1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 #include <linux/static_call.h> 32 33 #include <asm/apic.h> 34 #include <asm/stacktrace.h> 35 #include <asm/nmi.h> 36 #include <asm/smp.h> 37 #include <asm/alternative.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlbflush.h> 40 #include <asm/timer.h> 41 #include <asm/desc.h> 42 #include <asm/ldt.h> 43 #include <asm/unwind.h> 44 45 #include "perf_event.h" 46 47 struct x86_pmu x86_pmu __read_mostly; 48 static struct pmu pmu; 49 50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 51 .enabled = 1, 52 .pmu = &pmu, 53 }; 54 55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); 56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); 58 59 /* 60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined 61 * from just a typename, as opposed to an actual function. 62 */ 63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); 64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); 65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); 66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); 67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); 68 69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); 70 71 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); 72 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); 73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); 74 75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period); 76 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update); 77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period); 78 79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); 80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); 81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); 82 83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); 84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); 85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); 86 87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); 88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx); 89 90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); 91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); 92 93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter); 94 95 /* 96 * This one is magic, it will get called even when PMU init fails (because 97 * there is no PMU), in which case it should simply return NULL. 98 */ 99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); 100 101 u64 __read_mostly hw_cache_event_ids 102 [PERF_COUNT_HW_CACHE_MAX] 103 [PERF_COUNT_HW_CACHE_OP_MAX] 104 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 105 u64 __read_mostly hw_cache_extra_regs 106 [PERF_COUNT_HW_CACHE_MAX] 107 [PERF_COUNT_HW_CACHE_OP_MAX] 108 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 109 110 /* 111 * Propagate event elapsed time into the generic event. 112 * Can only be executed on the CPU where the event is active. 113 * Returns the delta events processed. 114 */ 115 u64 x86_perf_event_update(struct perf_event *event) 116 { 117 struct hw_perf_event *hwc = &event->hw; 118 int shift = 64 - x86_pmu.cntval_bits; 119 u64 prev_raw_count, new_raw_count; 120 u64 delta; 121 122 if (unlikely(!hwc->event_base)) 123 return 0; 124 125 /* 126 * Careful: an NMI might modify the previous event value. 127 * 128 * Our tactic to handle this is to first atomically read and 129 * exchange a new raw count - then add that new-prev delta 130 * count to the generic event atomically: 131 */ 132 prev_raw_count = local64_read(&hwc->prev_count); 133 do { 134 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 135 } while (!local64_try_cmpxchg(&hwc->prev_count, 136 &prev_raw_count, new_raw_count)); 137 138 /* 139 * Now we have the new raw value and have updated the prev 140 * timestamp already. We can now calculate the elapsed delta 141 * (event-)time and add that to the generic event. 142 * 143 * Careful, not all hw sign-extends above the physical width 144 * of the count. 145 */ 146 delta = (new_raw_count << shift) - (prev_raw_count << shift); 147 delta >>= shift; 148 149 local64_add(delta, &event->count); 150 local64_sub(delta, &hwc->period_left); 151 152 return new_raw_count; 153 } 154 155 /* 156 * Find and validate any extra registers to set up. 157 */ 158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 159 { 160 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); 161 struct hw_perf_event_extra *reg; 162 struct extra_reg *er; 163 164 reg = &event->hw.extra_reg; 165 166 if (!extra_regs) 167 return 0; 168 169 for (er = extra_regs; er->msr; er++) { 170 if (er->event != (config & er->config_mask)) 171 continue; 172 if (event->attr.config1 & ~er->valid_mask) 173 return -EINVAL; 174 /* Check if the extra msrs can be safely accessed*/ 175 if (!er->extra_msr_access) 176 return -ENXIO; 177 178 reg->idx = er->idx; 179 reg->config = event->attr.config1; 180 reg->reg = er->msr; 181 break; 182 } 183 return 0; 184 } 185 186 static atomic_t active_events; 187 static atomic_t pmc_refcount; 188 static DEFINE_MUTEX(pmc_reserve_mutex); 189 190 #ifdef CONFIG_X86_LOCAL_APIC 191 192 static inline int get_possible_num_counters(void) 193 { 194 int i, num_counters = x86_pmu.num_counters; 195 196 if (!is_hybrid()) 197 return num_counters; 198 199 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) 200 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters); 201 202 return num_counters; 203 } 204 205 static bool reserve_pmc_hardware(void) 206 { 207 int i, num_counters = get_possible_num_counters(); 208 209 for (i = 0; i < num_counters; i++) { 210 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 211 goto perfctr_fail; 212 } 213 214 for (i = 0; i < num_counters; i++) { 215 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 216 goto eventsel_fail; 217 } 218 219 return true; 220 221 eventsel_fail: 222 for (i--; i >= 0; i--) 223 release_evntsel_nmi(x86_pmu_config_addr(i)); 224 225 i = num_counters; 226 227 perfctr_fail: 228 for (i--; i >= 0; i--) 229 release_perfctr_nmi(x86_pmu_event_addr(i)); 230 231 return false; 232 } 233 234 static void release_pmc_hardware(void) 235 { 236 int i, num_counters = get_possible_num_counters(); 237 238 for (i = 0; i < num_counters; i++) { 239 release_perfctr_nmi(x86_pmu_event_addr(i)); 240 release_evntsel_nmi(x86_pmu_config_addr(i)); 241 } 242 } 243 244 #else 245 246 static bool reserve_pmc_hardware(void) { return true; } 247 static void release_pmc_hardware(void) {} 248 249 #endif 250 251 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed) 252 { 253 u64 val, val_fail = -1, val_new= ~0; 254 int i, reg, reg_fail = -1, ret = 0; 255 int bios_fail = 0; 256 int reg_safe = -1; 257 258 /* 259 * Check to see if the BIOS enabled any of the counters, if so 260 * complain and bail. 261 */ 262 for (i = 0; i < num_counters; i++) { 263 reg = x86_pmu_config_addr(i); 264 ret = rdmsrl_safe(reg, &val); 265 if (ret) 266 goto msr_fail; 267 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 268 bios_fail = 1; 269 val_fail = val; 270 reg_fail = reg; 271 } else { 272 reg_safe = i; 273 } 274 } 275 276 if (num_counters_fixed) { 277 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 278 ret = rdmsrl_safe(reg, &val); 279 if (ret) 280 goto msr_fail; 281 for (i = 0; i < num_counters_fixed; i++) { 282 if (fixed_counter_disabled(i, pmu)) 283 continue; 284 if (val & (0x03ULL << i*4)) { 285 bios_fail = 1; 286 val_fail = val; 287 reg_fail = reg; 288 } 289 } 290 } 291 292 /* 293 * If all the counters are enabled, the below test will always 294 * fail. The tools will also become useless in this scenario. 295 * Just fail and disable the hardware counters. 296 */ 297 298 if (reg_safe == -1) { 299 reg = reg_safe; 300 goto msr_fail; 301 } 302 303 /* 304 * Read the current value, change it and read it back to see if it 305 * matches, this is needed to detect certain hardware emulators 306 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 307 */ 308 reg = x86_pmu_event_addr(reg_safe); 309 if (rdmsrl_safe(reg, &val)) 310 goto msr_fail; 311 val ^= 0xffffUL; 312 ret = wrmsrl_safe(reg, val); 313 ret |= rdmsrl_safe(reg, &val_new); 314 if (ret || val != val_new) 315 goto msr_fail; 316 317 /* 318 * We still allow the PMU driver to operate: 319 */ 320 if (bios_fail) { 321 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 322 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 323 reg_fail, val_fail); 324 } 325 326 return true; 327 328 msr_fail: 329 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 330 pr_cont("PMU not available due to virtualization, using software events only.\n"); 331 } else { 332 pr_cont("Broken PMU hardware detected, using software events only.\n"); 333 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 334 reg, val_new); 335 } 336 337 return false; 338 } 339 340 static void hw_perf_event_destroy(struct perf_event *event) 341 { 342 x86_release_hardware(); 343 atomic_dec(&active_events); 344 } 345 346 void hw_perf_lbr_event_destroy(struct perf_event *event) 347 { 348 hw_perf_event_destroy(event); 349 350 /* undo the lbr/bts event accounting */ 351 x86_del_exclusive(x86_lbr_exclusive_lbr); 352 } 353 354 static inline int x86_pmu_initialized(void) 355 { 356 return x86_pmu.handle_irq != NULL; 357 } 358 359 static inline int 360 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 361 { 362 struct perf_event_attr *attr = &event->attr; 363 unsigned int cache_type, cache_op, cache_result; 364 u64 config, val; 365 366 config = attr->config; 367 368 cache_type = (config >> 0) & 0xff; 369 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 370 return -EINVAL; 371 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 372 373 cache_op = (config >> 8) & 0xff; 374 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 375 return -EINVAL; 376 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 377 378 cache_result = (config >> 16) & 0xff; 379 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 380 return -EINVAL; 381 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 382 383 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; 384 if (val == 0) 385 return -ENOENT; 386 387 if (val == -1) 388 return -EINVAL; 389 390 hwc->config |= val; 391 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; 392 return x86_pmu_extra_regs(val, event); 393 } 394 395 int x86_reserve_hardware(void) 396 { 397 int err = 0; 398 399 if (!atomic_inc_not_zero(&pmc_refcount)) { 400 mutex_lock(&pmc_reserve_mutex); 401 if (atomic_read(&pmc_refcount) == 0) { 402 if (!reserve_pmc_hardware()) { 403 err = -EBUSY; 404 } else { 405 reserve_ds_buffers(); 406 reserve_lbr_buffers(); 407 } 408 } 409 if (!err) 410 atomic_inc(&pmc_refcount); 411 mutex_unlock(&pmc_reserve_mutex); 412 } 413 414 return err; 415 } 416 417 void x86_release_hardware(void) 418 { 419 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 420 release_pmc_hardware(); 421 release_ds_buffers(); 422 release_lbr_buffers(); 423 mutex_unlock(&pmc_reserve_mutex); 424 } 425 } 426 427 /* 428 * Check if we can create event of a certain type (that no conflicting events 429 * are present). 430 */ 431 int x86_add_exclusive(unsigned int what) 432 { 433 int i; 434 435 /* 436 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 437 * LBR and BTS are still mutually exclusive. 438 */ 439 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 440 goto out; 441 442 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 443 mutex_lock(&pmc_reserve_mutex); 444 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 445 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 446 goto fail_unlock; 447 } 448 atomic_inc(&x86_pmu.lbr_exclusive[what]); 449 mutex_unlock(&pmc_reserve_mutex); 450 } 451 452 out: 453 atomic_inc(&active_events); 454 return 0; 455 456 fail_unlock: 457 mutex_unlock(&pmc_reserve_mutex); 458 return -EBUSY; 459 } 460 461 void x86_del_exclusive(unsigned int what) 462 { 463 atomic_dec(&active_events); 464 465 /* 466 * See the comment in x86_add_exclusive(). 467 */ 468 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 469 return; 470 471 atomic_dec(&x86_pmu.lbr_exclusive[what]); 472 } 473 474 int x86_setup_perfctr(struct perf_event *event) 475 { 476 struct perf_event_attr *attr = &event->attr; 477 struct hw_perf_event *hwc = &event->hw; 478 u64 config; 479 480 if (!is_sampling_event(event)) { 481 hwc->sample_period = x86_pmu.max_period; 482 hwc->last_period = hwc->sample_period; 483 local64_set(&hwc->period_left, hwc->sample_period); 484 } 485 486 if (attr->type == event->pmu->type) 487 return x86_pmu_extra_regs(event->attr.config, event); 488 489 if (attr->type == PERF_TYPE_HW_CACHE) 490 return set_ext_hw_attr(hwc, event); 491 492 if (attr->config >= x86_pmu.max_events) 493 return -EINVAL; 494 495 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 496 497 /* 498 * The generic map: 499 */ 500 config = x86_pmu.event_map(attr->config); 501 502 if (config == 0) 503 return -ENOENT; 504 505 if (config == -1LL) 506 return -EINVAL; 507 508 hwc->config |= config; 509 510 return 0; 511 } 512 513 /* 514 * check that branch_sample_type is compatible with 515 * settings needed for precise_ip > 1 which implies 516 * using the LBR to capture ALL taken branches at the 517 * priv levels of the measurement 518 */ 519 static inline int precise_br_compat(struct perf_event *event) 520 { 521 u64 m = event->attr.branch_sample_type; 522 u64 b = 0; 523 524 /* must capture all branches */ 525 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 526 return 0; 527 528 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 529 530 if (!event->attr.exclude_user) 531 b |= PERF_SAMPLE_BRANCH_USER; 532 533 if (!event->attr.exclude_kernel) 534 b |= PERF_SAMPLE_BRANCH_KERNEL; 535 536 /* 537 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 538 */ 539 540 return m == b; 541 } 542 543 int x86_pmu_max_precise(void) 544 { 545 int precise = 0; 546 547 /* Support for constant skid */ 548 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 549 precise++; 550 551 /* Support for IP fixup */ 552 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 553 precise++; 554 555 if (x86_pmu.pebs_prec_dist) 556 precise++; 557 } 558 return precise; 559 } 560 561 int x86_pmu_hw_config(struct perf_event *event) 562 { 563 if (event->attr.precise_ip) { 564 int precise = x86_pmu_max_precise(); 565 566 if (event->attr.precise_ip > precise) 567 return -EOPNOTSUPP; 568 569 /* There's no sense in having PEBS for non sampling events: */ 570 if (!is_sampling_event(event)) 571 return -EINVAL; 572 } 573 /* 574 * check that PEBS LBR correction does not conflict with 575 * whatever the user is asking with attr->branch_sample_type 576 */ 577 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 578 u64 *br_type = &event->attr.branch_sample_type; 579 580 if (has_branch_stack(event)) { 581 if (!precise_br_compat(event)) 582 return -EOPNOTSUPP; 583 584 /* branch_sample_type is compatible */ 585 586 } else { 587 /* 588 * user did not specify branch_sample_type 589 * 590 * For PEBS fixups, we capture all 591 * the branches at the priv level of the 592 * event. 593 */ 594 *br_type = PERF_SAMPLE_BRANCH_ANY; 595 596 if (!event->attr.exclude_user) 597 *br_type |= PERF_SAMPLE_BRANCH_USER; 598 599 if (!event->attr.exclude_kernel) 600 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 601 } 602 } 603 604 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) 605 event->attach_state |= PERF_ATTACH_TASK_DATA; 606 607 /* 608 * Generate PMC IRQs: 609 * (keep 'enabled' bit clear for now) 610 */ 611 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 612 613 /* 614 * Count user and OS events unless requested not to 615 */ 616 if (!event->attr.exclude_user) 617 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 618 if (!event->attr.exclude_kernel) 619 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 620 621 if (event->attr.type == event->pmu->type) 622 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; 623 624 if (event->attr.sample_period && x86_pmu.limit_period) { 625 s64 left = event->attr.sample_period; 626 x86_pmu.limit_period(event, &left); 627 if (left > event->attr.sample_period) 628 return -EINVAL; 629 } 630 631 /* sample_regs_user never support XMM registers */ 632 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) 633 return -EINVAL; 634 /* 635 * Besides the general purpose registers, XMM registers may 636 * be collected in PEBS on some platforms, e.g. Icelake 637 */ 638 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { 639 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) 640 return -EINVAL; 641 642 if (!event->attr.precise_ip) 643 return -EINVAL; 644 } 645 646 return x86_setup_perfctr(event); 647 } 648 649 /* 650 * Setup the hardware configuration for a given attr_type 651 */ 652 static int __x86_pmu_event_init(struct perf_event *event) 653 { 654 int err; 655 656 if (!x86_pmu_initialized()) 657 return -ENODEV; 658 659 err = x86_reserve_hardware(); 660 if (err) 661 return err; 662 663 atomic_inc(&active_events); 664 event->destroy = hw_perf_event_destroy; 665 666 event->hw.idx = -1; 667 event->hw.last_cpu = -1; 668 event->hw.last_tag = ~0ULL; 669 670 /* mark unused */ 671 event->hw.extra_reg.idx = EXTRA_REG_NONE; 672 event->hw.branch_reg.idx = EXTRA_REG_NONE; 673 674 return x86_pmu.hw_config(event); 675 } 676 677 void x86_pmu_disable_all(void) 678 { 679 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 680 int idx; 681 682 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 683 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 684 u64 val; 685 686 if (!test_bit(idx, cpuc->active_mask)) 687 continue; 688 rdmsrl(x86_pmu_config_addr(idx), val); 689 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 690 continue; 691 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 692 wrmsrl(x86_pmu_config_addr(idx), val); 693 if (is_counter_pair(hwc)) 694 wrmsrl(x86_pmu_config_addr(idx + 1), 0); 695 } 696 } 697 698 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) 699 { 700 return static_call(x86_pmu_guest_get_msrs)(nr, data); 701 } 702 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 703 704 /* 705 * There may be PMI landing after enabled=0. The PMI hitting could be before or 706 * after disable_all. 707 * 708 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 709 * It will not be re-enabled in the NMI handler again, because enabled=0. After 710 * handling the NMI, disable_all will be called, which will not change the 711 * state either. If PMI hits after disable_all, the PMU is already disabled 712 * before entering NMI handler. The NMI handler will not change the state 713 * either. 714 * 715 * So either situation is harmless. 716 */ 717 static void x86_pmu_disable(struct pmu *pmu) 718 { 719 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 720 721 if (!x86_pmu_initialized()) 722 return; 723 724 if (!cpuc->enabled) 725 return; 726 727 cpuc->n_added = 0; 728 cpuc->enabled = 0; 729 barrier(); 730 731 static_call(x86_pmu_disable_all)(); 732 } 733 734 void x86_pmu_enable_all(int added) 735 { 736 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 737 int idx; 738 739 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 740 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 741 742 if (!test_bit(idx, cpuc->active_mask)) 743 continue; 744 745 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 746 } 747 } 748 749 static inline int is_x86_event(struct perf_event *event) 750 { 751 int i; 752 753 if (!is_hybrid()) 754 return event->pmu == &pmu; 755 756 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 757 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) 758 return true; 759 } 760 761 return false; 762 } 763 764 struct pmu *x86_get_pmu(unsigned int cpu) 765 { 766 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 767 768 /* 769 * All CPUs of the hybrid type have been offline. 770 * The x86_get_pmu() should not be invoked. 771 */ 772 if (WARN_ON_ONCE(!cpuc->pmu)) 773 return &pmu; 774 775 return cpuc->pmu; 776 } 777 /* 778 * Event scheduler state: 779 * 780 * Assign events iterating over all events and counters, beginning 781 * with events with least weights first. Keep the current iterator 782 * state in struct sched_state. 783 */ 784 struct sched_state { 785 int weight; 786 int event; /* event index */ 787 int counter; /* counter index */ 788 int unassigned; /* number of events to be assigned left */ 789 int nr_gp; /* number of GP counters used */ 790 u64 used; 791 }; 792 793 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 794 #define SCHED_STATES_MAX 2 795 796 struct perf_sched { 797 int max_weight; 798 int max_events; 799 int max_gp; 800 int saved_states; 801 struct event_constraint **constraints; 802 struct sched_state state; 803 struct sched_state saved[SCHED_STATES_MAX]; 804 }; 805 806 /* 807 * Initialize iterator that runs through all events and counters. 808 */ 809 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 810 int num, int wmin, int wmax, int gpmax) 811 { 812 int idx; 813 814 memset(sched, 0, sizeof(*sched)); 815 sched->max_events = num; 816 sched->max_weight = wmax; 817 sched->max_gp = gpmax; 818 sched->constraints = constraints; 819 820 for (idx = 0; idx < num; idx++) { 821 if (constraints[idx]->weight == wmin) 822 break; 823 } 824 825 sched->state.event = idx; /* start with min weight */ 826 sched->state.weight = wmin; 827 sched->state.unassigned = num; 828 } 829 830 static void perf_sched_save_state(struct perf_sched *sched) 831 { 832 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 833 return; 834 835 sched->saved[sched->saved_states] = sched->state; 836 sched->saved_states++; 837 } 838 839 static bool perf_sched_restore_state(struct perf_sched *sched) 840 { 841 if (!sched->saved_states) 842 return false; 843 844 sched->saved_states--; 845 sched->state = sched->saved[sched->saved_states]; 846 847 /* this assignment didn't work out */ 848 /* XXX broken vs EVENT_PAIR */ 849 sched->state.used &= ~BIT_ULL(sched->state.counter); 850 851 /* try the next one */ 852 sched->state.counter++; 853 854 return true; 855 } 856 857 /* 858 * Select a counter for the current event to schedule. Return true on 859 * success. 860 */ 861 static bool __perf_sched_find_counter(struct perf_sched *sched) 862 { 863 struct event_constraint *c; 864 int idx; 865 866 if (!sched->state.unassigned) 867 return false; 868 869 if (sched->state.event >= sched->max_events) 870 return false; 871 872 c = sched->constraints[sched->state.event]; 873 /* Prefer fixed purpose counters */ 874 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 875 idx = INTEL_PMC_IDX_FIXED; 876 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 877 u64 mask = BIT_ULL(idx); 878 879 if (sched->state.used & mask) 880 continue; 881 882 sched->state.used |= mask; 883 goto done; 884 } 885 } 886 887 /* Grab the first unused counter starting with idx */ 888 idx = sched->state.counter; 889 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 890 u64 mask = BIT_ULL(idx); 891 892 if (c->flags & PERF_X86_EVENT_PAIR) 893 mask |= mask << 1; 894 895 if (sched->state.used & mask) 896 continue; 897 898 if (sched->state.nr_gp++ >= sched->max_gp) 899 return false; 900 901 sched->state.used |= mask; 902 goto done; 903 } 904 905 return false; 906 907 done: 908 sched->state.counter = idx; 909 910 if (c->overlap) 911 perf_sched_save_state(sched); 912 913 return true; 914 } 915 916 static bool perf_sched_find_counter(struct perf_sched *sched) 917 { 918 while (!__perf_sched_find_counter(sched)) { 919 if (!perf_sched_restore_state(sched)) 920 return false; 921 } 922 923 return true; 924 } 925 926 /* 927 * Go through all unassigned events and find the next one to schedule. 928 * Take events with the least weight first. Return true on success. 929 */ 930 static bool perf_sched_next_event(struct perf_sched *sched) 931 { 932 struct event_constraint *c; 933 934 if (!sched->state.unassigned || !--sched->state.unassigned) 935 return false; 936 937 do { 938 /* next event */ 939 sched->state.event++; 940 if (sched->state.event >= sched->max_events) { 941 /* next weight */ 942 sched->state.event = 0; 943 sched->state.weight++; 944 if (sched->state.weight > sched->max_weight) 945 return false; 946 } 947 c = sched->constraints[sched->state.event]; 948 } while (c->weight != sched->state.weight); 949 950 sched->state.counter = 0; /* start with first counter */ 951 952 return true; 953 } 954 955 /* 956 * Assign a counter for each event. 957 */ 958 int perf_assign_events(struct event_constraint **constraints, int n, 959 int wmin, int wmax, int gpmax, int *assign) 960 { 961 struct perf_sched sched; 962 963 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 964 965 do { 966 if (!perf_sched_find_counter(&sched)) 967 break; /* failed */ 968 if (assign) 969 assign[sched.state.event] = sched.state.counter; 970 } while (perf_sched_next_event(&sched)); 971 972 return sched.state.unassigned; 973 } 974 EXPORT_SYMBOL_GPL(perf_assign_events); 975 976 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 977 { 978 int num_counters = hybrid(cpuc->pmu, num_counters); 979 struct event_constraint *c; 980 struct perf_event *e; 981 int n0, i, wmin, wmax, unsched = 0; 982 struct hw_perf_event *hwc; 983 u64 used_mask = 0; 984 985 /* 986 * Compute the number of events already present; see x86_pmu_add(), 987 * validate_group() and x86_pmu_commit_txn(). For the former two 988 * cpuc->n_events hasn't been updated yet, while for the latter 989 * cpuc->n_txn contains the number of events added in the current 990 * transaction. 991 */ 992 n0 = cpuc->n_events; 993 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 994 n0 -= cpuc->n_txn; 995 996 static_call_cond(x86_pmu_start_scheduling)(cpuc); 997 998 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 999 c = cpuc->event_constraint[i]; 1000 1001 /* 1002 * Previously scheduled events should have a cached constraint, 1003 * while new events should not have one. 1004 */ 1005 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); 1006 1007 /* 1008 * Request constraints for new events; or for those events that 1009 * have a dynamic constraint -- for those the constraint can 1010 * change due to external factors (sibling state, allow_tfa). 1011 */ 1012 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { 1013 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); 1014 cpuc->event_constraint[i] = c; 1015 } 1016 1017 wmin = min(wmin, c->weight); 1018 wmax = max(wmax, c->weight); 1019 } 1020 1021 /* 1022 * fastpath, try to reuse previous register 1023 */ 1024 for (i = 0; i < n; i++) { 1025 u64 mask; 1026 1027 hwc = &cpuc->event_list[i]->hw; 1028 c = cpuc->event_constraint[i]; 1029 1030 /* never assigned */ 1031 if (hwc->idx == -1) 1032 break; 1033 1034 /* constraint still honored */ 1035 if (!test_bit(hwc->idx, c->idxmsk)) 1036 break; 1037 1038 mask = BIT_ULL(hwc->idx); 1039 if (is_counter_pair(hwc)) 1040 mask |= mask << 1; 1041 1042 /* not already used */ 1043 if (used_mask & mask) 1044 break; 1045 1046 used_mask |= mask; 1047 1048 if (assign) 1049 assign[i] = hwc->idx; 1050 } 1051 1052 /* slow path */ 1053 if (i != n) { 1054 int gpmax = num_counters; 1055 1056 /* 1057 * Do not allow scheduling of more than half the available 1058 * generic counters. 1059 * 1060 * This helps avoid counter starvation of sibling thread by 1061 * ensuring at most half the counters cannot be in exclusive 1062 * mode. There is no designated counters for the limits. Any 1063 * N/2 counters can be used. This helps with events with 1064 * specific counter constraints. 1065 */ 1066 if (is_ht_workaround_enabled() && !cpuc->is_fake && 1067 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 1068 gpmax /= 2; 1069 1070 /* 1071 * Reduce the amount of available counters to allow fitting 1072 * the extra Merge events needed by large increment events. 1073 */ 1074 if (x86_pmu.flags & PMU_FL_PAIR) { 1075 gpmax = num_counters - cpuc->n_pair; 1076 WARN_ON(gpmax <= 0); 1077 } 1078 1079 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 1080 wmax, gpmax, assign); 1081 } 1082 1083 /* 1084 * In case of success (unsched = 0), mark events as committed, 1085 * so we do not put_constraint() in case new events are added 1086 * and fail to be scheduled 1087 * 1088 * We invoke the lower level commit callback to lock the resource 1089 * 1090 * We do not need to do all of this in case we are called to 1091 * validate an event group (assign == NULL) 1092 */ 1093 if (!unsched && assign) { 1094 for (i = 0; i < n; i++) 1095 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); 1096 } else { 1097 for (i = n0; i < n; i++) { 1098 e = cpuc->event_list[i]; 1099 1100 /* 1101 * release events that failed scheduling 1102 */ 1103 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); 1104 1105 cpuc->event_constraint[i] = NULL; 1106 } 1107 } 1108 1109 static_call_cond(x86_pmu_stop_scheduling)(cpuc); 1110 1111 return unsched ? -EINVAL : 0; 1112 } 1113 1114 static int add_nr_metric_event(struct cpu_hw_events *cpuc, 1115 struct perf_event *event) 1116 { 1117 if (is_metric_event(event)) { 1118 if (cpuc->n_metric == INTEL_TD_METRIC_NUM) 1119 return -EINVAL; 1120 cpuc->n_metric++; 1121 cpuc->n_txn_metric++; 1122 } 1123 1124 return 0; 1125 } 1126 1127 static void del_nr_metric_event(struct cpu_hw_events *cpuc, 1128 struct perf_event *event) 1129 { 1130 if (is_metric_event(event)) 1131 cpuc->n_metric--; 1132 } 1133 1134 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, 1135 int max_count, int n) 1136 { 1137 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1138 1139 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) 1140 return -EINVAL; 1141 1142 if (n >= max_count + cpuc->n_metric) 1143 return -EINVAL; 1144 1145 cpuc->event_list[n] = event; 1146 if (is_counter_pair(&event->hw)) { 1147 cpuc->n_pair++; 1148 cpuc->n_txn_pair++; 1149 } 1150 1151 return 0; 1152 } 1153 1154 /* 1155 * dogrp: true if must collect siblings events (group) 1156 * returns total number of events and error code 1157 */ 1158 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 1159 { 1160 int num_counters = hybrid(cpuc->pmu, num_counters); 1161 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1162 struct perf_event *event; 1163 int n, max_count; 1164 1165 max_count = num_counters + num_counters_fixed; 1166 1167 /* current number of events already accepted */ 1168 n = cpuc->n_events; 1169 if (!cpuc->n_events) 1170 cpuc->pebs_output = 0; 1171 1172 if (!cpuc->is_fake && leader->attr.precise_ip) { 1173 /* 1174 * For PEBS->PT, if !aux_event, the group leader (PT) went 1175 * away, the group was broken down and this singleton event 1176 * can't schedule any more. 1177 */ 1178 if (is_pebs_pt(leader) && !leader->aux_event) 1179 return -EINVAL; 1180 1181 /* 1182 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS 1183 */ 1184 if (cpuc->pebs_output && 1185 cpuc->pebs_output != is_pebs_pt(leader) + 1) 1186 return -EINVAL; 1187 1188 cpuc->pebs_output = is_pebs_pt(leader) + 1; 1189 } 1190 1191 if (is_x86_event(leader)) { 1192 if (collect_event(cpuc, leader, max_count, n)) 1193 return -EINVAL; 1194 n++; 1195 } 1196 1197 if (!dogrp) 1198 return n; 1199 1200 for_each_sibling_event(event, leader) { 1201 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) 1202 continue; 1203 1204 if (collect_event(cpuc, event, max_count, n)) 1205 return -EINVAL; 1206 1207 n++; 1208 } 1209 return n; 1210 } 1211 1212 static inline void x86_assign_hw_event(struct perf_event *event, 1213 struct cpu_hw_events *cpuc, int i) 1214 { 1215 struct hw_perf_event *hwc = &event->hw; 1216 int idx; 1217 1218 idx = hwc->idx = cpuc->assign[i]; 1219 hwc->last_cpu = smp_processor_id(); 1220 hwc->last_tag = ++cpuc->tags[i]; 1221 1222 static_call_cond(x86_pmu_assign)(event, idx); 1223 1224 switch (hwc->idx) { 1225 case INTEL_PMC_IDX_FIXED_BTS: 1226 case INTEL_PMC_IDX_FIXED_VLBR: 1227 hwc->config_base = 0; 1228 hwc->event_base = 0; 1229 break; 1230 1231 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: 1232 /* All the metric events are mapped onto the fixed counter 3. */ 1233 idx = INTEL_PMC_IDX_FIXED_SLOTS; 1234 fallthrough; 1235 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: 1236 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1237 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + 1238 (idx - INTEL_PMC_IDX_FIXED); 1239 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1240 INTEL_PMC_FIXED_RDPMC_BASE; 1241 break; 1242 1243 default: 1244 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1245 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1246 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1247 break; 1248 } 1249 } 1250 1251 /** 1252 * x86_perf_rdpmc_index - Return PMC counter used for event 1253 * @event: the perf_event to which the PMC counter was assigned 1254 * 1255 * The counter assigned to this performance event may change if interrupts 1256 * are enabled. This counter should thus never be used while interrupts are 1257 * enabled. Before this function is used to obtain the assigned counter the 1258 * event should be checked for validity using, for example, 1259 * perf_event_read_local(), within the same interrupt disabled section in 1260 * which this counter is planned to be used. 1261 * 1262 * Return: The index of the performance monitoring counter assigned to 1263 * @perf_event. 1264 */ 1265 int x86_perf_rdpmc_index(struct perf_event *event) 1266 { 1267 lockdep_assert_irqs_disabled(); 1268 1269 return event->hw.event_base_rdpmc; 1270 } 1271 1272 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1273 struct cpu_hw_events *cpuc, 1274 int i) 1275 { 1276 return hwc->idx == cpuc->assign[i] && 1277 hwc->last_cpu == smp_processor_id() && 1278 hwc->last_tag == cpuc->tags[i]; 1279 } 1280 1281 static void x86_pmu_start(struct perf_event *event, int flags); 1282 1283 static void x86_pmu_enable(struct pmu *pmu) 1284 { 1285 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1286 struct perf_event *event; 1287 struct hw_perf_event *hwc; 1288 int i, added = cpuc->n_added; 1289 1290 if (!x86_pmu_initialized()) 1291 return; 1292 1293 if (cpuc->enabled) 1294 return; 1295 1296 if (cpuc->n_added) { 1297 int n_running = cpuc->n_events - cpuc->n_added; 1298 /* 1299 * apply assignment obtained either from 1300 * hw_perf_group_sched_in() or x86_pmu_enable() 1301 * 1302 * step1: save events moving to new counters 1303 */ 1304 for (i = 0; i < n_running; i++) { 1305 event = cpuc->event_list[i]; 1306 hwc = &event->hw; 1307 1308 /* 1309 * we can avoid reprogramming counter if: 1310 * - assigned same counter as last time 1311 * - running on same CPU as last time 1312 * - no other event has used the counter since 1313 */ 1314 if (hwc->idx == -1 || 1315 match_prev_assignment(hwc, cpuc, i)) 1316 continue; 1317 1318 /* 1319 * Ensure we don't accidentally enable a stopped 1320 * counter simply because we rescheduled. 1321 */ 1322 if (hwc->state & PERF_HES_STOPPED) 1323 hwc->state |= PERF_HES_ARCH; 1324 1325 x86_pmu_stop(event, PERF_EF_UPDATE); 1326 } 1327 1328 /* 1329 * step2: reprogram moved events into new counters 1330 */ 1331 for (i = 0; i < cpuc->n_events; i++) { 1332 event = cpuc->event_list[i]; 1333 hwc = &event->hw; 1334 1335 if (!match_prev_assignment(hwc, cpuc, i)) 1336 x86_assign_hw_event(event, cpuc, i); 1337 else if (i < n_running) 1338 continue; 1339 1340 if (hwc->state & PERF_HES_ARCH) 1341 continue; 1342 1343 /* 1344 * if cpuc->enabled = 0, then no wrmsr as 1345 * per x86_pmu_enable_event() 1346 */ 1347 x86_pmu_start(event, PERF_EF_RELOAD); 1348 } 1349 cpuc->n_added = 0; 1350 perf_events_lapic_init(); 1351 } 1352 1353 cpuc->enabled = 1; 1354 barrier(); 1355 1356 static_call(x86_pmu_enable_all)(added); 1357 } 1358 1359 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1360 1361 /* 1362 * Set the next IRQ period, based on the hwc->period_left value. 1363 * To be called with the event disabled in hw: 1364 */ 1365 int x86_perf_event_set_period(struct perf_event *event) 1366 { 1367 struct hw_perf_event *hwc = &event->hw; 1368 s64 left = local64_read(&hwc->period_left); 1369 s64 period = hwc->sample_period; 1370 int ret = 0, idx = hwc->idx; 1371 1372 if (unlikely(!hwc->event_base)) 1373 return 0; 1374 1375 /* 1376 * If we are way outside a reasonable range then just skip forward: 1377 */ 1378 if (unlikely(left <= -period)) { 1379 left = period; 1380 local64_set(&hwc->period_left, left); 1381 hwc->last_period = period; 1382 ret = 1; 1383 } 1384 1385 if (unlikely(left <= 0)) { 1386 left += period; 1387 local64_set(&hwc->period_left, left); 1388 hwc->last_period = period; 1389 ret = 1; 1390 } 1391 /* 1392 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1393 */ 1394 if (unlikely(left < 2)) 1395 left = 2; 1396 1397 if (left > x86_pmu.max_period) 1398 left = x86_pmu.max_period; 1399 1400 static_call_cond(x86_pmu_limit_period)(event, &left); 1401 1402 this_cpu_write(pmc_prev_left[idx], left); 1403 1404 /* 1405 * The hw event starts counting from this event offset, 1406 * mark it to be able to extra future deltas: 1407 */ 1408 local64_set(&hwc->prev_count, (u64)-left); 1409 1410 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1411 1412 /* 1413 * Sign extend the Merge event counter's upper 16 bits since 1414 * we currently declare a 48-bit counter width 1415 */ 1416 if (is_counter_pair(hwc)) 1417 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff); 1418 1419 perf_event_update_userpage(event); 1420 1421 return ret; 1422 } 1423 1424 void x86_pmu_enable_event(struct perf_event *event) 1425 { 1426 if (__this_cpu_read(cpu_hw_events.enabled)) 1427 __x86_pmu_enable_event(&event->hw, 1428 ARCH_PERFMON_EVENTSEL_ENABLE); 1429 } 1430 1431 /* 1432 * Add a single event to the PMU. 1433 * 1434 * The event is added to the group of enabled events 1435 * but only if it can be scheduled with existing events. 1436 */ 1437 static int x86_pmu_add(struct perf_event *event, int flags) 1438 { 1439 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1440 struct hw_perf_event *hwc; 1441 int assign[X86_PMC_IDX_MAX]; 1442 int n, n0, ret; 1443 1444 hwc = &event->hw; 1445 1446 n0 = cpuc->n_events; 1447 ret = n = collect_events(cpuc, event, false); 1448 if (ret < 0) 1449 goto out; 1450 1451 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1452 if (!(flags & PERF_EF_START)) 1453 hwc->state |= PERF_HES_ARCH; 1454 1455 /* 1456 * If group events scheduling transaction was started, 1457 * skip the schedulability test here, it will be performed 1458 * at commit time (->commit_txn) as a whole. 1459 * 1460 * If commit fails, we'll call ->del() on all events 1461 * for which ->add() was called. 1462 */ 1463 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1464 goto done_collect; 1465 1466 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 1467 if (ret) 1468 goto out; 1469 /* 1470 * copy new assignment, now we know it is possible 1471 * will be used by hw_perf_enable() 1472 */ 1473 memcpy(cpuc->assign, assign, n*sizeof(int)); 1474 1475 done_collect: 1476 /* 1477 * Commit the collect_events() state. See x86_pmu_del() and 1478 * x86_pmu_*_txn(). 1479 */ 1480 cpuc->n_events = n; 1481 cpuc->n_added += n - n0; 1482 cpuc->n_txn += n - n0; 1483 1484 /* 1485 * This is before x86_pmu_enable() will call x86_pmu_start(), 1486 * so we enable LBRs before an event needs them etc.. 1487 */ 1488 static_call_cond(x86_pmu_add)(event); 1489 1490 ret = 0; 1491 out: 1492 return ret; 1493 } 1494 1495 static void x86_pmu_start(struct perf_event *event, int flags) 1496 { 1497 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1498 int idx = event->hw.idx; 1499 1500 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1501 return; 1502 1503 if (WARN_ON_ONCE(idx == -1)) 1504 return; 1505 1506 if (flags & PERF_EF_RELOAD) { 1507 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1508 static_call(x86_pmu_set_period)(event); 1509 } 1510 1511 event->hw.state = 0; 1512 1513 cpuc->events[idx] = event; 1514 __set_bit(idx, cpuc->active_mask); 1515 static_call(x86_pmu_enable)(event); 1516 perf_event_update_userpage(event); 1517 } 1518 1519 void perf_event_print_debug(void) 1520 { 1521 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1522 u64 pebs, debugctl; 1523 int cpu = smp_processor_id(); 1524 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1525 int num_counters = hybrid(cpuc->pmu, num_counters); 1526 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1527 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); 1528 unsigned long flags; 1529 int idx; 1530 1531 if (!num_counters) 1532 return; 1533 1534 local_irq_save(flags); 1535 1536 if (x86_pmu.version >= 2) { 1537 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1538 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1539 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1540 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1541 1542 pr_info("\n"); 1543 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1544 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1545 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1546 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1547 if (pebs_constraints) { 1548 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1549 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1550 } 1551 if (x86_pmu.lbr_nr) { 1552 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1553 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1554 } 1555 } 1556 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1557 1558 for (idx = 0; idx < num_counters; idx++) { 1559 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1560 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1561 1562 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1563 1564 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1565 cpu, idx, pmc_ctrl); 1566 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1567 cpu, idx, pmc_count); 1568 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1569 cpu, idx, prev_left); 1570 } 1571 for (idx = 0; idx < num_counters_fixed; idx++) { 1572 if (fixed_counter_disabled(idx, cpuc->pmu)) 1573 continue; 1574 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); 1575 1576 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1577 cpu, idx, pmc_count); 1578 } 1579 local_irq_restore(flags); 1580 } 1581 1582 void x86_pmu_stop(struct perf_event *event, int flags) 1583 { 1584 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1585 struct hw_perf_event *hwc = &event->hw; 1586 1587 if (test_bit(hwc->idx, cpuc->active_mask)) { 1588 static_call(x86_pmu_disable)(event); 1589 __clear_bit(hwc->idx, cpuc->active_mask); 1590 cpuc->events[hwc->idx] = NULL; 1591 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1592 hwc->state |= PERF_HES_STOPPED; 1593 } 1594 1595 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1596 /* 1597 * Drain the remaining delta count out of a event 1598 * that we are disabling: 1599 */ 1600 static_call(x86_pmu_update)(event); 1601 hwc->state |= PERF_HES_UPTODATE; 1602 } 1603 } 1604 1605 static void x86_pmu_del(struct perf_event *event, int flags) 1606 { 1607 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1608 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); 1609 int i; 1610 1611 /* 1612 * If we're called during a txn, we only need to undo x86_pmu.add. 1613 * The events never got scheduled and ->cancel_txn will truncate 1614 * the event_list. 1615 * 1616 * XXX assumes any ->del() called during a TXN will only be on 1617 * an event added during that same TXN. 1618 */ 1619 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1620 goto do_del; 1621 1622 __set_bit(event->hw.idx, cpuc->dirty); 1623 1624 /* 1625 * Not a TXN, therefore cleanup properly. 1626 */ 1627 x86_pmu_stop(event, PERF_EF_UPDATE); 1628 1629 for (i = 0; i < cpuc->n_events; i++) { 1630 if (event == cpuc->event_list[i]) 1631 break; 1632 } 1633 1634 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1635 return; 1636 1637 /* If we have a newly added event; make sure to decrease n_added. */ 1638 if (i >= cpuc->n_events - cpuc->n_added) 1639 --cpuc->n_added; 1640 1641 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); 1642 1643 /* Delete the array entry. */ 1644 while (++i < cpuc->n_events) { 1645 cpuc->event_list[i-1] = cpuc->event_list[i]; 1646 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1647 } 1648 cpuc->event_constraint[i-1] = NULL; 1649 --cpuc->n_events; 1650 if (intel_cap.perf_metrics) 1651 del_nr_metric_event(cpuc, event); 1652 1653 perf_event_update_userpage(event); 1654 1655 do_del: 1656 1657 /* 1658 * This is after x86_pmu_stop(); so we disable LBRs after any 1659 * event can need them etc.. 1660 */ 1661 static_call_cond(x86_pmu_del)(event); 1662 } 1663 1664 int x86_pmu_handle_irq(struct pt_regs *regs) 1665 { 1666 struct perf_sample_data data; 1667 struct cpu_hw_events *cpuc; 1668 struct perf_event *event; 1669 int idx, handled = 0; 1670 u64 val; 1671 1672 cpuc = this_cpu_ptr(&cpu_hw_events); 1673 1674 /* 1675 * Some chipsets need to unmask the LVTPC in a particular spot 1676 * inside the nmi handler. As a result, the unmasking was pushed 1677 * into all the nmi handlers. 1678 * 1679 * This generic handler doesn't seem to have any issues where the 1680 * unmasking occurs so it was left at the top. 1681 */ 1682 apic_write(APIC_LVTPC, APIC_DM_NMI); 1683 1684 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1685 if (!test_bit(idx, cpuc->active_mask)) 1686 continue; 1687 1688 event = cpuc->events[idx]; 1689 1690 val = static_call(x86_pmu_update)(event); 1691 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1692 continue; 1693 1694 /* 1695 * event overflow 1696 */ 1697 handled++; 1698 1699 if (!static_call(x86_pmu_set_period)(event)) 1700 continue; 1701 1702 perf_sample_data_init(&data, 0, event->hw.last_period); 1703 1704 if (has_branch_stack(event)) 1705 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack); 1706 1707 if (perf_event_overflow(event, &data, regs)) 1708 x86_pmu_stop(event, 0); 1709 } 1710 1711 if (handled) 1712 inc_irq_stat(apic_perf_irqs); 1713 1714 return handled; 1715 } 1716 1717 void perf_events_lapic_init(void) 1718 { 1719 if (!x86_pmu.apic || !x86_pmu_initialized()) 1720 return; 1721 1722 /* 1723 * Always use NMI for PMU 1724 */ 1725 apic_write(APIC_LVTPC, APIC_DM_NMI); 1726 } 1727 1728 static int 1729 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1730 { 1731 u64 start_clock; 1732 u64 finish_clock; 1733 int ret; 1734 1735 /* 1736 * All PMUs/events that share this PMI handler should make sure to 1737 * increment active_events for their events. 1738 */ 1739 if (!atomic_read(&active_events)) 1740 return NMI_DONE; 1741 1742 start_clock = sched_clock(); 1743 ret = static_call(x86_pmu_handle_irq)(regs); 1744 finish_clock = sched_clock(); 1745 1746 perf_sample_event_took(finish_clock - start_clock); 1747 1748 return ret; 1749 } 1750 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1751 1752 struct event_constraint emptyconstraint; 1753 struct event_constraint unconstrained; 1754 1755 static int x86_pmu_prepare_cpu(unsigned int cpu) 1756 { 1757 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1758 int i; 1759 1760 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1761 cpuc->kfree_on_online[i] = NULL; 1762 if (x86_pmu.cpu_prepare) 1763 return x86_pmu.cpu_prepare(cpu); 1764 return 0; 1765 } 1766 1767 static int x86_pmu_dead_cpu(unsigned int cpu) 1768 { 1769 if (x86_pmu.cpu_dead) 1770 x86_pmu.cpu_dead(cpu); 1771 return 0; 1772 } 1773 1774 static int x86_pmu_online_cpu(unsigned int cpu) 1775 { 1776 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1777 int i; 1778 1779 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1780 kfree(cpuc->kfree_on_online[i]); 1781 cpuc->kfree_on_online[i] = NULL; 1782 } 1783 return 0; 1784 } 1785 1786 static int x86_pmu_starting_cpu(unsigned int cpu) 1787 { 1788 if (x86_pmu.cpu_starting) 1789 x86_pmu.cpu_starting(cpu); 1790 return 0; 1791 } 1792 1793 static int x86_pmu_dying_cpu(unsigned int cpu) 1794 { 1795 if (x86_pmu.cpu_dying) 1796 x86_pmu.cpu_dying(cpu); 1797 return 0; 1798 } 1799 1800 static void __init pmu_check_apic(void) 1801 { 1802 if (boot_cpu_has(X86_FEATURE_APIC)) 1803 return; 1804 1805 x86_pmu.apic = 0; 1806 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1807 pr_info("no hardware sampling interrupt available.\n"); 1808 1809 /* 1810 * If we have a PMU initialized but no APIC 1811 * interrupts, we cannot sample hardware 1812 * events (user-space has to fall back and 1813 * sample via a hrtimer based software event): 1814 */ 1815 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1816 1817 } 1818 1819 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1820 .name = "format", 1821 .attrs = NULL, 1822 }; 1823 1824 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1825 { 1826 struct perf_pmu_events_attr *pmu_attr = 1827 container_of(attr, struct perf_pmu_events_attr, attr); 1828 u64 config = 0; 1829 1830 if (pmu_attr->id < x86_pmu.max_events) 1831 config = x86_pmu.event_map(pmu_attr->id); 1832 1833 /* string trumps id */ 1834 if (pmu_attr->event_str) 1835 return sprintf(page, "%s\n", pmu_attr->event_str); 1836 1837 return x86_pmu.events_sysfs_show(page, config); 1838 } 1839 EXPORT_SYMBOL_GPL(events_sysfs_show); 1840 1841 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1842 char *page) 1843 { 1844 struct perf_pmu_events_ht_attr *pmu_attr = 1845 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1846 1847 /* 1848 * Report conditional events depending on Hyper-Threading. 1849 * 1850 * This is overly conservative as usually the HT special 1851 * handling is not needed if the other CPU thread is idle. 1852 * 1853 * Note this does not (and cannot) handle the case when thread 1854 * siblings are invisible, for example with virtualization 1855 * if they are owned by some other guest. The user tool 1856 * has to re-read when a thread sibling gets onlined later. 1857 */ 1858 return sprintf(page, "%s", 1859 topology_max_smt_threads() > 1 ? 1860 pmu_attr->event_str_ht : 1861 pmu_attr->event_str_noht); 1862 } 1863 1864 ssize_t events_hybrid_sysfs_show(struct device *dev, 1865 struct device_attribute *attr, 1866 char *page) 1867 { 1868 struct perf_pmu_events_hybrid_attr *pmu_attr = 1869 container_of(attr, struct perf_pmu_events_hybrid_attr, attr); 1870 struct x86_hybrid_pmu *pmu; 1871 const char *str, *next_str; 1872 int i; 1873 1874 if (hweight64(pmu_attr->pmu_type) == 1) 1875 return sprintf(page, "%s", pmu_attr->event_str); 1876 1877 /* 1878 * Hybrid PMUs may support the same event name, but with different 1879 * event encoding, e.g., the mem-loads event on an Atom PMU has 1880 * different event encoding from a Core PMU. 1881 * 1882 * The event_str includes all event encodings. Each event encoding 1883 * is divided by ";". The order of the event encodings must follow 1884 * the order of the hybrid PMU index. 1885 */ 1886 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); 1887 1888 str = pmu_attr->event_str; 1889 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 1890 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type)) 1891 continue; 1892 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) { 1893 next_str = strchr(str, ';'); 1894 if (next_str) 1895 return snprintf(page, next_str - str + 1, "%s", str); 1896 else 1897 return sprintf(page, "%s", str); 1898 } 1899 str = strchr(str, ';'); 1900 str++; 1901 } 1902 1903 return 0; 1904 } 1905 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); 1906 1907 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1908 EVENT_ATTR(instructions, INSTRUCTIONS ); 1909 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1910 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1911 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1912 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1913 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1914 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1915 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1916 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1917 1918 static struct attribute *empty_attrs; 1919 1920 static struct attribute *events_attr[] = { 1921 EVENT_PTR(CPU_CYCLES), 1922 EVENT_PTR(INSTRUCTIONS), 1923 EVENT_PTR(CACHE_REFERENCES), 1924 EVENT_PTR(CACHE_MISSES), 1925 EVENT_PTR(BRANCH_INSTRUCTIONS), 1926 EVENT_PTR(BRANCH_MISSES), 1927 EVENT_PTR(BUS_CYCLES), 1928 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1929 EVENT_PTR(STALLED_CYCLES_BACKEND), 1930 EVENT_PTR(REF_CPU_CYCLES), 1931 NULL, 1932 }; 1933 1934 /* 1935 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1936 * out of events_attr attributes. 1937 */ 1938 static umode_t 1939 is_visible(struct kobject *kobj, struct attribute *attr, int idx) 1940 { 1941 struct perf_pmu_events_attr *pmu_attr; 1942 1943 if (idx >= x86_pmu.max_events) 1944 return 0; 1945 1946 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); 1947 /* str trumps id */ 1948 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; 1949 } 1950 1951 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1952 .name = "events", 1953 .attrs = events_attr, 1954 .is_visible = is_visible, 1955 }; 1956 1957 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1958 { 1959 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1960 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1961 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1962 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1963 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1964 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1965 ssize_t ret; 1966 1967 /* 1968 * We have whole page size to spend and just little data 1969 * to write, so we can safely use sprintf. 1970 */ 1971 ret = sprintf(page, "event=0x%02llx", event); 1972 1973 if (umask) 1974 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1975 1976 if (edge) 1977 ret += sprintf(page + ret, ",edge"); 1978 1979 if (pc) 1980 ret += sprintf(page + ret, ",pc"); 1981 1982 if (any) 1983 ret += sprintf(page + ret, ",any"); 1984 1985 if (inv) 1986 ret += sprintf(page + ret, ",inv"); 1987 1988 if (cmask) 1989 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1990 1991 ret += sprintf(page + ret, "\n"); 1992 1993 return ret; 1994 } 1995 1996 static struct attribute_group x86_pmu_attr_group; 1997 static struct attribute_group x86_pmu_caps_group; 1998 1999 static void x86_pmu_static_call_update(void) 2000 { 2001 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); 2002 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); 2003 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); 2004 static_call_update(x86_pmu_enable, x86_pmu.enable); 2005 static_call_update(x86_pmu_disable, x86_pmu.disable); 2006 2007 static_call_update(x86_pmu_assign, x86_pmu.assign); 2008 2009 static_call_update(x86_pmu_add, x86_pmu.add); 2010 static_call_update(x86_pmu_del, x86_pmu.del); 2011 static_call_update(x86_pmu_read, x86_pmu.read); 2012 2013 static_call_update(x86_pmu_set_period, x86_pmu.set_period); 2014 static_call_update(x86_pmu_update, x86_pmu.update); 2015 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period); 2016 2017 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); 2018 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); 2019 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); 2020 2021 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); 2022 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); 2023 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); 2024 2025 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); 2026 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx); 2027 2028 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); 2029 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); 2030 2031 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); 2032 static_call_update(x86_pmu_filter, x86_pmu.filter); 2033 } 2034 2035 static void _x86_pmu_read(struct perf_event *event) 2036 { 2037 static_call(x86_pmu_update)(event); 2038 } 2039 2040 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed, 2041 u64 intel_ctrl) 2042 { 2043 pr_info("... version: %d\n", x86_pmu.version); 2044 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 2045 pr_info("... generic registers: %d\n", num_counters); 2046 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 2047 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 2048 pr_info("... fixed-purpose events: %lu\n", 2049 hweight64((((1ULL << num_counters_fixed) - 1) 2050 << INTEL_PMC_IDX_FIXED) & intel_ctrl)); 2051 pr_info("... event mask: %016Lx\n", intel_ctrl); 2052 } 2053 2054 static int __init init_hw_perf_events(void) 2055 { 2056 struct x86_pmu_quirk *quirk; 2057 int err; 2058 2059 pr_info("Performance Events: "); 2060 2061 switch (boot_cpu_data.x86_vendor) { 2062 case X86_VENDOR_INTEL: 2063 err = intel_pmu_init(); 2064 break; 2065 case X86_VENDOR_AMD: 2066 err = amd_pmu_init(); 2067 break; 2068 case X86_VENDOR_HYGON: 2069 err = amd_pmu_init(); 2070 x86_pmu.name = "HYGON"; 2071 break; 2072 case X86_VENDOR_ZHAOXIN: 2073 case X86_VENDOR_CENTAUR: 2074 err = zhaoxin_pmu_init(); 2075 break; 2076 default: 2077 err = -ENOTSUPP; 2078 } 2079 if (err != 0) { 2080 pr_cont("no PMU driver, software events only.\n"); 2081 err = 0; 2082 goto out_bad_pmu; 2083 } 2084 2085 pmu_check_apic(); 2086 2087 /* sanity check that the hardware exists or is emulated */ 2088 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed)) 2089 goto out_bad_pmu; 2090 2091 pr_cont("%s PMU driver.\n", x86_pmu.name); 2092 2093 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 2094 2095 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 2096 quirk->func(); 2097 2098 if (!x86_pmu.intel_ctrl) 2099 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 2100 2101 perf_events_lapic_init(); 2102 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 2103 2104 unconstrained = (struct event_constraint) 2105 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, 2106 0, x86_pmu.num_counters, 0, 0); 2107 2108 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 2109 2110 if (!x86_pmu.events_sysfs_show) 2111 x86_pmu_events_group.attrs = &empty_attrs; 2112 2113 pmu.attr_update = x86_pmu.attr_update; 2114 2115 if (!is_hybrid()) { 2116 x86_pmu_show_pmu_cap(x86_pmu.num_counters, 2117 x86_pmu.num_counters_fixed, 2118 x86_pmu.intel_ctrl); 2119 } 2120 2121 if (!x86_pmu.read) 2122 x86_pmu.read = _x86_pmu_read; 2123 2124 if (!x86_pmu.guest_get_msrs) 2125 x86_pmu.guest_get_msrs = (void *)&__static_call_return0; 2126 2127 if (!x86_pmu.set_period) 2128 x86_pmu.set_period = x86_perf_event_set_period; 2129 2130 if (!x86_pmu.update) 2131 x86_pmu.update = x86_perf_event_update; 2132 2133 x86_pmu_static_call_update(); 2134 2135 /* 2136 * Install callbacks. Core will call them for each online 2137 * cpu. 2138 */ 2139 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 2140 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 2141 if (err) 2142 return err; 2143 2144 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 2145 "perf/x86:starting", x86_pmu_starting_cpu, 2146 x86_pmu_dying_cpu); 2147 if (err) 2148 goto out; 2149 2150 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 2151 x86_pmu_online_cpu, NULL); 2152 if (err) 2153 goto out1; 2154 2155 if (!is_hybrid()) { 2156 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2157 if (err) 2158 goto out2; 2159 } else { 2160 struct x86_hybrid_pmu *hybrid_pmu; 2161 int i, j; 2162 2163 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { 2164 hybrid_pmu = &x86_pmu.hybrid_pmu[i]; 2165 2166 hybrid_pmu->pmu = pmu; 2167 hybrid_pmu->pmu.type = -1; 2168 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; 2169 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; 2170 2171 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, 2172 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1); 2173 if (err) 2174 break; 2175 } 2176 2177 if (i < x86_pmu.num_hybrid_pmus) { 2178 for (j = 0; j < i; j++) 2179 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); 2180 pr_warn("Failed to register hybrid PMUs\n"); 2181 kfree(x86_pmu.hybrid_pmu); 2182 x86_pmu.hybrid_pmu = NULL; 2183 x86_pmu.num_hybrid_pmus = 0; 2184 goto out2; 2185 } 2186 } 2187 2188 return 0; 2189 2190 out2: 2191 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 2192 out1: 2193 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 2194 out: 2195 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 2196 out_bad_pmu: 2197 memset(&x86_pmu, 0, sizeof(x86_pmu)); 2198 return err; 2199 } 2200 early_initcall(init_hw_perf_events); 2201 2202 static void x86_pmu_read(struct perf_event *event) 2203 { 2204 static_call(x86_pmu_read)(event); 2205 } 2206 2207 /* 2208 * Start group events scheduling transaction 2209 * Set the flag to make pmu::enable() not perform the 2210 * schedulability test, it will be performed at commit time 2211 * 2212 * We only support PERF_PMU_TXN_ADD transactions. Save the 2213 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 2214 * transactions. 2215 */ 2216 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 2217 { 2218 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2219 2220 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 2221 2222 cpuc->txn_flags = txn_flags; 2223 if (txn_flags & ~PERF_PMU_TXN_ADD) 2224 return; 2225 2226 perf_pmu_disable(pmu); 2227 __this_cpu_write(cpu_hw_events.n_txn, 0); 2228 __this_cpu_write(cpu_hw_events.n_txn_pair, 0); 2229 __this_cpu_write(cpu_hw_events.n_txn_metric, 0); 2230 } 2231 2232 /* 2233 * Stop group events scheduling transaction 2234 * Clear the flag and pmu::enable() will perform the 2235 * schedulability test. 2236 */ 2237 static void x86_pmu_cancel_txn(struct pmu *pmu) 2238 { 2239 unsigned int txn_flags; 2240 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2241 2242 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2243 2244 txn_flags = cpuc->txn_flags; 2245 cpuc->txn_flags = 0; 2246 if (txn_flags & ~PERF_PMU_TXN_ADD) 2247 return; 2248 2249 /* 2250 * Truncate collected array by the number of events added in this 2251 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 2252 */ 2253 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 2254 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 2255 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); 2256 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); 2257 perf_pmu_enable(pmu); 2258 } 2259 2260 /* 2261 * Commit group events scheduling transaction 2262 * Perform the group schedulability test as a whole 2263 * Return 0 if success 2264 * 2265 * Does not cancel the transaction on failure; expects the caller to do this. 2266 */ 2267 static int x86_pmu_commit_txn(struct pmu *pmu) 2268 { 2269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2270 int assign[X86_PMC_IDX_MAX]; 2271 int n, ret; 2272 2273 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 2274 2275 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 2276 cpuc->txn_flags = 0; 2277 return 0; 2278 } 2279 2280 n = cpuc->n_events; 2281 2282 if (!x86_pmu_initialized()) 2283 return -EAGAIN; 2284 2285 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); 2286 if (ret) 2287 return ret; 2288 2289 /* 2290 * copy new assignment, now we know it is possible 2291 * will be used by hw_perf_enable() 2292 */ 2293 memcpy(cpuc->assign, assign, n*sizeof(int)); 2294 2295 cpuc->txn_flags = 0; 2296 perf_pmu_enable(pmu); 2297 return 0; 2298 } 2299 /* 2300 * a fake_cpuc is used to validate event groups. Due to 2301 * the extra reg logic, we need to also allocate a fake 2302 * per_core and per_cpu structure. Otherwise, group events 2303 * using extra reg may conflict without the kernel being 2304 * able to catch this when the last event gets added to 2305 * the group. 2306 */ 2307 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 2308 { 2309 intel_cpuc_finish(cpuc); 2310 kfree(cpuc); 2311 } 2312 2313 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) 2314 { 2315 struct cpu_hw_events *cpuc; 2316 int cpu; 2317 2318 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2319 if (!cpuc) 2320 return ERR_PTR(-ENOMEM); 2321 cpuc->is_fake = 1; 2322 2323 if (is_hybrid()) { 2324 struct x86_hybrid_pmu *h_pmu; 2325 2326 h_pmu = hybrid_pmu(event_pmu); 2327 if (cpumask_empty(&h_pmu->supported_cpus)) 2328 goto error; 2329 cpu = cpumask_first(&h_pmu->supported_cpus); 2330 } else 2331 cpu = raw_smp_processor_id(); 2332 cpuc->pmu = event_pmu; 2333 2334 if (intel_cpuc_prepare(cpuc, cpu)) 2335 goto error; 2336 2337 return cpuc; 2338 error: 2339 free_fake_cpuc(cpuc); 2340 return ERR_PTR(-ENOMEM); 2341 } 2342 2343 /* 2344 * validate that we can schedule this event 2345 */ 2346 static int validate_event(struct perf_event *event) 2347 { 2348 struct cpu_hw_events *fake_cpuc; 2349 struct event_constraint *c; 2350 int ret = 0; 2351 2352 fake_cpuc = allocate_fake_cpuc(event->pmu); 2353 if (IS_ERR(fake_cpuc)) 2354 return PTR_ERR(fake_cpuc); 2355 2356 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); 2357 2358 if (!c || !c->weight) 2359 ret = -EINVAL; 2360 2361 if (x86_pmu.put_event_constraints) 2362 x86_pmu.put_event_constraints(fake_cpuc, event); 2363 2364 free_fake_cpuc(fake_cpuc); 2365 2366 return ret; 2367 } 2368 2369 /* 2370 * validate a single event group 2371 * 2372 * validation include: 2373 * - check events are compatible which each other 2374 * - events do not compete for the same counter 2375 * - number of events <= number of counters 2376 * 2377 * validation ensures the group can be loaded onto the 2378 * PMU if it was the only group available. 2379 */ 2380 static int validate_group(struct perf_event *event) 2381 { 2382 struct perf_event *leader = event->group_leader; 2383 struct cpu_hw_events *fake_cpuc; 2384 int ret = -EINVAL, n; 2385 2386 /* 2387 * Reject events from different hybrid PMUs. 2388 */ 2389 if (is_hybrid()) { 2390 struct perf_event *sibling; 2391 struct pmu *pmu = NULL; 2392 2393 if (is_x86_event(leader)) 2394 pmu = leader->pmu; 2395 2396 for_each_sibling_event(sibling, leader) { 2397 if (!is_x86_event(sibling)) 2398 continue; 2399 if (!pmu) 2400 pmu = sibling->pmu; 2401 else if (pmu != sibling->pmu) 2402 return ret; 2403 } 2404 } 2405 2406 fake_cpuc = allocate_fake_cpuc(event->pmu); 2407 if (IS_ERR(fake_cpuc)) 2408 return PTR_ERR(fake_cpuc); 2409 /* 2410 * the event is not yet connected with its 2411 * siblings therefore we must first collect 2412 * existing siblings, then add the new event 2413 * before we can simulate the scheduling 2414 */ 2415 n = collect_events(fake_cpuc, leader, true); 2416 if (n < 0) 2417 goto out; 2418 2419 fake_cpuc->n_events = n; 2420 n = collect_events(fake_cpuc, event, false); 2421 if (n < 0) 2422 goto out; 2423 2424 fake_cpuc->n_events = 0; 2425 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2426 2427 out: 2428 free_fake_cpuc(fake_cpuc); 2429 return ret; 2430 } 2431 2432 static int x86_pmu_event_init(struct perf_event *event) 2433 { 2434 struct x86_hybrid_pmu *pmu = NULL; 2435 int err; 2436 2437 if ((event->attr.type != event->pmu->type) && 2438 (event->attr.type != PERF_TYPE_HARDWARE) && 2439 (event->attr.type != PERF_TYPE_HW_CACHE)) 2440 return -ENOENT; 2441 2442 if (is_hybrid() && (event->cpu != -1)) { 2443 pmu = hybrid_pmu(event->pmu); 2444 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) 2445 return -ENOENT; 2446 } 2447 2448 err = __x86_pmu_event_init(event); 2449 if (!err) { 2450 if (event->group_leader != event) 2451 err = validate_group(event); 2452 else 2453 err = validate_event(event); 2454 } 2455 if (err) { 2456 if (event->destroy) 2457 event->destroy(event); 2458 event->destroy = NULL; 2459 } 2460 2461 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2462 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2463 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; 2464 2465 return err; 2466 } 2467 2468 void perf_clear_dirty_counters(void) 2469 { 2470 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2471 int i; 2472 2473 /* Don't need to clear the assigned counter. */ 2474 for (i = 0; i < cpuc->n_events; i++) 2475 __clear_bit(cpuc->assign[i], cpuc->dirty); 2476 2477 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) 2478 return; 2479 2480 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { 2481 if (i >= INTEL_PMC_IDX_FIXED) { 2482 /* Metrics and fake events don't have corresponding HW counters. */ 2483 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed)) 2484 continue; 2485 2486 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0); 2487 } else { 2488 wrmsrl(x86_pmu_event_addr(i), 0); 2489 } 2490 } 2491 2492 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); 2493 } 2494 2495 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2496 { 2497 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2498 return; 2499 2500 /* 2501 * This function relies on not being called concurrently in two 2502 * tasks in the same mm. Otherwise one task could observe 2503 * perf_rdpmc_allowed > 1 and return all the way back to 2504 * userspace with CR4.PCE clear while another task is still 2505 * doing on_each_cpu_mask() to propagate CR4.PCE. 2506 * 2507 * For now, this can't happen because all callers hold mmap_lock 2508 * for write. If this changes, we'll need a different solution. 2509 */ 2510 mmap_assert_write_locked(mm); 2511 2512 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2513 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2514 } 2515 2516 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2517 { 2518 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2519 return; 2520 2521 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2522 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); 2523 } 2524 2525 static int x86_pmu_event_idx(struct perf_event *event) 2526 { 2527 struct hw_perf_event *hwc = &event->hw; 2528 2529 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) 2530 return 0; 2531 2532 if (is_metric_idx(hwc->idx)) 2533 return INTEL_PMC_FIXED_RDPMC_METRICS + 1; 2534 else 2535 return hwc->event_base_rdpmc + 1; 2536 } 2537 2538 static ssize_t get_attr_rdpmc(struct device *cdev, 2539 struct device_attribute *attr, 2540 char *buf) 2541 { 2542 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2543 } 2544 2545 static ssize_t set_attr_rdpmc(struct device *cdev, 2546 struct device_attribute *attr, 2547 const char *buf, size_t count) 2548 { 2549 unsigned long val; 2550 ssize_t ret; 2551 2552 ret = kstrtoul(buf, 0, &val); 2553 if (ret) 2554 return ret; 2555 2556 if (val > 2) 2557 return -EINVAL; 2558 2559 if (x86_pmu.attr_rdpmc_broken) 2560 return -ENOTSUPP; 2561 2562 if (val != x86_pmu.attr_rdpmc) { 2563 /* 2564 * Changing into or out of never available or always available, 2565 * aka perf-event-bypassing mode. This path is extremely slow, 2566 * but only root can trigger it, so it's okay. 2567 */ 2568 if (val == 0) 2569 static_branch_inc(&rdpmc_never_available_key); 2570 else if (x86_pmu.attr_rdpmc == 0) 2571 static_branch_dec(&rdpmc_never_available_key); 2572 2573 if (val == 2) 2574 static_branch_inc(&rdpmc_always_available_key); 2575 else if (x86_pmu.attr_rdpmc == 2) 2576 static_branch_dec(&rdpmc_always_available_key); 2577 2578 on_each_cpu(cr4_update_pce, NULL, 1); 2579 x86_pmu.attr_rdpmc = val; 2580 } 2581 2582 return count; 2583 } 2584 2585 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2586 2587 static struct attribute *x86_pmu_attrs[] = { 2588 &dev_attr_rdpmc.attr, 2589 NULL, 2590 }; 2591 2592 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2593 .attrs = x86_pmu_attrs, 2594 }; 2595 2596 static ssize_t max_precise_show(struct device *cdev, 2597 struct device_attribute *attr, 2598 char *buf) 2599 { 2600 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2601 } 2602 2603 static DEVICE_ATTR_RO(max_precise); 2604 2605 static struct attribute *x86_pmu_caps_attrs[] = { 2606 &dev_attr_max_precise.attr, 2607 NULL 2608 }; 2609 2610 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2611 .name = "caps", 2612 .attrs = x86_pmu_caps_attrs, 2613 }; 2614 2615 static const struct attribute_group *x86_pmu_attr_groups[] = { 2616 &x86_pmu_attr_group, 2617 &x86_pmu_format_group, 2618 &x86_pmu_events_group, 2619 &x86_pmu_caps_group, 2620 NULL, 2621 }; 2622 2623 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 2624 { 2625 static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in); 2626 } 2627 2628 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc, 2629 struct perf_event_pmu_context *next_epc) 2630 { 2631 static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc); 2632 } 2633 2634 void perf_check_microcode(void) 2635 { 2636 if (x86_pmu.check_microcode) 2637 x86_pmu.check_microcode(); 2638 } 2639 2640 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2641 { 2642 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2643 return -EINVAL; 2644 2645 if (value && x86_pmu.limit_period) { 2646 s64 left = value; 2647 x86_pmu.limit_period(event, &left); 2648 if (left > value) 2649 return -EINVAL; 2650 } 2651 2652 return 0; 2653 } 2654 2655 static int x86_pmu_aux_output_match(struct perf_event *event) 2656 { 2657 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) 2658 return 0; 2659 2660 if (x86_pmu.aux_output_match) 2661 return x86_pmu.aux_output_match(event); 2662 2663 return 0; 2664 } 2665 2666 static bool x86_pmu_filter(struct pmu *pmu, int cpu) 2667 { 2668 bool ret = false; 2669 2670 static_call_cond(x86_pmu_filter)(pmu, cpu, &ret); 2671 2672 return ret; 2673 } 2674 2675 static struct pmu pmu = { 2676 .pmu_enable = x86_pmu_enable, 2677 .pmu_disable = x86_pmu_disable, 2678 2679 .attr_groups = x86_pmu_attr_groups, 2680 2681 .event_init = x86_pmu_event_init, 2682 2683 .event_mapped = x86_pmu_event_mapped, 2684 .event_unmapped = x86_pmu_event_unmapped, 2685 2686 .add = x86_pmu_add, 2687 .del = x86_pmu_del, 2688 .start = x86_pmu_start, 2689 .stop = x86_pmu_stop, 2690 .read = x86_pmu_read, 2691 2692 .start_txn = x86_pmu_start_txn, 2693 .cancel_txn = x86_pmu_cancel_txn, 2694 .commit_txn = x86_pmu_commit_txn, 2695 2696 .event_idx = x86_pmu_event_idx, 2697 .sched_task = x86_pmu_sched_task, 2698 .swap_task_ctx = x86_pmu_swap_task_ctx, 2699 .check_period = x86_pmu_check_period, 2700 2701 .aux_output_match = x86_pmu_aux_output_match, 2702 2703 .filter = x86_pmu_filter, 2704 }; 2705 2706 void arch_perf_update_userpage(struct perf_event *event, 2707 struct perf_event_mmap_page *userpg, u64 now) 2708 { 2709 struct cyc2ns_data data; 2710 u64 offset; 2711 2712 userpg->cap_user_time = 0; 2713 userpg->cap_user_time_zero = 0; 2714 userpg->cap_user_rdpmc = 2715 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); 2716 userpg->pmc_width = x86_pmu.cntval_bits; 2717 2718 if (!using_native_sched_clock() || !sched_clock_stable()) 2719 return; 2720 2721 cyc2ns_read_begin(&data); 2722 2723 offset = data.cyc2ns_offset + __sched_clock_offset; 2724 2725 /* 2726 * Internal timekeeping for enabled/running/stopped times 2727 * is always in the local_clock domain. 2728 */ 2729 userpg->cap_user_time = 1; 2730 userpg->time_mult = data.cyc2ns_mul; 2731 userpg->time_shift = data.cyc2ns_shift; 2732 userpg->time_offset = offset - now; 2733 2734 /* 2735 * cap_user_time_zero doesn't make sense when we're using a different 2736 * time base for the records. 2737 */ 2738 if (!event->attr.use_clockid) { 2739 userpg->cap_user_time_zero = 1; 2740 userpg->time_zero = offset; 2741 } 2742 2743 cyc2ns_read_end(); 2744 } 2745 2746 /* 2747 * Determine whether the regs were taken from an irq/exception handler rather 2748 * than from perf_arch_fetch_caller_regs(). 2749 */ 2750 static bool perf_hw_regs(struct pt_regs *regs) 2751 { 2752 return regs->flags & X86_EFLAGS_FIXED; 2753 } 2754 2755 void 2756 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2757 { 2758 struct unwind_state state; 2759 unsigned long addr; 2760 2761 if (perf_guest_state()) { 2762 /* TODO: We don't support guest os callchain now */ 2763 return; 2764 } 2765 2766 if (perf_callchain_store(entry, regs->ip)) 2767 return; 2768 2769 if (perf_hw_regs(regs)) 2770 unwind_start(&state, current, regs, NULL); 2771 else 2772 unwind_start(&state, current, NULL, (void *)regs->sp); 2773 2774 for (; !unwind_done(&state); unwind_next_frame(&state)) { 2775 addr = unwind_get_return_address(&state); 2776 if (!addr || perf_callchain_store(entry, addr)) 2777 return; 2778 } 2779 } 2780 2781 static inline int 2782 valid_user_frame(const void __user *fp, unsigned long size) 2783 { 2784 return __access_ok(fp, size); 2785 } 2786 2787 static unsigned long get_segment_base(unsigned int segment) 2788 { 2789 struct desc_struct *desc; 2790 unsigned int idx = segment >> 3; 2791 2792 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2793 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2794 struct ldt_struct *ldt; 2795 2796 /* IRQs are off, so this synchronizes with smp_store_release */ 2797 ldt = READ_ONCE(current->active_mm->context.ldt); 2798 if (!ldt || idx >= ldt->nr_entries) 2799 return 0; 2800 2801 desc = &ldt->entries[idx]; 2802 #else 2803 return 0; 2804 #endif 2805 } else { 2806 if (idx >= GDT_ENTRIES) 2807 return 0; 2808 2809 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2810 } 2811 2812 return get_desc_base(desc); 2813 } 2814 2815 #ifdef CONFIG_IA32_EMULATION 2816 2817 #include <linux/compat.h> 2818 2819 static inline int 2820 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2821 { 2822 /* 32-bit process in 64-bit kernel. */ 2823 unsigned long ss_base, cs_base; 2824 struct stack_frame_ia32 frame; 2825 const struct stack_frame_ia32 __user *fp; 2826 2827 if (user_64bit_mode(regs)) 2828 return 0; 2829 2830 cs_base = get_segment_base(regs->cs); 2831 ss_base = get_segment_base(regs->ss); 2832 2833 fp = compat_ptr(ss_base + regs->bp); 2834 pagefault_disable(); 2835 while (entry->nr < entry->max_stack) { 2836 if (!valid_user_frame(fp, sizeof(frame))) 2837 break; 2838 2839 if (__get_user(frame.next_frame, &fp->next_frame)) 2840 break; 2841 if (__get_user(frame.return_address, &fp->return_address)) 2842 break; 2843 2844 perf_callchain_store(entry, cs_base + frame.return_address); 2845 fp = compat_ptr(ss_base + frame.next_frame); 2846 } 2847 pagefault_enable(); 2848 return 1; 2849 } 2850 #else 2851 static inline int 2852 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2853 { 2854 return 0; 2855 } 2856 #endif 2857 2858 void 2859 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2860 { 2861 struct stack_frame frame; 2862 const struct stack_frame __user *fp; 2863 2864 if (perf_guest_state()) { 2865 /* TODO: We don't support guest os callchain now */ 2866 return; 2867 } 2868 2869 /* 2870 * We don't know what to do with VM86 stacks.. ignore them for now. 2871 */ 2872 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2873 return; 2874 2875 fp = (void __user *)regs->bp; 2876 2877 perf_callchain_store(entry, regs->ip); 2878 2879 if (!nmi_uaccess_okay()) 2880 return; 2881 2882 if (perf_callchain_user32(regs, entry)) 2883 return; 2884 2885 pagefault_disable(); 2886 while (entry->nr < entry->max_stack) { 2887 if (!valid_user_frame(fp, sizeof(frame))) 2888 break; 2889 2890 if (__get_user(frame.next_frame, &fp->next_frame)) 2891 break; 2892 if (__get_user(frame.return_address, &fp->return_address)) 2893 break; 2894 2895 perf_callchain_store(entry, frame.return_address); 2896 fp = (void __user *)frame.next_frame; 2897 } 2898 pagefault_enable(); 2899 } 2900 2901 /* 2902 * Deal with code segment offsets for the various execution modes: 2903 * 2904 * VM86 - the good olde 16 bit days, where the linear address is 2905 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2906 * 2907 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2908 * to figure out what the 32bit base address is. 2909 * 2910 * X32 - has TIF_X32 set, but is running in x86_64 2911 * 2912 * X86_64 - CS,DS,SS,ES are all zero based. 2913 */ 2914 static unsigned long code_segment_base(struct pt_regs *regs) 2915 { 2916 /* 2917 * For IA32 we look at the GDT/LDT segment base to convert the 2918 * effective IP to a linear address. 2919 */ 2920 2921 #ifdef CONFIG_X86_32 2922 /* 2923 * If we are in VM86 mode, add the segment offset to convert to a 2924 * linear address. 2925 */ 2926 if (regs->flags & X86_VM_MASK) 2927 return 0x10 * regs->cs; 2928 2929 if (user_mode(regs) && regs->cs != __USER_CS) 2930 return get_segment_base(regs->cs); 2931 #else 2932 if (user_mode(regs) && !user_64bit_mode(regs) && 2933 regs->cs != __USER32_CS) 2934 return get_segment_base(regs->cs); 2935 #endif 2936 return 0; 2937 } 2938 2939 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2940 { 2941 if (perf_guest_state()) 2942 return perf_guest_get_ip(); 2943 2944 return regs->ip + code_segment_base(regs); 2945 } 2946 2947 unsigned long perf_misc_flags(struct pt_regs *regs) 2948 { 2949 unsigned int guest_state = perf_guest_state(); 2950 int misc = 0; 2951 2952 if (guest_state) { 2953 if (guest_state & PERF_GUEST_USER) 2954 misc |= PERF_RECORD_MISC_GUEST_USER; 2955 else 2956 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2957 } else { 2958 if (user_mode(regs)) 2959 misc |= PERF_RECORD_MISC_USER; 2960 else 2961 misc |= PERF_RECORD_MISC_KERNEL; 2962 } 2963 2964 if (regs->flags & PERF_EFLAGS_EXACT) 2965 misc |= PERF_RECORD_MISC_EXACT_IP; 2966 2967 return misc; 2968 } 2969 2970 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2971 { 2972 /* This API doesn't currently support enumerating hybrid PMUs. */ 2973 if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) || 2974 !x86_pmu_initialized()) { 2975 memset(cap, 0, sizeof(*cap)); 2976 return; 2977 } 2978 2979 /* 2980 * Note, hybrid CPU models get tracked as having hybrid PMUs even when 2981 * all E-cores are disabled via BIOS. When E-cores are disabled, the 2982 * base PMU holds the correct number of counters for P-cores. 2983 */ 2984 cap->version = x86_pmu.version; 2985 cap->num_counters_gp = x86_pmu.num_counters; 2986 cap->num_counters_fixed = x86_pmu.num_counters_fixed; 2987 cap->bit_width_gp = x86_pmu.cntval_bits; 2988 cap->bit_width_fixed = x86_pmu.cntval_bits; 2989 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2990 cap->events_mask_len = x86_pmu.events_mask_len; 2991 cap->pebs_ept = x86_pmu.pebs_ept; 2992 } 2993 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2994 2995 u64 perf_get_hw_event_config(int hw_event) 2996 { 2997 int max = x86_pmu.max_events; 2998 2999 if (hw_event < max) 3000 return x86_pmu.event_map(array_index_nospec(hw_event, max)); 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL_GPL(perf_get_hw_event_config); 3005