xref: /openbmc/linux/arch/x86/events/core.c (revision 565485b8)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53 
54 u64 __read_mostly hw_cache_event_ids
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 				[PERF_COUNT_HW_CACHE_MAX]
60 				[PERF_COUNT_HW_CACHE_OP_MAX]
61 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
62 
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 	struct hw_perf_event *hwc = &event->hw;
71 	int shift = 64 - x86_pmu.cntval_bits;
72 	u64 prev_raw_count, new_raw_count;
73 	int idx = hwc->idx;
74 	u64 delta;
75 
76 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 		/* Check if the extra msrs can be safely accessed*/
130 		if (!er->extra_msr_access)
131 			return -ENXIO;
132 
133 		reg->idx = er->idx;
134 		reg->config = event->attr.config1;
135 		reg->reg = er->msr;
136 		break;
137 	}
138 	return 0;
139 }
140 
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144 
145 #ifdef CONFIG_X86_LOCAL_APIC
146 
147 static bool reserve_pmc_hardware(void)
148 {
149 	int i;
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 			goto perfctr_fail;
154 	}
155 
156 	for (i = 0; i < x86_pmu.num_counters; i++) {
157 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 			goto eventsel_fail;
159 	}
160 
161 	return true;
162 
163 eventsel_fail:
164 	for (i--; i >= 0; i--)
165 		release_evntsel_nmi(x86_pmu_config_addr(i));
166 
167 	i = x86_pmu.num_counters;
168 
169 perfctr_fail:
170 	for (i--; i >= 0; i--)
171 		release_perfctr_nmi(x86_pmu_event_addr(i));
172 
173 	return false;
174 }
175 
176 static void release_pmc_hardware(void)
177 {
178 	int i;
179 
180 	for (i = 0; i < x86_pmu.num_counters; i++) {
181 		release_perfctr_nmi(x86_pmu_event_addr(i));
182 		release_evntsel_nmi(x86_pmu_config_addr(i));
183 	}
184 }
185 
186 #else
187 
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190 
191 #endif
192 
193 static bool check_hw_exists(void)
194 {
195 	u64 val, val_fail = -1, val_new= ~0;
196 	int i, reg, reg_fail = -1, ret = 0;
197 	int bios_fail = 0;
198 	int reg_safe = -1;
199 
200 	/*
201 	 * Check to see if the BIOS enabled any of the counters, if so
202 	 * complain and bail.
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		reg = x86_pmu_config_addr(i);
206 		ret = rdmsrl_safe(reg, &val);
207 		if (ret)
208 			goto msr_fail;
209 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 			bios_fail = 1;
211 			val_fail = val;
212 			reg_fail = reg;
213 		} else {
214 			reg_safe = i;
215 		}
216 	}
217 
218 	if (x86_pmu.num_counters_fixed) {
219 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 		ret = rdmsrl_safe(reg, &val);
221 		if (ret)
222 			goto msr_fail;
223 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 			if (val & (0x03 << i*4)) {
225 				bios_fail = 1;
226 				val_fail = val;
227 				reg_fail = reg;
228 			}
229 		}
230 	}
231 
232 	/*
233 	 * If all the counters are enabled, the below test will always
234 	 * fail.  The tools will also become useless in this scenario.
235 	 * Just fail and disable the hardware counters.
236 	 */
237 
238 	if (reg_safe == -1) {
239 		reg = reg_safe;
240 		goto msr_fail;
241 	}
242 
243 	/*
244 	 * Read the current value, change it and read it back to see if it
245 	 * matches, this is needed to detect certain hardware emulators
246 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 	 */
248 	reg = x86_pmu_event_addr(reg_safe);
249 	if (rdmsrl_safe(reg, &val))
250 		goto msr_fail;
251 	val ^= 0xffffUL;
252 	ret = wrmsrl_safe(reg, val);
253 	ret |= rdmsrl_safe(reg, &val_new);
254 	if (ret || val != val_new)
255 		goto msr_fail;
256 
257 	/*
258 	 * We still allow the PMU driver to operate:
259 	 */
260 	if (bios_fail) {
261 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 			      reg_fail, val_fail);
264 	}
265 
266 	return true;
267 
268 msr_fail:
269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 		pr_cont("PMU not available due to virtualization, using software events only.\n");
271 	} else {
272 		pr_cont("Broken PMU hardware detected, using software events only.\n");
273 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 		       reg, val_new);
275 	}
276 
277 	return false;
278 }
279 
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 	x86_release_hardware();
283 	atomic_dec(&active_events);
284 }
285 
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 	hw_perf_event_destroy(event);
289 
290 	/* undo the lbr/bts event accounting */
291 	x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293 
294 static inline int x86_pmu_initialized(void)
295 {
296 	return x86_pmu.handle_irq != NULL;
297 }
298 
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	unsigned int cache_type, cache_op, cache_result;
304 	u64 config, val;
305 
306 	config = attr->config;
307 
308 	cache_type = (config >> 0) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 
313 	cache_op = (config >>  8) & 0xff;
314 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 		return -EINVAL;
316 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 
318 	cache_result = (config >> 16) & 0xff;
319 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 		return -EINVAL;
321 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 
323 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 
325 	if (val == 0)
326 		return -ENOENT;
327 
328 	if (val == -1)
329 		return -EINVAL;
330 
331 	hwc->config |= val;
332 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 	return x86_pmu_extra_regs(val, event);
334 }
335 
336 int x86_reserve_hardware(void)
337 {
338 	int err = 0;
339 
340 	if (!atomic_inc_not_zero(&pmc_refcount)) {
341 		mutex_lock(&pmc_reserve_mutex);
342 		if (atomic_read(&pmc_refcount) == 0) {
343 			if (!reserve_pmc_hardware())
344 				err = -EBUSY;
345 			else
346 				reserve_ds_buffers();
347 		}
348 		if (!err)
349 			atomic_inc(&pmc_refcount);
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 
353 	return err;
354 }
355 
356 void x86_release_hardware(void)
357 {
358 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 		release_pmc_hardware();
360 		release_ds_buffers();
361 		mutex_unlock(&pmc_reserve_mutex);
362 	}
363 }
364 
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371 	int i;
372 
373 	/*
374 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 	 * LBR and BTS are still mutually exclusive.
376 	 */
377 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 		return 0;
379 
380 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 		mutex_lock(&pmc_reserve_mutex);
382 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 				goto fail_unlock;
385 		}
386 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 		mutex_unlock(&pmc_reserve_mutex);
388 	}
389 
390 	atomic_inc(&active_events);
391 	return 0;
392 
393 fail_unlock:
394 	mutex_unlock(&pmc_reserve_mutex);
395 	return -EBUSY;
396 }
397 
398 void x86_del_exclusive(unsigned int what)
399 {
400 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 		return;
402 
403 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 	atomic_dec(&active_events);
405 }
406 
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409 	struct perf_event_attr *attr = &event->attr;
410 	struct hw_perf_event *hwc = &event->hw;
411 	u64 config;
412 
413 	if (!is_sampling_event(event)) {
414 		hwc->sample_period = x86_pmu.max_period;
415 		hwc->last_period = hwc->sample_period;
416 		local64_set(&hwc->period_left, hwc->sample_period);
417 	}
418 
419 	if (attr->type == PERF_TYPE_RAW)
420 		return x86_pmu_extra_regs(event->attr.config, event);
421 
422 	if (attr->type == PERF_TYPE_HW_CACHE)
423 		return set_ext_hw_attr(hwc, event);
424 
425 	if (attr->config >= x86_pmu.max_events)
426 		return -EINVAL;
427 
428 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429 
430 	/*
431 	 * The generic map:
432 	 */
433 	config = x86_pmu.event_map(attr->config);
434 
435 	if (config == 0)
436 		return -ENOENT;
437 
438 	if (config == -1LL)
439 		return -EINVAL;
440 
441 	hwc->config |= config;
442 
443 	return 0;
444 }
445 
446 /*
447  * check that branch_sample_type is compatible with
448  * settings needed for precise_ip > 1 which implies
449  * using the LBR to capture ALL taken branches at the
450  * priv levels of the measurement
451  */
452 static inline int precise_br_compat(struct perf_event *event)
453 {
454 	u64 m = event->attr.branch_sample_type;
455 	u64 b = 0;
456 
457 	/* must capture all branches */
458 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
459 		return 0;
460 
461 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462 
463 	if (!event->attr.exclude_user)
464 		b |= PERF_SAMPLE_BRANCH_USER;
465 
466 	if (!event->attr.exclude_kernel)
467 		b |= PERF_SAMPLE_BRANCH_KERNEL;
468 
469 	/*
470 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471 	 */
472 
473 	return m == b;
474 }
475 
476 int x86_pmu_max_precise(void)
477 {
478 	int precise = 0;
479 
480 	/* Support for constant skid */
481 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 		precise++;
483 
484 		/* Support for IP fixup */
485 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486 			precise++;
487 
488 		if (x86_pmu.pebs_prec_dist)
489 			precise++;
490 	}
491 	return precise;
492 }
493 
494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496 	if (event->attr.precise_ip) {
497 		int precise = x86_pmu_max_precise();
498 
499 		if (event->attr.precise_ip > precise)
500 			return -EOPNOTSUPP;
501 
502 		/* There's no sense in having PEBS for non sampling events: */
503 		if (!is_sampling_event(event))
504 			return -EINVAL;
505 	}
506 	/*
507 	 * check that PEBS LBR correction does not conflict with
508 	 * whatever the user is asking with attr->branch_sample_type
509 	 */
510 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 		u64 *br_type = &event->attr.branch_sample_type;
512 
513 		if (has_branch_stack(event)) {
514 			if (!precise_br_compat(event))
515 				return -EOPNOTSUPP;
516 
517 			/* branch_sample_type is compatible */
518 
519 		} else {
520 			/*
521 			 * user did not specify  branch_sample_type
522 			 *
523 			 * For PEBS fixups, we capture all
524 			 * the branches at the priv level of the
525 			 * event.
526 			 */
527 			*br_type = PERF_SAMPLE_BRANCH_ANY;
528 
529 			if (!event->attr.exclude_user)
530 				*br_type |= PERF_SAMPLE_BRANCH_USER;
531 
532 			if (!event->attr.exclude_kernel)
533 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534 		}
535 	}
536 
537 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 		event->attach_state |= PERF_ATTACH_TASK_DATA;
539 
540 	/*
541 	 * Generate PMC IRQs:
542 	 * (keep 'enabled' bit clear for now)
543 	 */
544 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545 
546 	/*
547 	 * Count user and OS events unless requested not to
548 	 */
549 	if (!event->attr.exclude_user)
550 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 	if (!event->attr.exclude_kernel)
552 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553 
554 	if (event->attr.type == PERF_TYPE_RAW)
555 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556 
557 	if (event->attr.sample_period && x86_pmu.limit_period) {
558 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 				event->attr.sample_period)
560 			return -EINVAL;
561 	}
562 
563 	return x86_setup_perfctr(event);
564 }
565 
566 /*
567  * Setup the hardware configuration for a given attr_type
568  */
569 static int __x86_pmu_event_init(struct perf_event *event)
570 {
571 	int err;
572 
573 	if (!x86_pmu_initialized())
574 		return -ENODEV;
575 
576 	err = x86_reserve_hardware();
577 	if (err)
578 		return err;
579 
580 	atomic_inc(&active_events);
581 	event->destroy = hw_perf_event_destroy;
582 
583 	event->hw.idx = -1;
584 	event->hw.last_cpu = -1;
585 	event->hw.last_tag = ~0ULL;
586 
587 	/* mark unused */
588 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
589 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
590 
591 	return x86_pmu.hw_config(event);
592 }
593 
594 void x86_pmu_disable_all(void)
595 {
596 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
597 	int idx;
598 
599 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
600 		u64 val;
601 
602 		if (!test_bit(idx, cpuc->active_mask))
603 			continue;
604 		rdmsrl(x86_pmu_config_addr(idx), val);
605 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
606 			continue;
607 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
608 		wrmsrl(x86_pmu_config_addr(idx), val);
609 	}
610 }
611 
612 /*
613  * There may be PMI landing after enabled=0. The PMI hitting could be before or
614  * after disable_all.
615  *
616  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
617  * It will not be re-enabled in the NMI handler again, because enabled=0. After
618  * handling the NMI, disable_all will be called, which will not change the
619  * state either. If PMI hits after disable_all, the PMU is already disabled
620  * before entering NMI handler. The NMI handler will not change the state
621  * either.
622  *
623  * So either situation is harmless.
624  */
625 static void x86_pmu_disable(struct pmu *pmu)
626 {
627 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
628 
629 	if (!x86_pmu_initialized())
630 		return;
631 
632 	if (!cpuc->enabled)
633 		return;
634 
635 	cpuc->n_added = 0;
636 	cpuc->enabled = 0;
637 	barrier();
638 
639 	x86_pmu.disable_all();
640 }
641 
642 void x86_pmu_enable_all(int added)
643 {
644 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
645 	int idx;
646 
647 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
648 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
649 
650 		if (!test_bit(idx, cpuc->active_mask))
651 			continue;
652 
653 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
654 	}
655 }
656 
657 static struct pmu pmu;
658 
659 static inline int is_x86_event(struct perf_event *event)
660 {
661 	return event->pmu == &pmu;
662 }
663 
664 /*
665  * Event scheduler state:
666  *
667  * Assign events iterating over all events and counters, beginning
668  * with events with least weights first. Keep the current iterator
669  * state in struct sched_state.
670  */
671 struct sched_state {
672 	int	weight;
673 	int	event;		/* event index */
674 	int	counter;	/* counter index */
675 	int	unassigned;	/* number of events to be assigned left */
676 	int	nr_gp;		/* number of GP counters used */
677 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
678 };
679 
680 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
681 #define	SCHED_STATES_MAX	2
682 
683 struct perf_sched {
684 	int			max_weight;
685 	int			max_events;
686 	int			max_gp;
687 	int			saved_states;
688 	struct event_constraint	**constraints;
689 	struct sched_state	state;
690 	struct sched_state	saved[SCHED_STATES_MAX];
691 };
692 
693 /*
694  * Initialize interator that runs through all events and counters.
695  */
696 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
697 			    int num, int wmin, int wmax, int gpmax)
698 {
699 	int idx;
700 
701 	memset(sched, 0, sizeof(*sched));
702 	sched->max_events	= num;
703 	sched->max_weight	= wmax;
704 	sched->max_gp		= gpmax;
705 	sched->constraints	= constraints;
706 
707 	for (idx = 0; idx < num; idx++) {
708 		if (constraints[idx]->weight == wmin)
709 			break;
710 	}
711 
712 	sched->state.event	= idx;		/* start with min weight */
713 	sched->state.weight	= wmin;
714 	sched->state.unassigned	= num;
715 }
716 
717 static void perf_sched_save_state(struct perf_sched *sched)
718 {
719 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
720 		return;
721 
722 	sched->saved[sched->saved_states] = sched->state;
723 	sched->saved_states++;
724 }
725 
726 static bool perf_sched_restore_state(struct perf_sched *sched)
727 {
728 	if (!sched->saved_states)
729 		return false;
730 
731 	sched->saved_states--;
732 	sched->state = sched->saved[sched->saved_states];
733 
734 	/* continue with next counter: */
735 	clear_bit(sched->state.counter++, sched->state.used);
736 
737 	return true;
738 }
739 
740 /*
741  * Select a counter for the current event to schedule. Return true on
742  * success.
743  */
744 static bool __perf_sched_find_counter(struct perf_sched *sched)
745 {
746 	struct event_constraint *c;
747 	int idx;
748 
749 	if (!sched->state.unassigned)
750 		return false;
751 
752 	if (sched->state.event >= sched->max_events)
753 		return false;
754 
755 	c = sched->constraints[sched->state.event];
756 	/* Prefer fixed purpose counters */
757 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
758 		idx = INTEL_PMC_IDX_FIXED;
759 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
760 			if (!__test_and_set_bit(idx, sched->state.used))
761 				goto done;
762 		}
763 	}
764 
765 	/* Grab the first unused counter starting with idx */
766 	idx = sched->state.counter;
767 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
768 		if (!__test_and_set_bit(idx, sched->state.used)) {
769 			if (sched->state.nr_gp++ >= sched->max_gp)
770 				return false;
771 
772 			goto done;
773 		}
774 	}
775 
776 	return false;
777 
778 done:
779 	sched->state.counter = idx;
780 
781 	if (c->overlap)
782 		perf_sched_save_state(sched);
783 
784 	return true;
785 }
786 
787 static bool perf_sched_find_counter(struct perf_sched *sched)
788 {
789 	while (!__perf_sched_find_counter(sched)) {
790 		if (!perf_sched_restore_state(sched))
791 			return false;
792 	}
793 
794 	return true;
795 }
796 
797 /*
798  * Go through all unassigned events and find the next one to schedule.
799  * Take events with the least weight first. Return true on success.
800  */
801 static bool perf_sched_next_event(struct perf_sched *sched)
802 {
803 	struct event_constraint *c;
804 
805 	if (!sched->state.unassigned || !--sched->state.unassigned)
806 		return false;
807 
808 	do {
809 		/* next event */
810 		sched->state.event++;
811 		if (sched->state.event >= sched->max_events) {
812 			/* next weight */
813 			sched->state.event = 0;
814 			sched->state.weight++;
815 			if (sched->state.weight > sched->max_weight)
816 				return false;
817 		}
818 		c = sched->constraints[sched->state.event];
819 	} while (c->weight != sched->state.weight);
820 
821 	sched->state.counter = 0;	/* start with first counter */
822 
823 	return true;
824 }
825 
826 /*
827  * Assign a counter for each event.
828  */
829 int perf_assign_events(struct event_constraint **constraints, int n,
830 			int wmin, int wmax, int gpmax, int *assign)
831 {
832 	struct perf_sched sched;
833 
834 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
835 
836 	do {
837 		if (!perf_sched_find_counter(&sched))
838 			break;	/* failed */
839 		if (assign)
840 			assign[sched.state.event] = sched.state.counter;
841 	} while (perf_sched_next_event(&sched));
842 
843 	return sched.state.unassigned;
844 }
845 EXPORT_SYMBOL_GPL(perf_assign_events);
846 
847 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
848 {
849 	struct event_constraint *c;
850 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
851 	struct perf_event *e;
852 	int i, wmin, wmax, unsched = 0;
853 	struct hw_perf_event *hwc;
854 
855 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
856 
857 	if (x86_pmu.start_scheduling)
858 		x86_pmu.start_scheduling(cpuc);
859 
860 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
861 		cpuc->event_constraint[i] = NULL;
862 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
863 		cpuc->event_constraint[i] = c;
864 
865 		wmin = min(wmin, c->weight);
866 		wmax = max(wmax, c->weight);
867 	}
868 
869 	/*
870 	 * fastpath, try to reuse previous register
871 	 */
872 	for (i = 0; i < n; i++) {
873 		hwc = &cpuc->event_list[i]->hw;
874 		c = cpuc->event_constraint[i];
875 
876 		/* never assigned */
877 		if (hwc->idx == -1)
878 			break;
879 
880 		/* constraint still honored */
881 		if (!test_bit(hwc->idx, c->idxmsk))
882 			break;
883 
884 		/* not already used */
885 		if (test_bit(hwc->idx, used_mask))
886 			break;
887 
888 		__set_bit(hwc->idx, used_mask);
889 		if (assign)
890 			assign[i] = hwc->idx;
891 	}
892 
893 	/* slow path */
894 	if (i != n) {
895 		int gpmax = x86_pmu.num_counters;
896 
897 		/*
898 		 * Do not allow scheduling of more than half the available
899 		 * generic counters.
900 		 *
901 		 * This helps avoid counter starvation of sibling thread by
902 		 * ensuring at most half the counters cannot be in exclusive
903 		 * mode. There is no designated counters for the limits. Any
904 		 * N/2 counters can be used. This helps with events with
905 		 * specific counter constraints.
906 		 */
907 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
908 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
909 			gpmax /= 2;
910 
911 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
912 					     wmax, gpmax, assign);
913 	}
914 
915 	/*
916 	 * In case of success (unsched = 0), mark events as committed,
917 	 * so we do not put_constraint() in case new events are added
918 	 * and fail to be scheduled
919 	 *
920 	 * We invoke the lower level commit callback to lock the resource
921 	 *
922 	 * We do not need to do all of this in case we are called to
923 	 * validate an event group (assign == NULL)
924 	 */
925 	if (!unsched && assign) {
926 		for (i = 0; i < n; i++) {
927 			e = cpuc->event_list[i];
928 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
929 			if (x86_pmu.commit_scheduling)
930 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
931 		}
932 	} else {
933 		for (i = 0; i < n; i++) {
934 			e = cpuc->event_list[i];
935 			/*
936 			 * do not put_constraint() on comitted events,
937 			 * because they are good to go
938 			 */
939 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
940 				continue;
941 
942 			/*
943 			 * release events that failed scheduling
944 			 */
945 			if (x86_pmu.put_event_constraints)
946 				x86_pmu.put_event_constraints(cpuc, e);
947 		}
948 	}
949 
950 	if (x86_pmu.stop_scheduling)
951 		x86_pmu.stop_scheduling(cpuc);
952 
953 	return unsched ? -EINVAL : 0;
954 }
955 
956 /*
957  * dogrp: true if must collect siblings events (group)
958  * returns total number of events and error code
959  */
960 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
961 {
962 	struct perf_event *event;
963 	int n, max_count;
964 
965 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
966 
967 	/* current number of events already accepted */
968 	n = cpuc->n_events;
969 
970 	if (is_x86_event(leader)) {
971 		if (n >= max_count)
972 			return -EINVAL;
973 		cpuc->event_list[n] = leader;
974 		n++;
975 	}
976 	if (!dogrp)
977 		return n;
978 
979 	for_each_sibling_event(event, leader) {
980 		if (!is_x86_event(event) ||
981 		    event->state <= PERF_EVENT_STATE_OFF)
982 			continue;
983 
984 		if (n >= max_count)
985 			return -EINVAL;
986 
987 		cpuc->event_list[n] = event;
988 		n++;
989 	}
990 	return n;
991 }
992 
993 static inline void x86_assign_hw_event(struct perf_event *event,
994 				struct cpu_hw_events *cpuc, int i)
995 {
996 	struct hw_perf_event *hwc = &event->hw;
997 
998 	hwc->idx = cpuc->assign[i];
999 	hwc->last_cpu = smp_processor_id();
1000 	hwc->last_tag = ++cpuc->tags[i];
1001 
1002 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1003 		hwc->config_base = 0;
1004 		hwc->event_base	= 0;
1005 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1006 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1007 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1008 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1009 	} else {
1010 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1011 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1012 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1013 	}
1014 }
1015 
1016 /**
1017  * x86_perf_rdpmc_index - Return PMC counter used for event
1018  * @event: the perf_event to which the PMC counter was assigned
1019  *
1020  * The counter assigned to this performance event may change if interrupts
1021  * are enabled. This counter should thus never be used while interrupts are
1022  * enabled. Before this function is used to obtain the assigned counter the
1023  * event should be checked for validity using, for example,
1024  * perf_event_read_local(), within the same interrupt disabled section in
1025  * which this counter is planned to be used.
1026  *
1027  * Return: The index of the performance monitoring counter assigned to
1028  * @perf_event.
1029  */
1030 int x86_perf_rdpmc_index(struct perf_event *event)
1031 {
1032 	lockdep_assert_irqs_disabled();
1033 
1034 	return event->hw.event_base_rdpmc;
1035 }
1036 
1037 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1038 					struct cpu_hw_events *cpuc,
1039 					int i)
1040 {
1041 	return hwc->idx == cpuc->assign[i] &&
1042 		hwc->last_cpu == smp_processor_id() &&
1043 		hwc->last_tag == cpuc->tags[i];
1044 }
1045 
1046 static void x86_pmu_start(struct perf_event *event, int flags);
1047 
1048 static void x86_pmu_enable(struct pmu *pmu)
1049 {
1050 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1051 	struct perf_event *event;
1052 	struct hw_perf_event *hwc;
1053 	int i, added = cpuc->n_added;
1054 
1055 	if (!x86_pmu_initialized())
1056 		return;
1057 
1058 	if (cpuc->enabled)
1059 		return;
1060 
1061 	if (cpuc->n_added) {
1062 		int n_running = cpuc->n_events - cpuc->n_added;
1063 		/*
1064 		 * apply assignment obtained either from
1065 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1066 		 *
1067 		 * step1: save events moving to new counters
1068 		 */
1069 		for (i = 0; i < n_running; i++) {
1070 			event = cpuc->event_list[i];
1071 			hwc = &event->hw;
1072 
1073 			/*
1074 			 * we can avoid reprogramming counter if:
1075 			 * - assigned same counter as last time
1076 			 * - running on same CPU as last time
1077 			 * - no other event has used the counter since
1078 			 */
1079 			if (hwc->idx == -1 ||
1080 			    match_prev_assignment(hwc, cpuc, i))
1081 				continue;
1082 
1083 			/*
1084 			 * Ensure we don't accidentally enable a stopped
1085 			 * counter simply because we rescheduled.
1086 			 */
1087 			if (hwc->state & PERF_HES_STOPPED)
1088 				hwc->state |= PERF_HES_ARCH;
1089 
1090 			x86_pmu_stop(event, PERF_EF_UPDATE);
1091 		}
1092 
1093 		/*
1094 		 * step2: reprogram moved events into new counters
1095 		 */
1096 		for (i = 0; i < cpuc->n_events; i++) {
1097 			event = cpuc->event_list[i];
1098 			hwc = &event->hw;
1099 
1100 			if (!match_prev_assignment(hwc, cpuc, i))
1101 				x86_assign_hw_event(event, cpuc, i);
1102 			else if (i < n_running)
1103 				continue;
1104 
1105 			if (hwc->state & PERF_HES_ARCH)
1106 				continue;
1107 
1108 			x86_pmu_start(event, PERF_EF_RELOAD);
1109 		}
1110 		cpuc->n_added = 0;
1111 		perf_events_lapic_init();
1112 	}
1113 
1114 	cpuc->enabled = 1;
1115 	barrier();
1116 
1117 	x86_pmu.enable_all(added);
1118 }
1119 
1120 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1121 
1122 /*
1123  * Set the next IRQ period, based on the hwc->period_left value.
1124  * To be called with the event disabled in hw:
1125  */
1126 int x86_perf_event_set_period(struct perf_event *event)
1127 {
1128 	struct hw_perf_event *hwc = &event->hw;
1129 	s64 left = local64_read(&hwc->period_left);
1130 	s64 period = hwc->sample_period;
1131 	int ret = 0, idx = hwc->idx;
1132 
1133 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1134 		return 0;
1135 
1136 	/*
1137 	 * If we are way outside a reasonable range then just skip forward:
1138 	 */
1139 	if (unlikely(left <= -period)) {
1140 		left = period;
1141 		local64_set(&hwc->period_left, left);
1142 		hwc->last_period = period;
1143 		ret = 1;
1144 	}
1145 
1146 	if (unlikely(left <= 0)) {
1147 		left += period;
1148 		local64_set(&hwc->period_left, left);
1149 		hwc->last_period = period;
1150 		ret = 1;
1151 	}
1152 	/*
1153 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1154 	 */
1155 	if (unlikely(left < 2))
1156 		left = 2;
1157 
1158 	if (left > x86_pmu.max_period)
1159 		left = x86_pmu.max_period;
1160 
1161 	if (x86_pmu.limit_period)
1162 		left = x86_pmu.limit_period(event, left);
1163 
1164 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1165 
1166 	/*
1167 	 * The hw event starts counting from this event offset,
1168 	 * mark it to be able to extra future deltas:
1169 	 */
1170 	local64_set(&hwc->prev_count, (u64)-left);
1171 
1172 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1173 
1174 	/*
1175 	 * Due to erratum on certan cpu we need
1176 	 * a second write to be sure the register
1177 	 * is updated properly
1178 	 */
1179 	if (x86_pmu.perfctr_second_write) {
1180 		wrmsrl(hwc->event_base,
1181 			(u64)(-left) & x86_pmu.cntval_mask);
1182 	}
1183 
1184 	perf_event_update_userpage(event);
1185 
1186 	return ret;
1187 }
1188 
1189 void x86_pmu_enable_event(struct perf_event *event)
1190 {
1191 	if (__this_cpu_read(cpu_hw_events.enabled))
1192 		__x86_pmu_enable_event(&event->hw,
1193 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1194 }
1195 
1196 /*
1197  * Add a single event to the PMU.
1198  *
1199  * The event is added to the group of enabled events
1200  * but only if it can be scehduled with existing events.
1201  */
1202 static int x86_pmu_add(struct perf_event *event, int flags)
1203 {
1204 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1205 	struct hw_perf_event *hwc;
1206 	int assign[X86_PMC_IDX_MAX];
1207 	int n, n0, ret;
1208 
1209 	hwc = &event->hw;
1210 
1211 	n0 = cpuc->n_events;
1212 	ret = n = collect_events(cpuc, event, false);
1213 	if (ret < 0)
1214 		goto out;
1215 
1216 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1217 	if (!(flags & PERF_EF_START))
1218 		hwc->state |= PERF_HES_ARCH;
1219 
1220 	/*
1221 	 * If group events scheduling transaction was started,
1222 	 * skip the schedulability test here, it will be performed
1223 	 * at commit time (->commit_txn) as a whole.
1224 	 *
1225 	 * If commit fails, we'll call ->del() on all events
1226 	 * for which ->add() was called.
1227 	 */
1228 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1229 		goto done_collect;
1230 
1231 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1232 	if (ret)
1233 		goto out;
1234 	/*
1235 	 * copy new assignment, now we know it is possible
1236 	 * will be used by hw_perf_enable()
1237 	 */
1238 	memcpy(cpuc->assign, assign, n*sizeof(int));
1239 
1240 done_collect:
1241 	/*
1242 	 * Commit the collect_events() state. See x86_pmu_del() and
1243 	 * x86_pmu_*_txn().
1244 	 */
1245 	cpuc->n_events = n;
1246 	cpuc->n_added += n - n0;
1247 	cpuc->n_txn += n - n0;
1248 
1249 	if (x86_pmu.add) {
1250 		/*
1251 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1252 		 * so we enable LBRs before an event needs them etc..
1253 		 */
1254 		x86_pmu.add(event);
1255 	}
1256 
1257 	ret = 0;
1258 out:
1259 	return ret;
1260 }
1261 
1262 static void x86_pmu_start(struct perf_event *event, int flags)
1263 {
1264 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265 	int idx = event->hw.idx;
1266 
1267 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1268 		return;
1269 
1270 	if (WARN_ON_ONCE(idx == -1))
1271 		return;
1272 
1273 	if (flags & PERF_EF_RELOAD) {
1274 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1275 		x86_perf_event_set_period(event);
1276 	}
1277 
1278 	event->hw.state = 0;
1279 
1280 	cpuc->events[idx] = event;
1281 	__set_bit(idx, cpuc->active_mask);
1282 	__set_bit(idx, cpuc->running);
1283 	x86_pmu.enable(event);
1284 	perf_event_update_userpage(event);
1285 }
1286 
1287 void perf_event_print_debug(void)
1288 {
1289 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1290 	u64 pebs, debugctl;
1291 	struct cpu_hw_events *cpuc;
1292 	unsigned long flags;
1293 	int cpu, idx;
1294 
1295 	if (!x86_pmu.num_counters)
1296 		return;
1297 
1298 	local_irq_save(flags);
1299 
1300 	cpu = smp_processor_id();
1301 	cpuc = &per_cpu(cpu_hw_events, cpu);
1302 
1303 	if (x86_pmu.version >= 2) {
1304 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1305 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1306 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1307 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1308 
1309 		pr_info("\n");
1310 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1311 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1312 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1313 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1314 		if (x86_pmu.pebs_constraints) {
1315 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1316 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1317 		}
1318 		if (x86_pmu.lbr_nr) {
1319 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1320 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1321 		}
1322 	}
1323 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1324 
1325 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1326 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1327 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1328 
1329 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1330 
1331 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1332 			cpu, idx, pmc_ctrl);
1333 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1334 			cpu, idx, pmc_count);
1335 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1336 			cpu, idx, prev_left);
1337 	}
1338 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1339 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1340 
1341 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1342 			cpu, idx, pmc_count);
1343 	}
1344 	local_irq_restore(flags);
1345 }
1346 
1347 void x86_pmu_stop(struct perf_event *event, int flags)
1348 {
1349 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1350 	struct hw_perf_event *hwc = &event->hw;
1351 
1352 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1353 		x86_pmu.disable(event);
1354 		cpuc->events[hwc->idx] = NULL;
1355 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1356 		hwc->state |= PERF_HES_STOPPED;
1357 	}
1358 
1359 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1360 		/*
1361 		 * Drain the remaining delta count out of a event
1362 		 * that we are disabling:
1363 		 */
1364 		x86_perf_event_update(event);
1365 		hwc->state |= PERF_HES_UPTODATE;
1366 	}
1367 }
1368 
1369 static void x86_pmu_del(struct perf_event *event, int flags)
1370 {
1371 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1372 	int i;
1373 
1374 	/*
1375 	 * event is descheduled
1376 	 */
1377 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1378 
1379 	/*
1380 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1381 	 * The events never got scheduled and ->cancel_txn will truncate
1382 	 * the event_list.
1383 	 *
1384 	 * XXX assumes any ->del() called during a TXN will only be on
1385 	 * an event added during that same TXN.
1386 	 */
1387 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1388 		goto do_del;
1389 
1390 	/*
1391 	 * Not a TXN, therefore cleanup properly.
1392 	 */
1393 	x86_pmu_stop(event, PERF_EF_UPDATE);
1394 
1395 	for (i = 0; i < cpuc->n_events; i++) {
1396 		if (event == cpuc->event_list[i])
1397 			break;
1398 	}
1399 
1400 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1401 		return;
1402 
1403 	/* If we have a newly added event; make sure to decrease n_added. */
1404 	if (i >= cpuc->n_events - cpuc->n_added)
1405 		--cpuc->n_added;
1406 
1407 	if (x86_pmu.put_event_constraints)
1408 		x86_pmu.put_event_constraints(cpuc, event);
1409 
1410 	/* Delete the array entry. */
1411 	while (++i < cpuc->n_events) {
1412 		cpuc->event_list[i-1] = cpuc->event_list[i];
1413 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1414 	}
1415 	--cpuc->n_events;
1416 
1417 	perf_event_update_userpage(event);
1418 
1419 do_del:
1420 	if (x86_pmu.del) {
1421 		/*
1422 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1423 		 * event can need them etc..
1424 		 */
1425 		x86_pmu.del(event);
1426 	}
1427 }
1428 
1429 int x86_pmu_handle_irq(struct pt_regs *regs)
1430 {
1431 	struct perf_sample_data data;
1432 	struct cpu_hw_events *cpuc;
1433 	struct perf_event *event;
1434 	int idx, handled = 0;
1435 	u64 val;
1436 
1437 	cpuc = this_cpu_ptr(&cpu_hw_events);
1438 
1439 	/*
1440 	 * Some chipsets need to unmask the LVTPC in a particular spot
1441 	 * inside the nmi handler.  As a result, the unmasking was pushed
1442 	 * into all the nmi handlers.
1443 	 *
1444 	 * This generic handler doesn't seem to have any issues where the
1445 	 * unmasking occurs so it was left at the top.
1446 	 */
1447 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1448 
1449 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1450 		if (!test_bit(idx, cpuc->active_mask)) {
1451 			/*
1452 			 * Though we deactivated the counter some cpus
1453 			 * might still deliver spurious interrupts still
1454 			 * in flight. Catch them:
1455 			 */
1456 			if (__test_and_clear_bit(idx, cpuc->running))
1457 				handled++;
1458 			continue;
1459 		}
1460 
1461 		event = cpuc->events[idx];
1462 
1463 		val = x86_perf_event_update(event);
1464 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1465 			continue;
1466 
1467 		/*
1468 		 * event overflow
1469 		 */
1470 		handled++;
1471 		perf_sample_data_init(&data, 0, event->hw.last_period);
1472 
1473 		if (!x86_perf_event_set_period(event))
1474 			continue;
1475 
1476 		if (perf_event_overflow(event, &data, regs))
1477 			x86_pmu_stop(event, 0);
1478 	}
1479 
1480 	if (handled)
1481 		inc_irq_stat(apic_perf_irqs);
1482 
1483 	return handled;
1484 }
1485 
1486 void perf_events_lapic_init(void)
1487 {
1488 	if (!x86_pmu.apic || !x86_pmu_initialized())
1489 		return;
1490 
1491 	/*
1492 	 * Always use NMI for PMU
1493 	 */
1494 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1495 }
1496 
1497 static int
1498 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1499 {
1500 	u64 start_clock;
1501 	u64 finish_clock;
1502 	int ret;
1503 
1504 	/*
1505 	 * All PMUs/events that share this PMI handler should make sure to
1506 	 * increment active_events for their events.
1507 	 */
1508 	if (!atomic_read(&active_events))
1509 		return NMI_DONE;
1510 
1511 	start_clock = sched_clock();
1512 	ret = x86_pmu.handle_irq(regs);
1513 	finish_clock = sched_clock();
1514 
1515 	perf_sample_event_took(finish_clock - start_clock);
1516 
1517 	return ret;
1518 }
1519 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1520 
1521 struct event_constraint emptyconstraint;
1522 struct event_constraint unconstrained;
1523 
1524 static int x86_pmu_prepare_cpu(unsigned int cpu)
1525 {
1526 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1527 	int i;
1528 
1529 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1530 		cpuc->kfree_on_online[i] = NULL;
1531 	if (x86_pmu.cpu_prepare)
1532 		return x86_pmu.cpu_prepare(cpu);
1533 	return 0;
1534 }
1535 
1536 static int x86_pmu_dead_cpu(unsigned int cpu)
1537 {
1538 	if (x86_pmu.cpu_dead)
1539 		x86_pmu.cpu_dead(cpu);
1540 	return 0;
1541 }
1542 
1543 static int x86_pmu_online_cpu(unsigned int cpu)
1544 {
1545 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1546 	int i;
1547 
1548 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1549 		kfree(cpuc->kfree_on_online[i]);
1550 		cpuc->kfree_on_online[i] = NULL;
1551 	}
1552 	return 0;
1553 }
1554 
1555 static int x86_pmu_starting_cpu(unsigned int cpu)
1556 {
1557 	if (x86_pmu.cpu_starting)
1558 		x86_pmu.cpu_starting(cpu);
1559 	return 0;
1560 }
1561 
1562 static int x86_pmu_dying_cpu(unsigned int cpu)
1563 {
1564 	if (x86_pmu.cpu_dying)
1565 		x86_pmu.cpu_dying(cpu);
1566 	return 0;
1567 }
1568 
1569 static void __init pmu_check_apic(void)
1570 {
1571 	if (boot_cpu_has(X86_FEATURE_APIC))
1572 		return;
1573 
1574 	x86_pmu.apic = 0;
1575 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1576 	pr_info("no hardware sampling interrupt available.\n");
1577 
1578 	/*
1579 	 * If we have a PMU initialized but no APIC
1580 	 * interrupts, we cannot sample hardware
1581 	 * events (user-space has to fall back and
1582 	 * sample via a hrtimer based software event):
1583 	 */
1584 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1585 
1586 }
1587 
1588 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1589 	.name = "format",
1590 	.attrs = NULL,
1591 };
1592 
1593 /*
1594  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1595  * out of events_attr attributes.
1596  */
1597 static void __init filter_events(struct attribute **attrs)
1598 {
1599 	struct device_attribute *d;
1600 	struct perf_pmu_events_attr *pmu_attr;
1601 	int offset = 0;
1602 	int i, j;
1603 
1604 	for (i = 0; attrs[i]; i++) {
1605 		d = (struct device_attribute *)attrs[i];
1606 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1607 		/* str trumps id */
1608 		if (pmu_attr->event_str)
1609 			continue;
1610 		if (x86_pmu.event_map(i + offset))
1611 			continue;
1612 
1613 		for (j = i; attrs[j]; j++)
1614 			attrs[j] = attrs[j + 1];
1615 
1616 		/* Check the shifted attr. */
1617 		i--;
1618 
1619 		/*
1620 		 * event_map() is index based, the attrs array is organized
1621 		 * by increasing event index. If we shift the events, then
1622 		 * we need to compensate for the event_map(), otherwise
1623 		 * we are looking up the wrong event in the map
1624 		 */
1625 		offset++;
1626 	}
1627 }
1628 
1629 /* Merge two pointer arrays */
1630 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1631 {
1632 	struct attribute **new;
1633 	int j, i;
1634 
1635 	for (j = 0; a && a[j]; j++)
1636 		;
1637 	for (i = 0; b && b[i]; i++)
1638 		j++;
1639 	j++;
1640 
1641 	new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1642 	if (!new)
1643 		return NULL;
1644 
1645 	j = 0;
1646 	for (i = 0; a && a[i]; i++)
1647 		new[j++] = a[i];
1648 	for (i = 0; b && b[i]; i++)
1649 		new[j++] = b[i];
1650 	new[j] = NULL;
1651 
1652 	return new;
1653 }
1654 
1655 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1656 {
1657 	struct perf_pmu_events_attr *pmu_attr = \
1658 		container_of(attr, struct perf_pmu_events_attr, attr);
1659 	u64 config = x86_pmu.event_map(pmu_attr->id);
1660 
1661 	/* string trumps id */
1662 	if (pmu_attr->event_str)
1663 		return sprintf(page, "%s", pmu_attr->event_str);
1664 
1665 	return x86_pmu.events_sysfs_show(page, config);
1666 }
1667 EXPORT_SYMBOL_GPL(events_sysfs_show);
1668 
1669 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1670 			  char *page)
1671 {
1672 	struct perf_pmu_events_ht_attr *pmu_attr =
1673 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1674 
1675 	/*
1676 	 * Report conditional events depending on Hyper-Threading.
1677 	 *
1678 	 * This is overly conservative as usually the HT special
1679 	 * handling is not needed if the other CPU thread is idle.
1680 	 *
1681 	 * Note this does not (and cannot) handle the case when thread
1682 	 * siblings are invisible, for example with virtualization
1683 	 * if they are owned by some other guest.  The user tool
1684 	 * has to re-read when a thread sibling gets onlined later.
1685 	 */
1686 	return sprintf(page, "%s",
1687 			topology_max_smt_threads() > 1 ?
1688 			pmu_attr->event_str_ht :
1689 			pmu_attr->event_str_noht);
1690 }
1691 
1692 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1693 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1694 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1695 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1696 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1697 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1698 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1699 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1700 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1701 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1702 
1703 static struct attribute *empty_attrs;
1704 
1705 static struct attribute *events_attr[] = {
1706 	EVENT_PTR(CPU_CYCLES),
1707 	EVENT_PTR(INSTRUCTIONS),
1708 	EVENT_PTR(CACHE_REFERENCES),
1709 	EVENT_PTR(CACHE_MISSES),
1710 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1711 	EVENT_PTR(BRANCH_MISSES),
1712 	EVENT_PTR(BUS_CYCLES),
1713 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1714 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1715 	EVENT_PTR(REF_CPU_CYCLES),
1716 	NULL,
1717 };
1718 
1719 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1720 	.name = "events",
1721 	.attrs = events_attr,
1722 };
1723 
1724 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1725 {
1726 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1727 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1728 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1729 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1730 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1731 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1732 	ssize_t ret;
1733 
1734 	/*
1735 	* We have whole page size to spend and just little data
1736 	* to write, so we can safely use sprintf.
1737 	*/
1738 	ret = sprintf(page, "event=0x%02llx", event);
1739 
1740 	if (umask)
1741 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1742 
1743 	if (edge)
1744 		ret += sprintf(page + ret, ",edge");
1745 
1746 	if (pc)
1747 		ret += sprintf(page + ret, ",pc");
1748 
1749 	if (any)
1750 		ret += sprintf(page + ret, ",any");
1751 
1752 	if (inv)
1753 		ret += sprintf(page + ret, ",inv");
1754 
1755 	if (cmask)
1756 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1757 
1758 	ret += sprintf(page + ret, "\n");
1759 
1760 	return ret;
1761 }
1762 
1763 static struct attribute_group x86_pmu_attr_group;
1764 static struct attribute_group x86_pmu_caps_group;
1765 
1766 static int __init init_hw_perf_events(void)
1767 {
1768 	struct x86_pmu_quirk *quirk;
1769 	int err;
1770 
1771 	pr_info("Performance Events: ");
1772 
1773 	switch (boot_cpu_data.x86_vendor) {
1774 	case X86_VENDOR_INTEL:
1775 		err = intel_pmu_init();
1776 		break;
1777 	case X86_VENDOR_AMD:
1778 		err = amd_pmu_init();
1779 		break;
1780 	case X86_VENDOR_HYGON:
1781 		err = amd_pmu_init();
1782 		x86_pmu.name = "HYGON";
1783 		break;
1784 	default:
1785 		err = -ENOTSUPP;
1786 	}
1787 	if (err != 0) {
1788 		pr_cont("no PMU driver, software events only.\n");
1789 		return 0;
1790 	}
1791 
1792 	pmu_check_apic();
1793 
1794 	/* sanity check that the hardware exists or is emulated */
1795 	if (!check_hw_exists())
1796 		return 0;
1797 
1798 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1799 
1800 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1801 
1802 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1803 		quirk->func();
1804 
1805 	if (!x86_pmu.intel_ctrl)
1806 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1807 
1808 	perf_events_lapic_init();
1809 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1810 
1811 	unconstrained = (struct event_constraint)
1812 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1813 				   0, x86_pmu.num_counters, 0, 0);
1814 
1815 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1816 
1817 	if (x86_pmu.caps_attrs) {
1818 		struct attribute **tmp;
1819 
1820 		tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1821 		if (!WARN_ON(!tmp))
1822 			x86_pmu_caps_group.attrs = tmp;
1823 	}
1824 
1825 	if (x86_pmu.event_attrs)
1826 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1827 
1828 	if (!x86_pmu.events_sysfs_show)
1829 		x86_pmu_events_group.attrs = &empty_attrs;
1830 	else
1831 		filter_events(x86_pmu_events_group.attrs);
1832 
1833 	if (x86_pmu.cpu_events) {
1834 		struct attribute **tmp;
1835 
1836 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1837 		if (!WARN_ON(!tmp))
1838 			x86_pmu_events_group.attrs = tmp;
1839 	}
1840 
1841 	if (x86_pmu.attrs) {
1842 		struct attribute **tmp;
1843 
1844 		tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1845 		if (!WARN_ON(!tmp))
1846 			x86_pmu_attr_group.attrs = tmp;
1847 	}
1848 
1849 	pr_info("... version:                %d\n",     x86_pmu.version);
1850 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1851 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1852 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1853 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1854 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1855 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1856 
1857 	/*
1858 	 * Install callbacks. Core will call them for each online
1859 	 * cpu.
1860 	 */
1861 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1862 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1863 	if (err)
1864 		return err;
1865 
1866 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1867 				"perf/x86:starting", x86_pmu_starting_cpu,
1868 				x86_pmu_dying_cpu);
1869 	if (err)
1870 		goto out;
1871 
1872 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1873 				x86_pmu_online_cpu, NULL);
1874 	if (err)
1875 		goto out1;
1876 
1877 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1878 	if (err)
1879 		goto out2;
1880 
1881 	return 0;
1882 
1883 out2:
1884 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1885 out1:
1886 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1887 out:
1888 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1889 	return err;
1890 }
1891 early_initcall(init_hw_perf_events);
1892 
1893 static inline void x86_pmu_read(struct perf_event *event)
1894 {
1895 	if (x86_pmu.read)
1896 		return x86_pmu.read(event);
1897 	x86_perf_event_update(event);
1898 }
1899 
1900 /*
1901  * Start group events scheduling transaction
1902  * Set the flag to make pmu::enable() not perform the
1903  * schedulability test, it will be performed at commit time
1904  *
1905  * We only support PERF_PMU_TXN_ADD transactions. Save the
1906  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1907  * transactions.
1908  */
1909 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1910 {
1911 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1912 
1913 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1914 
1915 	cpuc->txn_flags = txn_flags;
1916 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1917 		return;
1918 
1919 	perf_pmu_disable(pmu);
1920 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1921 }
1922 
1923 /*
1924  * Stop group events scheduling transaction
1925  * Clear the flag and pmu::enable() will perform the
1926  * schedulability test.
1927  */
1928 static void x86_pmu_cancel_txn(struct pmu *pmu)
1929 {
1930 	unsigned int txn_flags;
1931 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1932 
1933 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1934 
1935 	txn_flags = cpuc->txn_flags;
1936 	cpuc->txn_flags = 0;
1937 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1938 		return;
1939 
1940 	/*
1941 	 * Truncate collected array by the number of events added in this
1942 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1943 	 */
1944 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1945 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1946 	perf_pmu_enable(pmu);
1947 }
1948 
1949 /*
1950  * Commit group events scheduling transaction
1951  * Perform the group schedulability test as a whole
1952  * Return 0 if success
1953  *
1954  * Does not cancel the transaction on failure; expects the caller to do this.
1955  */
1956 static int x86_pmu_commit_txn(struct pmu *pmu)
1957 {
1958 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1959 	int assign[X86_PMC_IDX_MAX];
1960 	int n, ret;
1961 
1962 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1963 
1964 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1965 		cpuc->txn_flags = 0;
1966 		return 0;
1967 	}
1968 
1969 	n = cpuc->n_events;
1970 
1971 	if (!x86_pmu_initialized())
1972 		return -EAGAIN;
1973 
1974 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1975 	if (ret)
1976 		return ret;
1977 
1978 	/*
1979 	 * copy new assignment, now we know it is possible
1980 	 * will be used by hw_perf_enable()
1981 	 */
1982 	memcpy(cpuc->assign, assign, n*sizeof(int));
1983 
1984 	cpuc->txn_flags = 0;
1985 	perf_pmu_enable(pmu);
1986 	return 0;
1987 }
1988 /*
1989  * a fake_cpuc is used to validate event groups. Due to
1990  * the extra reg logic, we need to also allocate a fake
1991  * per_core and per_cpu structure. Otherwise, group events
1992  * using extra reg may conflict without the kernel being
1993  * able to catch this when the last event gets added to
1994  * the group.
1995  */
1996 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1997 {
1998 	kfree(cpuc->shared_regs);
1999 	kfree(cpuc);
2000 }
2001 
2002 static struct cpu_hw_events *allocate_fake_cpuc(void)
2003 {
2004 	struct cpu_hw_events *cpuc;
2005 	int cpu = raw_smp_processor_id();
2006 
2007 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2008 	if (!cpuc)
2009 		return ERR_PTR(-ENOMEM);
2010 
2011 	/* only needed, if we have extra_regs */
2012 	if (x86_pmu.extra_regs) {
2013 		cpuc->shared_regs = allocate_shared_regs(cpu);
2014 		if (!cpuc->shared_regs)
2015 			goto error;
2016 	}
2017 	cpuc->is_fake = 1;
2018 	return cpuc;
2019 error:
2020 	free_fake_cpuc(cpuc);
2021 	return ERR_PTR(-ENOMEM);
2022 }
2023 
2024 /*
2025  * validate that we can schedule this event
2026  */
2027 static int validate_event(struct perf_event *event)
2028 {
2029 	struct cpu_hw_events *fake_cpuc;
2030 	struct event_constraint *c;
2031 	int ret = 0;
2032 
2033 	fake_cpuc = allocate_fake_cpuc();
2034 	if (IS_ERR(fake_cpuc))
2035 		return PTR_ERR(fake_cpuc);
2036 
2037 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2038 
2039 	if (!c || !c->weight)
2040 		ret = -EINVAL;
2041 
2042 	if (x86_pmu.put_event_constraints)
2043 		x86_pmu.put_event_constraints(fake_cpuc, event);
2044 
2045 	free_fake_cpuc(fake_cpuc);
2046 
2047 	return ret;
2048 }
2049 
2050 /*
2051  * validate a single event group
2052  *
2053  * validation include:
2054  *	- check events are compatible which each other
2055  *	- events do not compete for the same counter
2056  *	- number of events <= number of counters
2057  *
2058  * validation ensures the group can be loaded onto the
2059  * PMU if it was the only group available.
2060  */
2061 static int validate_group(struct perf_event *event)
2062 {
2063 	struct perf_event *leader = event->group_leader;
2064 	struct cpu_hw_events *fake_cpuc;
2065 	int ret = -EINVAL, n;
2066 
2067 	fake_cpuc = allocate_fake_cpuc();
2068 	if (IS_ERR(fake_cpuc))
2069 		return PTR_ERR(fake_cpuc);
2070 	/*
2071 	 * the event is not yet connected with its
2072 	 * siblings therefore we must first collect
2073 	 * existing siblings, then add the new event
2074 	 * before we can simulate the scheduling
2075 	 */
2076 	n = collect_events(fake_cpuc, leader, true);
2077 	if (n < 0)
2078 		goto out;
2079 
2080 	fake_cpuc->n_events = n;
2081 	n = collect_events(fake_cpuc, event, false);
2082 	if (n < 0)
2083 		goto out;
2084 
2085 	fake_cpuc->n_events = n;
2086 
2087 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2088 
2089 out:
2090 	free_fake_cpuc(fake_cpuc);
2091 	return ret;
2092 }
2093 
2094 static int x86_pmu_event_init(struct perf_event *event)
2095 {
2096 	struct pmu *tmp;
2097 	int err;
2098 
2099 	switch (event->attr.type) {
2100 	case PERF_TYPE_RAW:
2101 	case PERF_TYPE_HARDWARE:
2102 	case PERF_TYPE_HW_CACHE:
2103 		break;
2104 
2105 	default:
2106 		return -ENOENT;
2107 	}
2108 
2109 	err = __x86_pmu_event_init(event);
2110 	if (!err) {
2111 		/*
2112 		 * we temporarily connect event to its pmu
2113 		 * such that validate_group() can classify
2114 		 * it as an x86 event using is_x86_event()
2115 		 */
2116 		tmp = event->pmu;
2117 		event->pmu = &pmu;
2118 
2119 		if (event->group_leader != event)
2120 			err = validate_group(event);
2121 		else
2122 			err = validate_event(event);
2123 
2124 		event->pmu = tmp;
2125 	}
2126 	if (err) {
2127 		if (event->destroy)
2128 			event->destroy(event);
2129 	}
2130 
2131 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2132 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2133 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2134 
2135 	return err;
2136 }
2137 
2138 static void refresh_pce(void *ignored)
2139 {
2140 	load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2141 }
2142 
2143 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2144 {
2145 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2146 		return;
2147 
2148 	/*
2149 	 * This function relies on not being called concurrently in two
2150 	 * tasks in the same mm.  Otherwise one task could observe
2151 	 * perf_rdpmc_allowed > 1 and return all the way back to
2152 	 * userspace with CR4.PCE clear while another task is still
2153 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2154 	 *
2155 	 * For now, this can't happen because all callers hold mmap_sem
2156 	 * for write.  If this changes, we'll need a different solution.
2157 	 */
2158 	lockdep_assert_held_exclusive(&mm->mmap_sem);
2159 
2160 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2161 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2162 }
2163 
2164 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2165 {
2166 
2167 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2168 		return;
2169 
2170 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2171 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2172 }
2173 
2174 static int x86_pmu_event_idx(struct perf_event *event)
2175 {
2176 	int idx = event->hw.idx;
2177 
2178 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2179 		return 0;
2180 
2181 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2182 		idx -= INTEL_PMC_IDX_FIXED;
2183 		idx |= 1 << 30;
2184 	}
2185 
2186 	return idx + 1;
2187 }
2188 
2189 static ssize_t get_attr_rdpmc(struct device *cdev,
2190 			      struct device_attribute *attr,
2191 			      char *buf)
2192 {
2193 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2194 }
2195 
2196 static ssize_t set_attr_rdpmc(struct device *cdev,
2197 			      struct device_attribute *attr,
2198 			      const char *buf, size_t count)
2199 {
2200 	unsigned long val;
2201 	ssize_t ret;
2202 
2203 	ret = kstrtoul(buf, 0, &val);
2204 	if (ret)
2205 		return ret;
2206 
2207 	if (val > 2)
2208 		return -EINVAL;
2209 
2210 	if (x86_pmu.attr_rdpmc_broken)
2211 		return -ENOTSUPP;
2212 
2213 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2214 		/*
2215 		 * Changing into or out of always available, aka
2216 		 * perf-event-bypassing mode.  This path is extremely slow,
2217 		 * but only root can trigger it, so it's okay.
2218 		 */
2219 		if (val == 2)
2220 			static_branch_inc(&rdpmc_always_available_key);
2221 		else
2222 			static_branch_dec(&rdpmc_always_available_key);
2223 		on_each_cpu(refresh_pce, NULL, 1);
2224 	}
2225 
2226 	x86_pmu.attr_rdpmc = val;
2227 
2228 	return count;
2229 }
2230 
2231 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2232 
2233 static struct attribute *x86_pmu_attrs[] = {
2234 	&dev_attr_rdpmc.attr,
2235 	NULL,
2236 };
2237 
2238 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2239 	.attrs = x86_pmu_attrs,
2240 };
2241 
2242 static ssize_t max_precise_show(struct device *cdev,
2243 				  struct device_attribute *attr,
2244 				  char *buf)
2245 {
2246 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2247 }
2248 
2249 static DEVICE_ATTR_RO(max_precise);
2250 
2251 static struct attribute *x86_pmu_caps_attrs[] = {
2252 	&dev_attr_max_precise.attr,
2253 	NULL
2254 };
2255 
2256 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2257 	.name = "caps",
2258 	.attrs = x86_pmu_caps_attrs,
2259 };
2260 
2261 static const struct attribute_group *x86_pmu_attr_groups[] = {
2262 	&x86_pmu_attr_group,
2263 	&x86_pmu_format_group,
2264 	&x86_pmu_events_group,
2265 	&x86_pmu_caps_group,
2266 	NULL,
2267 };
2268 
2269 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2270 {
2271 	if (x86_pmu.sched_task)
2272 		x86_pmu.sched_task(ctx, sched_in);
2273 }
2274 
2275 void perf_check_microcode(void)
2276 {
2277 	if (x86_pmu.check_microcode)
2278 		x86_pmu.check_microcode();
2279 }
2280 
2281 static struct pmu pmu = {
2282 	.pmu_enable		= x86_pmu_enable,
2283 	.pmu_disable		= x86_pmu_disable,
2284 
2285 	.attr_groups		= x86_pmu_attr_groups,
2286 
2287 	.event_init		= x86_pmu_event_init,
2288 
2289 	.event_mapped		= x86_pmu_event_mapped,
2290 	.event_unmapped		= x86_pmu_event_unmapped,
2291 
2292 	.add			= x86_pmu_add,
2293 	.del			= x86_pmu_del,
2294 	.start			= x86_pmu_start,
2295 	.stop			= x86_pmu_stop,
2296 	.read			= x86_pmu_read,
2297 
2298 	.start_txn		= x86_pmu_start_txn,
2299 	.cancel_txn		= x86_pmu_cancel_txn,
2300 	.commit_txn		= x86_pmu_commit_txn,
2301 
2302 	.event_idx		= x86_pmu_event_idx,
2303 	.sched_task		= x86_pmu_sched_task,
2304 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2305 };
2306 
2307 void arch_perf_update_userpage(struct perf_event *event,
2308 			       struct perf_event_mmap_page *userpg, u64 now)
2309 {
2310 	struct cyc2ns_data data;
2311 	u64 offset;
2312 
2313 	userpg->cap_user_time = 0;
2314 	userpg->cap_user_time_zero = 0;
2315 	userpg->cap_user_rdpmc =
2316 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2317 	userpg->pmc_width = x86_pmu.cntval_bits;
2318 
2319 	if (!using_native_sched_clock() || !sched_clock_stable())
2320 		return;
2321 
2322 	cyc2ns_read_begin(&data);
2323 
2324 	offset = data.cyc2ns_offset + __sched_clock_offset;
2325 
2326 	/*
2327 	 * Internal timekeeping for enabled/running/stopped times
2328 	 * is always in the local_clock domain.
2329 	 */
2330 	userpg->cap_user_time = 1;
2331 	userpg->time_mult = data.cyc2ns_mul;
2332 	userpg->time_shift = data.cyc2ns_shift;
2333 	userpg->time_offset = offset - now;
2334 
2335 	/*
2336 	 * cap_user_time_zero doesn't make sense when we're using a different
2337 	 * time base for the records.
2338 	 */
2339 	if (!event->attr.use_clockid) {
2340 		userpg->cap_user_time_zero = 1;
2341 		userpg->time_zero = offset;
2342 	}
2343 
2344 	cyc2ns_read_end();
2345 }
2346 
2347 void
2348 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2349 {
2350 	struct unwind_state state;
2351 	unsigned long addr;
2352 
2353 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2354 		/* TODO: We don't support guest os callchain now */
2355 		return;
2356 	}
2357 
2358 	if (perf_callchain_store(entry, regs->ip))
2359 		return;
2360 
2361 	for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2362 	     unwind_next_frame(&state)) {
2363 		addr = unwind_get_return_address(&state);
2364 		if (!addr || perf_callchain_store(entry, addr))
2365 			return;
2366 	}
2367 }
2368 
2369 static inline int
2370 valid_user_frame(const void __user *fp, unsigned long size)
2371 {
2372 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2373 }
2374 
2375 static unsigned long get_segment_base(unsigned int segment)
2376 {
2377 	struct desc_struct *desc;
2378 	unsigned int idx = segment >> 3;
2379 
2380 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2381 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2382 		struct ldt_struct *ldt;
2383 
2384 		/* IRQs are off, so this synchronizes with smp_store_release */
2385 		ldt = READ_ONCE(current->active_mm->context.ldt);
2386 		if (!ldt || idx >= ldt->nr_entries)
2387 			return 0;
2388 
2389 		desc = &ldt->entries[idx];
2390 #else
2391 		return 0;
2392 #endif
2393 	} else {
2394 		if (idx >= GDT_ENTRIES)
2395 			return 0;
2396 
2397 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2398 	}
2399 
2400 	return get_desc_base(desc);
2401 }
2402 
2403 #ifdef CONFIG_IA32_EMULATION
2404 
2405 #include <linux/compat.h>
2406 
2407 static inline int
2408 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2409 {
2410 	/* 32-bit process in 64-bit kernel. */
2411 	unsigned long ss_base, cs_base;
2412 	struct stack_frame_ia32 frame;
2413 	const void __user *fp;
2414 
2415 	if (!test_thread_flag(TIF_IA32))
2416 		return 0;
2417 
2418 	cs_base = get_segment_base(regs->cs);
2419 	ss_base = get_segment_base(regs->ss);
2420 
2421 	fp = compat_ptr(ss_base + regs->bp);
2422 	pagefault_disable();
2423 	while (entry->nr < entry->max_stack) {
2424 		unsigned long bytes;
2425 		frame.next_frame     = 0;
2426 		frame.return_address = 0;
2427 
2428 		if (!valid_user_frame(fp, sizeof(frame)))
2429 			break;
2430 
2431 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2432 		if (bytes != 0)
2433 			break;
2434 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2435 		if (bytes != 0)
2436 			break;
2437 
2438 		perf_callchain_store(entry, cs_base + frame.return_address);
2439 		fp = compat_ptr(ss_base + frame.next_frame);
2440 	}
2441 	pagefault_enable();
2442 	return 1;
2443 }
2444 #else
2445 static inline int
2446 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2447 {
2448     return 0;
2449 }
2450 #endif
2451 
2452 void
2453 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2454 {
2455 	struct stack_frame frame;
2456 	const unsigned long __user *fp;
2457 
2458 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2459 		/* TODO: We don't support guest os callchain now */
2460 		return;
2461 	}
2462 
2463 	/*
2464 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2465 	 */
2466 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2467 		return;
2468 
2469 	fp = (unsigned long __user *)regs->bp;
2470 
2471 	perf_callchain_store(entry, regs->ip);
2472 
2473 	if (!nmi_uaccess_okay())
2474 		return;
2475 
2476 	if (perf_callchain_user32(regs, entry))
2477 		return;
2478 
2479 	pagefault_disable();
2480 	while (entry->nr < entry->max_stack) {
2481 		unsigned long bytes;
2482 
2483 		frame.next_frame	     = NULL;
2484 		frame.return_address = 0;
2485 
2486 		if (!valid_user_frame(fp, sizeof(frame)))
2487 			break;
2488 
2489 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2490 		if (bytes != 0)
2491 			break;
2492 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2493 		if (bytes != 0)
2494 			break;
2495 
2496 		perf_callchain_store(entry, frame.return_address);
2497 		fp = (void __user *)frame.next_frame;
2498 	}
2499 	pagefault_enable();
2500 }
2501 
2502 /*
2503  * Deal with code segment offsets for the various execution modes:
2504  *
2505  *   VM86 - the good olde 16 bit days, where the linear address is
2506  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2507  *
2508  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2509  *          to figure out what the 32bit base address is.
2510  *
2511  *    X32 - has TIF_X32 set, but is running in x86_64
2512  *
2513  * X86_64 - CS,DS,SS,ES are all zero based.
2514  */
2515 static unsigned long code_segment_base(struct pt_regs *regs)
2516 {
2517 	/*
2518 	 * For IA32 we look at the GDT/LDT segment base to convert the
2519 	 * effective IP to a linear address.
2520 	 */
2521 
2522 #ifdef CONFIG_X86_32
2523 	/*
2524 	 * If we are in VM86 mode, add the segment offset to convert to a
2525 	 * linear address.
2526 	 */
2527 	if (regs->flags & X86_VM_MASK)
2528 		return 0x10 * regs->cs;
2529 
2530 	if (user_mode(regs) && regs->cs != __USER_CS)
2531 		return get_segment_base(regs->cs);
2532 #else
2533 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2534 	    regs->cs != __USER32_CS)
2535 		return get_segment_base(regs->cs);
2536 #endif
2537 	return 0;
2538 }
2539 
2540 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2541 {
2542 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2543 		return perf_guest_cbs->get_guest_ip();
2544 
2545 	return regs->ip + code_segment_base(regs);
2546 }
2547 
2548 unsigned long perf_misc_flags(struct pt_regs *regs)
2549 {
2550 	int misc = 0;
2551 
2552 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2553 		if (perf_guest_cbs->is_user_mode())
2554 			misc |= PERF_RECORD_MISC_GUEST_USER;
2555 		else
2556 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2557 	} else {
2558 		if (user_mode(regs))
2559 			misc |= PERF_RECORD_MISC_USER;
2560 		else
2561 			misc |= PERF_RECORD_MISC_KERNEL;
2562 	}
2563 
2564 	if (regs->flags & PERF_EFLAGS_EXACT)
2565 		misc |= PERF_RECORD_MISC_EXACT_IP;
2566 
2567 	return misc;
2568 }
2569 
2570 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2571 {
2572 	cap->version		= x86_pmu.version;
2573 	cap->num_counters_gp	= x86_pmu.num_counters;
2574 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2575 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2576 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2577 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2578 	cap->events_mask_len	= x86_pmu.events_mask_len;
2579 }
2580 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2581