1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kdebug.h> 23 #include <linux/sched/mm.h> 24 #include <linux/sched/clock.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/bitops.h> 29 #include <linux/device.h> 30 #include <linux/nospec.h> 31 32 #include <asm/apic.h> 33 #include <asm/stacktrace.h> 34 #include <asm/nmi.h> 35 #include <asm/smp.h> 36 #include <asm/alternative.h> 37 #include <asm/mmu_context.h> 38 #include <asm/tlbflush.h> 39 #include <asm/timer.h> 40 #include <asm/desc.h> 41 #include <asm/ldt.h> 42 #include <asm/unwind.h> 43 44 #include "perf_event.h" 45 46 struct x86_pmu x86_pmu __read_mostly; 47 48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 49 .enabled = 1, 50 }; 51 52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); 53 54 u64 __read_mostly hw_cache_event_ids 55 [PERF_COUNT_HW_CACHE_MAX] 56 [PERF_COUNT_HW_CACHE_OP_MAX] 57 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 58 u64 __read_mostly hw_cache_extra_regs 59 [PERF_COUNT_HW_CACHE_MAX] 60 [PERF_COUNT_HW_CACHE_OP_MAX] 61 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 62 63 /* 64 * Propagate event elapsed time into the generic event. 65 * Can only be executed on the CPU where the event is active. 66 * Returns the delta events processed. 67 */ 68 u64 x86_perf_event_update(struct perf_event *event) 69 { 70 struct hw_perf_event *hwc = &event->hw; 71 int shift = 64 - x86_pmu.cntval_bits; 72 u64 prev_raw_count, new_raw_count; 73 int idx = hwc->idx; 74 u64 delta; 75 76 if (idx == INTEL_PMC_IDX_FIXED_BTS) 77 return 0; 78 79 /* 80 * Careful: an NMI might modify the previous event value. 81 * 82 * Our tactic to handle this is to first atomically read and 83 * exchange a new raw count - then add that new-prev delta 84 * count to the generic event atomically: 85 */ 86 again: 87 prev_raw_count = local64_read(&hwc->prev_count); 88 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 89 90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 91 new_raw_count) != prev_raw_count) 92 goto again; 93 94 /* 95 * Now we have the new raw value and have updated the prev 96 * timestamp already. We can now calculate the elapsed delta 97 * (event-)time and add that to the generic event. 98 * 99 * Careful, not all hw sign-extends above the physical width 100 * of the count. 101 */ 102 delta = (new_raw_count << shift) - (prev_raw_count << shift); 103 delta >>= shift; 104 105 local64_add(delta, &event->count); 106 local64_sub(delta, &hwc->period_left); 107 108 return new_raw_count; 109 } 110 111 /* 112 * Find and validate any extra registers to set up. 113 */ 114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 115 { 116 struct hw_perf_event_extra *reg; 117 struct extra_reg *er; 118 119 reg = &event->hw.extra_reg; 120 121 if (!x86_pmu.extra_regs) 122 return 0; 123 124 for (er = x86_pmu.extra_regs; er->msr; er++) { 125 if (er->event != (config & er->config_mask)) 126 continue; 127 if (event->attr.config1 & ~er->valid_mask) 128 return -EINVAL; 129 /* Check if the extra msrs can be safely accessed*/ 130 if (!er->extra_msr_access) 131 return -ENXIO; 132 133 reg->idx = er->idx; 134 reg->config = event->attr.config1; 135 reg->reg = er->msr; 136 break; 137 } 138 return 0; 139 } 140 141 static atomic_t active_events; 142 static atomic_t pmc_refcount; 143 static DEFINE_MUTEX(pmc_reserve_mutex); 144 145 #ifdef CONFIG_X86_LOCAL_APIC 146 147 static bool reserve_pmc_hardware(void) 148 { 149 int i; 150 151 for (i = 0; i < x86_pmu.num_counters; i++) { 152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 153 goto perfctr_fail; 154 } 155 156 for (i = 0; i < x86_pmu.num_counters; i++) { 157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 158 goto eventsel_fail; 159 } 160 161 return true; 162 163 eventsel_fail: 164 for (i--; i >= 0; i--) 165 release_evntsel_nmi(x86_pmu_config_addr(i)); 166 167 i = x86_pmu.num_counters; 168 169 perfctr_fail: 170 for (i--; i >= 0; i--) 171 release_perfctr_nmi(x86_pmu_event_addr(i)); 172 173 return false; 174 } 175 176 static void release_pmc_hardware(void) 177 { 178 int i; 179 180 for (i = 0; i < x86_pmu.num_counters; i++) { 181 release_perfctr_nmi(x86_pmu_event_addr(i)); 182 release_evntsel_nmi(x86_pmu_config_addr(i)); 183 } 184 } 185 186 #else 187 188 static bool reserve_pmc_hardware(void) { return true; } 189 static void release_pmc_hardware(void) {} 190 191 #endif 192 193 static bool check_hw_exists(void) 194 { 195 u64 val, val_fail = -1, val_new= ~0; 196 int i, reg, reg_fail = -1, ret = 0; 197 int bios_fail = 0; 198 int reg_safe = -1; 199 200 /* 201 * Check to see if the BIOS enabled any of the counters, if so 202 * complain and bail. 203 */ 204 for (i = 0; i < x86_pmu.num_counters; i++) { 205 reg = x86_pmu_config_addr(i); 206 ret = rdmsrl_safe(reg, &val); 207 if (ret) 208 goto msr_fail; 209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 210 bios_fail = 1; 211 val_fail = val; 212 reg_fail = reg; 213 } else { 214 reg_safe = i; 215 } 216 } 217 218 if (x86_pmu.num_counters_fixed) { 219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 220 ret = rdmsrl_safe(reg, &val); 221 if (ret) 222 goto msr_fail; 223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) { 224 if (val & (0x03 << i*4)) { 225 bios_fail = 1; 226 val_fail = val; 227 reg_fail = reg; 228 } 229 } 230 } 231 232 /* 233 * If all the counters are enabled, the below test will always 234 * fail. The tools will also become useless in this scenario. 235 * Just fail and disable the hardware counters. 236 */ 237 238 if (reg_safe == -1) { 239 reg = reg_safe; 240 goto msr_fail; 241 } 242 243 /* 244 * Read the current value, change it and read it back to see if it 245 * matches, this is needed to detect certain hardware emulators 246 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 247 */ 248 reg = x86_pmu_event_addr(reg_safe); 249 if (rdmsrl_safe(reg, &val)) 250 goto msr_fail; 251 val ^= 0xffffUL; 252 ret = wrmsrl_safe(reg, val); 253 ret |= rdmsrl_safe(reg, &val_new); 254 if (ret || val != val_new) 255 goto msr_fail; 256 257 /* 258 * We still allow the PMU driver to operate: 259 */ 260 if (bios_fail) { 261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 263 reg_fail, val_fail); 264 } 265 266 return true; 267 268 msr_fail: 269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 270 pr_cont("PMU not available due to virtualization, using software events only.\n"); 271 } else { 272 pr_cont("Broken PMU hardware detected, using software events only.\n"); 273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", 274 reg, val_new); 275 } 276 277 return false; 278 } 279 280 static void hw_perf_event_destroy(struct perf_event *event) 281 { 282 x86_release_hardware(); 283 atomic_dec(&active_events); 284 } 285 286 void hw_perf_lbr_event_destroy(struct perf_event *event) 287 { 288 hw_perf_event_destroy(event); 289 290 /* undo the lbr/bts event accounting */ 291 x86_del_exclusive(x86_lbr_exclusive_lbr); 292 } 293 294 static inline int x86_pmu_initialized(void) 295 { 296 return x86_pmu.handle_irq != NULL; 297 } 298 299 static inline int 300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 301 { 302 struct perf_event_attr *attr = &event->attr; 303 unsigned int cache_type, cache_op, cache_result; 304 u64 config, val; 305 306 config = attr->config; 307 308 cache_type = (config >> 0) & 0xff; 309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 310 return -EINVAL; 311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); 312 313 cache_op = (config >> 8) & 0xff; 314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 315 return -EINVAL; 316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); 317 318 cache_result = (config >> 16) & 0xff; 319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 320 return -EINVAL; 321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); 322 323 val = hw_cache_event_ids[cache_type][cache_op][cache_result]; 324 325 if (val == 0) 326 return -ENOENT; 327 328 if (val == -1) 329 return -EINVAL; 330 331 hwc->config |= val; 332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result]; 333 return x86_pmu_extra_regs(val, event); 334 } 335 336 int x86_reserve_hardware(void) 337 { 338 int err = 0; 339 340 if (!atomic_inc_not_zero(&pmc_refcount)) { 341 mutex_lock(&pmc_reserve_mutex); 342 if (atomic_read(&pmc_refcount) == 0) { 343 if (!reserve_pmc_hardware()) 344 err = -EBUSY; 345 else 346 reserve_ds_buffers(); 347 } 348 if (!err) 349 atomic_inc(&pmc_refcount); 350 mutex_unlock(&pmc_reserve_mutex); 351 } 352 353 return err; 354 } 355 356 void x86_release_hardware(void) 357 { 358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 359 release_pmc_hardware(); 360 release_ds_buffers(); 361 mutex_unlock(&pmc_reserve_mutex); 362 } 363 } 364 365 /* 366 * Check if we can create event of a certain type (that no conflicting events 367 * are present). 368 */ 369 int x86_add_exclusive(unsigned int what) 370 { 371 int i; 372 373 /* 374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. 375 * LBR and BTS are still mutually exclusive. 376 */ 377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 378 return 0; 379 380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 381 mutex_lock(&pmc_reserve_mutex); 382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 384 goto fail_unlock; 385 } 386 atomic_inc(&x86_pmu.lbr_exclusive[what]); 387 mutex_unlock(&pmc_reserve_mutex); 388 } 389 390 atomic_inc(&active_events); 391 return 0; 392 393 fail_unlock: 394 mutex_unlock(&pmc_reserve_mutex); 395 return -EBUSY; 396 } 397 398 void x86_del_exclusive(unsigned int what) 399 { 400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) 401 return; 402 403 atomic_dec(&x86_pmu.lbr_exclusive[what]); 404 atomic_dec(&active_events); 405 } 406 407 int x86_setup_perfctr(struct perf_event *event) 408 { 409 struct perf_event_attr *attr = &event->attr; 410 struct hw_perf_event *hwc = &event->hw; 411 u64 config; 412 413 if (!is_sampling_event(event)) { 414 hwc->sample_period = x86_pmu.max_period; 415 hwc->last_period = hwc->sample_period; 416 local64_set(&hwc->period_left, hwc->sample_period); 417 } 418 419 if (attr->type == PERF_TYPE_RAW) 420 return x86_pmu_extra_regs(event->attr.config, event); 421 422 if (attr->type == PERF_TYPE_HW_CACHE) 423 return set_ext_hw_attr(hwc, event); 424 425 if (attr->config >= x86_pmu.max_events) 426 return -EINVAL; 427 428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); 429 430 /* 431 * The generic map: 432 */ 433 config = x86_pmu.event_map(attr->config); 434 435 if (config == 0) 436 return -ENOENT; 437 438 if (config == -1LL) 439 return -EINVAL; 440 441 hwc->config |= config; 442 443 return 0; 444 } 445 446 /* 447 * check that branch_sample_type is compatible with 448 * settings needed for precise_ip > 1 which implies 449 * using the LBR to capture ALL taken branches at the 450 * priv levels of the measurement 451 */ 452 static inline int precise_br_compat(struct perf_event *event) 453 { 454 u64 m = event->attr.branch_sample_type; 455 u64 b = 0; 456 457 /* must capture all branches */ 458 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 459 return 0; 460 461 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 462 463 if (!event->attr.exclude_user) 464 b |= PERF_SAMPLE_BRANCH_USER; 465 466 if (!event->attr.exclude_kernel) 467 b |= PERF_SAMPLE_BRANCH_KERNEL; 468 469 /* 470 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 471 */ 472 473 return m == b; 474 } 475 476 int x86_pmu_max_precise(void) 477 { 478 int precise = 0; 479 480 /* Support for constant skid */ 481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 482 precise++; 483 484 /* Support for IP fixup */ 485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 486 precise++; 487 488 if (x86_pmu.pebs_prec_dist) 489 precise++; 490 } 491 return precise; 492 } 493 494 int x86_pmu_hw_config(struct perf_event *event) 495 { 496 if (event->attr.precise_ip) { 497 int precise = x86_pmu_max_precise(); 498 499 if (event->attr.precise_ip > precise) 500 return -EOPNOTSUPP; 501 502 /* There's no sense in having PEBS for non sampling events: */ 503 if (!is_sampling_event(event)) 504 return -EINVAL; 505 } 506 /* 507 * check that PEBS LBR correction does not conflict with 508 * whatever the user is asking with attr->branch_sample_type 509 */ 510 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 511 u64 *br_type = &event->attr.branch_sample_type; 512 513 if (has_branch_stack(event)) { 514 if (!precise_br_compat(event)) 515 return -EOPNOTSUPP; 516 517 /* branch_sample_type is compatible */ 518 519 } else { 520 /* 521 * user did not specify branch_sample_type 522 * 523 * For PEBS fixups, we capture all 524 * the branches at the priv level of the 525 * event. 526 */ 527 *br_type = PERF_SAMPLE_BRANCH_ANY; 528 529 if (!event->attr.exclude_user) 530 *br_type |= PERF_SAMPLE_BRANCH_USER; 531 532 if (!event->attr.exclude_kernel) 533 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 534 } 535 } 536 537 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) 538 event->attach_state |= PERF_ATTACH_TASK_DATA; 539 540 /* 541 * Generate PMC IRQs: 542 * (keep 'enabled' bit clear for now) 543 */ 544 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 545 546 /* 547 * Count user and OS events unless requested not to 548 */ 549 if (!event->attr.exclude_user) 550 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 551 if (!event->attr.exclude_kernel) 552 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 553 554 if (event->attr.type == PERF_TYPE_RAW) 555 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; 556 557 if (event->attr.sample_period && x86_pmu.limit_period) { 558 if (x86_pmu.limit_period(event, event->attr.sample_period) > 559 event->attr.sample_period) 560 return -EINVAL; 561 } 562 563 return x86_setup_perfctr(event); 564 } 565 566 /* 567 * Setup the hardware configuration for a given attr_type 568 */ 569 static int __x86_pmu_event_init(struct perf_event *event) 570 { 571 int err; 572 573 if (!x86_pmu_initialized()) 574 return -ENODEV; 575 576 err = x86_reserve_hardware(); 577 if (err) 578 return err; 579 580 atomic_inc(&active_events); 581 event->destroy = hw_perf_event_destroy; 582 583 event->hw.idx = -1; 584 event->hw.last_cpu = -1; 585 event->hw.last_tag = ~0ULL; 586 587 /* mark unused */ 588 event->hw.extra_reg.idx = EXTRA_REG_NONE; 589 event->hw.branch_reg.idx = EXTRA_REG_NONE; 590 591 return x86_pmu.hw_config(event); 592 } 593 594 void x86_pmu_disable_all(void) 595 { 596 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 597 int idx; 598 599 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 600 u64 val; 601 602 if (!test_bit(idx, cpuc->active_mask)) 603 continue; 604 rdmsrl(x86_pmu_config_addr(idx), val); 605 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 606 continue; 607 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 608 wrmsrl(x86_pmu_config_addr(idx), val); 609 } 610 } 611 612 /* 613 * There may be PMI landing after enabled=0. The PMI hitting could be before or 614 * after disable_all. 615 * 616 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 617 * It will not be re-enabled in the NMI handler again, because enabled=0. After 618 * handling the NMI, disable_all will be called, which will not change the 619 * state either. If PMI hits after disable_all, the PMU is already disabled 620 * before entering NMI handler. The NMI handler will not change the state 621 * either. 622 * 623 * So either situation is harmless. 624 */ 625 static void x86_pmu_disable(struct pmu *pmu) 626 { 627 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 628 629 if (!x86_pmu_initialized()) 630 return; 631 632 if (!cpuc->enabled) 633 return; 634 635 cpuc->n_added = 0; 636 cpuc->enabled = 0; 637 barrier(); 638 639 x86_pmu.disable_all(); 640 } 641 642 void x86_pmu_enable_all(int added) 643 { 644 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 645 int idx; 646 647 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 648 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 649 650 if (!test_bit(idx, cpuc->active_mask)) 651 continue; 652 653 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 654 } 655 } 656 657 static struct pmu pmu; 658 659 static inline int is_x86_event(struct perf_event *event) 660 { 661 return event->pmu == &pmu; 662 } 663 664 /* 665 * Event scheduler state: 666 * 667 * Assign events iterating over all events and counters, beginning 668 * with events with least weights first. Keep the current iterator 669 * state in struct sched_state. 670 */ 671 struct sched_state { 672 int weight; 673 int event; /* event index */ 674 int counter; /* counter index */ 675 int unassigned; /* number of events to be assigned left */ 676 int nr_gp; /* number of GP counters used */ 677 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 678 }; 679 680 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 681 #define SCHED_STATES_MAX 2 682 683 struct perf_sched { 684 int max_weight; 685 int max_events; 686 int max_gp; 687 int saved_states; 688 struct event_constraint **constraints; 689 struct sched_state state; 690 struct sched_state saved[SCHED_STATES_MAX]; 691 }; 692 693 /* 694 * Initialize interator that runs through all events and counters. 695 */ 696 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 697 int num, int wmin, int wmax, int gpmax) 698 { 699 int idx; 700 701 memset(sched, 0, sizeof(*sched)); 702 sched->max_events = num; 703 sched->max_weight = wmax; 704 sched->max_gp = gpmax; 705 sched->constraints = constraints; 706 707 for (idx = 0; idx < num; idx++) { 708 if (constraints[idx]->weight == wmin) 709 break; 710 } 711 712 sched->state.event = idx; /* start with min weight */ 713 sched->state.weight = wmin; 714 sched->state.unassigned = num; 715 } 716 717 static void perf_sched_save_state(struct perf_sched *sched) 718 { 719 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 720 return; 721 722 sched->saved[sched->saved_states] = sched->state; 723 sched->saved_states++; 724 } 725 726 static bool perf_sched_restore_state(struct perf_sched *sched) 727 { 728 if (!sched->saved_states) 729 return false; 730 731 sched->saved_states--; 732 sched->state = sched->saved[sched->saved_states]; 733 734 /* continue with next counter: */ 735 clear_bit(sched->state.counter++, sched->state.used); 736 737 return true; 738 } 739 740 /* 741 * Select a counter for the current event to schedule. Return true on 742 * success. 743 */ 744 static bool __perf_sched_find_counter(struct perf_sched *sched) 745 { 746 struct event_constraint *c; 747 int idx; 748 749 if (!sched->state.unassigned) 750 return false; 751 752 if (sched->state.event >= sched->max_events) 753 return false; 754 755 c = sched->constraints[sched->state.event]; 756 /* Prefer fixed purpose counters */ 757 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 758 idx = INTEL_PMC_IDX_FIXED; 759 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 760 if (!__test_and_set_bit(idx, sched->state.used)) 761 goto done; 762 } 763 } 764 765 /* Grab the first unused counter starting with idx */ 766 idx = sched->state.counter; 767 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 768 if (!__test_and_set_bit(idx, sched->state.used)) { 769 if (sched->state.nr_gp++ >= sched->max_gp) 770 return false; 771 772 goto done; 773 } 774 } 775 776 return false; 777 778 done: 779 sched->state.counter = idx; 780 781 if (c->overlap) 782 perf_sched_save_state(sched); 783 784 return true; 785 } 786 787 static bool perf_sched_find_counter(struct perf_sched *sched) 788 { 789 while (!__perf_sched_find_counter(sched)) { 790 if (!perf_sched_restore_state(sched)) 791 return false; 792 } 793 794 return true; 795 } 796 797 /* 798 * Go through all unassigned events and find the next one to schedule. 799 * Take events with the least weight first. Return true on success. 800 */ 801 static bool perf_sched_next_event(struct perf_sched *sched) 802 { 803 struct event_constraint *c; 804 805 if (!sched->state.unassigned || !--sched->state.unassigned) 806 return false; 807 808 do { 809 /* next event */ 810 sched->state.event++; 811 if (sched->state.event >= sched->max_events) { 812 /* next weight */ 813 sched->state.event = 0; 814 sched->state.weight++; 815 if (sched->state.weight > sched->max_weight) 816 return false; 817 } 818 c = sched->constraints[sched->state.event]; 819 } while (c->weight != sched->state.weight); 820 821 sched->state.counter = 0; /* start with first counter */ 822 823 return true; 824 } 825 826 /* 827 * Assign a counter for each event. 828 */ 829 int perf_assign_events(struct event_constraint **constraints, int n, 830 int wmin, int wmax, int gpmax, int *assign) 831 { 832 struct perf_sched sched; 833 834 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 835 836 do { 837 if (!perf_sched_find_counter(&sched)) 838 break; /* failed */ 839 if (assign) 840 assign[sched.state.event] = sched.state.counter; 841 } while (perf_sched_next_event(&sched)); 842 843 return sched.state.unassigned; 844 } 845 EXPORT_SYMBOL_GPL(perf_assign_events); 846 847 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 848 { 849 struct event_constraint *c; 850 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 851 struct perf_event *e; 852 int i, wmin, wmax, unsched = 0; 853 struct hw_perf_event *hwc; 854 855 bitmap_zero(used_mask, X86_PMC_IDX_MAX); 856 857 if (x86_pmu.start_scheduling) 858 x86_pmu.start_scheduling(cpuc); 859 860 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 861 cpuc->event_constraint[i] = NULL; 862 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]); 863 cpuc->event_constraint[i] = c; 864 865 wmin = min(wmin, c->weight); 866 wmax = max(wmax, c->weight); 867 } 868 869 /* 870 * fastpath, try to reuse previous register 871 */ 872 for (i = 0; i < n; i++) { 873 hwc = &cpuc->event_list[i]->hw; 874 c = cpuc->event_constraint[i]; 875 876 /* never assigned */ 877 if (hwc->idx == -1) 878 break; 879 880 /* constraint still honored */ 881 if (!test_bit(hwc->idx, c->idxmsk)) 882 break; 883 884 /* not already used */ 885 if (test_bit(hwc->idx, used_mask)) 886 break; 887 888 __set_bit(hwc->idx, used_mask); 889 if (assign) 890 assign[i] = hwc->idx; 891 } 892 893 /* slow path */ 894 if (i != n) { 895 int gpmax = x86_pmu.num_counters; 896 897 /* 898 * Do not allow scheduling of more than half the available 899 * generic counters. 900 * 901 * This helps avoid counter starvation of sibling thread by 902 * ensuring at most half the counters cannot be in exclusive 903 * mode. There is no designated counters for the limits. Any 904 * N/2 counters can be used. This helps with events with 905 * specific counter constraints. 906 */ 907 if (is_ht_workaround_enabled() && !cpuc->is_fake && 908 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 909 gpmax /= 2; 910 911 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 912 wmax, gpmax, assign); 913 } 914 915 /* 916 * In case of success (unsched = 0), mark events as committed, 917 * so we do not put_constraint() in case new events are added 918 * and fail to be scheduled 919 * 920 * We invoke the lower level commit callback to lock the resource 921 * 922 * We do not need to do all of this in case we are called to 923 * validate an event group (assign == NULL) 924 */ 925 if (!unsched && assign) { 926 for (i = 0; i < n; i++) { 927 e = cpuc->event_list[i]; 928 e->hw.flags |= PERF_X86_EVENT_COMMITTED; 929 if (x86_pmu.commit_scheduling) 930 x86_pmu.commit_scheduling(cpuc, i, assign[i]); 931 } 932 } else { 933 for (i = 0; i < n; i++) { 934 e = cpuc->event_list[i]; 935 /* 936 * do not put_constraint() on comitted events, 937 * because they are good to go 938 */ 939 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED)) 940 continue; 941 942 /* 943 * release events that failed scheduling 944 */ 945 if (x86_pmu.put_event_constraints) 946 x86_pmu.put_event_constraints(cpuc, e); 947 } 948 } 949 950 if (x86_pmu.stop_scheduling) 951 x86_pmu.stop_scheduling(cpuc); 952 953 return unsched ? -EINVAL : 0; 954 } 955 956 /* 957 * dogrp: true if must collect siblings events (group) 958 * returns total number of events and error code 959 */ 960 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 961 { 962 struct perf_event *event; 963 int n, max_count; 964 965 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed; 966 967 /* current number of events already accepted */ 968 n = cpuc->n_events; 969 970 if (is_x86_event(leader)) { 971 if (n >= max_count) 972 return -EINVAL; 973 cpuc->event_list[n] = leader; 974 n++; 975 } 976 if (!dogrp) 977 return n; 978 979 for_each_sibling_event(event, leader) { 980 if (!is_x86_event(event) || 981 event->state <= PERF_EVENT_STATE_OFF) 982 continue; 983 984 if (n >= max_count) 985 return -EINVAL; 986 987 cpuc->event_list[n] = event; 988 n++; 989 } 990 return n; 991 } 992 993 static inline void x86_assign_hw_event(struct perf_event *event, 994 struct cpu_hw_events *cpuc, int i) 995 { 996 struct hw_perf_event *hwc = &event->hw; 997 998 hwc->idx = cpuc->assign[i]; 999 hwc->last_cpu = smp_processor_id(); 1000 hwc->last_tag = ++cpuc->tags[i]; 1001 1002 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) { 1003 hwc->config_base = 0; 1004 hwc->event_base = 0; 1005 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1006 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1007 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED); 1008 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30; 1009 } else { 1010 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1011 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1012 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1013 } 1014 } 1015 1016 /** 1017 * x86_perf_rdpmc_index - Return PMC counter used for event 1018 * @event: the perf_event to which the PMC counter was assigned 1019 * 1020 * The counter assigned to this performance event may change if interrupts 1021 * are enabled. This counter should thus never be used while interrupts are 1022 * enabled. Before this function is used to obtain the assigned counter the 1023 * event should be checked for validity using, for example, 1024 * perf_event_read_local(), within the same interrupt disabled section in 1025 * which this counter is planned to be used. 1026 * 1027 * Return: The index of the performance monitoring counter assigned to 1028 * @perf_event. 1029 */ 1030 int x86_perf_rdpmc_index(struct perf_event *event) 1031 { 1032 lockdep_assert_irqs_disabled(); 1033 1034 return event->hw.event_base_rdpmc; 1035 } 1036 1037 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1038 struct cpu_hw_events *cpuc, 1039 int i) 1040 { 1041 return hwc->idx == cpuc->assign[i] && 1042 hwc->last_cpu == smp_processor_id() && 1043 hwc->last_tag == cpuc->tags[i]; 1044 } 1045 1046 static void x86_pmu_start(struct perf_event *event, int flags); 1047 1048 static void x86_pmu_enable(struct pmu *pmu) 1049 { 1050 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1051 struct perf_event *event; 1052 struct hw_perf_event *hwc; 1053 int i, added = cpuc->n_added; 1054 1055 if (!x86_pmu_initialized()) 1056 return; 1057 1058 if (cpuc->enabled) 1059 return; 1060 1061 if (cpuc->n_added) { 1062 int n_running = cpuc->n_events - cpuc->n_added; 1063 /* 1064 * apply assignment obtained either from 1065 * hw_perf_group_sched_in() or x86_pmu_enable() 1066 * 1067 * step1: save events moving to new counters 1068 */ 1069 for (i = 0; i < n_running; i++) { 1070 event = cpuc->event_list[i]; 1071 hwc = &event->hw; 1072 1073 /* 1074 * we can avoid reprogramming counter if: 1075 * - assigned same counter as last time 1076 * - running on same CPU as last time 1077 * - no other event has used the counter since 1078 */ 1079 if (hwc->idx == -1 || 1080 match_prev_assignment(hwc, cpuc, i)) 1081 continue; 1082 1083 /* 1084 * Ensure we don't accidentally enable a stopped 1085 * counter simply because we rescheduled. 1086 */ 1087 if (hwc->state & PERF_HES_STOPPED) 1088 hwc->state |= PERF_HES_ARCH; 1089 1090 x86_pmu_stop(event, PERF_EF_UPDATE); 1091 } 1092 1093 /* 1094 * step2: reprogram moved events into new counters 1095 */ 1096 for (i = 0; i < cpuc->n_events; i++) { 1097 event = cpuc->event_list[i]; 1098 hwc = &event->hw; 1099 1100 if (!match_prev_assignment(hwc, cpuc, i)) 1101 x86_assign_hw_event(event, cpuc, i); 1102 else if (i < n_running) 1103 continue; 1104 1105 if (hwc->state & PERF_HES_ARCH) 1106 continue; 1107 1108 x86_pmu_start(event, PERF_EF_RELOAD); 1109 } 1110 cpuc->n_added = 0; 1111 perf_events_lapic_init(); 1112 } 1113 1114 cpuc->enabled = 1; 1115 barrier(); 1116 1117 x86_pmu.enable_all(added); 1118 } 1119 1120 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1121 1122 /* 1123 * Set the next IRQ period, based on the hwc->period_left value. 1124 * To be called with the event disabled in hw: 1125 */ 1126 int x86_perf_event_set_period(struct perf_event *event) 1127 { 1128 struct hw_perf_event *hwc = &event->hw; 1129 s64 left = local64_read(&hwc->period_left); 1130 s64 period = hwc->sample_period; 1131 int ret = 0, idx = hwc->idx; 1132 1133 if (idx == INTEL_PMC_IDX_FIXED_BTS) 1134 return 0; 1135 1136 /* 1137 * If we are way outside a reasonable range then just skip forward: 1138 */ 1139 if (unlikely(left <= -period)) { 1140 left = period; 1141 local64_set(&hwc->period_left, left); 1142 hwc->last_period = period; 1143 ret = 1; 1144 } 1145 1146 if (unlikely(left <= 0)) { 1147 left += period; 1148 local64_set(&hwc->period_left, left); 1149 hwc->last_period = period; 1150 ret = 1; 1151 } 1152 /* 1153 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1154 */ 1155 if (unlikely(left < 2)) 1156 left = 2; 1157 1158 if (left > x86_pmu.max_period) 1159 left = x86_pmu.max_period; 1160 1161 if (x86_pmu.limit_period) 1162 left = x86_pmu.limit_period(event, left); 1163 1164 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; 1165 1166 /* 1167 * The hw event starts counting from this event offset, 1168 * mark it to be able to extra future deltas: 1169 */ 1170 local64_set(&hwc->prev_count, (u64)-left); 1171 1172 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1173 1174 /* 1175 * Due to erratum on certan cpu we need 1176 * a second write to be sure the register 1177 * is updated properly 1178 */ 1179 if (x86_pmu.perfctr_second_write) { 1180 wrmsrl(hwc->event_base, 1181 (u64)(-left) & x86_pmu.cntval_mask); 1182 } 1183 1184 perf_event_update_userpage(event); 1185 1186 return ret; 1187 } 1188 1189 void x86_pmu_enable_event(struct perf_event *event) 1190 { 1191 if (__this_cpu_read(cpu_hw_events.enabled)) 1192 __x86_pmu_enable_event(&event->hw, 1193 ARCH_PERFMON_EVENTSEL_ENABLE); 1194 } 1195 1196 /* 1197 * Add a single event to the PMU. 1198 * 1199 * The event is added to the group of enabled events 1200 * but only if it can be scehduled with existing events. 1201 */ 1202 static int x86_pmu_add(struct perf_event *event, int flags) 1203 { 1204 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1205 struct hw_perf_event *hwc; 1206 int assign[X86_PMC_IDX_MAX]; 1207 int n, n0, ret; 1208 1209 hwc = &event->hw; 1210 1211 n0 = cpuc->n_events; 1212 ret = n = collect_events(cpuc, event, false); 1213 if (ret < 0) 1214 goto out; 1215 1216 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1217 if (!(flags & PERF_EF_START)) 1218 hwc->state |= PERF_HES_ARCH; 1219 1220 /* 1221 * If group events scheduling transaction was started, 1222 * skip the schedulability test here, it will be performed 1223 * at commit time (->commit_txn) as a whole. 1224 * 1225 * If commit fails, we'll call ->del() on all events 1226 * for which ->add() was called. 1227 */ 1228 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1229 goto done_collect; 1230 1231 ret = x86_pmu.schedule_events(cpuc, n, assign); 1232 if (ret) 1233 goto out; 1234 /* 1235 * copy new assignment, now we know it is possible 1236 * will be used by hw_perf_enable() 1237 */ 1238 memcpy(cpuc->assign, assign, n*sizeof(int)); 1239 1240 done_collect: 1241 /* 1242 * Commit the collect_events() state. See x86_pmu_del() and 1243 * x86_pmu_*_txn(). 1244 */ 1245 cpuc->n_events = n; 1246 cpuc->n_added += n - n0; 1247 cpuc->n_txn += n - n0; 1248 1249 if (x86_pmu.add) { 1250 /* 1251 * This is before x86_pmu_enable() will call x86_pmu_start(), 1252 * so we enable LBRs before an event needs them etc.. 1253 */ 1254 x86_pmu.add(event); 1255 } 1256 1257 ret = 0; 1258 out: 1259 return ret; 1260 } 1261 1262 static void x86_pmu_start(struct perf_event *event, int flags) 1263 { 1264 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1265 int idx = event->hw.idx; 1266 1267 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1268 return; 1269 1270 if (WARN_ON_ONCE(idx == -1)) 1271 return; 1272 1273 if (flags & PERF_EF_RELOAD) { 1274 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1275 x86_perf_event_set_period(event); 1276 } 1277 1278 event->hw.state = 0; 1279 1280 cpuc->events[idx] = event; 1281 __set_bit(idx, cpuc->active_mask); 1282 __set_bit(idx, cpuc->running); 1283 x86_pmu.enable(event); 1284 perf_event_update_userpage(event); 1285 } 1286 1287 void perf_event_print_debug(void) 1288 { 1289 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1290 u64 pebs, debugctl; 1291 struct cpu_hw_events *cpuc; 1292 unsigned long flags; 1293 int cpu, idx; 1294 1295 if (!x86_pmu.num_counters) 1296 return; 1297 1298 local_irq_save(flags); 1299 1300 cpu = smp_processor_id(); 1301 cpuc = &per_cpu(cpu_hw_events, cpu); 1302 1303 if (x86_pmu.version >= 2) { 1304 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1305 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1306 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1307 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1308 1309 pr_info("\n"); 1310 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1311 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1312 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1313 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1314 if (x86_pmu.pebs_constraints) { 1315 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1316 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1317 } 1318 if (x86_pmu.lbr_nr) { 1319 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1320 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1321 } 1322 } 1323 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1324 1325 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1326 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1327 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1328 1329 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1330 1331 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1332 cpu, idx, pmc_ctrl); 1333 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1334 cpu, idx, pmc_count); 1335 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1336 cpu, idx, prev_left); 1337 } 1338 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) { 1339 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); 1340 1341 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1342 cpu, idx, pmc_count); 1343 } 1344 local_irq_restore(flags); 1345 } 1346 1347 void x86_pmu_stop(struct perf_event *event, int flags) 1348 { 1349 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1350 struct hw_perf_event *hwc = &event->hw; 1351 1352 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) { 1353 x86_pmu.disable(event); 1354 cpuc->events[hwc->idx] = NULL; 1355 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1356 hwc->state |= PERF_HES_STOPPED; 1357 } 1358 1359 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1360 /* 1361 * Drain the remaining delta count out of a event 1362 * that we are disabling: 1363 */ 1364 x86_perf_event_update(event); 1365 hwc->state |= PERF_HES_UPTODATE; 1366 } 1367 } 1368 1369 static void x86_pmu_del(struct perf_event *event, int flags) 1370 { 1371 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1372 int i; 1373 1374 /* 1375 * event is descheduled 1376 */ 1377 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED; 1378 1379 /* 1380 * If we're called during a txn, we only need to undo x86_pmu.add. 1381 * The events never got scheduled and ->cancel_txn will truncate 1382 * the event_list. 1383 * 1384 * XXX assumes any ->del() called during a TXN will only be on 1385 * an event added during that same TXN. 1386 */ 1387 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1388 goto do_del; 1389 1390 /* 1391 * Not a TXN, therefore cleanup properly. 1392 */ 1393 x86_pmu_stop(event, PERF_EF_UPDATE); 1394 1395 for (i = 0; i < cpuc->n_events; i++) { 1396 if (event == cpuc->event_list[i]) 1397 break; 1398 } 1399 1400 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1401 return; 1402 1403 /* If we have a newly added event; make sure to decrease n_added. */ 1404 if (i >= cpuc->n_events - cpuc->n_added) 1405 --cpuc->n_added; 1406 1407 if (x86_pmu.put_event_constraints) 1408 x86_pmu.put_event_constraints(cpuc, event); 1409 1410 /* Delete the array entry. */ 1411 while (++i < cpuc->n_events) { 1412 cpuc->event_list[i-1] = cpuc->event_list[i]; 1413 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1414 } 1415 --cpuc->n_events; 1416 1417 perf_event_update_userpage(event); 1418 1419 do_del: 1420 if (x86_pmu.del) { 1421 /* 1422 * This is after x86_pmu_stop(); so we disable LBRs after any 1423 * event can need them etc.. 1424 */ 1425 x86_pmu.del(event); 1426 } 1427 } 1428 1429 int x86_pmu_handle_irq(struct pt_regs *regs) 1430 { 1431 struct perf_sample_data data; 1432 struct cpu_hw_events *cpuc; 1433 struct perf_event *event; 1434 int idx, handled = 0; 1435 u64 val; 1436 1437 cpuc = this_cpu_ptr(&cpu_hw_events); 1438 1439 /* 1440 * Some chipsets need to unmask the LVTPC in a particular spot 1441 * inside the nmi handler. As a result, the unmasking was pushed 1442 * into all the nmi handlers. 1443 * 1444 * This generic handler doesn't seem to have any issues where the 1445 * unmasking occurs so it was left at the top. 1446 */ 1447 apic_write(APIC_LVTPC, APIC_DM_NMI); 1448 1449 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1450 if (!test_bit(idx, cpuc->active_mask)) { 1451 /* 1452 * Though we deactivated the counter some cpus 1453 * might still deliver spurious interrupts still 1454 * in flight. Catch them: 1455 */ 1456 if (__test_and_clear_bit(idx, cpuc->running)) 1457 handled++; 1458 continue; 1459 } 1460 1461 event = cpuc->events[idx]; 1462 1463 val = x86_perf_event_update(event); 1464 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1465 continue; 1466 1467 /* 1468 * event overflow 1469 */ 1470 handled++; 1471 perf_sample_data_init(&data, 0, event->hw.last_period); 1472 1473 if (!x86_perf_event_set_period(event)) 1474 continue; 1475 1476 if (perf_event_overflow(event, &data, regs)) 1477 x86_pmu_stop(event, 0); 1478 } 1479 1480 if (handled) 1481 inc_irq_stat(apic_perf_irqs); 1482 1483 return handled; 1484 } 1485 1486 void perf_events_lapic_init(void) 1487 { 1488 if (!x86_pmu.apic || !x86_pmu_initialized()) 1489 return; 1490 1491 /* 1492 * Always use NMI for PMU 1493 */ 1494 apic_write(APIC_LVTPC, APIC_DM_NMI); 1495 } 1496 1497 static int 1498 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1499 { 1500 u64 start_clock; 1501 u64 finish_clock; 1502 int ret; 1503 1504 /* 1505 * All PMUs/events that share this PMI handler should make sure to 1506 * increment active_events for their events. 1507 */ 1508 if (!atomic_read(&active_events)) 1509 return NMI_DONE; 1510 1511 start_clock = sched_clock(); 1512 ret = x86_pmu.handle_irq(regs); 1513 finish_clock = sched_clock(); 1514 1515 perf_sample_event_took(finish_clock - start_clock); 1516 1517 return ret; 1518 } 1519 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1520 1521 struct event_constraint emptyconstraint; 1522 struct event_constraint unconstrained; 1523 1524 static int x86_pmu_prepare_cpu(unsigned int cpu) 1525 { 1526 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1527 int i; 1528 1529 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1530 cpuc->kfree_on_online[i] = NULL; 1531 if (x86_pmu.cpu_prepare) 1532 return x86_pmu.cpu_prepare(cpu); 1533 return 0; 1534 } 1535 1536 static int x86_pmu_dead_cpu(unsigned int cpu) 1537 { 1538 if (x86_pmu.cpu_dead) 1539 x86_pmu.cpu_dead(cpu); 1540 return 0; 1541 } 1542 1543 static int x86_pmu_online_cpu(unsigned int cpu) 1544 { 1545 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1546 int i; 1547 1548 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1549 kfree(cpuc->kfree_on_online[i]); 1550 cpuc->kfree_on_online[i] = NULL; 1551 } 1552 return 0; 1553 } 1554 1555 static int x86_pmu_starting_cpu(unsigned int cpu) 1556 { 1557 if (x86_pmu.cpu_starting) 1558 x86_pmu.cpu_starting(cpu); 1559 return 0; 1560 } 1561 1562 static int x86_pmu_dying_cpu(unsigned int cpu) 1563 { 1564 if (x86_pmu.cpu_dying) 1565 x86_pmu.cpu_dying(cpu); 1566 return 0; 1567 } 1568 1569 static void __init pmu_check_apic(void) 1570 { 1571 if (boot_cpu_has(X86_FEATURE_APIC)) 1572 return; 1573 1574 x86_pmu.apic = 0; 1575 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1576 pr_info("no hardware sampling interrupt available.\n"); 1577 1578 /* 1579 * If we have a PMU initialized but no APIC 1580 * interrupts, we cannot sample hardware 1581 * events (user-space has to fall back and 1582 * sample via a hrtimer based software event): 1583 */ 1584 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1585 1586 } 1587 1588 static struct attribute_group x86_pmu_format_group __ro_after_init = { 1589 .name = "format", 1590 .attrs = NULL, 1591 }; 1592 1593 /* 1594 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1595 * out of events_attr attributes. 1596 */ 1597 static void __init filter_events(struct attribute **attrs) 1598 { 1599 struct device_attribute *d; 1600 struct perf_pmu_events_attr *pmu_attr; 1601 int offset = 0; 1602 int i, j; 1603 1604 for (i = 0; attrs[i]; i++) { 1605 d = (struct device_attribute *)attrs[i]; 1606 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr); 1607 /* str trumps id */ 1608 if (pmu_attr->event_str) 1609 continue; 1610 if (x86_pmu.event_map(i + offset)) 1611 continue; 1612 1613 for (j = i; attrs[j]; j++) 1614 attrs[j] = attrs[j + 1]; 1615 1616 /* Check the shifted attr. */ 1617 i--; 1618 1619 /* 1620 * event_map() is index based, the attrs array is organized 1621 * by increasing event index. If we shift the events, then 1622 * we need to compensate for the event_map(), otherwise 1623 * we are looking up the wrong event in the map 1624 */ 1625 offset++; 1626 } 1627 } 1628 1629 /* Merge two pointer arrays */ 1630 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b) 1631 { 1632 struct attribute **new; 1633 int j, i; 1634 1635 for (j = 0; a && a[j]; j++) 1636 ; 1637 for (i = 0; b && b[i]; i++) 1638 j++; 1639 j++; 1640 1641 new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL); 1642 if (!new) 1643 return NULL; 1644 1645 j = 0; 1646 for (i = 0; a && a[i]; i++) 1647 new[j++] = a[i]; 1648 for (i = 0; b && b[i]; i++) 1649 new[j++] = b[i]; 1650 new[j] = NULL; 1651 1652 return new; 1653 } 1654 1655 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1656 { 1657 struct perf_pmu_events_attr *pmu_attr = \ 1658 container_of(attr, struct perf_pmu_events_attr, attr); 1659 u64 config = x86_pmu.event_map(pmu_attr->id); 1660 1661 /* string trumps id */ 1662 if (pmu_attr->event_str) 1663 return sprintf(page, "%s", pmu_attr->event_str); 1664 1665 return x86_pmu.events_sysfs_show(page, config); 1666 } 1667 EXPORT_SYMBOL_GPL(events_sysfs_show); 1668 1669 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1670 char *page) 1671 { 1672 struct perf_pmu_events_ht_attr *pmu_attr = 1673 container_of(attr, struct perf_pmu_events_ht_attr, attr); 1674 1675 /* 1676 * Report conditional events depending on Hyper-Threading. 1677 * 1678 * This is overly conservative as usually the HT special 1679 * handling is not needed if the other CPU thread is idle. 1680 * 1681 * Note this does not (and cannot) handle the case when thread 1682 * siblings are invisible, for example with virtualization 1683 * if they are owned by some other guest. The user tool 1684 * has to re-read when a thread sibling gets onlined later. 1685 */ 1686 return sprintf(page, "%s", 1687 topology_max_smt_threads() > 1 ? 1688 pmu_attr->event_str_ht : 1689 pmu_attr->event_str_noht); 1690 } 1691 1692 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1693 EVENT_ATTR(instructions, INSTRUCTIONS ); 1694 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1695 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1696 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1697 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1698 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1699 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1700 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1701 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1702 1703 static struct attribute *empty_attrs; 1704 1705 static struct attribute *events_attr[] = { 1706 EVENT_PTR(CPU_CYCLES), 1707 EVENT_PTR(INSTRUCTIONS), 1708 EVENT_PTR(CACHE_REFERENCES), 1709 EVENT_PTR(CACHE_MISSES), 1710 EVENT_PTR(BRANCH_INSTRUCTIONS), 1711 EVENT_PTR(BRANCH_MISSES), 1712 EVENT_PTR(BUS_CYCLES), 1713 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1714 EVENT_PTR(STALLED_CYCLES_BACKEND), 1715 EVENT_PTR(REF_CPU_CYCLES), 1716 NULL, 1717 }; 1718 1719 static struct attribute_group x86_pmu_events_group __ro_after_init = { 1720 .name = "events", 1721 .attrs = events_attr, 1722 }; 1723 1724 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1725 { 1726 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1727 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1728 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1729 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1730 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1731 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1732 ssize_t ret; 1733 1734 /* 1735 * We have whole page size to spend and just little data 1736 * to write, so we can safely use sprintf. 1737 */ 1738 ret = sprintf(page, "event=0x%02llx", event); 1739 1740 if (umask) 1741 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1742 1743 if (edge) 1744 ret += sprintf(page + ret, ",edge"); 1745 1746 if (pc) 1747 ret += sprintf(page + ret, ",pc"); 1748 1749 if (any) 1750 ret += sprintf(page + ret, ",any"); 1751 1752 if (inv) 1753 ret += sprintf(page + ret, ",inv"); 1754 1755 if (cmask) 1756 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1757 1758 ret += sprintf(page + ret, "\n"); 1759 1760 return ret; 1761 } 1762 1763 static struct attribute_group x86_pmu_attr_group; 1764 static struct attribute_group x86_pmu_caps_group; 1765 1766 static int __init init_hw_perf_events(void) 1767 { 1768 struct x86_pmu_quirk *quirk; 1769 int err; 1770 1771 pr_info("Performance Events: "); 1772 1773 switch (boot_cpu_data.x86_vendor) { 1774 case X86_VENDOR_INTEL: 1775 err = intel_pmu_init(); 1776 break; 1777 case X86_VENDOR_AMD: 1778 err = amd_pmu_init(); 1779 break; 1780 case X86_VENDOR_HYGON: 1781 err = amd_pmu_init(); 1782 x86_pmu.name = "HYGON"; 1783 break; 1784 default: 1785 err = -ENOTSUPP; 1786 } 1787 if (err != 0) { 1788 pr_cont("no PMU driver, software events only.\n"); 1789 return 0; 1790 } 1791 1792 pmu_check_apic(); 1793 1794 /* sanity check that the hardware exists or is emulated */ 1795 if (!check_hw_exists()) 1796 return 0; 1797 1798 pr_cont("%s PMU driver.\n", x86_pmu.name); 1799 1800 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 1801 1802 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 1803 quirk->func(); 1804 1805 if (!x86_pmu.intel_ctrl) 1806 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 1807 1808 perf_events_lapic_init(); 1809 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 1810 1811 unconstrained = (struct event_constraint) 1812 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, 1813 0, x86_pmu.num_counters, 0, 0); 1814 1815 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 1816 1817 if (x86_pmu.caps_attrs) { 1818 struct attribute **tmp; 1819 1820 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs); 1821 if (!WARN_ON(!tmp)) 1822 x86_pmu_caps_group.attrs = tmp; 1823 } 1824 1825 if (x86_pmu.event_attrs) 1826 x86_pmu_events_group.attrs = x86_pmu.event_attrs; 1827 1828 if (!x86_pmu.events_sysfs_show) 1829 x86_pmu_events_group.attrs = &empty_attrs; 1830 else 1831 filter_events(x86_pmu_events_group.attrs); 1832 1833 if (x86_pmu.cpu_events) { 1834 struct attribute **tmp; 1835 1836 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events); 1837 if (!WARN_ON(!tmp)) 1838 x86_pmu_events_group.attrs = tmp; 1839 } 1840 1841 if (x86_pmu.attrs) { 1842 struct attribute **tmp; 1843 1844 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs); 1845 if (!WARN_ON(!tmp)) 1846 x86_pmu_attr_group.attrs = tmp; 1847 } 1848 1849 pr_info("... version: %d\n", x86_pmu.version); 1850 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 1851 pr_info("... generic registers: %d\n", x86_pmu.num_counters); 1852 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 1853 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 1854 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed); 1855 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl); 1856 1857 /* 1858 * Install callbacks. Core will call them for each online 1859 * cpu. 1860 */ 1861 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", 1862 x86_pmu_prepare_cpu, x86_pmu_dead_cpu); 1863 if (err) 1864 return err; 1865 1866 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, 1867 "perf/x86:starting", x86_pmu_starting_cpu, 1868 x86_pmu_dying_cpu); 1869 if (err) 1870 goto out; 1871 1872 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", 1873 x86_pmu_online_cpu, NULL); 1874 if (err) 1875 goto out1; 1876 1877 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1878 if (err) 1879 goto out2; 1880 1881 return 0; 1882 1883 out2: 1884 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); 1885 out1: 1886 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); 1887 out: 1888 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); 1889 return err; 1890 } 1891 early_initcall(init_hw_perf_events); 1892 1893 static inline void x86_pmu_read(struct perf_event *event) 1894 { 1895 if (x86_pmu.read) 1896 return x86_pmu.read(event); 1897 x86_perf_event_update(event); 1898 } 1899 1900 /* 1901 * Start group events scheduling transaction 1902 * Set the flag to make pmu::enable() not perform the 1903 * schedulability test, it will be performed at commit time 1904 * 1905 * We only support PERF_PMU_TXN_ADD transactions. Save the 1906 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1907 * transactions. 1908 */ 1909 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1910 { 1911 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1912 1913 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 1914 1915 cpuc->txn_flags = txn_flags; 1916 if (txn_flags & ~PERF_PMU_TXN_ADD) 1917 return; 1918 1919 perf_pmu_disable(pmu); 1920 __this_cpu_write(cpu_hw_events.n_txn, 0); 1921 } 1922 1923 /* 1924 * Stop group events scheduling transaction 1925 * Clear the flag and pmu::enable() will perform the 1926 * schedulability test. 1927 */ 1928 static void x86_pmu_cancel_txn(struct pmu *pmu) 1929 { 1930 unsigned int txn_flags; 1931 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1932 1933 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1934 1935 txn_flags = cpuc->txn_flags; 1936 cpuc->txn_flags = 0; 1937 if (txn_flags & ~PERF_PMU_TXN_ADD) 1938 return; 1939 1940 /* 1941 * Truncate collected array by the number of events added in this 1942 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 1943 */ 1944 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 1945 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 1946 perf_pmu_enable(pmu); 1947 } 1948 1949 /* 1950 * Commit group events scheduling transaction 1951 * Perform the group schedulability test as a whole 1952 * Return 0 if success 1953 * 1954 * Does not cancel the transaction on failure; expects the caller to do this. 1955 */ 1956 static int x86_pmu_commit_txn(struct pmu *pmu) 1957 { 1958 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1959 int assign[X86_PMC_IDX_MAX]; 1960 int n, ret; 1961 1962 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1963 1964 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 1965 cpuc->txn_flags = 0; 1966 return 0; 1967 } 1968 1969 n = cpuc->n_events; 1970 1971 if (!x86_pmu_initialized()) 1972 return -EAGAIN; 1973 1974 ret = x86_pmu.schedule_events(cpuc, n, assign); 1975 if (ret) 1976 return ret; 1977 1978 /* 1979 * copy new assignment, now we know it is possible 1980 * will be used by hw_perf_enable() 1981 */ 1982 memcpy(cpuc->assign, assign, n*sizeof(int)); 1983 1984 cpuc->txn_flags = 0; 1985 perf_pmu_enable(pmu); 1986 return 0; 1987 } 1988 /* 1989 * a fake_cpuc is used to validate event groups. Due to 1990 * the extra reg logic, we need to also allocate a fake 1991 * per_core and per_cpu structure. Otherwise, group events 1992 * using extra reg may conflict without the kernel being 1993 * able to catch this when the last event gets added to 1994 * the group. 1995 */ 1996 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 1997 { 1998 intel_cpuc_finish(cpuc); 1999 kfree(cpuc); 2000 } 2001 2002 static struct cpu_hw_events *allocate_fake_cpuc(void) 2003 { 2004 struct cpu_hw_events *cpuc; 2005 int cpu = raw_smp_processor_id(); 2006 2007 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 2008 if (!cpuc) 2009 return ERR_PTR(-ENOMEM); 2010 cpuc->is_fake = 1; 2011 2012 if (intel_cpuc_prepare(cpuc, cpu)) 2013 goto error; 2014 2015 return cpuc; 2016 error: 2017 free_fake_cpuc(cpuc); 2018 return ERR_PTR(-ENOMEM); 2019 } 2020 2021 /* 2022 * validate that we can schedule this event 2023 */ 2024 static int validate_event(struct perf_event *event) 2025 { 2026 struct cpu_hw_events *fake_cpuc; 2027 struct event_constraint *c; 2028 int ret = 0; 2029 2030 fake_cpuc = allocate_fake_cpuc(); 2031 if (IS_ERR(fake_cpuc)) 2032 return PTR_ERR(fake_cpuc); 2033 2034 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event); 2035 2036 if (!c || !c->weight) 2037 ret = -EINVAL; 2038 2039 if (x86_pmu.put_event_constraints) 2040 x86_pmu.put_event_constraints(fake_cpuc, event); 2041 2042 free_fake_cpuc(fake_cpuc); 2043 2044 return ret; 2045 } 2046 2047 /* 2048 * validate a single event group 2049 * 2050 * validation include: 2051 * - check events are compatible which each other 2052 * - events do not compete for the same counter 2053 * - number of events <= number of counters 2054 * 2055 * validation ensures the group can be loaded onto the 2056 * PMU if it was the only group available. 2057 */ 2058 static int validate_group(struct perf_event *event) 2059 { 2060 struct perf_event *leader = event->group_leader; 2061 struct cpu_hw_events *fake_cpuc; 2062 int ret = -EINVAL, n; 2063 2064 fake_cpuc = allocate_fake_cpuc(); 2065 if (IS_ERR(fake_cpuc)) 2066 return PTR_ERR(fake_cpuc); 2067 /* 2068 * the event is not yet connected with its 2069 * siblings therefore we must first collect 2070 * existing siblings, then add the new event 2071 * before we can simulate the scheduling 2072 */ 2073 n = collect_events(fake_cpuc, leader, true); 2074 if (n < 0) 2075 goto out; 2076 2077 fake_cpuc->n_events = n; 2078 n = collect_events(fake_cpuc, event, false); 2079 if (n < 0) 2080 goto out; 2081 2082 fake_cpuc->n_events = n; 2083 2084 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 2085 2086 out: 2087 free_fake_cpuc(fake_cpuc); 2088 return ret; 2089 } 2090 2091 static int x86_pmu_event_init(struct perf_event *event) 2092 { 2093 struct pmu *tmp; 2094 int err; 2095 2096 switch (event->attr.type) { 2097 case PERF_TYPE_RAW: 2098 case PERF_TYPE_HARDWARE: 2099 case PERF_TYPE_HW_CACHE: 2100 break; 2101 2102 default: 2103 return -ENOENT; 2104 } 2105 2106 err = __x86_pmu_event_init(event); 2107 if (!err) { 2108 /* 2109 * we temporarily connect event to its pmu 2110 * such that validate_group() can classify 2111 * it as an x86 event using is_x86_event() 2112 */ 2113 tmp = event->pmu; 2114 event->pmu = &pmu; 2115 2116 if (event->group_leader != event) 2117 err = validate_group(event); 2118 else 2119 err = validate_event(event); 2120 2121 event->pmu = tmp; 2122 } 2123 if (err) { 2124 if (event->destroy) 2125 event->destroy(event); 2126 } 2127 2128 if (READ_ONCE(x86_pmu.attr_rdpmc) && 2129 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 2130 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED; 2131 2132 return err; 2133 } 2134 2135 static void refresh_pce(void *ignored) 2136 { 2137 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm)); 2138 } 2139 2140 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) 2141 { 2142 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2143 return; 2144 2145 /* 2146 * This function relies on not being called concurrently in two 2147 * tasks in the same mm. Otherwise one task could observe 2148 * perf_rdpmc_allowed > 1 and return all the way back to 2149 * userspace with CR4.PCE clear while another task is still 2150 * doing on_each_cpu_mask() to propagate CR4.PCE. 2151 * 2152 * For now, this can't happen because all callers hold mmap_sem 2153 * for write. If this changes, we'll need a different solution. 2154 */ 2155 lockdep_assert_held_exclusive(&mm->mmap_sem); 2156 2157 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) 2158 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1); 2159 } 2160 2161 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) 2162 { 2163 2164 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2165 return; 2166 2167 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) 2168 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1); 2169 } 2170 2171 static int x86_pmu_event_idx(struct perf_event *event) 2172 { 2173 int idx = event->hw.idx; 2174 2175 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2176 return 0; 2177 2178 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) { 2179 idx -= INTEL_PMC_IDX_FIXED; 2180 idx |= 1 << 30; 2181 } 2182 2183 return idx + 1; 2184 } 2185 2186 static ssize_t get_attr_rdpmc(struct device *cdev, 2187 struct device_attribute *attr, 2188 char *buf) 2189 { 2190 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2191 } 2192 2193 static ssize_t set_attr_rdpmc(struct device *cdev, 2194 struct device_attribute *attr, 2195 const char *buf, size_t count) 2196 { 2197 unsigned long val; 2198 ssize_t ret; 2199 2200 ret = kstrtoul(buf, 0, &val); 2201 if (ret) 2202 return ret; 2203 2204 if (val > 2) 2205 return -EINVAL; 2206 2207 if (x86_pmu.attr_rdpmc_broken) 2208 return -ENOTSUPP; 2209 2210 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) { 2211 /* 2212 * Changing into or out of always available, aka 2213 * perf-event-bypassing mode. This path is extremely slow, 2214 * but only root can trigger it, so it's okay. 2215 */ 2216 if (val == 2) 2217 static_branch_inc(&rdpmc_always_available_key); 2218 else 2219 static_branch_dec(&rdpmc_always_available_key); 2220 on_each_cpu(refresh_pce, NULL, 1); 2221 } 2222 2223 x86_pmu.attr_rdpmc = val; 2224 2225 return count; 2226 } 2227 2228 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2229 2230 static struct attribute *x86_pmu_attrs[] = { 2231 &dev_attr_rdpmc.attr, 2232 NULL, 2233 }; 2234 2235 static struct attribute_group x86_pmu_attr_group __ro_after_init = { 2236 .attrs = x86_pmu_attrs, 2237 }; 2238 2239 static ssize_t max_precise_show(struct device *cdev, 2240 struct device_attribute *attr, 2241 char *buf) 2242 { 2243 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); 2244 } 2245 2246 static DEVICE_ATTR_RO(max_precise); 2247 2248 static struct attribute *x86_pmu_caps_attrs[] = { 2249 &dev_attr_max_precise.attr, 2250 NULL 2251 }; 2252 2253 static struct attribute_group x86_pmu_caps_group __ro_after_init = { 2254 .name = "caps", 2255 .attrs = x86_pmu_caps_attrs, 2256 }; 2257 2258 static const struct attribute_group *x86_pmu_attr_groups[] = { 2259 &x86_pmu_attr_group, 2260 &x86_pmu_format_group, 2261 &x86_pmu_events_group, 2262 &x86_pmu_caps_group, 2263 NULL, 2264 }; 2265 2266 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 2267 { 2268 if (x86_pmu.sched_task) 2269 x86_pmu.sched_task(ctx, sched_in); 2270 } 2271 2272 void perf_check_microcode(void) 2273 { 2274 if (x86_pmu.check_microcode) 2275 x86_pmu.check_microcode(); 2276 } 2277 2278 static int x86_pmu_check_period(struct perf_event *event, u64 value) 2279 { 2280 if (x86_pmu.check_period && x86_pmu.check_period(event, value)) 2281 return -EINVAL; 2282 2283 if (value && x86_pmu.limit_period) { 2284 if (x86_pmu.limit_period(event, value) > value) 2285 return -EINVAL; 2286 } 2287 2288 return 0; 2289 } 2290 2291 static struct pmu pmu = { 2292 .pmu_enable = x86_pmu_enable, 2293 .pmu_disable = x86_pmu_disable, 2294 2295 .attr_groups = x86_pmu_attr_groups, 2296 2297 .event_init = x86_pmu_event_init, 2298 2299 .event_mapped = x86_pmu_event_mapped, 2300 .event_unmapped = x86_pmu_event_unmapped, 2301 2302 .add = x86_pmu_add, 2303 .del = x86_pmu_del, 2304 .start = x86_pmu_start, 2305 .stop = x86_pmu_stop, 2306 .read = x86_pmu_read, 2307 2308 .start_txn = x86_pmu_start_txn, 2309 .cancel_txn = x86_pmu_cancel_txn, 2310 .commit_txn = x86_pmu_commit_txn, 2311 2312 .event_idx = x86_pmu_event_idx, 2313 .sched_task = x86_pmu_sched_task, 2314 .task_ctx_size = sizeof(struct x86_perf_task_context), 2315 .check_period = x86_pmu_check_period, 2316 }; 2317 2318 void arch_perf_update_userpage(struct perf_event *event, 2319 struct perf_event_mmap_page *userpg, u64 now) 2320 { 2321 struct cyc2ns_data data; 2322 u64 offset; 2323 2324 userpg->cap_user_time = 0; 2325 userpg->cap_user_time_zero = 0; 2326 userpg->cap_user_rdpmc = 2327 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED); 2328 userpg->pmc_width = x86_pmu.cntval_bits; 2329 2330 if (!using_native_sched_clock() || !sched_clock_stable()) 2331 return; 2332 2333 cyc2ns_read_begin(&data); 2334 2335 offset = data.cyc2ns_offset + __sched_clock_offset; 2336 2337 /* 2338 * Internal timekeeping for enabled/running/stopped times 2339 * is always in the local_clock domain. 2340 */ 2341 userpg->cap_user_time = 1; 2342 userpg->time_mult = data.cyc2ns_mul; 2343 userpg->time_shift = data.cyc2ns_shift; 2344 userpg->time_offset = offset - now; 2345 2346 /* 2347 * cap_user_time_zero doesn't make sense when we're using a different 2348 * time base for the records. 2349 */ 2350 if (!event->attr.use_clockid) { 2351 userpg->cap_user_time_zero = 1; 2352 userpg->time_zero = offset; 2353 } 2354 2355 cyc2ns_read_end(); 2356 } 2357 2358 void 2359 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2360 { 2361 struct unwind_state state; 2362 unsigned long addr; 2363 2364 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2365 /* TODO: We don't support guest os callchain now */ 2366 return; 2367 } 2368 2369 if (perf_callchain_store(entry, regs->ip)) 2370 return; 2371 2372 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state); 2373 unwind_next_frame(&state)) { 2374 addr = unwind_get_return_address(&state); 2375 if (!addr || perf_callchain_store(entry, addr)) 2376 return; 2377 } 2378 } 2379 2380 static inline int 2381 valid_user_frame(const void __user *fp, unsigned long size) 2382 { 2383 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 2384 } 2385 2386 static unsigned long get_segment_base(unsigned int segment) 2387 { 2388 struct desc_struct *desc; 2389 unsigned int idx = segment >> 3; 2390 2391 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2392 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2393 struct ldt_struct *ldt; 2394 2395 /* IRQs are off, so this synchronizes with smp_store_release */ 2396 ldt = READ_ONCE(current->active_mm->context.ldt); 2397 if (!ldt || idx >= ldt->nr_entries) 2398 return 0; 2399 2400 desc = &ldt->entries[idx]; 2401 #else 2402 return 0; 2403 #endif 2404 } else { 2405 if (idx >= GDT_ENTRIES) 2406 return 0; 2407 2408 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2409 } 2410 2411 return get_desc_base(desc); 2412 } 2413 2414 #ifdef CONFIG_IA32_EMULATION 2415 2416 #include <linux/compat.h> 2417 2418 static inline int 2419 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2420 { 2421 /* 32-bit process in 64-bit kernel. */ 2422 unsigned long ss_base, cs_base; 2423 struct stack_frame_ia32 frame; 2424 const void __user *fp; 2425 2426 if (!test_thread_flag(TIF_IA32)) 2427 return 0; 2428 2429 cs_base = get_segment_base(regs->cs); 2430 ss_base = get_segment_base(regs->ss); 2431 2432 fp = compat_ptr(ss_base + regs->bp); 2433 pagefault_disable(); 2434 while (entry->nr < entry->max_stack) { 2435 unsigned long bytes; 2436 frame.next_frame = 0; 2437 frame.return_address = 0; 2438 2439 if (!valid_user_frame(fp, sizeof(frame))) 2440 break; 2441 2442 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4); 2443 if (bytes != 0) 2444 break; 2445 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4); 2446 if (bytes != 0) 2447 break; 2448 2449 perf_callchain_store(entry, cs_base + frame.return_address); 2450 fp = compat_ptr(ss_base + frame.next_frame); 2451 } 2452 pagefault_enable(); 2453 return 1; 2454 } 2455 #else 2456 static inline int 2457 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2458 { 2459 return 0; 2460 } 2461 #endif 2462 2463 void 2464 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2465 { 2466 struct stack_frame frame; 2467 const unsigned long __user *fp; 2468 2469 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2470 /* TODO: We don't support guest os callchain now */ 2471 return; 2472 } 2473 2474 /* 2475 * We don't know what to do with VM86 stacks.. ignore them for now. 2476 */ 2477 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2478 return; 2479 2480 fp = (unsigned long __user *)regs->bp; 2481 2482 perf_callchain_store(entry, regs->ip); 2483 2484 if (!nmi_uaccess_okay()) 2485 return; 2486 2487 if (perf_callchain_user32(regs, entry)) 2488 return; 2489 2490 pagefault_disable(); 2491 while (entry->nr < entry->max_stack) { 2492 unsigned long bytes; 2493 2494 frame.next_frame = NULL; 2495 frame.return_address = 0; 2496 2497 if (!valid_user_frame(fp, sizeof(frame))) 2498 break; 2499 2500 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp)); 2501 if (bytes != 0) 2502 break; 2503 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp)); 2504 if (bytes != 0) 2505 break; 2506 2507 perf_callchain_store(entry, frame.return_address); 2508 fp = (void __user *)frame.next_frame; 2509 } 2510 pagefault_enable(); 2511 } 2512 2513 /* 2514 * Deal with code segment offsets for the various execution modes: 2515 * 2516 * VM86 - the good olde 16 bit days, where the linear address is 2517 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2518 * 2519 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2520 * to figure out what the 32bit base address is. 2521 * 2522 * X32 - has TIF_X32 set, but is running in x86_64 2523 * 2524 * X86_64 - CS,DS,SS,ES are all zero based. 2525 */ 2526 static unsigned long code_segment_base(struct pt_regs *regs) 2527 { 2528 /* 2529 * For IA32 we look at the GDT/LDT segment base to convert the 2530 * effective IP to a linear address. 2531 */ 2532 2533 #ifdef CONFIG_X86_32 2534 /* 2535 * If we are in VM86 mode, add the segment offset to convert to a 2536 * linear address. 2537 */ 2538 if (regs->flags & X86_VM_MASK) 2539 return 0x10 * regs->cs; 2540 2541 if (user_mode(regs) && regs->cs != __USER_CS) 2542 return get_segment_base(regs->cs); 2543 #else 2544 if (user_mode(regs) && !user_64bit_mode(regs) && 2545 regs->cs != __USER32_CS) 2546 return get_segment_base(regs->cs); 2547 #endif 2548 return 0; 2549 } 2550 2551 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2552 { 2553 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) 2554 return perf_guest_cbs->get_guest_ip(); 2555 2556 return regs->ip + code_segment_base(regs); 2557 } 2558 2559 unsigned long perf_misc_flags(struct pt_regs *regs) 2560 { 2561 int misc = 0; 2562 2563 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2564 if (perf_guest_cbs->is_user_mode()) 2565 misc |= PERF_RECORD_MISC_GUEST_USER; 2566 else 2567 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2568 } else { 2569 if (user_mode(regs)) 2570 misc |= PERF_RECORD_MISC_USER; 2571 else 2572 misc |= PERF_RECORD_MISC_KERNEL; 2573 } 2574 2575 if (regs->flags & PERF_EFLAGS_EXACT) 2576 misc |= PERF_RECORD_MISC_EXACT_IP; 2577 2578 return misc; 2579 } 2580 2581 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2582 { 2583 cap->version = x86_pmu.version; 2584 cap->num_counters_gp = x86_pmu.num_counters; 2585 cap->num_counters_fixed = x86_pmu.num_counters_fixed; 2586 cap->bit_width_gp = x86_pmu.cntval_bits; 2587 cap->bit_width_fixed = x86_pmu.cntval_bits; 2588 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2589 cap->events_mask_len = x86_pmu.events_mask_len; 2590 } 2591 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2592