state.event	= idx;		/* start with min weight */
820 	sched->state.weight	= wmin;
821 	sched->state.unassigned	= num;
822 }
823 
824 static void perf_sched_save_state(struct perf_sched *sched)
825 {
826 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
827 		return;
828 
829 	sched->saved[sched->saved_states] = sched->state;
830 	sched->saved_states++;
831 }
832 
833 static bool perf_sched_restore_state(struct perf_sched *sched)
834 {
835 	if (!sched->saved_states)
836 		return false;
837 
838 	sched->saved_states--;
839 	sched->state = sched->saved[sched->saved_states];
840 
841 	/* this assignment didn't work out */
842 	/* XXX broken vs EVENT_PAIR */
843 	sched->state.used &= ~BIT_ULL(sched->state.counter);
844 
845 	/* try the next one */
846 	sched->state.counter++;
847 
848 	return true;
849 }
850 
851 /*
852  * Select a counter for the current event to schedule. Return true on
853  * success.
854  */
855 static bool __perf_sched_find_counter(struct perf_sched *sched)
856 {
857 	struct event_constraint *c;
858 	int idx;
859 
860 	if (!sched->state.unassigned)
861 		return false;
862 
863 	if (sched->state.event >= sched->max_events)
864 		return false;
865 
866 	c = sched->constraints[sched->state.event];
867 	/* Prefer fixed purpose counters */
868 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
869 		idx = INTEL_PMC_IDX_FIXED;
870 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
871 			u64 mask = BIT_ULL(idx);
872 
873 			if (sched->state.used & mask)
874 				continue;
875 
876 			sched->state.used |= mask;
877 			goto done;
878 		}
879 	}
880 
881 	/* Grab the first unused counter starting with idx */
882 	idx = sched->state.counter;
883 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
884 		u64 mask = BIT_ULL(idx);
885 
886 		if (c->flags & PERF_X86_EVENT_PAIR)
887 			mask |= mask << 1;
888 
889 		if (sched->state.used & mask)
890 			continue;
891 
892 		if (sched->state.nr_gp++ >= sched->max_gp)
893 			return false;
894 
895 		sched->state.used |= mask;
896 		goto done;
897 	}
898 
899 	return false;
900 
901 done:
902 	sched->state.counter = idx;
903 
904 	if (c->overlap)
905 		perf_sched_save_state(sched);
906 
907 	return true;
908 }
909 
910 static bool perf_sched_find_counter(struct perf_sched *sched)
911 {
912 	while (!__perf_sched_find_counter(sched)) {
913 		if (!perf_sched_restore_state(sched))
914 			return false;
915 	}
916 
917 	return true;
918 }
919 
920 /*
921  * Go through all unassigned events and find the next one to schedule.
922  * Take events with the least weight first. Return true on success.
923  */
924 static bool perf_sched_next_event(struct perf_sched *sched)
925 {
926 	struct event_constraint *c;
927 
928 	if (!sched->state.unassigned || !--sched->state.unassigned)
929 		return false;
930 
931 	do {
932 		/* next event */
933 		sched->state.event++;
934 		if (sched->state.event >= sched->max_events) {
935 			/* next weight */
936 			sched->state.event = 0;
937 			sched->state.weight++;
938 			if (sched->state.weight > sched->max_weight)
939 				return false;
940 		}
941 		c = sched->constraints[sched->state.event];
942 	} while (c->weight != sched->state.weight);
943 
944 	sched->state.counter = 0;	/* start with first counter */
945 
946 	return true;
947 }
948 
949 /*
950  * Assign a counter for each event.
951  */
952 int perf_assign_events(struct event_constraint **constraints, int n,
953 			int wmin, int wmax, int gpmax, int *assign)
954 {
955 	struct perf_sched sched;
956 
957 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
958 
959 	do {
960 		if (!perf_sched_find_counter(&sched))
961 			break;	/* failed */
962 		if (assign)
963 			assign[sched.state.event] = sched.state.counter;
964 	} while (perf_sched_next_event(&sched));
965 
966 	return sched.state.unassigned;
967 }
968 EXPORT_SYMBOL_GPL(perf_assign_events);
969 
970 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
971 {
972 	int num_counters = hybrid(cpuc->pmu, num_counters);
973 	struct event_constraint *c;
974 	struct perf_event *e;
975 	int n0, i, wmin, wmax, unsched = 0;
976 	struct hw_perf_event *hwc;
977 	u64 used_mask = 0;
978 
979 	/*
980 	 * Compute the number of events already present; see x86_pmu_add(),
981 	 * validate_group() and x86_pmu_commit_txn(). For the former two
982 	 * cpuc->n_events hasn't been updated yet, while for the latter
983 	 * cpuc->n_txn contains the number of events added in the current
984 	 * transaction.
985 	 */
986 	n0 = cpuc->n_events;
987 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
988 		n0 -= cpuc->n_txn;
989 
990 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
991 
992 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
993 		c = cpuc->event_constraint[i];
994 
995 		/*
996 		 * Previously scheduled events should have a cached constraint,
997 		 * while new events should not have one.
998 		 */
999 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1000 
1001 		/*
1002 		 * Request constraints for new events; or for those events that
1003 		 * have a dynamic constraint -- for those the constraint can
1004 		 * change due to external factors (sibling state, allow_tfa).
1005 		 */
1006 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1007 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1008 			cpuc->event_constraint[i] = c;
1009 		}
1010 
1011 		wmin = min(wmin, c->weight);
1012 		wmax = max(wmax, c->weight);
1013 	}
1014 
1015 	/*
1016 	 * fastpath, try to reuse previous register
1017 	 */
1018 	for (i = 0; i < n; i++) {
1019 		u64 mask;
1020 
1021 		hwc = &cpuc->event_list[i]->hw;
1022 		c = cpuc->event_constraint[i];
1023 
1024 		/* never assigned */
1025 		if (hwc->idx == -1)
1026 			break;
1027 
1028 		/* constraint still honored */
1029 		if (!test_bit(hwc->idx, c->idxmsk))
1030 			break;
1031 
1032 		mask = BIT_ULL(hwc->idx);
1033 		if (is_counter_pair(hwc))
1034 			mask |= mask << 1;
1035 
1036 		/* not already used */
1037 		if (used_mask & mask)
1038 			break;
1039 
1040 		used_mask |= mask;
1041 
1042 		if (assign)
1043 			assign[i] = hwc->idx;
1044 	}
1045 
1046 	/* slow path */
1047 	if (i != n) {
1048 		int gpmax = num_counters;
1049 
1050 		/*
1051 		 * Do not allow scheduling of more than half the available
1052 		 * generic counters.
1053 		 *
1054 		 * This helps avoid counter starvation of sibling thread by
1055 		 * ensuring at most half the counters cannot be in exclusive
1056 		 * mode. There is no designated counters for the limits. Any
1057 		 * N/2 counters can be used. This helps with events with
1058 		 * specific counter constraints.
1059 		 */
1060 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1061 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1062 			gpmax /= 2;
1063 
1064 		/*
1065 		 * Reduce the amount of available counters to allow fitting
1066 		 * the extra Merge events needed by large increment events.
1067 		 */
1068 		if (x86_pmu.flags & PMU_FL_PAIR) {
1069 			gpmax = num_counters - cpuc->n_pair;
1070 			WARN_ON(gpmax <= 0);
1071 		}
1072 
1073 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1074 					     wmax, gpmax, assign);
1075 	}
1076 
1077 	/*
1078 	 * In case of success (unsched = 0), mark events as committed,
1079 	 * so we do not put_constraint() in case new events are added
1080 	 * and fail to be scheduled
1081 	 *
1082 	 * We invoke the lower level commit callback to lock the resource
1083 	 *
1084 	 * We do not need to do all of this in case we are called to
1085 	 * validate an event group (assign == NULL)
1086 	 */
1087 	if (!unsched && assign) {
1088 		for (i = 0; i < n; i++) {
1089 			e = cpuc->event_list[i];
1090 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1091 		}
1092 	} else {
1093 		for (i = n0; i < n; i++) {
1094 			e = cpuc->event_list[i];
1095 
1096 			/*
1097 			 * release events that failed scheduling
1098 			 */
1099 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1100 
1101 			cpuc->event_constraint[i] = NULL;
1102 		}
1103 	}
1104 
1105 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1106 
1107 	return unsched ? -EINVAL : 0;
1108 }
1109 
1110 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1111 			       struct perf_event *event)
1112 {
1113 	if (is_metric_event(event)) {
1114 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1115 			return -EINVAL;
1116 		cpuc->n_metric++;
1117 		cpuc->n_txn_metric++;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1124 				struct perf_event *event)
1125 {
1126 	if (is_metric_event(event))
1127 		cpuc->n_metric--;
1128 }
1129 
1130 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1131 			 int max_count, int n)
1132 {
1133 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1134 
1135 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1136 		return -EINVAL;
1137 
1138 	if (n >= max_count + cpuc->n_metric)
1139 		return -EINVAL;
1140 
1141 	cpuc->event_list[n] = event;
1142 	if (is_counter_pair(&event->hw)) {
1143 		cpuc->n_pair++;
1144 		cpuc->n_txn_pair++;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * dogrp: true if must collect siblings events (group)
1152  * returns total number of events and error code
1153  */
1154 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1155 {
1156 	int num_counters = hybrid(cpuc->pmu, num_counters);
1157 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1158 	struct perf_event *event;
1159 	int n, max_count;
1160 
1161 	max_count = num_counters + num_counters_fixed;
1162 
1163 	/* current number of events already accepted */
1164 	n = cpuc->n_events;
1165 	if (!cpuc->n_events)
1166 		cpuc->pebs_output = 0;
1167 
1168 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1169 		/*
1170 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1171 		 * away, the group was broken down and this singleton event
1172 		 * can't schedule any more.
1173 		 */
1174 		if (is_pebs_pt(leader) && !leader->aux_event)
1175 			return -EINVAL;
1176 
1177 		/*
1178 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1179 		 */
1180 		if (cpuc->pebs_output &&
1181 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1182 			return -EINVAL;
1183 
1184 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1185 	}
1186 
1187 	if (is_x86_event(leader)) {
1188 		if (collect_event(cpuc, leader, max_count, n))
1189 			return -EINVAL;
1190 		n++;
1191 	}
1192 
1193 	if (!dogrp)
1194 		return n;
1195 
1196 	for_each_sibling_event(event, leader) {
1197 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1198 			continue;
1199 
1200 		if (collect_event(cpuc, event, max_count, n))
1201 			return -EINVAL;
1202 
1203 		n++;
1204 	}
1205 	return n;
1206 }
1207 
1208 static inline void x86_assign_hw_event(struct perf_event *event,
1209 				struct cpu_hw_events *cpuc, int i)
1210 {
1211 	struct hw_perf_event *hwc = &event->hw;
1212 	int idx;
1213 
1214 	idx = hwc->idx = cpuc->assign[i];
1215 	hwc->last_cpu = smp_processor_id();
1216 	hwc->last_tag = ++cpuc->tags[i];
1217 
1218 	switch (hwc->idx) {
1219 	case INTEL_PMC_IDX_FIXED_BTS:
1220 	case INTEL_PMC_IDX_FIXED_VLBR:
1221 		hwc->config_base = 0;
1222 		hwc->event_base	= 0;
1223 		break;
1224 
1225 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1226 		/* All the metric events are mapped onto the fixed counter 3. */
1227 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1228 		fallthrough;
1229 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1230 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1231 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1232 				(idx - INTEL_PMC_IDX_FIXED);
1233 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1234 					INTEL_PMC_FIXED_RDPMC_BASE;
1235 		break;
1236 
1237 	default:
1238 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1239 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1240 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1241 		break;
1242 	}
1243 }
1244 
1245 /**
1246  * x86_perf_rdpmc_index - Return PMC counter used for event
1247  * @event: the perf_event to which the PMC counter was assigned
1248  *
1249  * The counter assigned to this performance event may change if interrupts
1250  * are enabled. This counter should thus never be used while interrupts are
1251  * enabled. Before this function is used to obtain the assigned counter the
1252  * event should be checked for validity using, for example,
1253  * perf_event_read_local(), within the same interrupt disabled section in
1254  * which this counter is planned to be used.
1255  *
1256  * Return: The index of the performance monitoring counter assigned to
1257  * @perf_event.
1258  */
1259 int x86_perf_rdpmc_index(struct perf_event *event)
1260 {
1261 	lockdep_assert_irqs_disabled();
1262 
1263 	return event->hw.event_base_rdpmc;
1264 }
1265 
1266 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1267 					struct cpu_hw_events *cpuc,
1268 					int i)
1269 {
1270 	return hwc->idx == cpuc->assign[i] &&
1271 		hwc->last_cpu == smp_processor_id() &&
1272 		hwc->last_tag == cpuc->tags[i];
1273 }
1274 
1275 static void x86_pmu_start(struct perf_event *event, int flags);
1276 
1277 static void x86_pmu_enable(struct pmu *pmu)
1278 {
1279 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1280 	struct perf_event *event;
1281 	struct hw_perf_event *hwc;
1282 	int i, added = cpuc->n_added;
1283 
1284 	if (!x86_pmu_initialized())
1285 		return;
1286 
1287 	if (cpuc->enabled)
1288 		return;
1289 
1290 	if (cpuc->n_added) {
1291 		int n_running = cpuc->n_events - cpuc->n_added;
1292 		/*
1293 		 * apply assignment obtained either from
1294 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1295 		 *
1296 		 * step1: save events moving to new counters
1297 		 */
1298 		for (i = 0; i < n_running; i++) {
1299 			event = cpuc->event_list[i];
1300 			hwc = &event->hw;
1301 
1302 			/*
1303 			 * we can avoid reprogramming counter if:
1304 			 * - assigned same counter as last time
1305 			 * - running on same CPU as last time
1306 			 * - no other event has used the counter since
1307 			 */
1308 			if (hwc->idx == -1 ||
1309 			    match_prev_assignment(hwc, cpuc, i))
1310 				continue;
1311 
1312 			/*
1313 			 * Ensure we don't accidentally enable a stopped
1314 			 * counter simply because we rescheduled.
1315 			 */
1316 			if (hwc->state & PERF_HES_STOPPED)
1317 				hwc->state |= PERF_HES_ARCH;
1318 
1319 			x86_pmu_stop(event, PERF_EF_UPDATE);
1320 		}
1321 
1322 		/*
1323 		 * step2: reprogram moved events into new counters
1324 		 */
1325 		for (i = 0; i < cpuc->n_events; i++) {
1326 			event = cpuc->event_list[i];
1327 			hwc = &event->hw;
1328 
1329 			if (!match_prev_assignment(hwc, cpuc, i))
1330 				x86_assign_hw_event(event, cpuc, i);
1331 			else if (i < n_running)
1332 				continue;
1333 
1334 			if (hwc->state & PERF_HES_ARCH)
1335 				continue;
1336 
1337 			x86_pmu_start(event, PERF_EF_RELOAD);
1338 		}
1339 		cpuc->n_added = 0;
1340 		perf_events_lapic_init();
1341 	}
1342 
1343 	cpuc->enabled = 1;
1344 	barrier();
1345 
1346 	static_call(x86_pmu_enable_all)(added);
1347 }
1348 
1349 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1350 
1351 /*
1352  * Set the next IRQ period, based on the hwc->period_left value.
1353  * To be called with the event disabled in hw:
1354  */
1355 int x86_perf_event_set_period(struct perf_event *event)
1356 {
1357 	struct hw_perf_event *hwc = &event->hw;
1358 	s64 left = local64_read(&hwc->period_left);
1359 	s64 period = hwc->sample_period;
1360 	int ret = 0, idx = hwc->idx;
1361 
1362 	if (unlikely(!hwc->event_base))
1363 		return 0;
1364 
1365 	if (unlikely(is_topdown_count(event)) &&
1366 	    x86_pmu.set_topdown_event_period)
1367 		return x86_pmu.set_topdown_event_period(event);
1368 
1369 	/*
1370 	 * If we are way outside a reasonable range then just skip forward:
1371 	 */
1372 	if (unlikely(left <= -period)) {
1373 		left = period;
1374 		local64_set(&hwc->period_left, left);
1375 		hwc->last_period = period;
1376 		ret = 1;
1377 	}
1378 
1379 	if (unlikely(left <= 0)) {
1380 		left += period;
1381 		local64_set(&hwc->period_left, left);
1382 		hwc->last_period = period;
1383 		ret = 1;
1384 	}
1385 	/*
1386 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1387 	 */
1388 	if (unlikely(left < 2))
1389 		left = 2;
1390 
1391 	if (left > x86_pmu.max_period)
1392 		left = x86_pmu.max_period;
1393 
1394 	if (x86_pmu.limit_period)
1395 		left = x86_pmu.limit_period(event, left);
1396 
1397 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1398 
1399 	/*
1400 	 * The hw event starts counting from this event offset,
1401 	 * mark it to be able to extra future deltas:
1402 	 */
1403 	local64_set(&hwc->prev_count, (u64)-left);
1404 
1405 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1406 
1407 	/*
1408 	 * Sign extend the Merge event counter's upper 16 bits since
1409 	 * we currently declare a 48-bit counter width
1410 	 */
1411 	if (is_counter_pair(hwc))
1412 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1413 
1414 	/*
1415 	 * Due to erratum on certan cpu we need
1416 	 * a second write to be sure the register
1417 	 * is updated properly
1418 	 */
1419 	if (x86_pmu.perfctr_second_write) {
1420 		wrmsrl(hwc->event_base,
1421 			(u64)(-left) & x86_pmu.cntval_mask);
1422 	}
1423 
1424 	perf_event_update_userpage(event);
1425 
1426 	return ret;
1427 }
1428 
1429 void x86_pmu_enable_event(struct perf_event *event)
1430 {
1431 	if (__this_cpu_read(cpu_hw_events.enabled))
1432 		__x86_pmu_enable_event(&event->hw,
1433 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1434 }
1435 
1436 /*
1437  * Add a single event to the PMU.
1438  *
1439  * The event is added to the group of enabled events
1440  * but only if it can be scheduled with existing events.
1441  */
1442 static int x86_pmu_add(struct perf_event *event, int flags)
1443 {
1444 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1445 	struct hw_perf_event *hwc;
1446 	int assign[X86_PMC_IDX_MAX];
1447 	int n, n0, ret;
1448 
1449 	hwc = &event->hw;
1450 
1451 	n0 = cpuc->n_events;
1452 	ret = n = collect_events(cpuc, event, false);
1453 	if (ret < 0)
1454 		goto out;
1455 
1456 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1457 	if (!(flags & PERF_EF_START))
1458 		hwc->state |= PERF_HES_ARCH;
1459 
1460 	/*
1461 	 * If group events scheduling transaction was started,
1462 	 * skip the schedulability test here, it will be performed
1463 	 * at commit time (->commit_txn) as a whole.
1464 	 *
1465 	 * If commit fails, we'll call ->del() on all events
1466 	 * for which ->add() was called.
1467 	 */
1468 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1469 		goto done_collect;
1470 
1471 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1472 	if (ret)
1473 		goto out;
1474 	/*
1475 	 * copy new assignment, now we know it is possible
1476 	 * will be used by hw_perf_enable()
1477 	 */
1478 	memcpy(cpuc->assign, assign, n*sizeof(int));
1479 
1480 done_collect:
1481 	/*
1482 	 * Commit the collect_events() state. See x86_pmu_del() and
1483 	 * x86_pmu_*_txn().
1484 	 */
1485 	cpuc->n_events = n;
1486 	cpuc->n_added += n - n0;
1487 	cpuc->n_txn += n - n0;
1488 
1489 	/*
1490 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1491 	 * so we enable LBRs before an event needs them etc..
1492 	 */
1493 	static_call_cond(x86_pmu_add)(event);
1494 
1495 	ret = 0;
1496 out:
1497 	return ret;
1498 }
1499 
1500 static void x86_pmu_start(struct perf_event *event, int flags)
1501 {
1502 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503 	int idx = event->hw.idx;
1504 
1505 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1506 		return;
1507 
1508 	if (WARN_ON_ONCE(idx == -1))
1509 		return;
1510 
1511 	if (flags & PERF_EF_RELOAD) {
1512 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1513 		x86_perf_event_set_period(event);
1514 	}
1515 
1516 	event->hw.state = 0;
1517 
1518 	cpuc->events[idx] = event;
1519 	__set_bit(idx, cpuc->active_mask);
1520 	static_call(x86_pmu_enable)(event);
1521 	perf_event_update_userpage(event);
1522 }
1523 
1524 void perf_event_print_debug(void)
1525 {
1526 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1527 	u64 pebs, debugctl;
1528 	int cpu = smp_processor_id();
1529 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1530 	int num_counters = hybrid(cpuc->pmu, num_counters);
1531 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1532 	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1533 	unsigned long flags;
1534 	int idx;
1535 
1536 	if (!num_counters)
1537 		return;
1538 
1539 	local_irq_save(flags);
1540 
1541 	if (x86_pmu.version >= 2) {
1542 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1543 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1544 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1545 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1546 
1547 		pr_info("\n");
1548 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1549 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1550 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1551 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1552 		if (pebs_constraints) {
1553 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1554 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1555 		}
1556 		if (x86_pmu.lbr_nr) {
1557 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1558 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1559 		}
1560 	}
1561 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1562 
1563 	for (idx = 0; idx < num_counters; idx++) {
1564 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1565 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1566 
1567 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1568 
1569 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1570 			cpu, idx, pmc_ctrl);
1571 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1572 			cpu, idx, pmc_count);
1573 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1574 			cpu, idx, prev_left);
1575 	}
1576 	for (idx = 0; idx < num_counters_fixed; idx++) {
1577 		if (fixed_counter_disabled(idx, cpuc->pmu))
1578 			continue;
1579 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1580 
1581 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1582 			cpu, idx, pmc_count);
1583 	}
1584 	local_irq_restore(flags);
1585 }
1586 
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 	struct hw_perf_event *hwc = &event->hw;
1591 
1592 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 		static_call(x86_pmu_disable)(event);
1594 		__clear_bit(hwc->idx, cpuc->active_mask);
1595 		cpuc->events[hwc->idx] = NULL;
1596 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 		hwc->state |= PERF_HES_STOPPED;
1598 	}
1599 
1600 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601 		/*
1602 		 * Drain the remaining delta count out of a event
1603 		 * that we are disabling:
1604 		 */
1605 		x86_perf_event_update(event);
1606 		hwc->state |= PERF_HES_UPTODATE;
1607 	}
1608 }
1609 
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614 	int i;
1615 
1616 	/*
1617 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 	 * The events never got scheduled and ->cancel_txn will truncate
1619 	 * the event_list.
1620 	 *
1621 	 * XXX assumes any ->del() called during a TXN will only be on
1622 	 * an event added during that same TXN.
1623 	 */
1624 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625 		goto do_del;
1626 
1627 	/*
1628 	 * Not a TXN, therefore cleanup properly.
1629 	 */
1630 	x86_pmu_stop(event, PERF_EF_UPDATE);
1631 
1632 	for (i = 0; i < cpuc->n_events; i++) {
1633 		if (event == cpuc->event_list[i])
1634 			break;
1635 	}
1636 
1637 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1638 		return;
1639 
1640 	/* If we have a newly added event; make sure to decrease n_added. */
1641 	if (i >= cpuc->n_events - cpuc->n_added)
1642 		--cpuc->n_added;
1643 
1644 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1645 
1646 	/* Delete the array entry. */
1647 	while (++i < cpuc->n_events) {
1648 		cpuc->event_list[i-1] = cpuc->event_list[i];
1649 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1650 	}
1651 	cpuc->event_constraint[i-1] = NULL;
1652 	--cpuc->n_events;
1653 	if (intel_cap.perf_metrics)
1654 		del_nr_metric_event(cpuc, event);
1655 
1656 	perf_event_update_userpage(event);
1657 
1658 do_del:
1659 
1660 	/*
1661 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1662 	 * event can need them etc..
1663 	 */
1664 	static_call_cond(x86_pmu_del)(event);
1665 }
1666 
1667 int x86_pmu_handle_irq(struct pt_regs *regs)
1668 {
1669 	struct perf_sample_data data;
1670 	struct cpu_hw_events *cpuc;
1671 	struct perf_event *event;
1672 	int idx, handled = 0;
1673 	u64 val;
1674 
1675 	cpuc = this_cpu_ptr(&cpu_hw_events);
1676 
1677 	/*
1678 	 * Some chipsets need to unmask the LVTPC in a particular spot
1679 	 * inside the nmi handler.  As a result, the unmasking was pushed
1680 	 * into all the nmi handlers.
1681 	 *
1682 	 * This generic handler doesn't seem to have any issues where the
1683 	 * unmasking occurs so it was left at the top.
1684 	 */
1685 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1686 
1687 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1688 		if (!test_bit(idx, cpuc->active_mask))
1689 			continue;
1690 
1691 		event = cpuc->events[idx];
1692 
1693 		val = x86_perf_event_update(event);
1694 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1695 			continue;
1696 
1697 		/*
1698 		 * event overflow
1699 		 */
1700 		handled++;
1701 		perf_sample_data_init(&data, 0, event->hw.last_period);
1702 
1703 		if (!x86_perf_event_set_period(event))
1704 			continue;
1705 
1706 		if (perf_event_overflow(event, &data, regs))
1707 			x86_pmu_stop(event, 0);
1708 	}
1709 
1710 	if (handled)
1711 		inc_irq_stat(apic_perf_irqs);
1712 
1713 	return handled;
1714 }
1715 
1716 void perf_events_lapic_init(void)
1717 {
1718 	if (!x86_pmu.apic || !x86_pmu_initialized())
1719 		return;
1720 
1721 	/*
1722 	 * Always use NMI for PMU
1723 	 */
1724 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1725 }
1726 
1727 static int
1728 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1729 {
1730 	u64 start_clock;
1731 	u64 finish_clock;
1732 	int ret;
1733 
1734 	/*
1735 	 * All PMUs/events that share this PMI handler should make sure to
1736 	 * increment active_events for their events.
1737 	 */
1738 	if (!atomic_read(&active_events))
1739 		return NMI_DONE;
1740 
1741 	start_clock = sched_clock();
1742 	ret = static_call(x86_pmu_handle_irq)(regs);
1743 	finish_clock = sched_clock();
1744 
1745 	perf_sample_event_took(finish_clock - start_clock);
1746 
1747 	return ret;
1748 }
1749 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1750 
1751 struct event_constraint emptyconstraint;
1752 struct event_constraint unconstrained;
1753 
1754 static int x86_pmu_prepare_cpu(unsigned int cpu)
1755 {
1756 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1757 	int i;
1758 
1759 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1760 		cpuc->kfree_on_online[i] = NULL;
1761 	if (x86_pmu.cpu_prepare)
1762 		return x86_pmu.cpu_prepare(cpu);
1763 	return 0;
1764 }
1765 
1766 static int x86_pmu_dead_cpu(unsigned int cpu)
1767 {
1768 	if (x86_pmu.cpu_dead)
1769 		x86_pmu.cpu_dead(cpu);
1770 	return 0;
1771 }
1772 
1773 static int x86_pmu_online_cpu(unsigned int cpu)
1774 {
1775 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1776 	int i;
1777 
1778 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1779 		kfree(cpuc->kfree_on_online[i]);
1780 		cpuc->kfree_on_online[i] = NULL;
1781 	}
1782 	return 0;
1783 }
1784 
1785 static int x86_pmu_starting_cpu(unsigned int cpu)
1786 {
1787 	if (x86_pmu.cpu_starting)
1788 		x86_pmu.cpu_starting(cpu);
1789 	return 0;
1790 }
1791 
1792 static int x86_pmu_dying_cpu(unsigned int cpu)
1793 {
1794 	if (x86_pmu.cpu_dying)
1795 		x86_pmu.cpu_dying(cpu);
1796 	return 0;
1797 }
1798 
1799 static void __init pmu_check_apic(void)
1800 {
1801 	if (boot_cpu_has(X86_FEATURE_APIC))
1802 		return;
1803 
1804 	x86_pmu.apic = 0;
1805 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1806 	pr_info("no hardware sampling interrupt available.\n");
1807 
1808 	/*
1809 	 * If we have a PMU initialized but no APIC
1810 	 * interrupts, we cannot sample hardware
1811 	 * events (user-space has to fall back and
1812 	 * sample via a hrtimer based software event):
1813 	 */
1814 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1815 
1816 }
1817 
1818 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1819 	.name = "format",
1820 	.attrs = NULL,
1821 };
1822 
1823 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1824 {
1825 	struct perf_pmu_events_attr *pmu_attr =
1826 		container_of(attr, struct perf_pmu_events_attr, attr);
1827 	u64 config = 0;
1828 
1829 	if (pmu_attr->id < x86_pmu.max_events)
1830 		config = x86_pmu.event_map(pmu_attr->id);
1831 
1832 	/* string trumps id */
1833 	if (pmu_attr->event_str)
1834 		return sprintf(page, "%s", pmu_attr->event_str);
1835 
1836 	return x86_pmu.events_sysfs_show(page, config);
1837 }
1838 EXPORT_SYMBOL_GPL(events_sysfs_show);
1839 
1840 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1841 			  char *page)
1842 {
1843 	struct perf_pmu_events_ht_attr *pmu_attr =
1844 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1845 
1846 	/*
1847 	 * Report conditional events depending on Hyper-Threading.
1848 	 *
1849 	 * This is overly conservative as usually the HT special
1850 	 * handling is not needed if the other CPU thread is idle.
1851 	 *
1852 	 * Note this does not (and cannot) handle the case when thread
1853 	 * siblings are invisible, for example with virtualization
1854 	 * if they are owned by some other guest.  The user tool
1855 	 * has to re-read when a thread sibling gets onlined later.
1856 	 */
1857 	return sprintf(page, "%s",
1858 			topology_max_smt_threads() > 1 ?
1859 			pmu_attr->event_str_ht :
1860 			pmu_attr->event_str_noht);
1861 }
1862 
1863 ssize_t events_hybrid_sysfs_show(struct device *dev,
1864 				 struct device_attribute *attr,
1865 				 char *page)
1866 {
1867 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1868 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1869 	struct x86_hybrid_pmu *pmu;
1870 	const char *str, *next_str;
1871 	int i;
1872 
1873 	if (hweight64(pmu_attr->pmu_type) == 1)
1874 		return sprintf(page, "%s", pmu_attr->event_str);
1875 
1876 	/*
1877 	 * Hybrid PMUs may support the same event name, but with different
1878 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1879 	 * different event encoding from a Core PMU.
1880 	 *
1881 	 * The event_str includes all event encodings. Each event encoding
1882 	 * is divided by ";". The order of the event encodings must follow
1883 	 * the order of the hybrid PMU index.
1884 	 */
1885 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1886 
1887 	str = pmu_attr->event_str;
1888 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1889 		if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1890 			continue;
1891 		if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1892 			next_str = strchr(str, ';');
1893 			if (next_str)
1894 				return snprintf(page, next_str - str + 1, "%s", str);
1895 			else
1896 				return sprintf(page, "%s", str);
1897 		}
1898 		str = strchr(str, ';');
1899 		str++;
1900 	}
1901 
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1905 
1906 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1907 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1908 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1909 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1910 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1911 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1912 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1913 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1914 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1915 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1916 
1917 static struct attribute *empty_attrs;
1918 
1919 static struct attribute *events_attr[] = {
1920 	EVENT_PTR(CPU_CYCLES),
1921 	EVENT_PTR(INSTRUCTIONS),
1922 	EVENT_PTR(CACHE_REFERENCES),
1923 	EVENT_PTR(CACHE_MISSES),
1924 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1925 	EVENT_PTR(BRANCH_MISSES),
1926 	EVENT_PTR(BUS_CYCLES),
1927 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1928 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1929 	EVENT_PTR(REF_CPU_CYCLES),
1930 	NULL,
1931 };
1932 
1933 /*
1934  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1935  * out of events_attr attributes.
1936  */
1937 static umode_t
1938 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1939 {
1940 	struct perf_pmu_events_attr *pmu_attr;
1941 
1942 	if (idx >= x86_pmu.max_events)
1943 		return 0;
1944 
1945 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1946 	/* str trumps id */
1947 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1948 }
1949 
1950 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1951 	.name = "events",
1952 	.attrs = events_attr,
1953 	.is_visible = is_visible,
1954 };
1955 
1956 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1957 {
1958 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1959 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1960 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1961 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1962 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1963 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1964 	ssize_t ret;
1965 
1966 	/*
1967 	* We have whole page size to spend and just little data
1968 	* to write, so we can safely use sprintf.
1969 	*/
1970 	ret = sprintf(page, "event=0x%02llx", event);
1971 
1972 	if (umask)
1973 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1974 
1975 	if (edge)
1976 		ret += sprintf(page + ret, ",edge");
1977 
1978 	if (pc)
1979 		ret += sprintf(page + ret, ",pc");
1980 
1981 	if (any)
1982 		ret += sprintf(page + ret, ",any");
1983 
1984 	if (inv)
1985 		ret += sprintf(page + ret, ",inv");
1986 
1987 	if (cmask)
1988 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1989 
1990 	ret += sprintf(page + ret, "\n");
1991 
1992 	return ret;
1993 }
1994 
1995 static struct attribute_group x86_pmu_attr_group;
1996 static struct attribute_group x86_pmu_caps_group;
1997 
1998 static void x86_pmu_static_call_update(void)
1999 {
2000 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2001 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2002 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2003 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2004 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2005 
2006 	static_call_update(x86_pmu_add, x86_pmu.add);
2007 	static_call_update(x86_pmu_del, x86_pmu.del);
2008 	static_call_update(x86_pmu_read, x86_pmu.read);
2009 
2010 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2011 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2012 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2013 
2014 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2015 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2016 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2017 
2018 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2019 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2020 
2021 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2022 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2023 
2024 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2025 }
2026 
2027 static void _x86_pmu_read(struct perf_event *event)
2028 {
2029 	x86_perf_event_update(event);
2030 }
2031 
2032 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2033 			  u64 intel_ctrl)
2034 {
2035 	pr_info("... version:                %d\n",     x86_pmu.version);
2036 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2037 	pr_info("... generic registers:      %d\n",     num_counters);
2038 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2039 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2040 	pr_info("... fixed-purpose events:   %lu\n",
2041 			hweight64((((1ULL << num_counters_fixed) - 1)
2042 					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2043 	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2044 }
2045 
2046 /*
2047  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2048  * of the first registered PMU is unconditionally assigned to
2049  * each possible cpuctx->ctx.pmu.
2050  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2051  */
2052 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2053 {
2054 	struct perf_cpu_context *cpuctx;
2055 
2056 	if (!pmu->pmu_cpu_context)
2057 		return;
2058 
2059 	cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2060 	cpuctx->ctx.pmu = pmu;
2061 }
2062 
2063 static int __init init_hw_perf_events(void)
2064 {
2065 	struct x86_pmu_quirk *quirk;
2066 	int err;
2067 
2068 	pr_info("Performance Events: ");
2069 
2070 	switch (boot_cpu_data.x86_vendor) {
2071 	case X86_VENDOR_INTEL:
2072 		err = intel_pmu_init();
2073 		break;
2074 	case X86_VENDOR_AMD:
2075 		err = amd_pmu_init();
2076 		break;
2077 	case X86_VENDOR_HYGON:
2078 		err = amd_pmu_init();
2079 		x86_pmu.name = "HYGON";
2080 		break;
2081 	case X86_VENDOR_ZHAOXIN:
2082 	case X86_VENDOR_CENTAUR:
2083 		err = zhaoxin_pmu_init();
2084 		break;
2085 	default:
2086 		err = -ENOTSUPP;
2087 	}
2088 	if (err != 0) {
2089 		pr_cont("no PMU driver, software events only.\n");
2090 		return 0;
2091 	}
2092 
2093 	pmu_check_apic();
2094 
2095 	/* sanity check that the hardware exists or is emulated */
2096 	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2097 		return 0;
2098 
2099 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2100 
2101 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2102 
2103 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2104 		quirk->func();
2105 
2106 	if (!x86_pmu.intel_ctrl)
2107 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2108 
2109 	perf_events_lapic_init();
2110 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2111 
2112 	unconstrained = (struct event_constraint)
2113 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2114 				   0, x86_pmu.num_counters, 0, 0);
2115 
2116 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2117 
2118 	if (!x86_pmu.events_sysfs_show)
2119 		x86_pmu_events_group.attrs = &empty_attrs;
2120 
2121 	pmu.attr_update = x86_pmu.attr_update;
2122 
2123 	if (!is_hybrid()) {
2124 		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2125 				     x86_pmu.num_counters_fixed,
2126 				     x86_pmu.intel_ctrl);
2127 	}
2128 
2129 	if (!x86_pmu.read)
2130 		x86_pmu.read = _x86_pmu_read;
2131 
2132 	if (!x86_pmu.guest_get_msrs)
2133 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2134 
2135 	x86_pmu_static_call_update();
2136 
2137 	/*
2138 	 * Install callbacks. Core will call them for each online
2139 	 * cpu.
2140 	 */
2141 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2142 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2143 	if (err)
2144 		return err;
2145 
2146 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2147 				"perf/x86:starting", x86_pmu_starting_cpu,
2148 				x86_pmu_dying_cpu);
2149 	if (err)
2150 		goto out;
2151 
2152 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2153 				x86_pmu_online_cpu, NULL);
2154 	if (err)
2155 		goto out1;
2156 
2157 	if (!is_hybrid()) {
2158 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2159 		if (err)
2160 			goto out2;
2161 	} else {
2162 		u8 cpu_type = get_this_hybrid_cpu_type();
2163 		struct x86_hybrid_pmu *hybrid_pmu;
2164 		int i, j;
2165 
2166 		if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2167 			cpu_type = x86_pmu.get_hybrid_cpu_type();
2168 
2169 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2170 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2171 
2172 			hybrid_pmu->pmu = pmu;
2173 			hybrid_pmu->pmu.type = -1;
2174 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2175 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2176 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2177 
2178 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2179 						(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2180 			if (err)
2181 				break;
2182 
2183 			if (cpu_type == hybrid_pmu->cpu_type)
2184 				x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2185 		}
2186 
2187 		if (i < x86_pmu.num_hybrid_pmus) {
2188 			for (j = 0; j < i; j++)
2189 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2190 			pr_warn("Failed to register hybrid PMUs\n");
2191 			kfree(x86_pmu.hybrid_pmu);
2192 			x86_pmu.hybrid_pmu = NULL;
2193 			x86_pmu.num_hybrid_pmus = 0;
2194 			goto out2;
2195 		}
2196 	}
2197 
2198 	return 0;
2199 
2200 out2:
2201 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2202 out1:
2203 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2204 out:
2205 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2206 	return err;
2207 }
2208 early_initcall(init_hw_perf_events);
2209 
2210 static void x86_pmu_read(struct perf_event *event)
2211 {
2212 	static_call(x86_pmu_read)(event);
2213 }
2214 
2215 /*
2216  * Start group events scheduling transaction
2217  * Set the flag to make pmu::enable() not perform the
2218  * schedulability test, it will be performed at commit time
2219  *
2220  * We only support PERF_PMU_TXN_ADD transactions. Save the
2221  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2222  * transactions.
2223  */
2224 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2225 {
2226 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227 
2228 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2229 
2230 	cpuc->txn_flags = txn_flags;
2231 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2232 		return;
2233 
2234 	perf_pmu_disable(pmu);
2235 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2236 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2237 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2238 }
2239 
2240 /*
2241  * Stop group events scheduling transaction
2242  * Clear the flag and pmu::enable() will perform the
2243  * schedulability test.
2244  */
2245 static void x86_pmu_cancel_txn(struct pmu *pmu)
2246 {
2247 	unsigned int txn_flags;
2248 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2249 
2250 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2251 
2252 	txn_flags = cpuc->txn_flags;
2253 	cpuc->txn_flags = 0;
2254 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2255 		return;
2256 
2257 	/*
2258 	 * Truncate collected array by the number of events added in this
2259 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2260 	 */
2261 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2262 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2263 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2264 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2265 	perf_pmu_enable(pmu);
2266 }
2267 
2268 /*
2269  * Commit group events scheduling transaction
2270  * Perform the group schedulability test as a whole
2271  * Return 0 if success
2272  *
2273  * Does not cancel the transaction on failure; expects the caller to do this.
2274  */
2275 static int x86_pmu_commit_txn(struct pmu *pmu)
2276 {
2277 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2278 	int assign[X86_PMC_IDX_MAX];
2279 	int n, ret;
2280 
2281 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2282 
2283 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2284 		cpuc->txn_flags = 0;
2285 		return 0;
2286 	}
2287 
2288 	n = cpuc->n_events;
2289 
2290 	if (!x86_pmu_initialized())
2291 		return -EAGAIN;
2292 
2293 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2294 	if (ret)
2295 		return ret;
2296 
2297 	/*
2298 	 * copy new assignment, now we know it is possible
2299 	 * will be used by hw_perf_enable()
2300 	 */
2301 	memcpy(cpuc->assign, assign, n*sizeof(int));
2302 
2303 	cpuc->txn_flags = 0;
2304 	perf_pmu_enable(pmu);
2305 	return 0;
2306 }
2307 /*
2308  * a fake_cpuc is used to validate event groups. Due to
2309  * the extra reg logic, we need to also allocate a fake
2310  * per_core and per_cpu structure. Otherwise, group events
2311  * using extra reg may conflict without the kernel being
2312  * able to catch this when the last event gets added to
2313  * the group.
2314  */
2315 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2316 {
2317 	intel_cpuc_finish(cpuc);
2318 	kfree(cpuc);
2319 }
2320 
2321 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2322 {
2323 	struct cpu_hw_events *cpuc;
2324 	int cpu;
2325 
2326 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2327 	if (!cpuc)
2328 		return ERR_PTR(-ENOMEM);
2329 	cpuc->is_fake = 1;
2330 
2331 	if (is_hybrid()) {
2332 		struct x86_hybrid_pmu *h_pmu;
2333 
2334 		h_pmu = hybrid_pmu(event_pmu);
2335 		if (cpumask_empty(&h_pmu->supported_cpus))
2336 			goto error;
2337 		cpu = cpumask_first(&h_pmu->supported_cpus);
2338 	} else
2339 		cpu = raw_smp_processor_id();
2340 	cpuc->pmu = event_pmu;
2341 
2342 	if (intel_cpuc_prepare(cpuc, cpu))
2343 		goto error;
2344 
2345 	return cpuc;
2346 error:
2347 	free_fake_cpuc(cpuc);
2348 	return ERR_PTR(-ENOMEM);
2349 }
2350 
2351 /*
2352  * validate that we can schedule this event
2353  */
2354 static int validate_event(struct perf_event *event)
2355 {
2356 	struct cpu_hw_events *fake_cpuc;
2357 	struct event_constraint *c;
2358 	int ret = 0;
2359 
2360 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2361 	if (IS_ERR(fake_cpuc))
2362 		return PTR_ERR(fake_cpuc);
2363 
2364 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2365 
2366 	if (!c || !c->weight)
2367 		ret = -EINVAL;
2368 
2369 	if (x86_pmu.put_event_constraints)
2370 		x86_pmu.put_event_constraints(fake_cpuc, event);
2371 
2372 	free_fake_cpuc(fake_cpuc);
2373 
2374 	return ret;
2375 }
2376 
2377 /*
2378  * validate a single event group
2379  *
2380  * validation include:
2381  *	- check events are compatible which each other
2382  *	- events do not compete for the same counter
2383  *	- number of events <= number of counters
2384  *
2385  * validation ensures the group can be loaded onto the
2386  * PMU if it was the only group available.
2387  */
2388 static int validate_group(struct perf_event *event)
2389 {
2390 	struct perf_event *leader = event->group_leader;
2391 	struct cpu_hw_events *fake_cpuc;
2392 	int ret = -EINVAL, n;
2393 
2394 	/*
2395 	 * Reject events from different hybrid PMUs.
2396 	 */
2397 	if (is_hybrid()) {
2398 		struct perf_event *sibling;
2399 		struct pmu *pmu = NULL;
2400 
2401 		if (is_x86_event(leader))
2402 			pmu = leader->pmu;
2403 
2404 		for_each_sibling_event(sibling, leader) {
2405 			if (!is_x86_event(sibling))
2406 				continue;
2407 			if (!pmu)
2408 				pmu = sibling->pmu;
2409 			else if (pmu != sibling->pmu)
2410 				return ret;
2411 		}
2412 	}
2413 
2414 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2415 	if (IS_ERR(fake_cpuc))
2416 		return PTR_ERR(fake_cpuc);
2417 	/*
2418 	 * the event is not yet connected with its
2419 	 * siblings therefore we must first collect
2420 	 * existing siblings, then add the new event
2421 	 * before we can simulate the scheduling
2422 	 */
2423 	n = collect_events(fake_cpuc, leader, true);
2424 	if (n < 0)
2425 		goto out;
2426 
2427 	fake_cpuc->n_events = n;
2428 	n = collect_events(fake_cpuc, event, false);
2429 	if (n < 0)
2430 		goto out;
2431 
2432 	fake_cpuc->n_events = 0;
2433 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2434 
2435 out:
2436 	free_fake_cpuc(fake_cpuc);
2437 	return ret;
2438 }
2439 
2440 static int x86_pmu_event_init(struct perf_event *event)
2441 {
2442 	struct x86_hybrid_pmu *pmu = NULL;
2443 	int err;
2444 
2445 	if ((event->attr.type != event->pmu->type) &&
2446 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2447 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2448 		return -ENOENT;
2449 
2450 	if (is_hybrid() && (event->cpu != -1)) {
2451 		pmu = hybrid_pmu(event->pmu);
2452 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2453 			return -ENOENT;
2454 	}
2455 
2456 	err = __x86_pmu_event_init(event);
2457 	if (!err) {
2458 		if (event->group_leader != event)
2459 			err = validate_group(event);
2460 		else
2461 			err = validate_event(event);
2462 	}
2463 	if (err) {
2464 		if (event->destroy)
2465 			event->destroy(event);
2466 	}
2467 
2468 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2469 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2470 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2471 
2472 	return err;
2473 }
2474 
2475 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2476 {
2477 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2478 		return;
2479 
2480 	/*
2481 	 * This function relies on not being called concurrently in two
2482 	 * tasks in the same mm.  Otherwise one task could observe
2483 	 * perf_rdpmc_allowed > 1 and return all the way back to
2484 	 * userspace with CR4.PCE clear while another task is still
2485 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2486 	 *
2487 	 * For now, this can't happen because all callers hold mmap_lock
2488 	 * for write.  If this changes, we'll need a different solution.
2489 	 */
2490 	mmap_assert_write_locked(mm);
2491 
2492 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2493 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2494 }
2495 
2496 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2497 {
2498 
2499 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2500 		return;
2501 
2502 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2503 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2504 }
2505 
2506 static int x86_pmu_event_idx(struct perf_event *event)
2507 {
2508 	struct hw_perf_event *hwc = &event->hw;
2509 
2510 	if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2511 		return 0;
2512 
2513 	if (is_metric_idx(hwc->idx))
2514 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2515 	else
2516 		return hwc->event_base_rdpmc + 1;
2517 }
2518 
2519 static ssize_t get_attr_rdpmc(struct device *cdev,
2520 			      struct device_attribute *attr,
2521 			      char *buf)
2522 {
2523 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2524 }
2525 
2526 static ssize_t set_attr_rdpmc(struct device *cdev,
2527 			      struct device_attribute *attr,
2528 			      const char *buf, size_t count)
2529 {
2530 	unsigned long val;
2531 	ssize_t ret;
2532 
2533 	ret = kstrtoul(buf, 0, &val);
2534 	if (ret)
2535 		return ret;
2536 
2537 	if (val > 2)
2538 		return -EINVAL;
2539 
2540 	if (x86_pmu.attr_rdpmc_broken)
2541 		return -ENOTSUPP;
2542 
2543 	if (val != x86_pmu.attr_rdpmc) {
2544 		/*
2545 		 * Changing into or out of never available or always available,
2546 		 * aka perf-event-bypassing mode. This path is extremely slow,
2547 		 * but only root can trigger it, so it's okay.
2548 		 */
2549 		if (val == 0)
2550 			static_branch_inc(&rdpmc_never_available_key);
2551 		else if (x86_pmu.attr_rdpmc == 0)
2552 			static_branch_dec(&rdpmc_never_available_key);
2553 
2554 		if (val == 2)
2555 			static_branch_inc(&rdpmc_always_available_key);
2556 		else if (x86_pmu.attr_rdpmc == 2)
2557 			static_branch_dec(&rdpmc_always_available_key);
2558 
2559 		on_each_cpu(cr4_update_pce, NULL, 1);
2560 		x86_pmu.attr_rdpmc = val;
2561 	}
2562 
2563 	return count;
2564 }
2565 
2566 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2567 
2568 static struct attribute *x86_pmu_attrs[] = {
2569 	&dev_attr_rdpmc.attr,
2570 	NULL,
2571 };
2572 
2573 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2574 	.attrs = x86_pmu_attrs,
2575 };
2576 
2577 static ssize_t max_precise_show(struct device *cdev,
2578 				  struct device_attribute *attr,
2579 				  char *buf)
2580 {
2581 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2582 }
2583 
2584 static DEVICE_ATTR_RO(max_precise);
2585 
2586 static struct attribute *x86_pmu_caps_attrs[] = {
2587 	&dev_attr_max_precise.attr,
2588 	NULL
2589 };
2590 
2591 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2592 	.name = "caps",
2593 	.attrs = x86_pmu_caps_attrs,
2594 };
2595 
2596 static const struct attribute_group *x86_pmu_attr_groups[] = {
2597 	&x86_pmu_attr_group,
2598 	&x86_pmu_format_group,
2599 	&x86_pmu_events_group,
2600 	&x86_pmu_caps_group,
2601 	NULL,
2602 };
2603 
2604 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2605 {
2606 	static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2607 }
2608 
2609 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2610 				  struct perf_event_context *next)
2611 {
2612 	static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2613 }
2614 
2615 void perf_check_microcode(void)
2616 {
2617 	if (x86_pmu.check_microcode)
2618 		x86_pmu.check_microcode();
2619 }
2620 
2621 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2622 {
2623 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2624 		return -EINVAL;
2625 
2626 	if (value && x86_pmu.limit_period) {
2627 		if (x86_pmu.limit_period(event, value) > value)
2628 			return -EINVAL;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static int x86_pmu_aux_output_match(struct perf_event *event)
2635 {
2636 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2637 		return 0;
2638 
2639 	if (x86_pmu.aux_output_match)
2640 		return x86_pmu.aux_output_match(event);
2641 
2642 	return 0;
2643 }
2644 
2645 static int x86_pmu_filter_match(struct perf_event *event)
2646 {
2647 	if (x86_pmu.filter_match)
2648 		return x86_pmu.filter_match(event);
2649 
2650 	return 1;
2651 }
2652 
2653 static struct pmu pmu = {
2654 	.pmu_enable		= x86_pmu_enable,
2655 	.pmu_disable		= x86_pmu_disable,
2656 
2657 	.attr_groups		= x86_pmu_attr_groups,
2658 
2659 	.event_init		= x86_pmu_event_init,
2660 
2661 	.event_mapped		= x86_pmu_event_mapped,
2662 	.event_unmapped		= x86_pmu_event_unmapped,
2663 
2664 	.add			= x86_pmu_add,
2665 	.del			= x86_pmu_del,
2666 	.start			= x86_pmu_start,
2667 	.stop			= x86_pmu_stop,
2668 	.read			= x86_pmu_read,
2669 
2670 	.start_txn		= x86_pmu_start_txn,
2671 	.cancel_txn		= x86_pmu_cancel_txn,
2672 	.commit_txn		= x86_pmu_commit_txn,
2673 
2674 	.event_idx		= x86_pmu_event_idx,
2675 	.sched_task		= x86_pmu_sched_task,
2676 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2677 	.check_period		= x86_pmu_check_period,
2678 
2679 	.aux_output_match	= x86_pmu_aux_output_match,
2680 
2681 	.filter_match		= x86_pmu_filter_match,
2682 };
2683 
2684 void arch_perf_update_userpage(struct perf_event *event,
2685 			       struct perf_event_mmap_page *userpg, u64 now)
2686 {
2687 	struct cyc2ns_data data;
2688 	u64 offset;
2689 
2690 	userpg->cap_user_time = 0;
2691 	userpg->cap_user_time_zero = 0;
2692 	userpg->cap_user_rdpmc =
2693 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2694 	userpg->pmc_width = x86_pmu.cntval_bits;
2695 
2696 	if (!using_native_sched_clock() || !sched_clock_stable())
2697 		return;
2698 
2699 	cyc2ns_read_begin(&data);
2700 
2701 	offset = data.cyc2ns_offset + __sched_clock_offset;
2702 
2703 	/*
2704 	 * Internal timekeeping for enabled/running/stopped times
2705 	 * is always in the local_clock domain.
2706 	 */
2707 	userpg->cap_user_time = 1;
2708 	userpg->time_mult = data.cyc2ns_mul;
2709 	userpg->time_shift = data.cyc2ns_shift;
2710 	userpg->time_offset = offset - now;
2711 
2712 	/*
2713 	 * cap_user_time_zero doesn't make sense when we're using a different
2714 	 * time base for the records.
2715 	 */
2716 	if (!event->attr.use_clockid) {
2717 		userpg->cap_user_time_zero = 1;
2718 		userpg->time_zero = offset;
2719 	}
2720 
2721 	cyc2ns_read_end();
2722 }
2723 
2724 /*
2725  * Determine whether the regs were taken from an irq/exception handler rather
2726  * than from perf_arch_fetch_caller_regs().
2727  */
2728 static bool perf_hw_regs(struct pt_regs *regs)
2729 {
2730 	return regs->flags & X86_EFLAGS_FIXED;
2731 }
2732 
2733 void
2734 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2735 {
2736 	struct unwind_state state;
2737 	unsigned long addr;
2738 
2739 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2740 		/* TODO: We don't support guest os callchain now */
2741 		return;
2742 	}
2743 
2744 	if (perf_callchain_store(entry, regs->ip))
2745 		return;
2746 
2747 	if (perf_hw_regs(regs))
2748 		unwind_start(&state, current, regs, NULL);
2749 	else
2750 		unwind_start(&state, current, NULL, (void *)regs->sp);
2751 
2752 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2753 		addr = unwind_get_return_address(&state);
2754 		if (!addr || perf_callchain_store(entry, addr))
2755 			return;
2756 	}
2757 }
2758 
2759 static inline int
2760 valid_user_frame(const void __user *fp, unsigned long size)
2761 {
2762 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2763 }
2764 
2765 static unsigned long get_segment_base(unsigned int segment)
2766 {
2767 	struct desc_struct *desc;
2768 	unsigned int idx = segment >> 3;
2769 
2770 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2771 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2772 		struct ldt_struct *ldt;
2773 
2774 		/* IRQs are off, so this synchronizes with smp_store_release */
2775 		ldt = READ_ONCE(current->active_mm->context.ldt);
2776 		if (!ldt || idx >= ldt->nr_entries)
2777 			return 0;
2778 
2779 		desc = &ldt->entries[idx];
2780 #else
2781 		return 0;
2782 #endif
2783 	} else {
2784 		if (idx >= GDT_ENTRIES)
2785 			return 0;
2786 
2787 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2788 	}
2789 
2790 	return get_desc_base(desc);
2791 }
2792 
2793 #ifdef CONFIG_IA32_EMULATION
2794 
2795 #include <linux/compat.h>
2796 
2797 static inline int
2798 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2799 {
2800 	/* 32-bit process in 64-bit kernel. */
2801 	unsigned long ss_base, cs_base;
2802 	struct stack_frame_ia32 frame;
2803 	const struct stack_frame_ia32 __user *fp;
2804 
2805 	if (user_64bit_mode(regs))
2806 		return 0;
2807 
2808 	cs_base = get_segment_base(regs->cs);
2809 	ss_base = get_segment_base(regs->ss);
2810 
2811 	fp = compat_ptr(ss_base + regs->bp);
2812 	pagefault_disable();
2813 	while (entry->nr < entry->max_stack) {
2814 		if (!valid_user_frame(fp, sizeof(frame)))
2815 			break;
2816 
2817 		if (__get_user(frame.next_frame, &fp->next_frame))
2818 			break;
2819 		if (__get_user(frame.return_address, &fp->return_address))
2820 			break;
2821 
2822 		perf_callchain_store(entry, cs_base + frame.return_address);
2823 		fp = compat_ptr(ss_base + frame.next_frame);
2824 	}
2825 	pagefault_enable();
2826 	return 1;
2827 }
2828 #else
2829 static inline int
2830 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2831 {
2832     return 0;
2833 }
2834 #endif
2835 
2836 void
2837 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2838 {
2839 	struct stack_frame frame;
2840 	const struct stack_frame __user *fp;
2841 
2842 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2843 		/* TODO: We don't support guest os callchain now */
2844 		return;
2845 	}
2846 
2847 	/*
2848 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2849 	 */
2850 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2851 		return;
2852 
2853 	fp = (void __user *)regs->bp;
2854 
2855 	perf_callchain_store(entry, regs->ip);
2856 
2857 	if (!nmi_uaccess_okay())
2858 		return;
2859 
2860 	if (perf_callchain_user32(regs, entry))
2861 		return;
2862 
2863 	pagefault_disable();
2864 	while (entry->nr < entry->max_stack) {
2865 		if (!valid_user_frame(fp, sizeof(frame)))
2866 			break;
2867 
2868 		if (__get_user(frame.next_frame, &fp->next_frame))
2869 			break;
2870 		if (__get_user(frame.return_address, &fp->return_address))
2871 			break;
2872 
2873 		perf_callchain_store(entry, frame.return_address);
2874 		fp = (void __user *)frame.next_frame;
2875 	}
2876 	pagefault_enable();
2877 }
2878 
2879 /*
2880  * Deal with code segment offsets for the various execution modes:
2881  *
2882  *   VM86 - the good olde 16 bit days, where the linear address is
2883  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2884  *
2885  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2886  *          to figure out what the 32bit base address is.
2887  *
2888  *    X32 - has TIF_X32 set, but is running in x86_64
2889  *
2890  * X86_64 - CS,DS,SS,ES are all zero based.
2891  */
2892 static unsigned long code_segment_base(struct pt_regs *regs)
2893 {
2894 	/*
2895 	 * For IA32 we look at the GDT/LDT segment base to convert the
2896 	 * effective IP to a linear address.
2897 	 */
2898 
2899 #ifdef CONFIG_X86_32
2900 	/*
2901 	 * If we are in VM86 mode, add the segment offset to convert to a
2902 	 * linear address.
2903 	 */
2904 	if (regs->flags & X86_VM_MASK)
2905 		return 0x10 * regs->cs;
2906 
2907 	if (user_mode(regs) && regs->cs != __USER_CS)
2908 		return get_segment_base(regs->cs);
2909 #else
2910 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2911 	    regs->cs != __USER32_CS)
2912 		return get_segment_base(regs->cs);
2913 #endif
2914 	return 0;
2915 }
2916 
2917 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2918 {
2919 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2920 		return perf_guest_cbs->get_guest_ip();
2921 
2922 	return regs->ip + code_segment_base(regs);
2923 }
2924 
2925 unsigned long perf_misc_flags(struct pt_regs *regs)
2926 {
2927 	int misc = 0;
2928 
2929 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2930 		if (perf_guest_cbs->is_user_mode())
2931 			misc |= PERF_RECORD_MISC_GUEST_USER;
2932 		else
2933 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2934 	} else {
2935 		if (user_mode(regs))
2936 			misc |= PERF_RECORD_MISC_USER;
2937 		else
2938 			misc |= PERF_RECORD_MISC_KERNEL;
2939 	}
2940 
2941 	if (regs->flags & PERF_EFLAGS_EXACT)
2942 		misc |= PERF_RECORD_MISC_EXACT_IP;
2943 
2944 	return misc;
2945 }
2946 
2947 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2948 {
2949 	cap->version		= x86_pmu.version;
2950 	/*
2951 	 * KVM doesn't support the hybrid PMU yet.
2952 	 * Return the common value in global x86_pmu,
2953 	 * which available for all cores.
2954 	 */
2955 	cap->num_counters_gp	= x86_pmu.num_counters;
2956 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2957 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2958 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2959 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2960 	cap->events_mask_len	= x86_pmu.events_mask_len;
2961 }
2962 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2963