1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched.h> 24 #include <linux/uaccess.h> 25 #include <linux/slab.h> 26 #include <linux/cpu.h> 27 #include <linux/bitops.h> 28 #include <linux/device.h> 29 30 #include <asm/apic.h> 31 #include <asm/stacktrace.h> 32 #include <asm/nmi.h> 33 #include <asm/smp.h> 34 #include <asm/alternative.h> 35 #include <asm/mmu_context.h> 36 #include <asm/tlbflush.h> 37 #include <asm/timer.h> 38 #include <asm/desc.h> 39 #include <asm/ldt.h> 40 #include <asm/unwind.h> 41 42 #include "perf_event.h" 43 44 struct x86_pmu x86_pmu __read_mostly; 45 46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 47 .enabled = 1, 48 }; 49 50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE; 51 52 u64 __read_mostly hw_cache_event_ids 53 [PERF_COUNT_HW_CACHE_MAX] 54 [PERF_COUNT_HW_CACHE_OP_MAX] 55 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 56 u64 __read_mostly hw_cache_extra_regs 57 [PERF_COUNT_HW_CACHE_MAX] 58 [PERF_COUNT_HW_CACHE_OP_MAX] 59 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 60 61 /* 62 * Propagate event elapsed time into the generic event. 63 * Can only be executed on the CPU where the event is active. 64 * Returns the delta events processed. 65 */ 66 u64 x86_perf_event_update(struct perf_event *event) 67 { 68 struct hw_perf_event *hwc = &event->hw; 69 int shift = 64 - x86_pmu.cntval_bits; 70 u64 prev_raw_count, new_raw_count; 71 int idx = hwc->idx; 72 u64 delta; 73 74 if (idx == INTEL_PMC_IDX_FIXED_BTS) 75 return 0; 76 77 /* 78 * Careful: an NMI might modify the previous event value. 79 * 80 * Our tactic to handle this is to first atomically read and 81 * exchange a new raw count - then add that new-prev delta 82 * count to the generic event atomically: 83 */ 84 again: 85 prev_raw_count = local64_read(&hwc->prev_count); 86 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 87 88 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 89 new_raw_count) != prev_raw_count) 90 goto again; 91 92 /* 93 * Now we have the new raw value and have updated the prev 94 * timestamp already. We can now calculate the elapsed delta 95 * (event-)time and add that to the generic event. 96 * 97 * Careful, not all hw sign-extends above the physical width 98 * of the count. 99 */ 100 delta = (new_raw_count << shift) - (prev_raw_count << shift); 101 delta >>= shift; 102 103 local64_add(delta, &event->count); 104 local64_sub(delta, &hwc->period_left); 105 106 return new_raw_count; 107 } 108 109 /* 110 * Find and validate any extra registers to set up. 111 */ 112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 113 { 114 struct hw_perf_event_extra *reg; 115 struct extra_reg *er; 116 117 reg = &event->hw.extra_reg; 118 119 if (!x86_pmu.extra_regs) 120 return 0; 121 122 for (er = x86_pmu.extra_regs; er->msr; er++) { 123 if (er->event != (config & er->config_mask)) 124 continue; 125 if (event->attr.config1 & ~er->valid_mask) 126 return -EINVAL; 127 /* Check if the extra msrs can be safely accessed*/ 128 if (!er->extra_msr_access) 129 return -ENXIO; 130 131 reg->idx = er->idx; 132 reg->config = event->attr.config1; 133 reg->reg = er->msr; 134 break; 135 } 136 return 0; 137 } 138 139 static atomic_t active_events; 140 static atomic_t pmc_refcount; 141 static DEFINE_MUTEX(pmc_reserve_mutex); 142 143 #ifdef CONFIG_X86_LOCAL_APIC 144 145 static bool reserve_pmc_hardware(void) 146 { 147 int i; 148 149 for (i = 0; i < x86_pmu.num_counters; i++) { 150 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 151 goto perfctr_fail; 152 } 153 154 for (i = 0; i < x86_pmu.num_counters; i++) { 155 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 156 goto eventsel_fail; 157 } 158 159 return true; 160 161 eventsel_fail: 162 for (i--; i >= 0; i--) 163 release_evntsel_nmi(x86_pmu_config_addr(i)); 164 165 i = x86_pmu.num_counters; 166 167 perfctr_fail: 168 for (i--; i >= 0; i--) 169 release_perfctr_nmi(x86_pmu_event_addr(i)); 170 171 return false; 172 } 173 174 static void release_pmc_hardware(void) 175 { 176 int i; 177 178 for (i = 0; i < x86_pmu.num_counters; i++) { 179 release_perfctr_nmi(x86_pmu_event_addr(i)); 180 release_evntsel_nmi(x86_pmu_config_addr(i)); 181 } 182 } 183 184 #else 185 186 static bool reserve_pmc_hardware(void) { return true; } 187 static void release_pmc_hardware(void) {} 188 189 #endif 190 191 static bool check_hw_exists(void) 192 { 193 u64 val, val_fail, val_new= ~0; 194 int i, reg, reg_fail, ret = 0; 195 int bios_fail = 0; 196 int reg_safe = -1; 197 198 /* 199 * Check to see if the BIOS enabled any of the counters, if so 200 * complain and bail. 201 */ 202 for (i = 0; i < x86_pmu.num_counters; i++) { 203 reg = x86_pmu_config_addr(i); 204 ret = rdmsrl_safe(reg, &val); 205 if (ret) 206 goto msr_fail; 207 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 208 bios_fail = 1; 209 val_fail = val; 210 reg_fail = reg; 211 } else { 212 reg_safe = i; 213 } 214 } 215 216 if (x86_pmu.num_counters_fixed) { 217 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 218 ret = rdmsrl_safe(reg, &val); 219 if (ret) 220 goto msr_fail; 221 for (i = 0; i < x86_pmu.num_counters_fixed; i++) { 222 if (val & (0x03 << i*4)) { 223 bios_fail = 1; 224 val_fail = val; 225 reg_fail = reg; 226 } 227 } 228 } 229 230 /* 231 * If all the counters are enabled, the below test will always 232 * fail. The tools will also become useless in this scenario. 233 * Just fail and disable the hardware counters. 234 */ 235 236 if (reg_safe == -1) { 237 reg = reg_safe; 238 goto msr_fail; 239 } 240 241 /* 242 * Read the current value, change it and read it back to see if it 243 * matches, this is needed to detect certain hardware emulators 244 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 245 */ 246 reg = x86_pmu_event_addr(reg_safe); 247 if (rdmsrl_safe(reg, &val)) 248 goto msr_fail; 249 val ^= 0xffffUL; 250 ret = wrmsrl_safe(reg, val); 251 ret |= rdmsrl_safe(reg, &val_new); 252 if (ret || val != val_new) 253 goto msr_fail; 254 255 /* 256 * We still allow the PMU driver to operate: 257 */ 258 if (bios_fail) { 259 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 260 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 261 reg_fail, val_fail); 262 } 263 264 return true; 265 266 msr_fail: 267 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 268 pr_cont("PMU not available due to virtualization, using software events only.\n"); 269 } else { 270 pr_cont("Broken PMU hardware detected, using software events only.\n"); 271 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 272 reg, val_new); 273 } 274 275 return false; 276 } 277 278 static void hw_perf_event_destroy(struct perf_event *event) 279 { 280 x86_release_hardware(); 281 atomic_dec(&active_events); 282 } 283 284 void hw_perf_lbr_event_destroy(struct perf_event *event) 285 { 286 hw_perf_event_destroy(event); 287 288 /* undo the lbr/bts event accounting */ 289 x86_del_exclusive(x86_lbr_exclusive_lbr); 290 } 291 292 static inline int x86_pmu_initialized(void) 293 { 294 return x86_pmu.handle_irq != NULL; 295 } 296 297 static inline int 298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 299 { 300 struct perf_event_attr *attr = &event->attr; 301 unsigned int cache_type, cache_op, cache_result; 302 u64 config, val; 303 304 config = attr->config; 305 306 cache_type = (config >> 0) & 0xff; 307 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 308 return -EINVAL; 309 310 cache_op = (config >> 8) & 0xff; 311 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 312 return -EINVAL; 313 314 cache_result = (config >> 16) & 0xff; 315 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 316 return -EINVAL; 317 318 val = hw_cache_event_ids[cache_type][cache_op][cache_result]; 319 320 if (val == 0) 321 return -ENOENT; 322 323 if (val == -1) 324 return -EINVAL; 325 326 hwc->config |= val; 327 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result]; 328 return x86_pmu_extra_regs(val, event); 329 } 330 331 int x86_reserve_hardware(void) 332 { 333 int err = 0; 334 335 if (!atomic_inc_not_zero(&pmc_refcount)) { 336 mutex_lock(&pmc_reserve_mutex); 337 if (atomic_read(&pmc_refcount) == 0) { 338 if (!reserve_pmc_hardware()) 339 err = -EBUSY; 340 else 341 reserve_ds_buffers(); 342 } 343 if (!err) 344 atomic_inc(&pmc_refcount); 345 mutex_unlock(&pmc_reserve_mutex); 346 } 347 348 return err; 349 } 350 351 void x86_release_hardware(void) 352 { 353 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 354 release_pmc_hardware(); 355 release_ds_buffers(); 356 mutex_unlock(&pmc_reserve_mutex); 357 } 358 } 359 360 /* 361 * Check if we can create event of a certain type (that no conflicting events 362 * are present). 363 */ 364 int x86_add_exclusive(unsigned int what) 365 { 366 int i; 367 368 /* 369 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 370 * LBR and BTS are still mutually exclusive. 371 */ 372 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 373 return 0; 374 375 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 376 mutex_lock(&pmc_reserve_mutex); 377 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 378 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 379 goto fail_unlock; 380 } 381 atomic_inc(&x86_pmu.lbr_exclusive[what]); 382 mutex_unlock(&pmc_reserve_mutex); 383 } 384 385 atomic_inc(&active_events); 386 return 0; 387 388 fail_unlock: 389 mutex_unlock(&pmc_reserve_mutex); 390 return -EBUSY; 391 } 392 393 void x86_del_exclusive(unsigned int what) 394 { 395 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 396 return; 397 398 atomic_dec(&x86_pmu.lbr_exclusive[what]); 399 atomic_dec(&active_events); 400 } 401 402 int x86_setup_perfctr(struct perf_event *event) 403 { 404 struct perf_event_attr *attr = &event->attr; 405 struct hw_perf_event *hwc = &event->hw; 406 u64 config; 407 408 if (!is_sampling_event(event)) { 409 hwc->sample_period = x86_pmu.max_period; 410 hwc->last_period = hwc->sample_period; 411 local64_set(&hwc->period_left, hwc->sample_period); 412 } 413 414 if (attr->type == PERF_TYPE_RAW) 415 return x86_pmu_extra_regs(event->attr.config, event); 416 417 if (attr->type == PERF_TYPE_HW_CACHE) 418 return set_ext_hw_attr(hwc, event); 419 420 if (attr->config >= x86_pmu.max_events) 421 return -EINVAL; 422 423 /* 424 * The generic map: 425 */ 426 config = x86_pmu.event_map(attr->config); 427 428 if (config == 0) 429 return -ENOENT; 430 431 if (config == -1LL) 432 return -EINVAL; 433 434 /* 435 * Branch tracing: 436 */ 437 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS && 438 !attr->freq && hwc->sample_period == 1) { 439 /* BTS is not supported by this architecture. */ 440 if (!x86_pmu.bts_active) 441 return -EOPNOTSUPP; 442 443 /* BTS is currently only allowed for user-mode. */ 444 if (!attr->exclude_kernel) 445 return -EOPNOTSUPP; 446 447 /* disallow bts if conflicting events are present */ 448 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 449 return -EBUSY; 450 451 event->destroy = hw_perf_lbr_event_destroy; 452 } 453 454 hwc->config |= config; 455 456 return 0; 457 } 458 459 /* 460 * check that branch_sample_type is compatible with 461 * settings needed for precise_ip > 1 which implies 462 * using the LBR to capture ALL taken branches at the 463 * priv levels of the measurement 464 */ 465 static inline int precise_br_compat(struct perf_event *event) 466 { 467 u64 m = event->attr.branch_sample_type; 468 u64 b = 0; 469 470 /* must capture all branches */ 471 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 472 return 0; 473 474 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 475 476 if (!event->attr.exclude_user) 477 b |= PERF_SAMPLE_BRANCH_USER; 478 479 if (!event->attr.exclude_kernel) 480 b |= PERF_SAMPLE_BRANCH_KERNEL; 481 482 /* 483 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 484 */ 485 486 return m == b; 487 } 488 489 int x86_pmu_hw_config(struct perf_event *event) 490 { 491 if (event->attr.precise_ip) { 492 int precise = 0; 493 494 /* Support for constant skid */ 495 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 496 precise++; 497 498 /* Support for IP fixup */ 499 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 500 precise++; 501 502 if (x86_pmu.pebs_prec_dist) 503 precise++; 504 } 505 506 if (event->attr.precise_ip > precise) 507 return -EOPNOTSUPP; 508 509 /* There's no sense in having PEBS for non sampling events: */ 510 if (!is_sampling_event(event)) 511 return -EINVAL; 512 } 513 /* 514 * check that PEBS LBR correction does not conflict with 515 * whatever the user is asking with attr->branch_sample_type 516 */ 517 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 518 u64 *br_type = &event->attr.branch_sample_type; 519 520 if (has_branch_stack(event)) { 521 if (!precise_br_compat(event)) 522 return -EOPNOTSUPP; 523 524 /* branch_sample_type is compatible */ 525 526 } else { 527 /* 528 * user did not specify branch_sample_type 529 * 530 * For PEBS fixups, we capture all 531 * the branches at the priv level of the 532 * event. 533 */ 534 *br_type = PERF_SAMPLE_BRANCH_ANY; 535 536 if (!event->attr.exclude_user) 537 *br_type |= PERF_SAMPLE_BRANCH_USER; 538 539 if (!event->attr.exclude_kernel) 540 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 541 } 542 } 543 544 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) 545 event->attach_state |= PERF_ATTACH_TASK_DATA; 546 547 /* 548 * Generate PMC IRQs: 549 * (keep 'enabled' bit clear for now) 550 */ 551 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 552 553 /* 554 * Count user and OS events unless requested not to 555 */ 556 if (!event->attr.exclude_user) 557 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 558 if (!event->attr.exclude_kernel) 559 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 560 561 if (event->attr.type == PERF_TYPE_RAW) 562 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; 563 564 if (event->attr.sample_period && x86_pmu.limit_period) { 565 if (x86_pmu.limit_period(event, event->attr.sample_period) > 566 event->attr.sample_period) 567 return -EINVAL; 568 } 569 570 return x86_setup_perfctr(event); 571 } 572 573 /* 574 * Setup the hardware configuration for a given attr_type 575 */ 576 static int __x86_pmu_event_init(struct perf_event *event) 577 { 578 int err; 579 580 if (!x86_pmu_initialized()) 581 return -ENODEV; 582 583 err = x86_reserve_hardware(); 584 if (err) 585 return err; 586 587 atomic_inc(&active_events); 588 event->destroy = hw_perf_event_destroy; 589 590 event->hw.idx = -1; 591 event->hw.last_cpu = -1; 592 event->hw.last_tag = ~0ULL; 593 594 /* mark unused */ 595 event->hw.extra_reg.idx = EXTRA_REG_NONE; 596 event->hw.branch_reg.idx = EXTRA_REG_NONE; 597 598 return x86_pmu.hw_config(event); 599 } 600 601 void x86_pmu_disable_all(void) 602 { 603 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 604 int idx; 605 606 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 607 u64 val; 608 609 if (!test_bit(idx, cpuc->active_mask)) 610 continue; 611 rdmsrl(x86_pmu_config_addr(idx), val); 612 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 613 continue; 614 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 615 wrmsrl(x86_pmu_config_addr(idx), val); 616 } 617 } 618 619 /* 620 * There may be PMI landing after enabled=0. The PMI hitting could be before or 621 * after disable_all. 622 * 623 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 624 * It will not be re-enabled in the NMI handler again, because enabled=0. After 625 * handling the NMI, disable_all will be called, which will not change the 626 * state either. If PMI hits after disable_all, the PMU is already disabled 627 * before entering NMI handler. The NMI handler will not change the state 628 * either. 629 * 630 * So either situation is harmless. 631 */ 632 static void x86_pmu_disable(struct pmu *pmu) 633 { 634 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 635 636 if (!x86_pmu_initialized()) 637 return; 638 639 if (!cpuc->enabled) 640 return; 641 642 cpuc->n_added = 0; 643 cpuc->enabled = 0; 644 barrier(); 645 646 x86_pmu.disable_all(); 647 } 648 649 void x86_pmu_enable_all(int added) 650 { 651 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 652 int idx; 653 654 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 655 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 656 657 if (!test_bit(idx, cpuc->active_mask)) 658 continue; 659 660 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 661 } 662 } 663 664 static struct pmu pmu; 665 666 static inline int is_x86_event(struct perf_event *event) 667 { 668 return event->pmu == &pmu; 669 } 670 671 /* 672 * Event scheduler state: 673 * 674 * Assign events iterating over all events and counters, beginning 675 * with events with least weights first. Keep the current iterator 676 * state in struct sched_state. 677 */ 678 struct sched_state { 679 int weight; 680 int event; /* event index */ 681 int counter; /* counter index */ 682 int unassigned; /* number of events to be assigned left */ 683 int nr_gp; /* number of GP counters used */ 684 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 685 }; 686 687 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 688 #define SCHED_STATES_MAX 2 689 690 struct perf_sched { 691 int max_weight; 692 int max_events; 693 int max_gp; 694 int saved_states; 695 struct event_constraint **constraints; 696 struct sched_state state; 697 struct sched_state saved[SCHED_STATES_MAX]; 698 }; 699 700 /* 701 * Initialize interator that runs through all events and counters. 702 */ 703 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 704 int num, int wmin, int wmax, int gpmax) 705 { 706 int idx; 707 708 memset(sched, 0, sizeof(*sched)); 709 sched->max_events = num; 710 sched->max_weight = wmax; 711 sched->max_gp = gpmax; 712 sched->constraints = constraints; 713 714 for (idx = 0; idx < num; idx++) { 715 if (constraints[idx]->weight == wmin) 716 break; 717 } 718 719 sched->state.event = idx; /* start with min weight */ 720 sched->state.weight = wmin; 721 sched->state.unassigned = num; 722 } 723 724 static void perf_sched_save_state(struct perf_sched *sched) 725 { 726 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 727 return; 728 729 sched->saved[sched->saved_states] = sched->state; 730 sched->saved_states++; 731 } 732 733 static bool perf_sched_restore_state(struct perf_sched *sched) 734 { 735 if (!sched->saved_states) 736 return false; 737 738 sched->saved_states--; 739 sched->state = sched->saved[sched->saved_states]; 740 741 /* continue with next counter: */ 742 clear_bit(sched->state.counter++, sched->state.used); 743 744 return true; 745 } 746 747 /* 748 * Select a counter for the current event to schedule. Return true on 749 * success. 750 */ 751 static bool __perf_sched_find_counter(struct perf_sched *sched) 752 { 753 struct event_constraint *c; 754 int idx; 755 756 if (!sched->state.unassigned) 757 return false; 758 759 if (sched->state.event >= sched->max_events) 760 return false; 761 762 c = sched->constraints[sched->state.event]; 763 /* Prefer fixed purpose counters */ 764 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 765 idx = INTEL_PMC_IDX_FIXED; 766 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 767 if (!__test_and_set_bit(idx, sched->state.used)) 768 goto done; 769 } 770 } 771 772 /* Grab the first unused counter starting with idx */ 773 idx = sched->state.counter; 774 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 775 if (!__test_and_set_bit(idx, sched->state.used)) { 776 if (sched->state.nr_gp++ >= sched->max_gp) 777 return false; 778 779 goto done; 780 } 781 } 782 783 return false; 784 785 done: 786 sched->state.counter = idx; 787 788 if (c->overlap) 789 perf_sched_save_state(sched); 790 791 return true; 792 } 793 794 static bool perf_sched_find_counter(struct perf_sched *sched) 795 { 796 while (!__perf_sched_find_counter(sched)) { 797 if (!perf_sched_restore_state(sched)) 798 return false; 799 } 800 801 return true; 802 } 803 804 /* 805 * Go through all unassigned events and find the next one to schedule. 806 * Take events with the least weight first. Return true on success. 807 */ 808 static bool perf_sched_next_event(struct perf_sched *sched) 809 { 810 struct event_constraint *c; 811 812 if (!sched->state.unassigned || !--sched->state.unassigned) 813 return false; 814 815 do { 816 /* next event */ 817 sched->state.event++; 818 if (sched->state.event >= sched->max_events) { 819 /* next weight */ 820 sched->state.event = 0; 821 sched->state.weight++; 822 if (sched->state.weight > sched->max_weight) 823 return false; 824 } 825 c = sched->constraints[sched->state.event]; 826 } while (c->weight != sched->state.weight); 827 828 sched->state.counter = 0; /* start with first counter */ 829 830 return true; 831 } 832 833 /* 834 * Assign a counter for each event. 835 */ 836 int perf_assign_events(struct event_constraint **constraints, int n, 837 int wmin, int wmax, int gpmax, int *assign) 838 { 839 struct perf_sched sched; 840 841 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 842 843 do { 844 if (!perf_sched_find_counter(&sched)) 845 break; /* failed */ 846 if (assign) 847 assign[sched.state.event] = sched.state.counter; 848 } while (perf_sched_next_event(&sched)); 849 850 return sched.state.unassigned; 851 } 852 EXPORT_SYMBOL_GPL(perf_assign_events); 853 854 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 855 { 856 struct event_constraint *c; 857 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 858 struct perf_event *e; 859 int i, wmin, wmax, unsched = 0; 860 struct hw_perf_event *hwc; 861 862 bitmap_zero(used_mask, X86_PMC_IDX_MAX); 863 864 if (x86_pmu.start_scheduling) 865 x86_pmu.start_scheduling(cpuc); 866 867 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 868 cpuc->event_constraint[i] = NULL; 869 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]); 870 cpuc->event_constraint[i] = c; 871 872 wmin = min(wmin, c->weight); 873 wmax = max(wmax, c->weight); 874 } 875 876 /* 877 * fastpath, try to reuse previous register 878 */ 879 for (i = 0; i < n; i++) { 880 hwc = &cpuc->event_list[i]->hw; 881 c = cpuc->event_constraint[i]; 882 883 /* never assigned */ 884 if (hwc->idx == -1) 885 break; 886 887 /* constraint still honored */ 888 if (!test_bit(hwc->idx, c->idxmsk)) 889 break; 890 891 /* not already used */ 892 if (test_bit(hwc->idx, used_mask)) 893 break; 894 895 __set_bit(hwc->idx, used_mask); 896 if (assign) 897 assign[i] = hwc->idx; 898 } 899 900 /* slow path */ 901 if (i != n) { 902 int gpmax = x86_pmu.num_counters; 903 904 /* 905 * Do not allow scheduling of more than half the available 906 * generic counters. 907 * 908 * This helps avoid counter starvation of sibling thread by 909 * ensuring at most half the counters cannot be in exclusive 910 * mode. There is no designated counters for the limits. Any 911 * N/2 counters can be used. This helps with events with 912 * specific counter constraints. 913 */ 914 if (is_ht_workaround_enabled() && !cpuc->is_fake && 915 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 916 gpmax /= 2; 917 918 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 919 wmax, gpmax, assign); 920 } 921 922 /* 923 * In case of success (unsched = 0), mark events as committed, 924 * so we do not put_constraint() in case new events are added 925 * and fail to be scheduled 926 * 927 * We invoke the lower level commit callback to lock the resource 928 * 929 * We do not need to do all of this in case we are called to 930 * validate an event group (assign == NULL) 931 */ 932 if (!unsched && assign) { 933 for (i = 0; i < n; i++) { 934 e = cpuc->event_list[i]; 935 e->hw.flags |= PERF_X86_EVENT_COMMITTED; 936 if (x86_pmu.commit_scheduling) 937 x86_pmu.commit_scheduling(cpuc, i, assign[i]); 938 } 939 } else { 940 for (i = 0; i < n; i++) { 941 e = cpuc->event_list[i]; 942 /* 943 * do not put_constraint() on comitted events, 944 * because they are good to go 945 */ 946 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED)) 947 continue; 948 949 /* 950 * release events that failed scheduling 951 */ 952 if (x86_pmu.put_event_constraints) 953 x86_pmu.put_event_constraints(cpuc, e); 954 } 955 } 956 957 if (x86_pmu.stop_scheduling) 958 x86_pmu.stop_scheduling(cpuc); 959 960 return unsched ? -EINVAL : 0; 961 } 962 963 /* 964 * dogrp: true if must collect siblings events (group) 965 * returns total number of events and error code 966 */ 967 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 968 { 969 struct perf_event *event; 970 int n, max_count; 971 972 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed; 973 974 /* current number of events already accepted */ 975 n = cpuc->n_events; 976 977 if (is_x86_event(leader)) { 978 if (n >= max_count) 979 return -EINVAL; 980 cpuc->event_list[n] = leader; 981 n++; 982 } 983 if (!dogrp) 984 return n; 985 986 list_for_each_entry(event, &leader->sibling_list, group_entry) { 987 if (!is_x86_event(event) || 988 event->state <= PERF_EVENT_STATE_OFF) 989 continue; 990 991 if (n >= max_count) 992 return -EINVAL; 993 994 cpuc->event_list[n] = event; 995 n++; 996 } 997 return n; 998 } 999 1000 static inline void x86_assign_hw_event(struct perf_event *event, 1001 struct cpu_hw_events *cpuc, int i) 1002 { 1003 struct hw_perf_event *hwc = &event->hw; 1004 1005 hwc->idx = cpuc->assign[i]; 1006 hwc->last_cpu = smp_processor_id(); 1007 hwc->last_tag = ++cpuc->tags[i]; 1008 1009 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) { 1010 hwc->config_base = 0; 1011 hwc->event_base = 0; 1012 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1013 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1014 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED); 1015 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30; 1016 } else { 1017 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1018 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1019 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1020 } 1021 } 1022 1023 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1024 struct cpu_hw_events *cpuc, 1025 int i) 1026 { 1027 return hwc->idx == cpuc->assign[i] && 1028 hwc->last_cpu == smp_processor_id() && 1029 hwc->last_tag == cpuc->tags[i]; 1030 } 1031 1032 static void x86_pmu_start(struct perf_event *event, int flags); 1033 1034 static void x86_pmu_enable(struct pmu *pmu) 1035 { 1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1037 struct perf_event *event; 1038 struct hw_perf_event *hwc; 1039 int i, added = cpuc->n_added; 1040 1041 if (!x86_pmu_initialized()) 1042 return; 1043 1044 if (cpuc->enabled) 1045 return; 1046 1047 if (cpuc->n_added) { 1048 int n_running = cpuc->n_events - cpuc->n_added; 1049 /* 1050 * apply assignment obtained either from 1051 * hw_perf_group_sched_in() or x86_pmu_enable() 1052 * 1053 * step1: save events moving to new counters 1054 */ 1055 for (i = 0; i < n_running; i++) { 1056 event = cpuc->event_list[i]; 1057 hwc = &event->hw; 1058 1059 /* 1060 * we can avoid reprogramming counter if: 1061 * - assigned same counter as last time 1062 * - running on same CPU as last time 1063 * - no other event has used the counter since 1064 */ 1065 if (hwc->idx == -1 || 1066 match_prev_assignment(hwc, cpuc, i)) 1067 continue; 1068 1069 /* 1070 * Ensure we don't accidentally enable a stopped 1071 * counter simply because we rescheduled. 1072 */ 1073 if (hwc->state & PERF_HES_STOPPED) 1074 hwc->state |= PERF_HES_ARCH; 1075 1076 x86_pmu_stop(event, PERF_EF_UPDATE); 1077 } 1078 1079 /* 1080 * step2: reprogram moved events into new counters 1081 */ 1082 for (i = 0; i < cpuc->n_events; i++) { 1083 event = cpuc->event_list[i]; 1084 hwc = &event->hw; 1085 1086 if (!match_prev_assignment(hwc, cpuc, i)) 1087 x86_assign_hw_event(event, cpuc, i); 1088 else if (i < n_running) 1089 continue; 1090 1091 if (hwc->state & PERF_HES_ARCH) 1092 continue; 1093 1094 x86_pmu_start(event, PERF_EF_RELOAD); 1095 } 1096 cpuc->n_added = 0; 1097 perf_events_lapic_init(); 1098 } 1099 1100 cpuc->enabled = 1; 1101 barrier(); 1102 1103 x86_pmu.enable_all(added); 1104 } 1105 1106 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1107 1108 /* 1109 * Set the next IRQ period, based on the hwc->period_left value. 1110 * To be called with the event disabled in hw: 1111 */ 1112 int x86_perf_event_set_period(struct perf_event *event) 1113 { 1114 struct hw_perf_event *hwc = &event->hw; 1115 s64 left = local64_read(&hwc->period_left); 1116 s64 period = hwc->sample_period; 1117 int ret = 0, idx = hwc->idx; 1118 1119 if (idx == INTEL_PMC_IDX_FIXED_BTS) 1120 return 0; 1121 1122 /* 1123 * If we are way outside a reasonable range then just skip forward: 1124 */ 1125 if (unlikely(left <= -period)) { 1126 left = period; 1127 local64_set(&hwc->period_left, left); 1128 hwc->last_period = period; 1129 ret = 1; 1130 } 1131 1132 if (unlikely(left <= 0)) { 1133 left += period; 1134 local64_set(&hwc->period_left, left); 1135 hwc->last_period = period; 1136 ret = 1; 1137 } 1138 /* 1139 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1140 */ 1141 if (unlikely(left < 2)) 1142 left = 2; 1143 1144 if (left > x86_pmu.max_period) 1145 left = x86_pmu.max_period; 1146 1147 if (x86_pmu.limit_period) 1148 left = x86_pmu.limit_period(event, left); 1149 1150 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; 1151 1152 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) || 1153 local64_read(&hwc->prev_count) != (u64)-left) { 1154 /* 1155 * The hw event starts counting from this event offset, 1156 * mark it to be able to extra future deltas: 1157 */ 1158 local64_set(&hwc->prev_count, (u64)-left); 1159 1160 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1161 } 1162 1163 /* 1164 * Due to erratum on certan cpu we need 1165 * a second write to be sure the register 1166 * is updated properly 1167 */ 1168 if (x86_pmu.perfctr_second_write) { 1169 wrmsrl(hwc->event_base, 1170 (u64)(-left) & x86_pmu.cntval_mask); 1171 } 1172 1173 perf_event_update_userpage(event); 1174 1175 return ret; 1176 } 1177 1178 void x86_pmu_enable_event(struct perf_event *event) 1179 { 1180 if (__this_cpu_read(cpu_hw_events.enabled)) 1181 __x86_pmu_enable_event(&event->hw, 1182 ARCH_PERFMON_EVENTSEL_ENABLE); 1183 } 1184 1185 /* 1186 * Add a single event to the PMU. 1187 * 1188 * The event is added to the group of enabled events 1189 * but only if it can be scehduled with existing events. 1190 */ 1191 static int x86_pmu_add(struct perf_event *event, int flags) 1192 { 1193 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1194 struct hw_perf_event *hwc; 1195 int assign[X86_PMC_IDX_MAX]; 1196 int n, n0, ret; 1197 1198 hwc = &event->hw; 1199 1200 n0 = cpuc->n_events; 1201 ret = n = collect_events(cpuc, event, false); 1202 if (ret < 0) 1203 goto out; 1204 1205 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1206 if (!(flags & PERF_EF_START)) 1207 hwc->state |= PERF_HES_ARCH; 1208 1209 /* 1210 * If group events scheduling transaction was started, 1211 * skip the schedulability test here, it will be performed 1212 * at commit time (->commit_txn) as a whole. 1213 * 1214 * If commit fails, we'll call ->del() on all events 1215 * for which ->add() was called. 1216 */ 1217 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1218 goto done_collect; 1219 1220 ret = x86_pmu.schedule_events(cpuc, n, assign); 1221 if (ret) 1222 goto out; 1223 /* 1224 * copy new assignment, now we know it is possible 1225 * will be used by hw_perf_enable() 1226 */ 1227 memcpy(cpuc->assign, assign, n*sizeof(int)); 1228 1229 done_collect: 1230 /* 1231 * Commit the collect_events() state. See x86_pmu_del() and 1232 * x86_pmu_*_txn(). 1233 */ 1234 cpuc->n_events = n; 1235 cpuc->n_added += n - n0; 1236 cpuc->n_txn += n - n0; 1237 1238 if (x86_pmu.add) { 1239 /* 1240 * This is before x86_pmu_enable() will call x86_pmu_start(), 1241 * so we enable LBRs before an event needs them etc.. 1242 */ 1243 x86_pmu.add(event); 1244 } 1245 1246 ret = 0; 1247 out: 1248 return ret; 1249 } 1250 1251 static void x86_pmu_start(struct perf_event *event, int flags) 1252 { 1253 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1254 int idx = event->hw.idx; 1255 1256 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1257 return; 1258 1259 if (WARN_ON_ONCE(idx == -1)) 1260 return; 1261 1262 if (flags & PERF_EF_RELOAD) { 1263 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1264 x86_perf_event_set_period(event); 1265 } 1266 1267 event->hw.state = 0; 1268 1269 cpuc->events[idx] = event; 1270 __set_bit(idx, cpuc->active_mask); 1271 __set_bit(idx, cpuc->running); 1272 x86_pmu.enable(event); 1273 perf_event_update_userpage(event); 1274 } 1275 1276 void perf_event_print_debug(void) 1277 { 1278 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1279 u64 pebs, debugctl; 1280 struct cpu_hw_events *cpuc; 1281 unsigned long flags; 1282 int cpu, idx; 1283 1284 if (!x86_pmu.num_counters) 1285 return; 1286 1287 local_irq_save(flags); 1288 1289 cpu = smp_processor_id(); 1290 cpuc = &per_cpu(cpu_hw_events, cpu); 1291 1292 if (x86_pmu.version >= 2) { 1293 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1294 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1295 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1296 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1297 1298 pr_info("\n"); 1299 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1300 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1301 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1302 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1303 if (x86_pmu.pebs_constraints) { 1304 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1305 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1306 } 1307 if (x86_pmu.lbr_nr) { 1308 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1309 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1310 } 1311 } 1312 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1313 1314 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1315 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1316 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1317 1318 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1319 1320 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1321 cpu, idx, pmc_ctrl); 1322 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1323 cpu, idx, pmc_count); 1324 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1325 cpu, idx, prev_left); 1326 } 1327 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) { 1328 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); 1329 1330 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1331 cpu, idx, pmc_count); 1332 } 1333 local_irq_restore(flags); 1334 } 1335 1336 void x86_pmu_stop(struct perf_event *event, int flags) 1337 { 1338 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1339 struct hw_perf_event *hwc = &event->hw; 1340 1341 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) { 1342 x86_pmu.disable(event); 1343 cpuc->events[hwc->idx] = NULL; 1344 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1345 hwc->state |= PERF_HES_STOPPED; 1346 } 1347 1348 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1349 /* 1350 * Drain the remaining delta count out of a event 1351 * that we are disabling: 1352 */ 1353 x86_perf_event_update(event); 1354 hwc->state |= PERF_HES_UPTODATE; 1355 } 1356 } 1357 1358 static void x86_pmu_del(struct perf_event *event, int flags) 1359 { 1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1361 int i; 1362 1363 /* 1364 * event is descheduled 1365 */ 1366 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED; 1367 1368 /* 1369 * If we're called during a txn, we only need to undo x86_pmu.add. 1370 * The events never got scheduled and ->cancel_txn will truncate 1371 * the event_list. 1372 * 1373 * XXX assumes any ->del() called during a TXN will only be on 1374 * an event added during that same TXN. 1375 */ 1376 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1377 goto do_del; 1378 1379 /* 1380 * Not a TXN, therefore cleanup properly. 1381 */ 1382 x86_pmu_stop(event, PERF_EF_UPDATE); 1383 1384 for (i = 0; i < cpuc->n_events; i++) { 1385 if (event == cpuc->event_list[i]) 1386 break; 1387 } 1388 1389 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1390 return; 1391 1392 /* If we have a newly added event; make sure to decrease n_added. */ 1393 if (i >= cpuc->n_events - cpuc->n_added) 1394 --cpuc->n_added; 1395 1396 if (x86_pmu.put_event_constraints) 1397 x86_pmu.put_event_constraints(cpuc, event); 1398 1399 /* Delete the array entry. */ 1400 while (++i < cpuc->n_events) { 1401 cpuc->event_list[i-1] = cpuc->event_list[i]; 1402 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1403 } 1404 --cpuc->n_events; 1405 1406 perf_event_update_userpage(event); 1407 1408 do_del: 1409 if (x86_pmu.del) { 1410 /* 1411 * This is after x86_pmu_stop(); so we disable LBRs after any 1412 * event can need them etc.. 1413 */ 1414 x86_pmu.del(event); 1415 } 1416 } 1417 1418 int x86_pmu_handle_irq(struct pt_regs *regs) 1419 { 1420 struct perf_sample_data data; 1421 struct cpu_hw_events *cpuc; 1422 struct perf_event *event; 1423 int idx, handled = 0; 1424 u64 val; 1425 1426 cpuc = this_cpu_ptr(&cpu_hw_events); 1427 1428 /* 1429 * Some chipsets need to unmask the LVTPC in a particular spot 1430 * inside the nmi handler. As a result, the unmasking was pushed 1431 * into all the nmi handlers. 1432 * 1433 * This generic handler doesn't seem to have any issues where the 1434 * unmasking occurs so it was left at the top. 1435 */ 1436 apic_write(APIC_LVTPC, APIC_DM_NMI); 1437 1438 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1439 if (!test_bit(idx, cpuc->active_mask)) { 1440 /* 1441 * Though we deactivated the counter some cpus 1442 * might still deliver spurious interrupts still 1443 * in flight. Catch them: 1444 */ 1445 if (__test_and_clear_bit(idx, cpuc->running)) 1446 handled++; 1447 continue; 1448 } 1449 1450 event = cpuc->events[idx]; 1451 1452 val = x86_perf_event_update(event); 1453 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1454 continue; 1455 1456 /* 1457 * event overflow 1458 */ 1459 handled++; 1460 perf_sample_data_init(&data, 0, event->hw.last_period); 1461 1462 if (!x86_perf_event_set_period(event)) 1463 continue; 1464 1465 if (perf_event_overflow(event, &data, regs)) 1466 x86_pmu_stop(event, 0); 1467 } 1468 1469 if (handled) 1470 inc_irq_stat(apic_perf_irqs); 1471 1472 return handled; 1473 } 1474 1475 void perf_events_lapic_init(void) 1476 { 1477 if (!x86_pmu.apic || !x86_pmu_initialized()) 1478 return; 1479 1480 /* 1481 * Always use NMI for PMU 1482 */ 1483 apic_write(APIC_LVTPC, APIC_DM_NMI); 1484 } 1485 1486 static int 1487 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1488 { 1489 u64 start_clock; 1490 u64 finish_clock; 1491 int ret; 1492 1493 /* 1494 * All PMUs/events that share this PMI handler should make sure to 1495 * increment active_events for their events. 1496 */ 1497 if (!atomic_read(&active_events)) 1498 return NMI_DONE; 1499 1500 start_clock = sched_clock(); 1501 ret = x86_pmu.handle_irq(regs); 1502 finish_clock = sched_clock(); 1503 1504 perf_sample_event_took(finish_clock - start_clock); 1505 1506 return ret; 1507 } 1508 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1509 1510 struct event_constraint emptyconstraint; 1511 struct event_constraint unconstrained; 1512 1513 static int x86_pmu_prepare_cpu(unsigned int cpu) 1514 { 1515 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1516 int i; 1517 1518 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1519 cpuc->kfree_on_online[i] = NULL; 1520 if (x86_pmu.cpu_prepare) 1521 return x86_pmu.cpu_prepare(cpu); 1522 return 0; 1523 } 1524 1525 static int x86_pmu_dead_cpu(unsigned int cpu) 1526 { 1527 if (x86_pmu.cpu_dead) 1528 x86_pmu.cpu_dead(cpu); 1529 return 0; 1530 } 1531 1532 static int x86_pmu_online_cpu(unsigned int cpu) 1533 { 1534 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1535 int i; 1536 1537 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1538 kfree(cpuc->kfree_on_online[i]); 1539 cpuc->kfree_on_online[i] = NULL; 1540 } 1541 return 0; 1542 } 1543 1544 static int x86_pmu_starting_cpu(unsigned int cpu) 1545 { 1546 if (x86_pmu.cpu_starting) 1547 x86_pmu.cpu_starting(cpu); 1548 return 0; 1549 } 1550 1551 static int x86_pmu_dying_cpu(unsigned int cpu) 1552 { 1553 if (x86_pmu.cpu_dying) 1554 x86_pmu.cpu_dying(cpu); 1555 return 0; 1556 } 1557 1558 static void __init pmu_check_apic(void) 1559 { 1560 if (boot_cpu_has(X86_FEATURE_APIC)) 1561 return; 1562 1563 x86_pmu.apic = 0; 1564 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1565 pr_info("no hardware sampling interrupt available.\n"); 1566 1567 /* 1568 * If we have a PMU initialized but no APIC 1569 * interrupts, we cannot sample hardware 1570 * events (user-space has to fall back and 1571 * sample via a hrtimer based software event): 1572 */ 1573 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1574 1575 } 1576 1577 static struct attribute_group x86_pmu_format_group = { 1578 .name = "format", 1579 .attrs = NULL, 1580 }; 1581 1582 /* 1583 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1584 * out of events_attr attributes. 1585 */ 1586 static void __init filter_events(struct attribute **attrs) 1587 { 1588 struct device_attribute *d; 1589 struct perf_pmu_events_attr *pmu_attr; 1590 int offset = 0; 1591 int i, j; 1592 1593 for (i = 0; attrs[i]; i++) { 1594 d = (struct device_attribute *)attrs[i]; 1595 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr); 1596 /* str trumps id */ 1597 if (pmu_attr->event_str) 1598 continue; 1599 if (x86_pmu.event_map(i + offset)) 1600 continue; 1601 1602 for (j = i; attrs[j]; j++) 1603 attrs[j] = attrs[j + 1]; 1604 1605 /* Check the shifted attr. */ 1606 i--; 1607 1608 /* 1609 * event_map() is index based, the attrs array is organized 1610 * by increasing event index. If we shift the events, then 1611 * we need to compensate for the event_map(), otherwise 1612 * we are looking up the wrong event in the map 1613 */ 1614 offset++; 1615 } 1616 } 1617 1618 /* Merge two pointer arrays */ 1619 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b) 1620 { 1621 struct attribute **new; 1622 int j, i; 1623 1624 for (j = 0; a[j]; j++) 1625 ; 1626 for (i = 0; b[i]; i++) 1627 j++; 1628 j++; 1629 1630 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL); 1631 if (!new) 1632 return NULL; 1633 1634 j = 0; 1635 for (i = 0; a[i]; i++) 1636 new[j++] = a[i]; 1637 for (i = 0; b[i]; i++) 1638 new[j++] = b[i]; 1639 new[j] = NULL; 1640 1641 return new; 1642 } 1643 1644 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1645 { 1646 struct perf_pmu_events_attr *pmu_attr = \ 1647 container_of(attr, struct perf_pmu_events_attr, attr); 1648 u64 config = x86_pmu.event_map(pmu_attr->id); 1649 1650 /* string trumps id */ 1651 if (pmu_attr->event_str) 1652 return sprintf(page, "%s", pmu_attr->event_str); 1653 1654 return x86_pmu.events_sysfs_show(page, config); 1655 } 1656 EXPORT_SYMBOL_GPL(events_sysfs_show); 1657 1658 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1659 char *page) 1660 { 1661 struct perf_pmu_events_ht_attr *pmu_attr = 1662 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1663 1664 /* 1665 * Report conditional events depending on Hyper-Threading. 1666 * 1667 * This is overly conservative as usually the HT special 1668 * handling is not needed if the other CPU thread is idle. 1669 * 1670 * Note this does not (and cannot) handle the case when thread 1671 * siblings are invisible, for example with virtualization 1672 * if they are owned by some other guest. The user tool 1673 * has to re-read when a thread sibling gets onlined later. 1674 */ 1675 return sprintf(page, "%s", 1676 topology_max_smt_threads() > 1 ? 1677 pmu_attr->event_str_ht : 1678 pmu_attr->event_str_noht); 1679 } 1680 1681 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1682 EVENT_ATTR(instructions, INSTRUCTIONS ); 1683 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1684 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1685 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1686 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1687 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1688 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1689 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1690 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1691 1692 static struct attribute *empty_attrs; 1693 1694 static struct attribute *events_attr[] = { 1695 EVENT_PTR(CPU_CYCLES), 1696 EVENT_PTR(INSTRUCTIONS), 1697 EVENT_PTR(CACHE_REFERENCES), 1698 EVENT_PTR(CACHE_MISSES), 1699 EVENT_PTR(BRANCH_INSTRUCTIONS), 1700 EVENT_PTR(BRANCH_MISSES), 1701 EVENT_PTR(BUS_CYCLES), 1702 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1703 EVENT_PTR(STALLED_CYCLES_BACKEND), 1704 EVENT_PTR(REF_CPU_CYCLES), 1705 NULL, 1706 }; 1707 1708 static struct attribute_group x86_pmu_events_group = { 1709 .name = "events", 1710 .attrs = events_attr, 1711 }; 1712 1713 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1714 { 1715 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1716 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1717 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1718 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1719 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1720 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1721 ssize_t ret; 1722 1723 /* 1724 * We have whole page size to spend and just little data 1725 * to write, so we can safely use sprintf. 1726 */ 1727 ret = sprintf(page, "event=0x%02llx", event); 1728 1729 if (umask) 1730 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1731 1732 if (edge) 1733 ret += sprintf(page + ret, ",edge"); 1734 1735 if (pc) 1736 ret += sprintf(page + ret, ",pc"); 1737 1738 if (any) 1739 ret += sprintf(page + ret, ",any"); 1740 1741 if (inv) 1742 ret += sprintf(page + ret, ",inv"); 1743 1744 if (cmask) 1745 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1746 1747 ret += sprintf(page + ret, "\n"); 1748 1749 return ret; 1750 } 1751 1752 static int __init init_hw_perf_events(void) 1753 { 1754 struct x86_pmu_quirk *quirk; 1755 int err; 1756 1757 pr_info("Performance Events: "); 1758 1759 switch (boot_cpu_data.x86_vendor) { 1760 case X86_VENDOR_INTEL: 1761 err = intel_pmu_init(); 1762 break; 1763 case X86_VENDOR_AMD: 1764 err = amd_pmu_init(); 1765 break; 1766 default: 1767 err = -ENOTSUPP; 1768 } 1769 if (err != 0) { 1770 pr_cont("no PMU driver, software events only.\n"); 1771 return 0; 1772 } 1773 1774 pmu_check_apic(); 1775 1776 /* sanity check that the hardware exists or is emulated */ 1777 if (!check_hw_exists()) 1778 return 0; 1779 1780 pr_cont("%s PMU driver.\n", x86_pmu.name); 1781 1782 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 1783 1784 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 1785 quirk->func(); 1786 1787 if (!x86_pmu.intel_ctrl) 1788 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 1789 1790 perf_events_lapic_init(); 1791 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 1792 1793 unconstrained = (struct event_constraint) 1794 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, 1795 0, x86_pmu.num_counters, 0, 0); 1796 1797 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 1798 1799 if (x86_pmu.event_attrs) 1800 x86_pmu_events_group.attrs = x86_pmu.event_attrs; 1801 1802 if (!x86_pmu.events_sysfs_show) 1803 x86_pmu_events_group.attrs = &empty_attrs; 1804 else 1805 filter_events(x86_pmu_events_group.attrs); 1806 1807 if (x86_pmu.cpu_events) { 1808 struct attribute **tmp; 1809 1810 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events); 1811 if (!WARN_ON(!tmp)) 1812 x86_pmu_events_group.attrs = tmp; 1813 } 1814 1815 pr_info("... version: %d\n", x86_pmu.version); 1816 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 1817 pr_info("... generic registers: %d\n", x86_pmu.num_counters); 1818 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 1819 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 1820 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed); 1821 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl); 1822 1823 /* 1824 * Install callbacks. Core will call them for each online 1825 * cpu. 1826 */ 1827 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 1828 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 1829 if (err) 1830 return err; 1831 1832 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 1833 "perf/x86:starting", x86_pmu_starting_cpu, 1834 x86_pmu_dying_cpu); 1835 if (err) 1836 goto out; 1837 1838 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 1839 x86_pmu_online_cpu, NULL); 1840 if (err) 1841 goto out1; 1842 1843 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1844 if (err) 1845 goto out2; 1846 1847 return 0; 1848 1849 out2: 1850 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 1851 out1: 1852 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 1853 out: 1854 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 1855 return err; 1856 } 1857 early_initcall(init_hw_perf_events); 1858 1859 static inline void x86_pmu_read(struct perf_event *event) 1860 { 1861 x86_perf_event_update(event); 1862 } 1863 1864 /* 1865 * Start group events scheduling transaction 1866 * Set the flag to make pmu::enable() not perform the 1867 * schedulability test, it will be performed at commit time 1868 * 1869 * We only support PERF_PMU_TXN_ADD transactions. Save the 1870 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1871 * transactions. 1872 */ 1873 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1874 { 1875 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1876 1877 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 1878 1879 cpuc->txn_flags = txn_flags; 1880 if (txn_flags & ~PERF_PMU_TXN_ADD) 1881 return; 1882 1883 perf_pmu_disable(pmu); 1884 __this_cpu_write(cpu_hw_events.n_txn, 0); 1885 } 1886 1887 /* 1888 * Stop group events scheduling transaction 1889 * Clear the flag and pmu::enable() will perform the 1890 * schedulability test. 1891 */ 1892 static void x86_pmu_cancel_txn(struct pmu *pmu) 1893 { 1894 unsigned int txn_flags; 1895 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1896 1897 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1898 1899 txn_flags = cpuc->txn_flags; 1900 cpuc->txn_flags = 0; 1901 if (txn_flags & ~PERF_PMU_TXN_ADD) 1902 return; 1903 1904 /* 1905 * Truncate collected array by the number of events added in this 1906 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 1907 */ 1908 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 1909 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 1910 perf_pmu_enable(pmu); 1911 } 1912 1913 /* 1914 * Commit group events scheduling transaction 1915 * Perform the group schedulability test as a whole 1916 * Return 0 if success 1917 * 1918 * Does not cancel the transaction on failure; expects the caller to do this. 1919 */ 1920 static int x86_pmu_commit_txn(struct pmu *pmu) 1921 { 1922 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1923 int assign[X86_PMC_IDX_MAX]; 1924 int n, ret; 1925 1926 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1927 1928 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 1929 cpuc->txn_flags = 0; 1930 return 0; 1931 } 1932 1933 n = cpuc->n_events; 1934 1935 if (!x86_pmu_initialized()) 1936 return -EAGAIN; 1937 1938 ret = x86_pmu.schedule_events(cpuc, n, assign); 1939 if (ret) 1940 return ret; 1941 1942 /* 1943 * copy new assignment, now we know it is possible 1944 * will be used by hw_perf_enable() 1945 */ 1946 memcpy(cpuc->assign, assign, n*sizeof(int)); 1947 1948 cpuc->txn_flags = 0; 1949 perf_pmu_enable(pmu); 1950 return 0; 1951 } 1952 /* 1953 * a fake_cpuc is used to validate event groups. Due to 1954 * the extra reg logic, we need to also allocate a fake 1955 * per_core and per_cpu structure. Otherwise, group events 1956 * using extra reg may conflict without the kernel being 1957 * able to catch this when the last event gets added to 1958 * the group. 1959 */ 1960 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 1961 { 1962 kfree(cpuc->shared_regs); 1963 kfree(cpuc); 1964 } 1965 1966 static struct cpu_hw_events *allocate_fake_cpuc(void) 1967 { 1968 struct cpu_hw_events *cpuc; 1969 int cpu = raw_smp_processor_id(); 1970 1971 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 1972 if (!cpuc) 1973 return ERR_PTR(-ENOMEM); 1974 1975 /* only needed, if we have extra_regs */ 1976 if (x86_pmu.extra_regs) { 1977 cpuc->shared_regs = allocate_shared_regs(cpu); 1978 if (!cpuc->shared_regs) 1979 goto error; 1980 } 1981 cpuc->is_fake = 1; 1982 return cpuc; 1983 error: 1984 free_fake_cpuc(cpuc); 1985 return ERR_PTR(-ENOMEM); 1986 } 1987 1988 /* 1989 * validate that we can schedule this event 1990 */ 1991 static int validate_event(struct perf_event *event) 1992 { 1993 struct cpu_hw_events *fake_cpuc; 1994 struct event_constraint *c; 1995 int ret = 0; 1996 1997 fake_cpuc = allocate_fake_cpuc(); 1998 if (IS_ERR(fake_cpuc)) 1999 return PTR_ERR(fake_cpuc); 2000 2001 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event); 2002 2003 if (!c || !c->weight) 2004 ret = -EINVAL; 2005 2006 if (x86_pmu.put_event_constraints) 2007 x86_pmu.put_event_constraints(fake_cpuc, event); 2008 2009 free_fake_cpuc(fake_cpuc); 2010 2011 return ret; 2012 } 2013 2014 /* 2015 * validate a single event group 2016 * 2017 * validation include: 2018 * - check events are compatible which each other 2019 * - events do not compete for the same counter 2020 * - number of events <= number of counters 2021 * 2022 * validation ensures the group can be loaded onto the 2023 * PMU if it was the only group available. 2024 */ 2025 static int validate_group(struct perf_event *event) 2026 { 2027 struct perf_event *leader = event->group_leader; 2028 struct cpu_hw_events *fake_cpuc; 2029 int ret = -EINVAL, n; 2030 2031 fake_cpuc = allocate_fake_cpuc(); 2032 if (IS_ERR(fake_cpuc)) 2033 return PTR_ERR(fake_cpuc); 2034 /* 2035 * the event is not yet connected with its 2036 * siblings therefore we must first collect 2037 * existing siblings, then add the new event 2038 * before we can simulate the scheduling 2039 */ 2040 n = collect_events(fake_cpuc, leader, true); 2041 if (n < 0) 2042 goto out; 2043 2044 fake_cpuc->n_events = n; 2045 n = collect_events(fake_cpuc, event, false); 2046 if (n < 0) 2047 goto out; 2048 2049 fake_cpuc->n_events = n; 2050 2051 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2052 2053 out: 2054 free_fake_cpuc(fake_cpuc); 2055 return ret; 2056 } 2057 2058 static int x86_pmu_event_init(struct perf_event *event) 2059 { 2060 struct pmu *tmp; 2061 int err; 2062 2063 switch (event->attr.type) { 2064 case PERF_TYPE_RAW: 2065 case PERF_TYPE_HARDWARE: 2066 case PERF_TYPE_HW_CACHE: 2067 break; 2068 2069 default: 2070 return -ENOENT; 2071 } 2072 2073 err = __x86_pmu_event_init(event); 2074 if (!err) { 2075 /* 2076 * we temporarily connect event to its pmu 2077 * such that validate_group() can classify 2078 * it as an x86 event using is_x86_event() 2079 */ 2080 tmp = event->pmu; 2081 event->pmu = &pmu; 2082 2083 if (event->group_leader != event) 2084 err = validate_group(event); 2085 else 2086 err = validate_event(event); 2087 2088 event->pmu = tmp; 2089 } 2090 if (err) { 2091 if (event->destroy) 2092 event->destroy(event); 2093 } 2094 2095 if (ACCESS_ONCE(x86_pmu.attr_rdpmc)) 2096 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED; 2097 2098 return err; 2099 } 2100 2101 static void refresh_pce(void *ignored) 2102 { 2103 if (current->mm) 2104 load_mm_cr4(current->mm); 2105 } 2106 2107 static void x86_pmu_event_mapped(struct perf_event *event) 2108 { 2109 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2110 return; 2111 2112 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1) 2113 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1); 2114 } 2115 2116 static void x86_pmu_event_unmapped(struct perf_event *event) 2117 { 2118 if (!current->mm) 2119 return; 2120 2121 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2122 return; 2123 2124 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed)) 2125 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1); 2126 } 2127 2128 static int x86_pmu_event_idx(struct perf_event *event) 2129 { 2130 int idx = event->hw.idx; 2131 2132 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2133 return 0; 2134 2135 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) { 2136 idx -= INTEL_PMC_IDX_FIXED; 2137 idx |= 1 << 30; 2138 } 2139 2140 return idx + 1; 2141 } 2142 2143 static ssize_t get_attr_rdpmc(struct device *cdev, 2144 struct device_attribute *attr, 2145 char *buf) 2146 { 2147 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2148 } 2149 2150 static ssize_t set_attr_rdpmc(struct device *cdev, 2151 struct device_attribute *attr, 2152 const char *buf, size_t count) 2153 { 2154 unsigned long val; 2155 ssize_t ret; 2156 2157 ret = kstrtoul(buf, 0, &val); 2158 if (ret) 2159 return ret; 2160 2161 if (val > 2) 2162 return -EINVAL; 2163 2164 if (x86_pmu.attr_rdpmc_broken) 2165 return -ENOTSUPP; 2166 2167 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) { 2168 /* 2169 * Changing into or out of always available, aka 2170 * perf-event-bypassing mode. This path is extremely slow, 2171 * but only root can trigger it, so it's okay. 2172 */ 2173 if (val == 2) 2174 static_key_slow_inc(&rdpmc_always_available); 2175 else 2176 static_key_slow_dec(&rdpmc_always_available); 2177 on_each_cpu(refresh_pce, NULL, 1); 2178 } 2179 2180 x86_pmu.attr_rdpmc = val; 2181 2182 return count; 2183 } 2184 2185 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2186 2187 static struct attribute *x86_pmu_attrs[] = { 2188 &dev_attr_rdpmc.attr, 2189 NULL, 2190 }; 2191 2192 static struct attribute_group x86_pmu_attr_group = { 2193 .attrs = x86_pmu_attrs, 2194 }; 2195 2196 static const struct attribute_group *x86_pmu_attr_groups[] = { 2197 &x86_pmu_attr_group, 2198 &x86_pmu_format_group, 2199 &x86_pmu_events_group, 2200 NULL, 2201 }; 2202 2203 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 2204 { 2205 if (x86_pmu.sched_task) 2206 x86_pmu.sched_task(ctx, sched_in); 2207 } 2208 2209 void perf_check_microcode(void) 2210 { 2211 if (x86_pmu.check_microcode) 2212 x86_pmu.check_microcode(); 2213 } 2214 EXPORT_SYMBOL_GPL(perf_check_microcode); 2215 2216 static struct pmu pmu = { 2217 .pmu_enable = x86_pmu_enable, 2218 .pmu_disable = x86_pmu_disable, 2219 2220 .attr_groups = x86_pmu_attr_groups, 2221 2222 .event_init = x86_pmu_event_init, 2223 2224 .event_mapped = x86_pmu_event_mapped, 2225 .event_unmapped = x86_pmu_event_unmapped, 2226 2227 .add = x86_pmu_add, 2228 .del = x86_pmu_del, 2229 .start = x86_pmu_start, 2230 .stop = x86_pmu_stop, 2231 .read = x86_pmu_read, 2232 2233 .start_txn = x86_pmu_start_txn, 2234 .cancel_txn = x86_pmu_cancel_txn, 2235 .commit_txn = x86_pmu_commit_txn, 2236 2237 .event_idx = x86_pmu_event_idx, 2238 .sched_task = x86_pmu_sched_task, 2239 .task_ctx_size = sizeof(struct x86_perf_task_context), 2240 }; 2241 2242 void arch_perf_update_userpage(struct perf_event *event, 2243 struct perf_event_mmap_page *userpg, u64 now) 2244 { 2245 struct cyc2ns_data *data; 2246 2247 userpg->cap_user_time = 0; 2248 userpg->cap_user_time_zero = 0; 2249 userpg->cap_user_rdpmc = 2250 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED); 2251 userpg->pmc_width = x86_pmu.cntval_bits; 2252 2253 if (!sched_clock_stable()) 2254 return; 2255 2256 data = cyc2ns_read_begin(); 2257 2258 /* 2259 * Internal timekeeping for enabled/running/stopped times 2260 * is always in the local_clock domain. 2261 */ 2262 userpg->cap_user_time = 1; 2263 userpg->time_mult = data->cyc2ns_mul; 2264 userpg->time_shift = data->cyc2ns_shift; 2265 userpg->time_offset = data->cyc2ns_offset - now; 2266 2267 /* 2268 * cap_user_time_zero doesn't make sense when we're using a different 2269 * time base for the records. 2270 */ 2271 if (!event->attr.use_clockid) { 2272 userpg->cap_user_time_zero = 1; 2273 userpg->time_zero = data->cyc2ns_offset; 2274 } 2275 2276 cyc2ns_read_end(data); 2277 } 2278 2279 void 2280 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2281 { 2282 struct unwind_state state; 2283 unsigned long addr; 2284 2285 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2286 /* TODO: We don't support guest os callchain now */ 2287 return; 2288 } 2289 2290 if (perf_callchain_store(entry, regs->ip)) 2291 return; 2292 2293 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state); 2294 unwind_next_frame(&state)) { 2295 addr = unwind_get_return_address(&state); 2296 if (!addr || perf_callchain_store(entry, addr)) 2297 return; 2298 } 2299 } 2300 2301 static inline int 2302 valid_user_frame(const void __user *fp, unsigned long size) 2303 { 2304 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 2305 } 2306 2307 static unsigned long get_segment_base(unsigned int segment) 2308 { 2309 struct desc_struct *desc; 2310 unsigned int idx = segment >> 3; 2311 2312 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2313 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2314 struct ldt_struct *ldt; 2315 2316 if (idx > LDT_ENTRIES) 2317 return 0; 2318 2319 /* IRQs are off, so this synchronizes with smp_store_release */ 2320 ldt = lockless_dereference(current->active_mm->context.ldt); 2321 if (!ldt || idx > ldt->size) 2322 return 0; 2323 2324 desc = &ldt->entries[idx]; 2325 #else 2326 return 0; 2327 #endif 2328 } else { 2329 if (idx > GDT_ENTRIES) 2330 return 0; 2331 2332 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2333 } 2334 2335 return get_desc_base(desc); 2336 } 2337 2338 #ifdef CONFIG_IA32_EMULATION 2339 2340 #include <asm/compat.h> 2341 2342 static inline int 2343 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2344 { 2345 /* 32-bit process in 64-bit kernel. */ 2346 unsigned long ss_base, cs_base; 2347 struct stack_frame_ia32 frame; 2348 const void __user *fp; 2349 2350 if (!test_thread_flag(TIF_IA32)) 2351 return 0; 2352 2353 cs_base = get_segment_base(regs->cs); 2354 ss_base = get_segment_base(regs->ss); 2355 2356 fp = compat_ptr(ss_base + regs->bp); 2357 pagefault_disable(); 2358 while (entry->nr < entry->max_stack) { 2359 unsigned long bytes; 2360 frame.next_frame = 0; 2361 frame.return_address = 0; 2362 2363 if (!valid_user_frame(fp, sizeof(frame))) 2364 break; 2365 2366 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4); 2367 if (bytes != 0) 2368 break; 2369 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4); 2370 if (bytes != 0) 2371 break; 2372 2373 perf_callchain_store(entry, cs_base + frame.return_address); 2374 fp = compat_ptr(ss_base + frame.next_frame); 2375 } 2376 pagefault_enable(); 2377 return 1; 2378 } 2379 #else 2380 static inline int 2381 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2382 { 2383 return 0; 2384 } 2385 #endif 2386 2387 void 2388 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2389 { 2390 struct stack_frame frame; 2391 const unsigned long __user *fp; 2392 2393 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2394 /* TODO: We don't support guest os callchain now */ 2395 return; 2396 } 2397 2398 /* 2399 * We don't know what to do with VM86 stacks.. ignore them for now. 2400 */ 2401 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2402 return; 2403 2404 fp = (unsigned long __user *)regs->bp; 2405 2406 perf_callchain_store(entry, regs->ip); 2407 2408 if (!current->mm) 2409 return; 2410 2411 if (perf_callchain_user32(regs, entry)) 2412 return; 2413 2414 pagefault_disable(); 2415 while (entry->nr < entry->max_stack) { 2416 unsigned long bytes; 2417 2418 frame.next_frame = NULL; 2419 frame.return_address = 0; 2420 2421 if (!valid_user_frame(fp, sizeof(frame))) 2422 break; 2423 2424 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp)); 2425 if (bytes != 0) 2426 break; 2427 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp)); 2428 if (bytes != 0) 2429 break; 2430 2431 perf_callchain_store(entry, frame.return_address); 2432 fp = (void __user *)frame.next_frame; 2433 } 2434 pagefault_enable(); 2435 } 2436 2437 /* 2438 * Deal with code segment offsets for the various execution modes: 2439 * 2440 * VM86 - the good olde 16 bit days, where the linear address is 2441 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2442 * 2443 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2444 * to figure out what the 32bit base address is. 2445 * 2446 * X32 - has TIF_X32 set, but is running in x86_64 2447 * 2448 * X86_64 - CS,DS,SS,ES are all zero based. 2449 */ 2450 static unsigned long code_segment_base(struct pt_regs *regs) 2451 { 2452 /* 2453 * For IA32 we look at the GDT/LDT segment base to convert the 2454 * effective IP to a linear address. 2455 */ 2456 2457 #ifdef CONFIG_X86_32 2458 /* 2459 * If we are in VM86 mode, add the segment offset to convert to a 2460 * linear address. 2461 */ 2462 if (regs->flags & X86_VM_MASK) 2463 return 0x10 * regs->cs; 2464 2465 if (user_mode(regs) && regs->cs != __USER_CS) 2466 return get_segment_base(regs->cs); 2467 #else 2468 if (user_mode(regs) && !user_64bit_mode(regs) && 2469 regs->cs != __USER32_CS) 2470 return get_segment_base(regs->cs); 2471 #endif 2472 return 0; 2473 } 2474 2475 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2476 { 2477 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) 2478 return perf_guest_cbs->get_guest_ip(); 2479 2480 return regs->ip + code_segment_base(regs); 2481 } 2482 2483 unsigned long perf_misc_flags(struct pt_regs *regs) 2484 { 2485 int misc = 0; 2486 2487 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2488 if (perf_guest_cbs->is_user_mode()) 2489 misc |= PERF_RECORD_MISC_GUEST_USER; 2490 else 2491 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2492 } else { 2493 if (user_mode(regs)) 2494 misc |= PERF_RECORD_MISC_USER; 2495 else 2496 misc |= PERF_RECORD_MISC_KERNEL; 2497 } 2498 2499 if (regs->flags & PERF_EFLAGS_EXACT) 2500 misc |= PERF_RECORD_MISC_EXACT_IP; 2501 2502 return misc; 2503 } 2504 2505 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2506 { 2507 cap->version = x86_pmu.version; 2508 cap->num_counters_gp = x86_pmu.num_counters; 2509 cap->num_counters_fixed = x86_pmu.num_counters_fixed; 2510 cap->bit_width_gp = x86_pmu.cntval_bits; 2511 cap->bit_width_fixed = x86_pmu.cntval_bits; 2512 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2513 cap->events_mask_len = x86_pmu.events_mask_len; 2514 } 2515 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2516