xref: /openbmc/linux/arch/x86/events/core.c (revision 71501859)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 
45 #include "perf_event.h"
46 
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 	.pmu = &pmu,
53 };
54 
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58 
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68 
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72 
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76 
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
80 
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83 
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86 
87 /*
88  * This one is magic, it will get called even when PMU init fails (because
89  * there is no PMU), in which case it should simply return NULL.
90  */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92 
93 u64 __read_mostly hw_cache_event_ids
94 				[PERF_COUNT_HW_CACHE_MAX]
95 				[PERF_COUNT_HW_CACHE_OP_MAX]
96 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98 				[PERF_COUNT_HW_CACHE_MAX]
99 				[PERF_COUNT_HW_CACHE_OP_MAX]
100 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
101 
102 /*
103  * Propagate event elapsed time into the generic event.
104  * Can only be executed on the CPU where the event is active.
105  * Returns the delta events processed.
106  */
107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109 	struct hw_perf_event *hwc = &event->hw;
110 	int shift = 64 - x86_pmu.cntval_bits;
111 	u64 prev_raw_count, new_raw_count;
112 	u64 delta;
113 
114 	if (unlikely(!hwc->event_base))
115 		return 0;
116 
117 	if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118 		return x86_pmu.update_topdown_event(event);
119 
120 	/*
121 	 * Careful: an NMI might modify the previous event value.
122 	 *
123 	 * Our tactic to handle this is to first atomically read and
124 	 * exchange a new raw count - then add that new-prev delta
125 	 * count to the generic event atomically:
126 	 */
127 again:
128 	prev_raw_count = local64_read(&hwc->prev_count);
129 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130 
131 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132 					new_raw_count) != prev_raw_count)
133 		goto again;
134 
135 	/*
136 	 * Now we have the new raw value and have updated the prev
137 	 * timestamp already. We can now calculate the elapsed delta
138 	 * (event-)time and add that to the generic event.
139 	 *
140 	 * Careful, not all hw sign-extends above the physical width
141 	 * of the count.
142 	 */
143 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
144 	delta >>= shift;
145 
146 	local64_add(delta, &event->count);
147 	local64_sub(delta, &hwc->period_left);
148 
149 	return new_raw_count;
150 }
151 
152 /*
153  * Find and validate any extra registers to set up.
154  */
155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
158 	struct hw_perf_event_extra *reg;
159 	struct extra_reg *er;
160 
161 	reg = &event->hw.extra_reg;
162 
163 	if (!extra_regs)
164 		return 0;
165 
166 	for (er = extra_regs; er->msr; er++) {
167 		if (er->event != (config & er->config_mask))
168 			continue;
169 		if (event->attr.config1 & ~er->valid_mask)
170 			return -EINVAL;
171 		/* Check if the extra msrs can be safely accessed*/
172 		if (!er->extra_msr_access)
173 			return -ENXIO;
174 
175 		reg->idx = er->idx;
176 		reg->config = event->attr.config1;
177 		reg->reg = er->msr;
178 		break;
179 	}
180 	return 0;
181 }
182 
183 static atomic_t active_events;
184 static atomic_t pmc_refcount;
185 static DEFINE_MUTEX(pmc_reserve_mutex);
186 
187 #ifdef CONFIG_X86_LOCAL_APIC
188 
189 static inline int get_possible_num_counters(void)
190 {
191 	int i, num_counters = x86_pmu.num_counters;
192 
193 	if (!is_hybrid())
194 		return num_counters;
195 
196 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
197 		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
198 
199 	return num_counters;
200 }
201 
202 static bool reserve_pmc_hardware(void)
203 {
204 	int i, num_counters = get_possible_num_counters();
205 
206 	for (i = 0; i < num_counters; i++) {
207 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
208 			goto perfctr_fail;
209 	}
210 
211 	for (i = 0; i < num_counters; i++) {
212 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
213 			goto eventsel_fail;
214 	}
215 
216 	return true;
217 
218 eventsel_fail:
219 	for (i--; i >= 0; i--)
220 		release_evntsel_nmi(x86_pmu_config_addr(i));
221 
222 	i = num_counters;
223 
224 perfctr_fail:
225 	for (i--; i >= 0; i--)
226 		release_perfctr_nmi(x86_pmu_event_addr(i));
227 
228 	return false;
229 }
230 
231 static void release_pmc_hardware(void)
232 {
233 	int i, num_counters = get_possible_num_counters();
234 
235 	for (i = 0; i < num_counters; i++) {
236 		release_perfctr_nmi(x86_pmu_event_addr(i));
237 		release_evntsel_nmi(x86_pmu_config_addr(i));
238 	}
239 }
240 
241 #else
242 
243 static bool reserve_pmc_hardware(void) { return true; }
244 static void release_pmc_hardware(void) {}
245 
246 #endif
247 
248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
249 {
250 	u64 val, val_fail = -1, val_new= ~0;
251 	int i, reg, reg_fail = -1, ret = 0;
252 	int bios_fail = 0;
253 	int reg_safe = -1;
254 
255 	/*
256 	 * Check to see if the BIOS enabled any of the counters, if so
257 	 * complain and bail.
258 	 */
259 	for (i = 0; i < num_counters; i++) {
260 		reg = x86_pmu_config_addr(i);
261 		ret = rdmsrl_safe(reg, &val);
262 		if (ret)
263 			goto msr_fail;
264 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
265 			bios_fail = 1;
266 			val_fail = val;
267 			reg_fail = reg;
268 		} else {
269 			reg_safe = i;
270 		}
271 	}
272 
273 	if (num_counters_fixed) {
274 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
275 		ret = rdmsrl_safe(reg, &val);
276 		if (ret)
277 			goto msr_fail;
278 		for (i = 0; i < num_counters_fixed; i++) {
279 			if (fixed_counter_disabled(i, pmu))
280 				continue;
281 			if (val & (0x03ULL << i*4)) {
282 				bios_fail = 1;
283 				val_fail = val;
284 				reg_fail = reg;
285 			}
286 		}
287 	}
288 
289 	/*
290 	 * If all the counters are enabled, the below test will always
291 	 * fail.  The tools will also become useless in this scenario.
292 	 * Just fail and disable the hardware counters.
293 	 */
294 
295 	if (reg_safe == -1) {
296 		reg = reg_safe;
297 		goto msr_fail;
298 	}
299 
300 	/*
301 	 * Read the current value, change it and read it back to see if it
302 	 * matches, this is needed to detect certain hardware emulators
303 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
304 	 */
305 	reg = x86_pmu_event_addr(reg_safe);
306 	if (rdmsrl_safe(reg, &val))
307 		goto msr_fail;
308 	val ^= 0xffffUL;
309 	ret = wrmsrl_safe(reg, val);
310 	ret |= rdmsrl_safe(reg, &val_new);
311 	if (ret || val != val_new)
312 		goto msr_fail;
313 
314 	/*
315 	 * We still allow the PMU driver to operate:
316 	 */
317 	if (bios_fail) {
318 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
319 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
320 			      reg_fail, val_fail);
321 	}
322 
323 	return true;
324 
325 msr_fail:
326 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
327 		pr_cont("PMU not available due to virtualization, using software events only.\n");
328 	} else {
329 		pr_cont("Broken PMU hardware detected, using software events only.\n");
330 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
331 		       reg, val_new);
332 	}
333 
334 	return false;
335 }
336 
337 static void hw_perf_event_destroy(struct perf_event *event)
338 {
339 	x86_release_hardware();
340 	atomic_dec(&active_events);
341 }
342 
343 void hw_perf_lbr_event_destroy(struct perf_event *event)
344 {
345 	hw_perf_event_destroy(event);
346 
347 	/* undo the lbr/bts event accounting */
348 	x86_del_exclusive(x86_lbr_exclusive_lbr);
349 }
350 
351 static inline int x86_pmu_initialized(void)
352 {
353 	return x86_pmu.handle_irq != NULL;
354 }
355 
356 static inline int
357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
358 {
359 	struct perf_event_attr *attr = &event->attr;
360 	unsigned int cache_type, cache_op, cache_result;
361 	u64 config, val;
362 
363 	config = attr->config;
364 
365 	cache_type = (config >> 0) & 0xff;
366 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
367 		return -EINVAL;
368 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
369 
370 	cache_op = (config >>  8) & 0xff;
371 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
372 		return -EINVAL;
373 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
374 
375 	cache_result = (config >> 16) & 0xff;
376 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
377 		return -EINVAL;
378 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
379 
380 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
381 	if (val == 0)
382 		return -ENOENT;
383 
384 	if (val == -1)
385 		return -EINVAL;
386 
387 	hwc->config |= val;
388 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
389 	return x86_pmu_extra_regs(val, event);
390 }
391 
392 int x86_reserve_hardware(void)
393 {
394 	int err = 0;
395 
396 	if (!atomic_inc_not_zero(&pmc_refcount)) {
397 		mutex_lock(&pmc_reserve_mutex);
398 		if (atomic_read(&pmc_refcount) == 0) {
399 			if (!reserve_pmc_hardware()) {
400 				err = -EBUSY;
401 			} else {
402 				reserve_ds_buffers();
403 				reserve_lbr_buffers();
404 			}
405 		}
406 		if (!err)
407 			atomic_inc(&pmc_refcount);
408 		mutex_unlock(&pmc_reserve_mutex);
409 	}
410 
411 	return err;
412 }
413 
414 void x86_release_hardware(void)
415 {
416 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
417 		release_pmc_hardware();
418 		release_ds_buffers();
419 		release_lbr_buffers();
420 		mutex_unlock(&pmc_reserve_mutex);
421 	}
422 }
423 
424 /*
425  * Check if we can create event of a certain type (that no conflicting events
426  * are present).
427  */
428 int x86_add_exclusive(unsigned int what)
429 {
430 	int i;
431 
432 	/*
433 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
434 	 * LBR and BTS are still mutually exclusive.
435 	 */
436 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
437 		goto out;
438 
439 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
440 		mutex_lock(&pmc_reserve_mutex);
441 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
442 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
443 				goto fail_unlock;
444 		}
445 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
446 		mutex_unlock(&pmc_reserve_mutex);
447 	}
448 
449 out:
450 	atomic_inc(&active_events);
451 	return 0;
452 
453 fail_unlock:
454 	mutex_unlock(&pmc_reserve_mutex);
455 	return -EBUSY;
456 }
457 
458 void x86_del_exclusive(unsigned int what)
459 {
460 	atomic_dec(&active_events);
461 
462 	/*
463 	 * See the comment in x86_add_exclusive().
464 	 */
465 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
466 		return;
467 
468 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
469 }
470 
471 int x86_setup_perfctr(struct perf_event *event)
472 {
473 	struct perf_event_attr *attr = &event->attr;
474 	struct hw_perf_event *hwc = &event->hw;
475 	u64 config;
476 
477 	if (!is_sampling_event(event)) {
478 		hwc->sample_period = x86_pmu.max_period;
479 		hwc->last_period = hwc->sample_period;
480 		local64_set(&hwc->period_left, hwc->sample_period);
481 	}
482 
483 	if (attr->type == event->pmu->type)
484 		return x86_pmu_extra_regs(event->attr.config, event);
485 
486 	if (attr->type == PERF_TYPE_HW_CACHE)
487 		return set_ext_hw_attr(hwc, event);
488 
489 	if (attr->config >= x86_pmu.max_events)
490 		return -EINVAL;
491 
492 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
493 
494 	/*
495 	 * The generic map:
496 	 */
497 	config = x86_pmu.event_map(attr->config);
498 
499 	if (config == 0)
500 		return -ENOENT;
501 
502 	if (config == -1LL)
503 		return -EINVAL;
504 
505 	hwc->config |= config;
506 
507 	return 0;
508 }
509 
510 /*
511  * check that branch_sample_type is compatible with
512  * settings needed for precise_ip > 1 which implies
513  * using the LBR to capture ALL taken branches at the
514  * priv levels of the measurement
515  */
516 static inline int precise_br_compat(struct perf_event *event)
517 {
518 	u64 m = event->attr.branch_sample_type;
519 	u64 b = 0;
520 
521 	/* must capture all branches */
522 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
523 		return 0;
524 
525 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
526 
527 	if (!event->attr.exclude_user)
528 		b |= PERF_SAMPLE_BRANCH_USER;
529 
530 	if (!event->attr.exclude_kernel)
531 		b |= PERF_SAMPLE_BRANCH_KERNEL;
532 
533 	/*
534 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
535 	 */
536 
537 	return m == b;
538 }
539 
540 int x86_pmu_max_precise(void)
541 {
542 	int precise = 0;
543 
544 	/* Support for constant skid */
545 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
546 		precise++;
547 
548 		/* Support for IP fixup */
549 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
550 			precise++;
551 
552 		if (x86_pmu.pebs_prec_dist)
553 			precise++;
554 	}
555 	return precise;
556 }
557 
558 int x86_pmu_hw_config(struct perf_event *event)
559 {
560 	if (event->attr.precise_ip) {
561 		int precise = x86_pmu_max_precise();
562 
563 		if (event->attr.precise_ip > precise)
564 			return -EOPNOTSUPP;
565 
566 		/* There's no sense in having PEBS for non sampling events: */
567 		if (!is_sampling_event(event))
568 			return -EINVAL;
569 	}
570 	/*
571 	 * check that PEBS LBR correction does not conflict with
572 	 * whatever the user is asking with attr->branch_sample_type
573 	 */
574 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
575 		u64 *br_type = &event->attr.branch_sample_type;
576 
577 		if (has_branch_stack(event)) {
578 			if (!precise_br_compat(event))
579 				return -EOPNOTSUPP;
580 
581 			/* branch_sample_type is compatible */
582 
583 		} else {
584 			/*
585 			 * user did not specify  branch_sample_type
586 			 *
587 			 * For PEBS fixups, we capture all
588 			 * the branches at the priv level of the
589 			 * event.
590 			 */
591 			*br_type = PERF_SAMPLE_BRANCH_ANY;
592 
593 			if (!event->attr.exclude_user)
594 				*br_type |= PERF_SAMPLE_BRANCH_USER;
595 
596 			if (!event->attr.exclude_kernel)
597 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
598 		}
599 	}
600 
601 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
602 		event->attach_state |= PERF_ATTACH_TASK_DATA;
603 
604 	/*
605 	 * Generate PMC IRQs:
606 	 * (keep 'enabled' bit clear for now)
607 	 */
608 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
609 
610 	/*
611 	 * Count user and OS events unless requested not to
612 	 */
613 	if (!event->attr.exclude_user)
614 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
615 	if (!event->attr.exclude_kernel)
616 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
617 
618 	if (event->attr.type == event->pmu->type)
619 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
620 
621 	if (event->attr.sample_period && x86_pmu.limit_period) {
622 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
623 				event->attr.sample_period)
624 			return -EINVAL;
625 	}
626 
627 	/* sample_regs_user never support XMM registers */
628 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
629 		return -EINVAL;
630 	/*
631 	 * Besides the general purpose registers, XMM registers may
632 	 * be collected in PEBS on some platforms, e.g. Icelake
633 	 */
634 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
635 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
636 			return -EINVAL;
637 
638 		if (!event->attr.precise_ip)
639 			return -EINVAL;
640 	}
641 
642 	return x86_setup_perfctr(event);
643 }
644 
645 /*
646  * Setup the hardware configuration for a given attr_type
647  */
648 static int __x86_pmu_event_init(struct perf_event *event)
649 {
650 	int err;
651 
652 	if (!x86_pmu_initialized())
653 		return -ENODEV;
654 
655 	err = x86_reserve_hardware();
656 	if (err)
657 		return err;
658 
659 	atomic_inc(&active_events);
660 	event->destroy = hw_perf_event_destroy;
661 
662 	event->hw.idx = -1;
663 	event->hw.last_cpu = -1;
664 	event->hw.last_tag = ~0ULL;
665 
666 	/* mark unused */
667 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
668 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
669 
670 	return x86_pmu.hw_config(event);
671 }
672 
673 void x86_pmu_disable_all(void)
674 {
675 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
676 	int idx;
677 
678 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
679 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
680 		u64 val;
681 
682 		if (!test_bit(idx, cpuc->active_mask))
683 			continue;
684 		rdmsrl(x86_pmu_config_addr(idx), val);
685 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
686 			continue;
687 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
688 		wrmsrl(x86_pmu_config_addr(idx), val);
689 		if (is_counter_pair(hwc))
690 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
691 	}
692 }
693 
694 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
695 {
696 	return static_call(x86_pmu_guest_get_msrs)(nr);
697 }
698 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
699 
700 /*
701  * There may be PMI landing after enabled=0. The PMI hitting could be before or
702  * after disable_all.
703  *
704  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
705  * It will not be re-enabled in the NMI handler again, because enabled=0. After
706  * handling the NMI, disable_all will be called, which will not change the
707  * state either. If PMI hits after disable_all, the PMU is already disabled
708  * before entering NMI handler. The NMI handler will not change the state
709  * either.
710  *
711  * So either situation is harmless.
712  */
713 static void x86_pmu_disable(struct pmu *pmu)
714 {
715 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
716 
717 	if (!x86_pmu_initialized())
718 		return;
719 
720 	if (!cpuc->enabled)
721 		return;
722 
723 	cpuc->n_added = 0;
724 	cpuc->enabled = 0;
725 	barrier();
726 
727 	static_call(x86_pmu_disable_all)();
728 }
729 
730 void x86_pmu_enable_all(int added)
731 {
732 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
733 	int idx;
734 
735 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
736 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
737 
738 		if (!test_bit(idx, cpuc->active_mask))
739 			continue;
740 
741 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
742 	}
743 }
744 
745 static inline int is_x86_event(struct perf_event *event)
746 {
747 	int i;
748 
749 	if (!is_hybrid())
750 		return event->pmu == &pmu;
751 
752 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
753 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
754 			return true;
755 	}
756 
757 	return false;
758 }
759 
760 struct pmu *x86_get_pmu(unsigned int cpu)
761 {
762 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
763 
764 	/*
765 	 * All CPUs of the hybrid type have been offline.
766 	 * The x86_get_pmu() should not be invoked.
767 	 */
768 	if (WARN_ON_ONCE(!cpuc->pmu))
769 		return &pmu;
770 
771 	return cpuc->pmu;
772 }
773 /*
774  * Event scheduler state:
775  *
776  * Assign events iterating over all events and counters, beginning
777  * with events with least weights first. Keep the current iterator
778  * state in struct sched_state.
779  */
780 struct sched_state {
781 	int	weight;
782 	int	event;		/* event index */
783 	int	counter;	/* counter index */
784 	int	unassigned;	/* number of events to be assigned left */
785 	int	nr_gp;		/* number of GP counters used */
786 	u64	used;
787 };
788 
789 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
790 #define	SCHED_STATES_MAX	2
791 
792 struct perf_sched {
793 	int			max_weight;
794 	int			max_events;
795 	int			max_gp;
796 	int			saved_states;
797 	struct event_constraint	**constraints;
798 	struct sched_state	state;
799 	struct sched_state	saved[SCHED_STATES_MAX];
800 };
801 
802 /*
803  * Initialize iterator that runs through all events and counters.
804  */
805 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
806 			    int num, int wmin, int wmax, int gpmax)
807 {
808 	int idx;
809 
810 	memset(sched, 0, sizeof(*sched));
811 	sched->max_events	= num;
812 	sched->max_weight	= wmax;
813 	sched->max_gp		= gpmax;
814 	sched->constraints	= constraints;
815 
816 	for (idx = 0; idx < num; idx++) {
817 		if (constraints[idx]->weight == wmin)
818 			break;
819 	}
820 
821 	sched->state.event	= idx;		/* start with min weight */
822 	sched->state.weight	= wmin;
823 	sched->state.unassigned	= num;
824 }
825 
826 static void perf_sched_save_state(struct perf_sched *sched)
827 {
828 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
829 		return;
830 
831 	sched->saved[sched->saved_states] = sched->state;
832 	sched->saved_states++;
833 }
834 
835 static bool perf_sched_restore_state(struct perf_sched *sched)
836 {
837 	if (!sched->saved_states)
838 		return false;
839 
840 	sched->saved_states--;
841 	sched->state = sched->saved[sched->saved_states];
842 
843 	/* this assignment didn't work out */
844 	/* XXX broken vs EVENT_PAIR */
845 	sched->state.used &= ~BIT_ULL(sched->state.counter);
846 
847 	/* try the next one */
848 	sched->state.counter++;
849 
850 	return true;
851 }
852 
853 /*
854  * Select a counter for the current event to schedule. Return true on
855  * success.
856  */
857 static bool __perf_sched_find_counter(struct perf_sched *sched)
858 {
859 	struct event_constraint *c;
860 	int idx;
861 
862 	if (!sched->state.unassigned)
863 		return false;
864 
865 	if (sched->state.event >= sched->max_events)
866 		return false;
867 
868 	c = sched->constraints[sched->state.event];
869 	/* Prefer fixed purpose counters */
870 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
871 		idx = INTEL_PMC_IDX_FIXED;
872 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
873 			u64 mask = BIT_ULL(idx);
874 
875 			if (sched->state.used & mask)
876 				continue;
877 
878 			sched->state.used |= mask;
879 			goto done;
880 		}
881 	}
882 
883 	/* Grab the first unused counter starting with idx */
884 	idx = sched->state.counter;
885 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
886 		u64 mask = BIT_ULL(idx);
887 
888 		if (c->flags & PERF_X86_EVENT_PAIR)
889 			mask |= mask << 1;
890 
891 		if (sched->state.used & mask)
892 			continue;
893 
894 		if (sched->state.nr_gp++ >= sched->max_gp)
895 			return false;
896 
897 		sched->state.used |= mask;
898 		goto done;
899 	}
900 
901 	return false;
902 
903 done:
904 	sched->state.counter = idx;
905 
906 	if (c->overlap)
907 		perf_sched_save_state(sched);
908 
909 	return true;
910 }
911 
912 static bool perf_sched_find_counter(struct perf_sched *sched)
913 {
914 	while (!__perf_sched_find_counter(sched)) {
915 		if (!perf_sched_restore_state(sched))
916 			return false;
917 	}
918 
919 	return true;
920 }
921 
922 /*
923  * Go through all unassigned events and find the next one to schedule.
924  * Take events with the least weight first. Return true on success.
925  */
926 static bool perf_sched_next_event(struct perf_sched *sched)
927 {
928 	struct event_constraint *c;
929 
930 	if (!sched->state.unassigned || !--sched->state.unassigned)
931 		return false;
932 
933 	do {
934 		/* next event */
935 		sched->state.event++;
936 		if (sched->state.event >= sched->max_events) {
937 			/* next weight */
938 			sched->state.event = 0;
939 			sched->state.weight++;
940 			if (sched->state.weight > sched->max_weight)
941 				return false;
942 		}
943 		c = sched->constraints[sched->state.event];
944 	} while (c->weight != sched->state.weight);
945 
946 	sched->state.counter = 0;	/* start with first counter */
947 
948 	return true;
949 }
950 
951 /*
952  * Assign a counter for each event.
953  */
954 int perf_assign_events(struct event_constraint **constraints, int n,
955 			int wmin, int wmax, int gpmax, int *assign)
956 {
957 	struct perf_sched sched;
958 
959 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
960 
961 	do {
962 		if (!perf_sched_find_counter(&sched))
963 			break;	/* failed */
964 		if (assign)
965 			assign[sched.state.event] = sched.state.counter;
966 	} while (perf_sched_next_event(&sched));
967 
968 	return sched.state.unassigned;
969 }
970 EXPORT_SYMBOL_GPL(perf_assign_events);
971 
972 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
973 {
974 	int num_counters = hybrid(cpuc->pmu, num_counters);
975 	struct event_constraint *c;
976 	struct perf_event *e;
977 	int n0, i, wmin, wmax, unsched = 0;
978 	struct hw_perf_event *hwc;
979 	u64 used_mask = 0;
980 
981 	/*
982 	 * Compute the number of events already present; see x86_pmu_add(),
983 	 * validate_group() and x86_pmu_commit_txn(). For the former two
984 	 * cpuc->n_events hasn't been updated yet, while for the latter
985 	 * cpuc->n_txn contains the number of events added in the current
986 	 * transaction.
987 	 */
988 	n0 = cpuc->n_events;
989 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
990 		n0 -= cpuc->n_txn;
991 
992 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
993 
994 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
995 		c = cpuc->event_constraint[i];
996 
997 		/*
998 		 * Previously scheduled events should have a cached constraint,
999 		 * while new events should not have one.
1000 		 */
1001 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1002 
1003 		/*
1004 		 * Request constraints for new events; or for those events that
1005 		 * have a dynamic constraint -- for those the constraint can
1006 		 * change due to external factors (sibling state, allow_tfa).
1007 		 */
1008 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1009 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1010 			cpuc->event_constraint[i] = c;
1011 		}
1012 
1013 		wmin = min(wmin, c->weight);
1014 		wmax = max(wmax, c->weight);
1015 	}
1016 
1017 	/*
1018 	 * fastpath, try to reuse previous register
1019 	 */
1020 	for (i = 0; i < n; i++) {
1021 		u64 mask;
1022 
1023 		hwc = &cpuc->event_list[i]->hw;
1024 		c = cpuc->event_constraint[i];
1025 
1026 		/* never assigned */
1027 		if (hwc->idx == -1)
1028 			break;
1029 
1030 		/* constraint still honored */
1031 		if (!test_bit(hwc->idx, c->idxmsk))
1032 			break;
1033 
1034 		mask = BIT_ULL(hwc->idx);
1035 		if (is_counter_pair(hwc))
1036 			mask |= mask << 1;
1037 
1038 		/* not already used */
1039 		if (used_mask & mask)
1040 			break;
1041 
1042 		used_mask |= mask;
1043 
1044 		if (assign)
1045 			assign[i] = hwc->idx;
1046 	}
1047 
1048 	/* slow path */
1049 	if (i != n) {
1050 		int gpmax = num_counters;
1051 
1052 		/*
1053 		 * Do not allow scheduling of more than half the available
1054 		 * generic counters.
1055 		 *
1056 		 * This helps avoid counter starvation of sibling thread by
1057 		 * ensuring at most half the counters cannot be in exclusive
1058 		 * mode. There is no designated counters for the limits. Any
1059 		 * N/2 counters can be used. This helps with events with
1060 		 * specific counter constraints.
1061 		 */
1062 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1063 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1064 			gpmax /= 2;
1065 
1066 		/*
1067 		 * Reduce the amount of available counters to allow fitting
1068 		 * the extra Merge events needed by large increment events.
1069 		 */
1070 		if (x86_pmu.flags & PMU_FL_PAIR) {
1071 			gpmax = num_counters - cpuc->n_pair;
1072 			WARN_ON(gpmax <= 0);
1073 		}
1074 
1075 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1076 					     wmax, gpmax, assign);
1077 	}
1078 
1079 	/*
1080 	 * In case of success (unsched = 0), mark events as committed,
1081 	 * so we do not put_constraint() in case new events are added
1082 	 * and fail to be scheduled
1083 	 *
1084 	 * We invoke the lower level commit callback to lock the resource
1085 	 *
1086 	 * We do not need to do all of this in case we are called to
1087 	 * validate an event group (assign == NULL)
1088 	 */
1089 	if (!unsched && assign) {
1090 		for (i = 0; i < n; i++) {
1091 			e = cpuc->event_list[i];
1092 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1093 		}
1094 	} else {
1095 		for (i = n0; i < n; i++) {
1096 			e = cpuc->event_list[i];
1097 
1098 			/*
1099 			 * release events that failed scheduling
1100 			 */
1101 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102 
1103 			cpuc->event_constraint[i] = NULL;
1104 		}
1105 	}
1106 
1107 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108 
1109 	return unsched ? -EINVAL : 0;
1110 }
1111 
1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113 			       struct perf_event *event)
1114 {
1115 	if (is_metric_event(event)) {
1116 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117 			return -EINVAL;
1118 		cpuc->n_metric++;
1119 		cpuc->n_txn_metric++;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126 				struct perf_event *event)
1127 {
1128 	if (is_metric_event(event))
1129 		cpuc->n_metric--;
1130 }
1131 
1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133 			 int max_count, int n)
1134 {
1135 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136 
1137 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138 		return -EINVAL;
1139 
1140 	if (n >= max_count + cpuc->n_metric)
1141 		return -EINVAL;
1142 
1143 	cpuc->event_list[n] = event;
1144 	if (is_counter_pair(&event->hw)) {
1145 		cpuc->n_pair++;
1146 		cpuc->n_txn_pair++;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * dogrp: true if must collect siblings events (group)
1154  * returns total number of events and error code
1155  */
1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158 	int num_counters = hybrid(cpuc->pmu, num_counters);
1159 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160 	struct perf_event *event;
1161 	int n, max_count;
1162 
1163 	max_count = num_counters + num_counters_fixed;
1164 
1165 	/* current number of events already accepted */
1166 	n = cpuc->n_events;
1167 	if (!cpuc->n_events)
1168 		cpuc->pebs_output = 0;
1169 
1170 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1171 		/*
1172 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173 		 * away, the group was broken down and this singleton event
1174 		 * can't schedule any more.
1175 		 */
1176 		if (is_pebs_pt(leader) && !leader->aux_event)
1177 			return -EINVAL;
1178 
1179 		/*
1180 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181 		 */
1182 		if (cpuc->pebs_output &&
1183 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184 			return -EINVAL;
1185 
1186 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187 	}
1188 
1189 	if (is_x86_event(leader)) {
1190 		if (collect_event(cpuc, leader, max_count, n))
1191 			return -EINVAL;
1192 		n++;
1193 	}
1194 
1195 	if (!dogrp)
1196 		return n;
1197 
1198 	for_each_sibling_event(event, leader) {
1199 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200 			continue;
1201 
1202 		if (collect_event(cpuc, event, max_count, n))
1203 			return -EINVAL;
1204 
1205 		n++;
1206 	}
1207 	return n;
1208 }
1209 
1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211 				struct cpu_hw_events *cpuc, int i)
1212 {
1213 	struct hw_perf_event *hwc = &event->hw;
1214 	int idx;
1215 
1216 	idx = hwc->idx = cpuc->assign[i];
1217 	hwc->last_cpu = smp_processor_id();
1218 	hwc->last_tag = ++cpuc->tags[i];
1219 
1220 	switch (hwc->idx) {
1221 	case INTEL_PMC_IDX_FIXED_BTS:
1222 	case INTEL_PMC_IDX_FIXED_VLBR:
1223 		hwc->config_base = 0;
1224 		hwc->event_base	= 0;
1225 		break;
1226 
1227 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1228 		/* All the metric events are mapped onto the fixed counter 3. */
1229 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1230 		fallthrough;
1231 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1232 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1233 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1234 				(idx - INTEL_PMC_IDX_FIXED);
1235 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1236 					INTEL_PMC_FIXED_RDPMC_BASE;
1237 		break;
1238 
1239 	default:
1240 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1241 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1242 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1243 		break;
1244 	}
1245 }
1246 
1247 /**
1248  * x86_perf_rdpmc_index - Return PMC counter used for event
1249  * @event: the perf_event to which the PMC counter was assigned
1250  *
1251  * The counter assigned to this performance event may change if interrupts
1252  * are enabled. This counter should thus never be used while interrupts are
1253  * enabled. Before this function is used to obtain the assigned counter the
1254  * event should be checked for validity using, for example,
1255  * perf_event_read_local(), within the same interrupt disabled section in
1256  * which this counter is planned to be used.
1257  *
1258  * Return: The index of the performance monitoring counter assigned to
1259  * @perf_event.
1260  */
1261 int x86_perf_rdpmc_index(struct perf_event *event)
1262 {
1263 	lockdep_assert_irqs_disabled();
1264 
1265 	return event->hw.event_base_rdpmc;
1266 }
1267 
1268 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1269 					struct cpu_hw_events *cpuc,
1270 					int i)
1271 {
1272 	return hwc->idx == cpuc->assign[i] &&
1273 		hwc->last_cpu == smp_processor_id() &&
1274 		hwc->last_tag == cpuc->tags[i];
1275 }
1276 
1277 static void x86_pmu_start(struct perf_event *event, int flags);
1278 
1279 static void x86_pmu_enable(struct pmu *pmu)
1280 {
1281 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1282 	struct perf_event *event;
1283 	struct hw_perf_event *hwc;
1284 	int i, added = cpuc->n_added;
1285 
1286 	if (!x86_pmu_initialized())
1287 		return;
1288 
1289 	if (cpuc->enabled)
1290 		return;
1291 
1292 	if (cpuc->n_added) {
1293 		int n_running = cpuc->n_events - cpuc->n_added;
1294 		/*
1295 		 * apply assignment obtained either from
1296 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1297 		 *
1298 		 * step1: save events moving to new counters
1299 		 */
1300 		for (i = 0; i < n_running; i++) {
1301 			event = cpuc->event_list[i];
1302 			hwc = &event->hw;
1303 
1304 			/*
1305 			 * we can avoid reprogramming counter if:
1306 			 * - assigned same counter as last time
1307 			 * - running on same CPU as last time
1308 			 * - no other event has used the counter since
1309 			 */
1310 			if (hwc->idx == -1 ||
1311 			    match_prev_assignment(hwc, cpuc, i))
1312 				continue;
1313 
1314 			/*
1315 			 * Ensure we don't accidentally enable a stopped
1316 			 * counter simply because we rescheduled.
1317 			 */
1318 			if (hwc->state & PERF_HES_STOPPED)
1319 				hwc->state |= PERF_HES_ARCH;
1320 
1321 			x86_pmu_stop(event, PERF_EF_UPDATE);
1322 		}
1323 
1324 		/*
1325 		 * step2: reprogram moved events into new counters
1326 		 */
1327 		for (i = 0; i < cpuc->n_events; i++) {
1328 			event = cpuc->event_list[i];
1329 			hwc = &event->hw;
1330 
1331 			if (!match_prev_assignment(hwc, cpuc, i))
1332 				x86_assign_hw_event(event, cpuc, i);
1333 			else if (i < n_running)
1334 				continue;
1335 
1336 			if (hwc->state & PERF_HES_ARCH)
1337 				continue;
1338 
1339 			x86_pmu_start(event, PERF_EF_RELOAD);
1340 		}
1341 		cpuc->n_added = 0;
1342 		perf_events_lapic_init();
1343 	}
1344 
1345 	cpuc->enabled = 1;
1346 	barrier();
1347 
1348 	static_call(x86_pmu_enable_all)(added);
1349 }
1350 
1351 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1352 
1353 /*
1354  * Set the next IRQ period, based on the hwc->period_left value.
1355  * To be called with the event disabled in hw:
1356  */
1357 int x86_perf_event_set_period(struct perf_event *event)
1358 {
1359 	struct hw_perf_event *hwc = &event->hw;
1360 	s64 left = local64_read(&hwc->period_left);
1361 	s64 period = hwc->sample_period;
1362 	int ret = 0, idx = hwc->idx;
1363 
1364 	if (unlikely(!hwc->event_base))
1365 		return 0;
1366 
1367 	if (unlikely(is_topdown_count(event)) &&
1368 	    x86_pmu.set_topdown_event_period)
1369 		return x86_pmu.set_topdown_event_period(event);
1370 
1371 	/*
1372 	 * If we are way outside a reasonable range then just skip forward:
1373 	 */
1374 	if (unlikely(left <= -period)) {
1375 		left = period;
1376 		local64_set(&hwc->period_left, left);
1377 		hwc->last_period = period;
1378 		ret = 1;
1379 	}
1380 
1381 	if (unlikely(left <= 0)) {
1382 		left += period;
1383 		local64_set(&hwc->period_left, left);
1384 		hwc->last_period = period;
1385 		ret = 1;
1386 	}
1387 	/*
1388 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1389 	 */
1390 	if (unlikely(left < 2))
1391 		left = 2;
1392 
1393 	if (left > x86_pmu.max_period)
1394 		left = x86_pmu.max_period;
1395 
1396 	if (x86_pmu.limit_period)
1397 		left = x86_pmu.limit_period(event, left);
1398 
1399 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1400 
1401 	/*
1402 	 * The hw event starts counting from this event offset,
1403 	 * mark it to be able to extra future deltas:
1404 	 */
1405 	local64_set(&hwc->prev_count, (u64)-left);
1406 
1407 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1408 
1409 	/*
1410 	 * Sign extend the Merge event counter's upper 16 bits since
1411 	 * we currently declare a 48-bit counter width
1412 	 */
1413 	if (is_counter_pair(hwc))
1414 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1415 
1416 	/*
1417 	 * Due to erratum on certan cpu we need
1418 	 * a second write to be sure the register
1419 	 * is updated properly
1420 	 */
1421 	if (x86_pmu.perfctr_second_write) {
1422 		wrmsrl(hwc->event_base,
1423 			(u64)(-left) & x86_pmu.cntval_mask);
1424 	}
1425 
1426 	perf_event_update_userpage(event);
1427 
1428 	return ret;
1429 }
1430 
1431 void x86_pmu_enable_event(struct perf_event *event)
1432 {
1433 	if (__this_cpu_read(cpu_hw_events.enabled))
1434 		__x86_pmu_enable_event(&event->hw,
1435 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1436 }
1437 
1438 /*
1439  * Add a single event to the PMU.
1440  *
1441  * The event is added to the group of enabled events
1442  * but only if it can be scheduled with existing events.
1443  */
1444 static int x86_pmu_add(struct perf_event *event, int flags)
1445 {
1446 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1447 	struct hw_perf_event *hwc;
1448 	int assign[X86_PMC_IDX_MAX];
1449 	int n, n0, ret;
1450 
1451 	hwc = &event->hw;
1452 
1453 	n0 = cpuc->n_events;
1454 	ret = n = collect_events(cpuc, event, false);
1455 	if (ret < 0)
1456 		goto out;
1457 
1458 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1459 	if (!(flags & PERF_EF_START))
1460 		hwc->state |= PERF_HES_ARCH;
1461 
1462 	/*
1463 	 * If group events scheduling transaction was started,
1464 	 * skip the schedulability test here, it will be performed
1465 	 * at commit time (->commit_txn) as a whole.
1466 	 *
1467 	 * If commit fails, we'll call ->del() on all events
1468 	 * for which ->add() was called.
1469 	 */
1470 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1471 		goto done_collect;
1472 
1473 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1474 	if (ret)
1475 		goto out;
1476 	/*
1477 	 * copy new assignment, now we know it is possible
1478 	 * will be used by hw_perf_enable()
1479 	 */
1480 	memcpy(cpuc->assign, assign, n*sizeof(int));
1481 
1482 done_collect:
1483 	/*
1484 	 * Commit the collect_events() state. See x86_pmu_del() and
1485 	 * x86_pmu_*_txn().
1486 	 */
1487 	cpuc->n_events = n;
1488 	cpuc->n_added += n - n0;
1489 	cpuc->n_txn += n - n0;
1490 
1491 	/*
1492 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1493 	 * so we enable LBRs before an event needs them etc..
1494 	 */
1495 	static_call_cond(x86_pmu_add)(event);
1496 
1497 	ret = 0;
1498 out:
1499 	return ret;
1500 }
1501 
1502 static void x86_pmu_start(struct perf_event *event, int flags)
1503 {
1504 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1505 	int idx = event->hw.idx;
1506 
1507 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1508 		return;
1509 
1510 	if (WARN_ON_ONCE(idx == -1))
1511 		return;
1512 
1513 	if (flags & PERF_EF_RELOAD) {
1514 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1515 		x86_perf_event_set_period(event);
1516 	}
1517 
1518 	event->hw.state = 0;
1519 
1520 	cpuc->events[idx] = event;
1521 	__set_bit(idx, cpuc->active_mask);
1522 	static_call(x86_pmu_enable)(event);
1523 	perf_event_update_userpage(event);
1524 }
1525 
1526 void perf_event_print_debug(void)
1527 {
1528 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1529 	u64 pebs, debugctl;
1530 	int cpu = smp_processor_id();
1531 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1532 	int num_counters = hybrid(cpuc->pmu, num_counters);
1533 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1534 	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1535 	unsigned long flags;
1536 	int idx;
1537 
1538 	if (!num_counters)
1539 		return;
1540 
1541 	local_irq_save(flags);
1542 
1543 	if (x86_pmu.version >= 2) {
1544 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1545 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1546 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1547 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1548 
1549 		pr_info("\n");
1550 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1551 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1552 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1553 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1554 		if (pebs_constraints) {
1555 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1556 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1557 		}
1558 		if (x86_pmu.lbr_nr) {
1559 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1560 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1561 		}
1562 	}
1563 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1564 
1565 	for (idx = 0; idx < num_counters; idx++) {
1566 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1567 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1568 
1569 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1570 
1571 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1572 			cpu, idx, pmc_ctrl);
1573 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1574 			cpu, idx, pmc_count);
1575 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1576 			cpu, idx, prev_left);
1577 	}
1578 	for (idx = 0; idx < num_counters_fixed; idx++) {
1579 		if (fixed_counter_disabled(idx, cpuc->pmu))
1580 			continue;
1581 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1582 
1583 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1584 			cpu, idx, pmc_count);
1585 	}
1586 	local_irq_restore(flags);
1587 }
1588 
1589 void x86_pmu_stop(struct perf_event *event, int flags)
1590 {
1591 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1592 	struct hw_perf_event *hwc = &event->hw;
1593 
1594 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1595 		static_call(x86_pmu_disable)(event);
1596 		__clear_bit(hwc->idx, cpuc->active_mask);
1597 		cpuc->events[hwc->idx] = NULL;
1598 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1599 		hwc->state |= PERF_HES_STOPPED;
1600 	}
1601 
1602 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1603 		/*
1604 		 * Drain the remaining delta count out of a event
1605 		 * that we are disabling:
1606 		 */
1607 		x86_perf_event_update(event);
1608 		hwc->state |= PERF_HES_UPTODATE;
1609 	}
1610 }
1611 
1612 static void x86_pmu_del(struct perf_event *event, int flags)
1613 {
1614 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1616 	int i;
1617 
1618 	/*
1619 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1620 	 * The events never got scheduled and ->cancel_txn will truncate
1621 	 * the event_list.
1622 	 *
1623 	 * XXX assumes any ->del() called during a TXN will only be on
1624 	 * an event added during that same TXN.
1625 	 */
1626 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1627 		goto do_del;
1628 
1629 	/*
1630 	 * Not a TXN, therefore cleanup properly.
1631 	 */
1632 	x86_pmu_stop(event, PERF_EF_UPDATE);
1633 
1634 	for (i = 0; i < cpuc->n_events; i++) {
1635 		if (event == cpuc->event_list[i])
1636 			break;
1637 	}
1638 
1639 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640 		return;
1641 
1642 	/* If we have a newly added event; make sure to decrease n_added. */
1643 	if (i >= cpuc->n_events - cpuc->n_added)
1644 		--cpuc->n_added;
1645 
1646 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647 
1648 	/* Delete the array entry. */
1649 	while (++i < cpuc->n_events) {
1650 		cpuc->event_list[i-1] = cpuc->event_list[i];
1651 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 	}
1653 	cpuc->event_constraint[i-1] = NULL;
1654 	--cpuc->n_events;
1655 	if (intel_cap.perf_metrics)
1656 		del_nr_metric_event(cpuc, event);
1657 
1658 	perf_event_update_userpage(event);
1659 
1660 do_del:
1661 
1662 	/*
1663 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1664 	 * event can need them etc..
1665 	 */
1666 	static_call_cond(x86_pmu_del)(event);
1667 }
1668 
1669 int x86_pmu_handle_irq(struct pt_regs *regs)
1670 {
1671 	struct perf_sample_data data;
1672 	struct cpu_hw_events *cpuc;
1673 	struct perf_event *event;
1674 	int idx, handled = 0;
1675 	u64 val;
1676 
1677 	cpuc = this_cpu_ptr(&cpu_hw_events);
1678 
1679 	/*
1680 	 * Some chipsets need to unmask the LVTPC in a particular spot
1681 	 * inside the nmi handler.  As a result, the unmasking was pushed
1682 	 * into all the nmi handlers.
1683 	 *
1684 	 * This generic handler doesn't seem to have any issues where the
1685 	 * unmasking occurs so it was left at the top.
1686 	 */
1687 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1688 
1689 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1690 		if (!test_bit(idx, cpuc->active_mask))
1691 			continue;
1692 
1693 		event = cpuc->events[idx];
1694 
1695 		val = x86_perf_event_update(event);
1696 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1697 			continue;
1698 
1699 		/*
1700 		 * event overflow
1701 		 */
1702 		handled++;
1703 		perf_sample_data_init(&data, 0, event->hw.last_period);
1704 
1705 		if (!x86_perf_event_set_period(event))
1706 			continue;
1707 
1708 		if (perf_event_overflow(event, &data, regs))
1709 			x86_pmu_stop(event, 0);
1710 	}
1711 
1712 	if (handled)
1713 		inc_irq_stat(apic_perf_irqs);
1714 
1715 	return handled;
1716 }
1717 
1718 void perf_events_lapic_init(void)
1719 {
1720 	if (!x86_pmu.apic || !x86_pmu_initialized())
1721 		return;
1722 
1723 	/*
1724 	 * Always use NMI for PMU
1725 	 */
1726 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1727 }
1728 
1729 static int
1730 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1731 {
1732 	u64 start_clock;
1733 	u64 finish_clock;
1734 	int ret;
1735 
1736 	/*
1737 	 * All PMUs/events that share this PMI handler should make sure to
1738 	 * increment active_events for their events.
1739 	 */
1740 	if (!atomic_read(&active_events))
1741 		return NMI_DONE;
1742 
1743 	start_clock = sched_clock();
1744 	ret = static_call(x86_pmu_handle_irq)(regs);
1745 	finish_clock = sched_clock();
1746 
1747 	perf_sample_event_took(finish_clock - start_clock);
1748 
1749 	return ret;
1750 }
1751 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1752 
1753 struct event_constraint emptyconstraint;
1754 struct event_constraint unconstrained;
1755 
1756 static int x86_pmu_prepare_cpu(unsigned int cpu)
1757 {
1758 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1759 	int i;
1760 
1761 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1762 		cpuc->kfree_on_online[i] = NULL;
1763 	if (x86_pmu.cpu_prepare)
1764 		return x86_pmu.cpu_prepare(cpu);
1765 	return 0;
1766 }
1767 
1768 static int x86_pmu_dead_cpu(unsigned int cpu)
1769 {
1770 	if (x86_pmu.cpu_dead)
1771 		x86_pmu.cpu_dead(cpu);
1772 	return 0;
1773 }
1774 
1775 static int x86_pmu_online_cpu(unsigned int cpu)
1776 {
1777 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1778 	int i;
1779 
1780 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1781 		kfree(cpuc->kfree_on_online[i]);
1782 		cpuc->kfree_on_online[i] = NULL;
1783 	}
1784 	return 0;
1785 }
1786 
1787 static int x86_pmu_starting_cpu(unsigned int cpu)
1788 {
1789 	if (x86_pmu.cpu_starting)
1790 		x86_pmu.cpu_starting(cpu);
1791 	return 0;
1792 }
1793 
1794 static int x86_pmu_dying_cpu(unsigned int cpu)
1795 {
1796 	if (x86_pmu.cpu_dying)
1797 		x86_pmu.cpu_dying(cpu);
1798 	return 0;
1799 }
1800 
1801 static void __init pmu_check_apic(void)
1802 {
1803 	if (boot_cpu_has(X86_FEATURE_APIC))
1804 		return;
1805 
1806 	x86_pmu.apic = 0;
1807 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1808 	pr_info("no hardware sampling interrupt available.\n");
1809 
1810 	/*
1811 	 * If we have a PMU initialized but no APIC
1812 	 * interrupts, we cannot sample hardware
1813 	 * events (user-space has to fall back and
1814 	 * sample via a hrtimer based software event):
1815 	 */
1816 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1817 
1818 }
1819 
1820 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1821 	.name = "format",
1822 	.attrs = NULL,
1823 };
1824 
1825 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1826 {
1827 	struct perf_pmu_events_attr *pmu_attr =
1828 		container_of(attr, struct perf_pmu_events_attr, attr);
1829 	u64 config = 0;
1830 
1831 	if (pmu_attr->id < x86_pmu.max_events)
1832 		config = x86_pmu.event_map(pmu_attr->id);
1833 
1834 	/* string trumps id */
1835 	if (pmu_attr->event_str)
1836 		return sprintf(page, "%s", pmu_attr->event_str);
1837 
1838 	return x86_pmu.events_sysfs_show(page, config);
1839 }
1840 EXPORT_SYMBOL_GPL(events_sysfs_show);
1841 
1842 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1843 			  char *page)
1844 {
1845 	struct perf_pmu_events_ht_attr *pmu_attr =
1846 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1847 
1848 	/*
1849 	 * Report conditional events depending on Hyper-Threading.
1850 	 *
1851 	 * This is overly conservative as usually the HT special
1852 	 * handling is not needed if the other CPU thread is idle.
1853 	 *
1854 	 * Note this does not (and cannot) handle the case when thread
1855 	 * siblings are invisible, for example with virtualization
1856 	 * if they are owned by some other guest.  The user tool
1857 	 * has to re-read when a thread sibling gets onlined later.
1858 	 */
1859 	return sprintf(page, "%s",
1860 			topology_max_smt_threads() > 1 ?
1861 			pmu_attr->event_str_ht :
1862 			pmu_attr->event_str_noht);
1863 }
1864 
1865 ssize_t events_hybrid_sysfs_show(struct device *dev,
1866 				 struct device_attribute *attr,
1867 				 char *page)
1868 {
1869 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1870 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1871 	struct x86_hybrid_pmu *pmu;
1872 	const char *str, *next_str;
1873 	int i;
1874 
1875 	if (hweight64(pmu_attr->pmu_type) == 1)
1876 		return sprintf(page, "%s", pmu_attr->event_str);
1877 
1878 	/*
1879 	 * Hybrid PMUs may support the same event name, but with different
1880 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1881 	 * different event encoding from a Core PMU.
1882 	 *
1883 	 * The event_str includes all event encodings. Each event encoding
1884 	 * is divided by ";". The order of the event encodings must follow
1885 	 * the order of the hybrid PMU index.
1886 	 */
1887 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1888 
1889 	str = pmu_attr->event_str;
1890 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1891 		if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1892 			continue;
1893 		if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1894 			next_str = strchr(str, ';');
1895 			if (next_str)
1896 				return snprintf(page, next_str - str + 1, "%s", str);
1897 			else
1898 				return sprintf(page, "%s", str);
1899 		}
1900 		str = strchr(str, ';');
1901 		str++;
1902 	}
1903 
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1907 
1908 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1909 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1910 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1911 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1912 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1913 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1914 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1915 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1916 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1917 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1918 
1919 static struct attribute *empty_attrs;
1920 
1921 static struct attribute *events_attr[] = {
1922 	EVENT_PTR(CPU_CYCLES),
1923 	EVENT_PTR(INSTRUCTIONS),
1924 	EVENT_PTR(CACHE_REFERENCES),
1925 	EVENT_PTR(CACHE_MISSES),
1926 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1927 	EVENT_PTR(BRANCH_MISSES),
1928 	EVENT_PTR(BUS_CYCLES),
1929 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1930 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1931 	EVENT_PTR(REF_CPU_CYCLES),
1932 	NULL,
1933 };
1934 
1935 /*
1936  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1937  * out of events_attr attributes.
1938  */
1939 static umode_t
1940 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1941 {
1942 	struct perf_pmu_events_attr *pmu_attr;
1943 
1944 	if (idx >= x86_pmu.max_events)
1945 		return 0;
1946 
1947 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1948 	/* str trumps id */
1949 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1950 }
1951 
1952 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1953 	.name = "events",
1954 	.attrs = events_attr,
1955 	.is_visible = is_visible,
1956 };
1957 
1958 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1959 {
1960 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1961 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1962 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1963 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1964 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1965 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1966 	ssize_t ret;
1967 
1968 	/*
1969 	* We have whole page size to spend and just little data
1970 	* to write, so we can safely use sprintf.
1971 	*/
1972 	ret = sprintf(page, "event=0x%02llx", event);
1973 
1974 	if (umask)
1975 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1976 
1977 	if (edge)
1978 		ret += sprintf(page + ret, ",edge");
1979 
1980 	if (pc)
1981 		ret += sprintf(page + ret, ",pc");
1982 
1983 	if (any)
1984 		ret += sprintf(page + ret, ",any");
1985 
1986 	if (inv)
1987 		ret += sprintf(page + ret, ",inv");
1988 
1989 	if (cmask)
1990 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1991 
1992 	ret += sprintf(page + ret, "\n");
1993 
1994 	return ret;
1995 }
1996 
1997 static struct attribute_group x86_pmu_attr_group;
1998 static struct attribute_group x86_pmu_caps_group;
1999 
2000 static void x86_pmu_static_call_update(void)
2001 {
2002 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2003 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2004 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2005 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2006 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2007 
2008 	static_call_update(x86_pmu_add, x86_pmu.add);
2009 	static_call_update(x86_pmu_del, x86_pmu.del);
2010 	static_call_update(x86_pmu_read, x86_pmu.read);
2011 
2012 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2013 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2014 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2015 
2016 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2017 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2018 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2019 
2020 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2021 	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2022 
2023 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2024 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2025 
2026 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2027 }
2028 
2029 static void _x86_pmu_read(struct perf_event *event)
2030 {
2031 	x86_perf_event_update(event);
2032 }
2033 
2034 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2035 			  u64 intel_ctrl)
2036 {
2037 	pr_info("... version:                %d\n",     x86_pmu.version);
2038 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2039 	pr_info("... generic registers:      %d\n",     num_counters);
2040 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2041 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2042 	pr_info("... fixed-purpose events:   %lu\n",
2043 			hweight64((((1ULL << num_counters_fixed) - 1)
2044 					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2045 	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2046 }
2047 
2048 /*
2049  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2050  * of the first registered PMU is unconditionally assigned to
2051  * each possible cpuctx->ctx.pmu.
2052  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2053  */
2054 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2055 {
2056 	struct perf_cpu_context *cpuctx;
2057 
2058 	if (!pmu->pmu_cpu_context)
2059 		return;
2060 
2061 	cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2062 	cpuctx->ctx.pmu = pmu;
2063 }
2064 
2065 static int __init init_hw_perf_events(void)
2066 {
2067 	struct x86_pmu_quirk *quirk;
2068 	int err;
2069 
2070 	pr_info("Performance Events: ");
2071 
2072 	switch (boot_cpu_data.x86_vendor) {
2073 	case X86_VENDOR_INTEL:
2074 		err = intel_pmu_init();
2075 		break;
2076 	case X86_VENDOR_AMD:
2077 		err = amd_pmu_init();
2078 		break;
2079 	case X86_VENDOR_HYGON:
2080 		err = amd_pmu_init();
2081 		x86_pmu.name = "HYGON";
2082 		break;
2083 	case X86_VENDOR_ZHAOXIN:
2084 	case X86_VENDOR_CENTAUR:
2085 		err = zhaoxin_pmu_init();
2086 		break;
2087 	default:
2088 		err = -ENOTSUPP;
2089 	}
2090 	if (err != 0) {
2091 		pr_cont("no PMU driver, software events only.\n");
2092 		return 0;
2093 	}
2094 
2095 	pmu_check_apic();
2096 
2097 	/* sanity check that the hardware exists or is emulated */
2098 	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2099 		return 0;
2100 
2101 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2102 
2103 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2104 
2105 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2106 		quirk->func();
2107 
2108 	if (!x86_pmu.intel_ctrl)
2109 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2110 
2111 	perf_events_lapic_init();
2112 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2113 
2114 	unconstrained = (struct event_constraint)
2115 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2116 				   0, x86_pmu.num_counters, 0, 0);
2117 
2118 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2119 
2120 	if (!x86_pmu.events_sysfs_show)
2121 		x86_pmu_events_group.attrs = &empty_attrs;
2122 
2123 	pmu.attr_update = x86_pmu.attr_update;
2124 
2125 	if (!is_hybrid()) {
2126 		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2127 				     x86_pmu.num_counters_fixed,
2128 				     x86_pmu.intel_ctrl);
2129 	}
2130 
2131 	if (!x86_pmu.read)
2132 		x86_pmu.read = _x86_pmu_read;
2133 
2134 	if (!x86_pmu.guest_get_msrs)
2135 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2136 
2137 	x86_pmu_static_call_update();
2138 
2139 	/*
2140 	 * Install callbacks. Core will call them for each online
2141 	 * cpu.
2142 	 */
2143 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2144 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2145 	if (err)
2146 		return err;
2147 
2148 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2149 				"perf/x86:starting", x86_pmu_starting_cpu,
2150 				x86_pmu_dying_cpu);
2151 	if (err)
2152 		goto out;
2153 
2154 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2155 				x86_pmu_online_cpu, NULL);
2156 	if (err)
2157 		goto out1;
2158 
2159 	if (!is_hybrid()) {
2160 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2161 		if (err)
2162 			goto out2;
2163 	} else {
2164 		u8 cpu_type = get_this_hybrid_cpu_type();
2165 		struct x86_hybrid_pmu *hybrid_pmu;
2166 		int i, j;
2167 
2168 		if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2169 			cpu_type = x86_pmu.get_hybrid_cpu_type();
2170 
2171 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2172 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2173 
2174 			hybrid_pmu->pmu = pmu;
2175 			hybrid_pmu->pmu.type = -1;
2176 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2177 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2178 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2179 
2180 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2181 						(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2182 			if (err)
2183 				break;
2184 
2185 			if (cpu_type == hybrid_pmu->cpu_type)
2186 				x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2187 		}
2188 
2189 		if (i < x86_pmu.num_hybrid_pmus) {
2190 			for (j = 0; j < i; j++)
2191 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2192 			pr_warn("Failed to register hybrid PMUs\n");
2193 			kfree(x86_pmu.hybrid_pmu);
2194 			x86_pmu.hybrid_pmu = NULL;
2195 			x86_pmu.num_hybrid_pmus = 0;
2196 			goto out2;
2197 		}
2198 	}
2199 
2200 	return 0;
2201 
2202 out2:
2203 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2204 out1:
2205 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2206 out:
2207 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2208 	return err;
2209 }
2210 early_initcall(init_hw_perf_events);
2211 
2212 static void x86_pmu_read(struct perf_event *event)
2213 {
2214 	static_call(x86_pmu_read)(event);
2215 }
2216 
2217 /*
2218  * Start group events scheduling transaction
2219  * Set the flag to make pmu::enable() not perform the
2220  * schedulability test, it will be performed at commit time
2221  *
2222  * We only support PERF_PMU_TXN_ADD transactions. Save the
2223  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2224  * transactions.
2225  */
2226 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2227 {
2228 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2229 
2230 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2231 
2232 	cpuc->txn_flags = txn_flags;
2233 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2234 		return;
2235 
2236 	perf_pmu_disable(pmu);
2237 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2238 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2239 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2240 }
2241 
2242 /*
2243  * Stop group events scheduling transaction
2244  * Clear the flag and pmu::enable() will perform the
2245  * schedulability test.
2246  */
2247 static void x86_pmu_cancel_txn(struct pmu *pmu)
2248 {
2249 	unsigned int txn_flags;
2250 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2251 
2252 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2253 
2254 	txn_flags = cpuc->txn_flags;
2255 	cpuc->txn_flags = 0;
2256 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2257 		return;
2258 
2259 	/*
2260 	 * Truncate collected array by the number of events added in this
2261 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2262 	 */
2263 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2264 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2265 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2266 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2267 	perf_pmu_enable(pmu);
2268 }
2269 
2270 /*
2271  * Commit group events scheduling transaction
2272  * Perform the group schedulability test as a whole
2273  * Return 0 if success
2274  *
2275  * Does not cancel the transaction on failure; expects the caller to do this.
2276  */
2277 static int x86_pmu_commit_txn(struct pmu *pmu)
2278 {
2279 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2280 	int assign[X86_PMC_IDX_MAX];
2281 	int n, ret;
2282 
2283 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2284 
2285 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2286 		cpuc->txn_flags = 0;
2287 		return 0;
2288 	}
2289 
2290 	n = cpuc->n_events;
2291 
2292 	if (!x86_pmu_initialized())
2293 		return -EAGAIN;
2294 
2295 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2296 	if (ret)
2297 		return ret;
2298 
2299 	/*
2300 	 * copy new assignment, now we know it is possible
2301 	 * will be used by hw_perf_enable()
2302 	 */
2303 	memcpy(cpuc->assign, assign, n*sizeof(int));
2304 
2305 	cpuc->txn_flags = 0;
2306 	perf_pmu_enable(pmu);
2307 	return 0;
2308 }
2309 /*
2310  * a fake_cpuc is used to validate event groups. Due to
2311  * the extra reg logic, we need to also allocate a fake
2312  * per_core and per_cpu structure. Otherwise, group events
2313  * using extra reg may conflict without the kernel being
2314  * able to catch this when the last event gets added to
2315  * the group.
2316  */
2317 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2318 {
2319 	intel_cpuc_finish(cpuc);
2320 	kfree(cpuc);
2321 }
2322 
2323 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2324 {
2325 	struct cpu_hw_events *cpuc;
2326 	int cpu;
2327 
2328 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2329 	if (!cpuc)
2330 		return ERR_PTR(-ENOMEM);
2331 	cpuc->is_fake = 1;
2332 
2333 	if (is_hybrid()) {
2334 		struct x86_hybrid_pmu *h_pmu;
2335 
2336 		h_pmu = hybrid_pmu(event_pmu);
2337 		if (cpumask_empty(&h_pmu->supported_cpus))
2338 			goto error;
2339 		cpu = cpumask_first(&h_pmu->supported_cpus);
2340 	} else
2341 		cpu = raw_smp_processor_id();
2342 	cpuc->pmu = event_pmu;
2343 
2344 	if (intel_cpuc_prepare(cpuc, cpu))
2345 		goto error;
2346 
2347 	return cpuc;
2348 error:
2349 	free_fake_cpuc(cpuc);
2350 	return ERR_PTR(-ENOMEM);
2351 }
2352 
2353 /*
2354  * validate that we can schedule this event
2355  */
2356 static int validate_event(struct perf_event *event)
2357 {
2358 	struct cpu_hw_events *fake_cpuc;
2359 	struct event_constraint *c;
2360 	int ret = 0;
2361 
2362 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2363 	if (IS_ERR(fake_cpuc))
2364 		return PTR_ERR(fake_cpuc);
2365 
2366 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2367 
2368 	if (!c || !c->weight)
2369 		ret = -EINVAL;
2370 
2371 	if (x86_pmu.put_event_constraints)
2372 		x86_pmu.put_event_constraints(fake_cpuc, event);
2373 
2374 	free_fake_cpuc(fake_cpuc);
2375 
2376 	return ret;
2377 }
2378 
2379 /*
2380  * validate a single event group
2381  *
2382  * validation include:
2383  *	- check events are compatible which each other
2384  *	- events do not compete for the same counter
2385  *	- number of events <= number of counters
2386  *
2387  * validation ensures the group can be loaded onto the
2388  * PMU if it was the only group available.
2389  */
2390 static int validate_group(struct perf_event *event)
2391 {
2392 	struct perf_event *leader = event->group_leader;
2393 	struct cpu_hw_events *fake_cpuc;
2394 	int ret = -EINVAL, n;
2395 
2396 	/*
2397 	 * Reject events from different hybrid PMUs.
2398 	 */
2399 	if (is_hybrid()) {
2400 		struct perf_event *sibling;
2401 		struct pmu *pmu = NULL;
2402 
2403 		if (is_x86_event(leader))
2404 			pmu = leader->pmu;
2405 
2406 		for_each_sibling_event(sibling, leader) {
2407 			if (!is_x86_event(sibling))
2408 				continue;
2409 			if (!pmu)
2410 				pmu = sibling->pmu;
2411 			else if (pmu != sibling->pmu)
2412 				return ret;
2413 		}
2414 	}
2415 
2416 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2417 	if (IS_ERR(fake_cpuc))
2418 		return PTR_ERR(fake_cpuc);
2419 	/*
2420 	 * the event is not yet connected with its
2421 	 * siblings therefore we must first collect
2422 	 * existing siblings, then add the new event
2423 	 * before we can simulate the scheduling
2424 	 */
2425 	n = collect_events(fake_cpuc, leader, true);
2426 	if (n < 0)
2427 		goto out;
2428 
2429 	fake_cpuc->n_events = n;
2430 	n = collect_events(fake_cpuc, event, false);
2431 	if (n < 0)
2432 		goto out;
2433 
2434 	fake_cpuc->n_events = 0;
2435 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2436 
2437 out:
2438 	free_fake_cpuc(fake_cpuc);
2439 	return ret;
2440 }
2441 
2442 static int x86_pmu_event_init(struct perf_event *event)
2443 {
2444 	struct x86_hybrid_pmu *pmu = NULL;
2445 	int err;
2446 
2447 	if ((event->attr.type != event->pmu->type) &&
2448 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2449 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2450 		return -ENOENT;
2451 
2452 	if (is_hybrid() && (event->cpu != -1)) {
2453 		pmu = hybrid_pmu(event->pmu);
2454 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2455 			return -ENOENT;
2456 	}
2457 
2458 	err = __x86_pmu_event_init(event);
2459 	if (!err) {
2460 		if (event->group_leader != event)
2461 			err = validate_group(event);
2462 		else
2463 			err = validate_event(event);
2464 	}
2465 	if (err) {
2466 		if (event->destroy)
2467 			event->destroy(event);
2468 	}
2469 
2470 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2471 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2472 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2473 
2474 	return err;
2475 }
2476 
2477 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2478 {
2479 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2480 		return;
2481 
2482 	/*
2483 	 * This function relies on not being called concurrently in two
2484 	 * tasks in the same mm.  Otherwise one task could observe
2485 	 * perf_rdpmc_allowed > 1 and return all the way back to
2486 	 * userspace with CR4.PCE clear while another task is still
2487 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2488 	 *
2489 	 * For now, this can't happen because all callers hold mmap_lock
2490 	 * for write.  If this changes, we'll need a different solution.
2491 	 */
2492 	mmap_assert_write_locked(mm);
2493 
2494 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2495 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2496 }
2497 
2498 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2499 {
2500 
2501 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2502 		return;
2503 
2504 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2505 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2506 }
2507 
2508 static int x86_pmu_event_idx(struct perf_event *event)
2509 {
2510 	struct hw_perf_event *hwc = &event->hw;
2511 
2512 	if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2513 		return 0;
2514 
2515 	if (is_metric_idx(hwc->idx))
2516 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2517 	else
2518 		return hwc->event_base_rdpmc + 1;
2519 }
2520 
2521 static ssize_t get_attr_rdpmc(struct device *cdev,
2522 			      struct device_attribute *attr,
2523 			      char *buf)
2524 {
2525 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2526 }
2527 
2528 static ssize_t set_attr_rdpmc(struct device *cdev,
2529 			      struct device_attribute *attr,
2530 			      const char *buf, size_t count)
2531 {
2532 	unsigned long val;
2533 	ssize_t ret;
2534 
2535 	ret = kstrtoul(buf, 0, &val);
2536 	if (ret)
2537 		return ret;
2538 
2539 	if (val > 2)
2540 		return -EINVAL;
2541 
2542 	if (x86_pmu.attr_rdpmc_broken)
2543 		return -ENOTSUPP;
2544 
2545 	if (val != x86_pmu.attr_rdpmc) {
2546 		/*
2547 		 * Changing into or out of never available or always available,
2548 		 * aka perf-event-bypassing mode. This path is extremely slow,
2549 		 * but only root can trigger it, so it's okay.
2550 		 */
2551 		if (val == 0)
2552 			static_branch_inc(&rdpmc_never_available_key);
2553 		else if (x86_pmu.attr_rdpmc == 0)
2554 			static_branch_dec(&rdpmc_never_available_key);
2555 
2556 		if (val == 2)
2557 			static_branch_inc(&rdpmc_always_available_key);
2558 		else if (x86_pmu.attr_rdpmc == 2)
2559 			static_branch_dec(&rdpmc_always_available_key);
2560 
2561 		on_each_cpu(cr4_update_pce, NULL, 1);
2562 		x86_pmu.attr_rdpmc = val;
2563 	}
2564 
2565 	return count;
2566 }
2567 
2568 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2569 
2570 static struct attribute *x86_pmu_attrs[] = {
2571 	&dev_attr_rdpmc.attr,
2572 	NULL,
2573 };
2574 
2575 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2576 	.attrs = x86_pmu_attrs,
2577 };
2578 
2579 static ssize_t max_precise_show(struct device *cdev,
2580 				  struct device_attribute *attr,
2581 				  char *buf)
2582 {
2583 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2584 }
2585 
2586 static DEVICE_ATTR_RO(max_precise);
2587 
2588 static struct attribute *x86_pmu_caps_attrs[] = {
2589 	&dev_attr_max_precise.attr,
2590 	NULL
2591 };
2592 
2593 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2594 	.name = "caps",
2595 	.attrs = x86_pmu_caps_attrs,
2596 };
2597 
2598 static const struct attribute_group *x86_pmu_attr_groups[] = {
2599 	&x86_pmu_attr_group,
2600 	&x86_pmu_format_group,
2601 	&x86_pmu_events_group,
2602 	&x86_pmu_caps_group,
2603 	NULL,
2604 };
2605 
2606 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2607 {
2608 	static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2609 }
2610 
2611 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2612 				  struct perf_event_context *next)
2613 {
2614 	static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2615 }
2616 
2617 void perf_check_microcode(void)
2618 {
2619 	if (x86_pmu.check_microcode)
2620 		x86_pmu.check_microcode();
2621 }
2622 
2623 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2624 {
2625 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2626 		return -EINVAL;
2627 
2628 	if (value && x86_pmu.limit_period) {
2629 		if (x86_pmu.limit_period(event, value) > value)
2630 			return -EINVAL;
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static int x86_pmu_aux_output_match(struct perf_event *event)
2637 {
2638 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2639 		return 0;
2640 
2641 	if (x86_pmu.aux_output_match)
2642 		return x86_pmu.aux_output_match(event);
2643 
2644 	return 0;
2645 }
2646 
2647 static int x86_pmu_filter_match(struct perf_event *event)
2648 {
2649 	if (x86_pmu.filter_match)
2650 		return x86_pmu.filter_match(event);
2651 
2652 	return 1;
2653 }
2654 
2655 static struct pmu pmu = {
2656 	.pmu_enable		= x86_pmu_enable,
2657 	.pmu_disable		= x86_pmu_disable,
2658 
2659 	.attr_groups		= x86_pmu_attr_groups,
2660 
2661 	.event_init		= x86_pmu_event_init,
2662 
2663 	.event_mapped		= x86_pmu_event_mapped,
2664 	.event_unmapped		= x86_pmu_event_unmapped,
2665 
2666 	.add			= x86_pmu_add,
2667 	.del			= x86_pmu_del,
2668 	.start			= x86_pmu_start,
2669 	.stop			= x86_pmu_stop,
2670 	.read			= x86_pmu_read,
2671 
2672 	.start_txn		= x86_pmu_start_txn,
2673 	.cancel_txn		= x86_pmu_cancel_txn,
2674 	.commit_txn		= x86_pmu_commit_txn,
2675 
2676 	.event_idx		= x86_pmu_event_idx,
2677 	.sched_task		= x86_pmu_sched_task,
2678 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2679 	.check_period		= x86_pmu_check_period,
2680 
2681 	.aux_output_match	= x86_pmu_aux_output_match,
2682 
2683 	.filter_match		= x86_pmu_filter_match,
2684 };
2685 
2686 void arch_perf_update_userpage(struct perf_event *event,
2687 			       struct perf_event_mmap_page *userpg, u64 now)
2688 {
2689 	struct cyc2ns_data data;
2690 	u64 offset;
2691 
2692 	userpg->cap_user_time = 0;
2693 	userpg->cap_user_time_zero = 0;
2694 	userpg->cap_user_rdpmc =
2695 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2696 	userpg->pmc_width = x86_pmu.cntval_bits;
2697 
2698 	if (!using_native_sched_clock() || !sched_clock_stable())
2699 		return;
2700 
2701 	cyc2ns_read_begin(&data);
2702 
2703 	offset = data.cyc2ns_offset + __sched_clock_offset;
2704 
2705 	/*
2706 	 * Internal timekeeping for enabled/running/stopped times
2707 	 * is always in the local_clock domain.
2708 	 */
2709 	userpg->cap_user_time = 1;
2710 	userpg->time_mult = data.cyc2ns_mul;
2711 	userpg->time_shift = data.cyc2ns_shift;
2712 	userpg->time_offset = offset - now;
2713 
2714 	/*
2715 	 * cap_user_time_zero doesn't make sense when we're using a different
2716 	 * time base for the records.
2717 	 */
2718 	if (!event->attr.use_clockid) {
2719 		userpg->cap_user_time_zero = 1;
2720 		userpg->time_zero = offset;
2721 	}
2722 
2723 	cyc2ns_read_end();
2724 }
2725 
2726 /*
2727  * Determine whether the regs were taken from an irq/exception handler rather
2728  * than from perf_arch_fetch_caller_regs().
2729  */
2730 static bool perf_hw_regs(struct pt_regs *regs)
2731 {
2732 	return regs->flags & X86_EFLAGS_FIXED;
2733 }
2734 
2735 void
2736 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2737 {
2738 	struct unwind_state state;
2739 	unsigned long addr;
2740 
2741 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2742 		/* TODO: We don't support guest os callchain now */
2743 		return;
2744 	}
2745 
2746 	if (perf_callchain_store(entry, regs->ip))
2747 		return;
2748 
2749 	if (perf_hw_regs(regs))
2750 		unwind_start(&state, current, regs, NULL);
2751 	else
2752 		unwind_start(&state, current, NULL, (void *)regs->sp);
2753 
2754 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2755 		addr = unwind_get_return_address(&state);
2756 		if (!addr || perf_callchain_store(entry, addr))
2757 			return;
2758 	}
2759 }
2760 
2761 static inline int
2762 valid_user_frame(const void __user *fp, unsigned long size)
2763 {
2764 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2765 }
2766 
2767 static unsigned long get_segment_base(unsigned int segment)
2768 {
2769 	struct desc_struct *desc;
2770 	unsigned int idx = segment >> 3;
2771 
2772 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2773 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2774 		struct ldt_struct *ldt;
2775 
2776 		/* IRQs are off, so this synchronizes with smp_store_release */
2777 		ldt = READ_ONCE(current->active_mm->context.ldt);
2778 		if (!ldt || idx >= ldt->nr_entries)
2779 			return 0;
2780 
2781 		desc = &ldt->entries[idx];
2782 #else
2783 		return 0;
2784 #endif
2785 	} else {
2786 		if (idx >= GDT_ENTRIES)
2787 			return 0;
2788 
2789 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2790 	}
2791 
2792 	return get_desc_base(desc);
2793 }
2794 
2795 #ifdef CONFIG_IA32_EMULATION
2796 
2797 #include <linux/compat.h>
2798 
2799 static inline int
2800 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2801 {
2802 	/* 32-bit process in 64-bit kernel. */
2803 	unsigned long ss_base, cs_base;
2804 	struct stack_frame_ia32 frame;
2805 	const struct stack_frame_ia32 __user *fp;
2806 
2807 	if (user_64bit_mode(regs))
2808 		return 0;
2809 
2810 	cs_base = get_segment_base(regs->cs);
2811 	ss_base = get_segment_base(regs->ss);
2812 
2813 	fp = compat_ptr(ss_base + regs->bp);
2814 	pagefault_disable();
2815 	while (entry->nr < entry->max_stack) {
2816 		if (!valid_user_frame(fp, sizeof(frame)))
2817 			break;
2818 
2819 		if (__get_user(frame.next_frame, &fp->next_frame))
2820 			break;
2821 		if (__get_user(frame.return_address, &fp->return_address))
2822 			break;
2823 
2824 		perf_callchain_store(entry, cs_base + frame.return_address);
2825 		fp = compat_ptr(ss_base + frame.next_frame);
2826 	}
2827 	pagefault_enable();
2828 	return 1;
2829 }
2830 #else
2831 static inline int
2832 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2833 {
2834     return 0;
2835 }
2836 #endif
2837 
2838 void
2839 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2840 {
2841 	struct stack_frame frame;
2842 	const struct stack_frame __user *fp;
2843 
2844 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2845 		/* TODO: We don't support guest os callchain now */
2846 		return;
2847 	}
2848 
2849 	/*
2850 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2851 	 */
2852 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2853 		return;
2854 
2855 	fp = (void __user *)regs->bp;
2856 
2857 	perf_callchain_store(entry, regs->ip);
2858 
2859 	if (!nmi_uaccess_okay())
2860 		return;
2861 
2862 	if (perf_callchain_user32(regs, entry))
2863 		return;
2864 
2865 	pagefault_disable();
2866 	while (entry->nr < entry->max_stack) {
2867 		if (!valid_user_frame(fp, sizeof(frame)))
2868 			break;
2869 
2870 		if (__get_user(frame.next_frame, &fp->next_frame))
2871 			break;
2872 		if (__get_user(frame.return_address, &fp->return_address))
2873 			break;
2874 
2875 		perf_callchain_store(entry, frame.return_address);
2876 		fp = (void __user *)frame.next_frame;
2877 	}
2878 	pagefault_enable();
2879 }
2880 
2881 /*
2882  * Deal with code segment offsets for the various execution modes:
2883  *
2884  *   VM86 - the good olde 16 bit days, where the linear address is
2885  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2886  *
2887  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2888  *          to figure out what the 32bit base address is.
2889  *
2890  *    X32 - has TIF_X32 set, but is running in x86_64
2891  *
2892  * X86_64 - CS,DS,SS,ES are all zero based.
2893  */
2894 static unsigned long code_segment_base(struct pt_regs *regs)
2895 {
2896 	/*
2897 	 * For IA32 we look at the GDT/LDT segment base to convert the
2898 	 * effective IP to a linear address.
2899 	 */
2900 
2901 #ifdef CONFIG_X86_32
2902 	/*
2903 	 * If we are in VM86 mode, add the segment offset to convert to a
2904 	 * linear address.
2905 	 */
2906 	if (regs->flags & X86_VM_MASK)
2907 		return 0x10 * regs->cs;
2908 
2909 	if (user_mode(regs) && regs->cs != __USER_CS)
2910 		return get_segment_base(regs->cs);
2911 #else
2912 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2913 	    regs->cs != __USER32_CS)
2914 		return get_segment_base(regs->cs);
2915 #endif
2916 	return 0;
2917 }
2918 
2919 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2920 {
2921 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2922 		return perf_guest_cbs->get_guest_ip();
2923 
2924 	return regs->ip + code_segment_base(regs);
2925 }
2926 
2927 unsigned long perf_misc_flags(struct pt_regs *regs)
2928 {
2929 	int misc = 0;
2930 
2931 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2932 		if (perf_guest_cbs->is_user_mode())
2933 			misc |= PERF_RECORD_MISC_GUEST_USER;
2934 		else
2935 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2936 	} else {
2937 		if (user_mode(regs))
2938 			misc |= PERF_RECORD_MISC_USER;
2939 		else
2940 			misc |= PERF_RECORD_MISC_KERNEL;
2941 	}
2942 
2943 	if (regs->flags & PERF_EFLAGS_EXACT)
2944 		misc |= PERF_RECORD_MISC_EXACT_IP;
2945 
2946 	return misc;
2947 }
2948 
2949 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2950 {
2951 	cap->version		= x86_pmu.version;
2952 	/*
2953 	 * KVM doesn't support the hybrid PMU yet.
2954 	 * Return the common value in global x86_pmu,
2955 	 * which available for all cores.
2956 	 */
2957 	cap->num_counters_gp	= x86_pmu.num_counters;
2958 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2959 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2960 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2961 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2962 	cap->events_mask_len	= x86_pmu.events_mask_len;
2963 }
2964 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2965