xref: /openbmc/linux/arch/x86/events/core.c (revision 3098f5eb)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54 
55 u64 __read_mostly hw_cache_event_ids
56 				[PERF_COUNT_HW_CACHE_MAX]
57 				[PERF_COUNT_HW_CACHE_OP_MAX]
58 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 				[PERF_COUNT_HW_CACHE_MAX]
61 				[PERF_COUNT_HW_CACHE_OP_MAX]
62 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
63 
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71 	struct hw_perf_event *hwc = &event->hw;
72 	int shift = 64 - x86_pmu.cntval_bits;
73 	u64 prev_raw_count, new_raw_count;
74 	int idx = hwc->idx;
75 	u64 delta;
76 
77 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
78 		return 0;
79 
80 	/*
81 	 * Careful: an NMI might modify the previous event value.
82 	 *
83 	 * Our tactic to handle this is to first atomically read and
84 	 * exchange a new raw count - then add that new-prev delta
85 	 * count to the generic event atomically:
86 	 */
87 again:
88 	prev_raw_count = local64_read(&hwc->prev_count);
89 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 
91 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92 					new_raw_count) != prev_raw_count)
93 		goto again;
94 
95 	/*
96 	 * Now we have the new raw value and have updated the prev
97 	 * timestamp already. We can now calculate the elapsed delta
98 	 * (event-)time and add that to the generic event.
99 	 *
100 	 * Careful, not all hw sign-extends above the physical width
101 	 * of the count.
102 	 */
103 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
104 	delta >>= shift;
105 
106 	local64_add(delta, &event->count);
107 	local64_sub(delta, &hwc->period_left);
108 
109 	return new_raw_count;
110 }
111 
112 /*
113  * Find and validate any extra registers to set up.
114  */
115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 {
117 	struct hw_perf_event_extra *reg;
118 	struct extra_reg *er;
119 
120 	reg = &event->hw.extra_reg;
121 
122 	if (!x86_pmu.extra_regs)
123 		return 0;
124 
125 	for (er = x86_pmu.extra_regs; er->msr; er++) {
126 		if (er->event != (config & er->config_mask))
127 			continue;
128 		if (event->attr.config1 & ~er->valid_mask)
129 			return -EINVAL;
130 		/* Check if the extra msrs can be safely accessed*/
131 		if (!er->extra_msr_access)
132 			return -ENXIO;
133 
134 		reg->idx = er->idx;
135 		reg->config = event->attr.config1;
136 		reg->reg = er->msr;
137 		break;
138 	}
139 	return 0;
140 }
141 
142 static atomic_t active_events;
143 static atomic_t pmc_refcount;
144 static DEFINE_MUTEX(pmc_reserve_mutex);
145 
146 #ifdef CONFIG_X86_LOCAL_APIC
147 
148 static bool reserve_pmc_hardware(void)
149 {
150 	int i;
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
154 			goto perfctr_fail;
155 	}
156 
157 	for (i = 0; i < x86_pmu.num_counters; i++) {
158 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
159 			goto eventsel_fail;
160 	}
161 
162 	return true;
163 
164 eventsel_fail:
165 	for (i--; i >= 0; i--)
166 		release_evntsel_nmi(x86_pmu_config_addr(i));
167 
168 	i = x86_pmu.num_counters;
169 
170 perfctr_fail:
171 	for (i--; i >= 0; i--)
172 		release_perfctr_nmi(x86_pmu_event_addr(i));
173 
174 	return false;
175 }
176 
177 static void release_pmc_hardware(void)
178 {
179 	int i;
180 
181 	for (i = 0; i < x86_pmu.num_counters; i++) {
182 		release_perfctr_nmi(x86_pmu_event_addr(i));
183 		release_evntsel_nmi(x86_pmu_config_addr(i));
184 	}
185 }
186 
187 #else
188 
189 static bool reserve_pmc_hardware(void) { return true; }
190 static void release_pmc_hardware(void) {}
191 
192 #endif
193 
194 static bool check_hw_exists(void)
195 {
196 	u64 val, val_fail = -1, val_new= ~0;
197 	int i, reg, reg_fail = -1, ret = 0;
198 	int bios_fail = 0;
199 	int reg_safe = -1;
200 
201 	/*
202 	 * Check to see if the BIOS enabled any of the counters, if so
203 	 * complain and bail.
204 	 */
205 	for (i = 0; i < x86_pmu.num_counters; i++) {
206 		reg = x86_pmu_config_addr(i);
207 		ret = rdmsrl_safe(reg, &val);
208 		if (ret)
209 			goto msr_fail;
210 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
211 			bios_fail = 1;
212 			val_fail = val;
213 			reg_fail = reg;
214 		} else {
215 			reg_safe = i;
216 		}
217 	}
218 
219 	if (x86_pmu.num_counters_fixed) {
220 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
221 		ret = rdmsrl_safe(reg, &val);
222 		if (ret)
223 			goto msr_fail;
224 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
225 			if (val & (0x03 << i*4)) {
226 				bios_fail = 1;
227 				val_fail = val;
228 				reg_fail = reg;
229 			}
230 		}
231 	}
232 
233 	/*
234 	 * If all the counters are enabled, the below test will always
235 	 * fail.  The tools will also become useless in this scenario.
236 	 * Just fail and disable the hardware counters.
237 	 */
238 
239 	if (reg_safe == -1) {
240 		reg = reg_safe;
241 		goto msr_fail;
242 	}
243 
244 	/*
245 	 * Read the current value, change it and read it back to see if it
246 	 * matches, this is needed to detect certain hardware emulators
247 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 	 */
249 	reg = x86_pmu_event_addr(reg_safe);
250 	if (rdmsrl_safe(reg, &val))
251 		goto msr_fail;
252 	val ^= 0xffffUL;
253 	ret = wrmsrl_safe(reg, val);
254 	ret |= rdmsrl_safe(reg, &val_new);
255 	if (ret || val != val_new)
256 		goto msr_fail;
257 
258 	/*
259 	 * We still allow the PMU driver to operate:
260 	 */
261 	if (bios_fail) {
262 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
263 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
264 			      reg_fail, val_fail);
265 	}
266 
267 	return true;
268 
269 msr_fail:
270 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
271 		pr_cont("PMU not available due to virtualization, using software events only.\n");
272 	} else {
273 		pr_cont("Broken PMU hardware detected, using software events only.\n");
274 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
275 		       reg, val_new);
276 	}
277 
278 	return false;
279 }
280 
281 static void hw_perf_event_destroy(struct perf_event *event)
282 {
283 	x86_release_hardware();
284 	atomic_dec(&active_events);
285 }
286 
287 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 {
289 	hw_perf_event_destroy(event);
290 
291 	/* undo the lbr/bts event accounting */
292 	x86_del_exclusive(x86_lbr_exclusive_lbr);
293 }
294 
295 static inline int x86_pmu_initialized(void)
296 {
297 	return x86_pmu.handle_irq != NULL;
298 }
299 
300 static inline int
301 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 {
303 	struct perf_event_attr *attr = &event->attr;
304 	unsigned int cache_type, cache_op, cache_result;
305 	u64 config, val;
306 
307 	config = attr->config;
308 
309 	cache_type = (config >> 0) & 0xff;
310 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
311 		return -EINVAL;
312 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 
314 	cache_op = (config >>  8) & 0xff;
315 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
316 		return -EINVAL;
317 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 
319 	cache_result = (config >> 16) & 0xff;
320 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
321 		return -EINVAL;
322 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 
324 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
325 
326 	if (val == 0)
327 		return -ENOENT;
328 
329 	if (val == -1)
330 		return -EINVAL;
331 
332 	hwc->config |= val;
333 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
334 	return x86_pmu_extra_regs(val, event);
335 }
336 
337 int x86_reserve_hardware(void)
338 {
339 	int err = 0;
340 
341 	if (!atomic_inc_not_zero(&pmc_refcount)) {
342 		mutex_lock(&pmc_reserve_mutex);
343 		if (atomic_read(&pmc_refcount) == 0) {
344 			if (!reserve_pmc_hardware())
345 				err = -EBUSY;
346 			else
347 				reserve_ds_buffers();
348 		}
349 		if (!err)
350 			atomic_inc(&pmc_refcount);
351 		mutex_unlock(&pmc_reserve_mutex);
352 	}
353 
354 	return err;
355 }
356 
357 void x86_release_hardware(void)
358 {
359 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
360 		release_pmc_hardware();
361 		release_ds_buffers();
362 		mutex_unlock(&pmc_reserve_mutex);
363 	}
364 }
365 
366 /*
367  * Check if we can create event of a certain type (that no conflicting events
368  * are present).
369  */
370 int x86_add_exclusive(unsigned int what)
371 {
372 	int i;
373 
374 	/*
375 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
376 	 * LBR and BTS are still mutually exclusive.
377 	 */
378 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
379 		return 0;
380 
381 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
382 		mutex_lock(&pmc_reserve_mutex);
383 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
384 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
385 				goto fail_unlock;
386 		}
387 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
388 		mutex_unlock(&pmc_reserve_mutex);
389 	}
390 
391 	atomic_inc(&active_events);
392 	return 0;
393 
394 fail_unlock:
395 	mutex_unlock(&pmc_reserve_mutex);
396 	return -EBUSY;
397 }
398 
399 void x86_del_exclusive(unsigned int what)
400 {
401 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
402 		return;
403 
404 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
405 	atomic_dec(&active_events);
406 }
407 
408 int x86_setup_perfctr(struct perf_event *event)
409 {
410 	struct perf_event_attr *attr = &event->attr;
411 	struct hw_perf_event *hwc = &event->hw;
412 	u64 config;
413 
414 	if (!is_sampling_event(event)) {
415 		hwc->sample_period = x86_pmu.max_period;
416 		hwc->last_period = hwc->sample_period;
417 		local64_set(&hwc->period_left, hwc->sample_period);
418 	}
419 
420 	if (attr->type == PERF_TYPE_RAW)
421 		return x86_pmu_extra_regs(event->attr.config, event);
422 
423 	if (attr->type == PERF_TYPE_HW_CACHE)
424 		return set_ext_hw_attr(hwc, event);
425 
426 	if (attr->config >= x86_pmu.max_events)
427 		return -EINVAL;
428 
429 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
430 
431 	/*
432 	 * The generic map:
433 	 */
434 	config = x86_pmu.event_map(attr->config);
435 
436 	if (config == 0)
437 		return -ENOENT;
438 
439 	if (config == -1LL)
440 		return -EINVAL;
441 
442 	hwc->config |= config;
443 
444 	return 0;
445 }
446 
447 /*
448  * check that branch_sample_type is compatible with
449  * settings needed for precise_ip > 1 which implies
450  * using the LBR to capture ALL taken branches at the
451  * priv levels of the measurement
452  */
453 static inline int precise_br_compat(struct perf_event *event)
454 {
455 	u64 m = event->attr.branch_sample_type;
456 	u64 b = 0;
457 
458 	/* must capture all branches */
459 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
460 		return 0;
461 
462 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
463 
464 	if (!event->attr.exclude_user)
465 		b |= PERF_SAMPLE_BRANCH_USER;
466 
467 	if (!event->attr.exclude_kernel)
468 		b |= PERF_SAMPLE_BRANCH_KERNEL;
469 
470 	/*
471 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
472 	 */
473 
474 	return m == b;
475 }
476 
477 int x86_pmu_max_precise(void)
478 {
479 	int precise = 0;
480 
481 	/* Support for constant skid */
482 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
483 		precise++;
484 
485 		/* Support for IP fixup */
486 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
487 			precise++;
488 
489 		if (x86_pmu.pebs_prec_dist)
490 			precise++;
491 	}
492 	return precise;
493 }
494 
495 int x86_pmu_hw_config(struct perf_event *event)
496 {
497 	if (event->attr.precise_ip) {
498 		int precise = x86_pmu_max_precise();
499 
500 		if (event->attr.precise_ip > precise)
501 			return -EOPNOTSUPP;
502 
503 		/* There's no sense in having PEBS for non sampling events: */
504 		if (!is_sampling_event(event))
505 			return -EINVAL;
506 	}
507 	/*
508 	 * check that PEBS LBR correction does not conflict with
509 	 * whatever the user is asking with attr->branch_sample_type
510 	 */
511 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
512 		u64 *br_type = &event->attr.branch_sample_type;
513 
514 		if (has_branch_stack(event)) {
515 			if (!precise_br_compat(event))
516 				return -EOPNOTSUPP;
517 
518 			/* branch_sample_type is compatible */
519 
520 		} else {
521 			/*
522 			 * user did not specify  branch_sample_type
523 			 *
524 			 * For PEBS fixups, we capture all
525 			 * the branches at the priv level of the
526 			 * event.
527 			 */
528 			*br_type = PERF_SAMPLE_BRANCH_ANY;
529 
530 			if (!event->attr.exclude_user)
531 				*br_type |= PERF_SAMPLE_BRANCH_USER;
532 
533 			if (!event->attr.exclude_kernel)
534 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
535 		}
536 	}
537 
538 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
539 		event->attach_state |= PERF_ATTACH_TASK_DATA;
540 
541 	/*
542 	 * Generate PMC IRQs:
543 	 * (keep 'enabled' bit clear for now)
544 	 */
545 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
546 
547 	/*
548 	 * Count user and OS events unless requested not to
549 	 */
550 	if (!event->attr.exclude_user)
551 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
552 	if (!event->attr.exclude_kernel)
553 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
554 
555 	if (event->attr.type == PERF_TYPE_RAW)
556 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
557 
558 	if (event->attr.sample_period && x86_pmu.limit_period) {
559 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
560 				event->attr.sample_period)
561 			return -EINVAL;
562 	}
563 
564 	/* sample_regs_user never support XMM registers */
565 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
566 		return -EINVAL;
567 	/*
568 	 * Besides the general purpose registers, XMM registers may
569 	 * be collected in PEBS on some platforms, e.g. Icelake
570 	 */
571 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
572 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
573 			return -EINVAL;
574 
575 		if (!event->attr.precise_ip)
576 			return -EINVAL;
577 	}
578 
579 	return x86_setup_perfctr(event);
580 }
581 
582 /*
583  * Setup the hardware configuration for a given attr_type
584  */
585 static int __x86_pmu_event_init(struct perf_event *event)
586 {
587 	int err;
588 
589 	if (!x86_pmu_initialized())
590 		return -ENODEV;
591 
592 	err = x86_reserve_hardware();
593 	if (err)
594 		return err;
595 
596 	atomic_inc(&active_events);
597 	event->destroy = hw_perf_event_destroy;
598 
599 	event->hw.idx = -1;
600 	event->hw.last_cpu = -1;
601 	event->hw.last_tag = ~0ULL;
602 
603 	/* mark unused */
604 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
605 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
606 
607 	return x86_pmu.hw_config(event);
608 }
609 
610 void x86_pmu_disable_all(void)
611 {
612 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
613 	int idx;
614 
615 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
616 		u64 val;
617 
618 		if (!test_bit(idx, cpuc->active_mask))
619 			continue;
620 		rdmsrl(x86_pmu_config_addr(idx), val);
621 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
622 			continue;
623 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
624 		wrmsrl(x86_pmu_config_addr(idx), val);
625 	}
626 }
627 
628 /*
629  * There may be PMI landing after enabled=0. The PMI hitting could be before or
630  * after disable_all.
631  *
632  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
633  * It will not be re-enabled in the NMI handler again, because enabled=0. After
634  * handling the NMI, disable_all will be called, which will not change the
635  * state either. If PMI hits after disable_all, the PMU is already disabled
636  * before entering NMI handler. The NMI handler will not change the state
637  * either.
638  *
639  * So either situation is harmless.
640  */
641 static void x86_pmu_disable(struct pmu *pmu)
642 {
643 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
644 
645 	if (!x86_pmu_initialized())
646 		return;
647 
648 	if (!cpuc->enabled)
649 		return;
650 
651 	cpuc->n_added = 0;
652 	cpuc->enabled = 0;
653 	barrier();
654 
655 	x86_pmu.disable_all();
656 }
657 
658 void x86_pmu_enable_all(int added)
659 {
660 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
661 	int idx;
662 
663 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
664 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
665 
666 		if (!test_bit(idx, cpuc->active_mask))
667 			continue;
668 
669 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
670 	}
671 }
672 
673 static struct pmu pmu;
674 
675 static inline int is_x86_event(struct perf_event *event)
676 {
677 	return event->pmu == &pmu;
678 }
679 
680 struct pmu *x86_get_pmu(void)
681 {
682 	return &pmu;
683 }
684 /*
685  * Event scheduler state:
686  *
687  * Assign events iterating over all events and counters, beginning
688  * with events with least weights first. Keep the current iterator
689  * state in struct sched_state.
690  */
691 struct sched_state {
692 	int	weight;
693 	int	event;		/* event index */
694 	int	counter;	/* counter index */
695 	int	unassigned;	/* number of events to be assigned left */
696 	int	nr_gp;		/* number of GP counters used */
697 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
698 };
699 
700 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
701 #define	SCHED_STATES_MAX	2
702 
703 struct perf_sched {
704 	int			max_weight;
705 	int			max_events;
706 	int			max_gp;
707 	int			saved_states;
708 	struct event_constraint	**constraints;
709 	struct sched_state	state;
710 	struct sched_state	saved[SCHED_STATES_MAX];
711 };
712 
713 /*
714  * Initialize interator that runs through all events and counters.
715  */
716 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
717 			    int num, int wmin, int wmax, int gpmax)
718 {
719 	int idx;
720 
721 	memset(sched, 0, sizeof(*sched));
722 	sched->max_events	= num;
723 	sched->max_weight	= wmax;
724 	sched->max_gp		= gpmax;
725 	sched->constraints	= constraints;
726 
727 	for (idx = 0; idx < num; idx++) {
728 		if (constraints[idx]->weight == wmin)
729 			break;
730 	}
731 
732 	sched->state.event	= idx;		/* start with min weight */
733 	sched->state.weight	= wmin;
734 	sched->state.unassigned	= num;
735 }
736 
737 static void perf_sched_save_state(struct perf_sched *sched)
738 {
739 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
740 		return;
741 
742 	sched->saved[sched->saved_states] = sched->state;
743 	sched->saved_states++;
744 }
745 
746 static bool perf_sched_restore_state(struct perf_sched *sched)
747 {
748 	if (!sched->saved_states)
749 		return false;
750 
751 	sched->saved_states--;
752 	sched->state = sched->saved[sched->saved_states];
753 
754 	/* continue with next counter: */
755 	clear_bit(sched->state.counter++, sched->state.used);
756 
757 	return true;
758 }
759 
760 /*
761  * Select a counter for the current event to schedule. Return true on
762  * success.
763  */
764 static bool __perf_sched_find_counter(struct perf_sched *sched)
765 {
766 	struct event_constraint *c;
767 	int idx;
768 
769 	if (!sched->state.unassigned)
770 		return false;
771 
772 	if (sched->state.event >= sched->max_events)
773 		return false;
774 
775 	c = sched->constraints[sched->state.event];
776 	/* Prefer fixed purpose counters */
777 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
778 		idx = INTEL_PMC_IDX_FIXED;
779 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
780 			if (!__test_and_set_bit(idx, sched->state.used))
781 				goto done;
782 		}
783 	}
784 
785 	/* Grab the first unused counter starting with idx */
786 	idx = sched->state.counter;
787 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
788 		if (!__test_and_set_bit(idx, sched->state.used)) {
789 			if (sched->state.nr_gp++ >= sched->max_gp)
790 				return false;
791 
792 			goto done;
793 		}
794 	}
795 
796 	return false;
797 
798 done:
799 	sched->state.counter = idx;
800 
801 	if (c->overlap)
802 		perf_sched_save_state(sched);
803 
804 	return true;
805 }
806 
807 static bool perf_sched_find_counter(struct perf_sched *sched)
808 {
809 	while (!__perf_sched_find_counter(sched)) {
810 		if (!perf_sched_restore_state(sched))
811 			return false;
812 	}
813 
814 	return true;
815 }
816 
817 /*
818  * Go through all unassigned events and find the next one to schedule.
819  * Take events with the least weight first. Return true on success.
820  */
821 static bool perf_sched_next_event(struct perf_sched *sched)
822 {
823 	struct event_constraint *c;
824 
825 	if (!sched->state.unassigned || !--sched->state.unassigned)
826 		return false;
827 
828 	do {
829 		/* next event */
830 		sched->state.event++;
831 		if (sched->state.event >= sched->max_events) {
832 			/* next weight */
833 			sched->state.event = 0;
834 			sched->state.weight++;
835 			if (sched->state.weight > sched->max_weight)
836 				return false;
837 		}
838 		c = sched->constraints[sched->state.event];
839 	} while (c->weight != sched->state.weight);
840 
841 	sched->state.counter = 0;	/* start with first counter */
842 
843 	return true;
844 }
845 
846 /*
847  * Assign a counter for each event.
848  */
849 int perf_assign_events(struct event_constraint **constraints, int n,
850 			int wmin, int wmax, int gpmax, int *assign)
851 {
852 	struct perf_sched sched;
853 
854 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
855 
856 	do {
857 		if (!perf_sched_find_counter(&sched))
858 			break;	/* failed */
859 		if (assign)
860 			assign[sched.state.event] = sched.state.counter;
861 	} while (perf_sched_next_event(&sched));
862 
863 	return sched.state.unassigned;
864 }
865 EXPORT_SYMBOL_GPL(perf_assign_events);
866 
867 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
868 {
869 	struct event_constraint *c;
870 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
871 	struct perf_event *e;
872 	int n0, i, wmin, wmax, unsched = 0;
873 	struct hw_perf_event *hwc;
874 
875 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
876 
877 	/*
878 	 * Compute the number of events already present; see x86_pmu_add(),
879 	 * validate_group() and x86_pmu_commit_txn(). For the former two
880 	 * cpuc->n_events hasn't been updated yet, while for the latter
881 	 * cpuc->n_txn contains the number of events added in the current
882 	 * transaction.
883 	 */
884 	n0 = cpuc->n_events;
885 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
886 		n0 -= cpuc->n_txn;
887 
888 	if (x86_pmu.start_scheduling)
889 		x86_pmu.start_scheduling(cpuc);
890 
891 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
892 		c = cpuc->event_constraint[i];
893 
894 		/*
895 		 * Previously scheduled events should have a cached constraint,
896 		 * while new events should not have one.
897 		 */
898 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
899 
900 		/*
901 		 * Request constraints for new events; or for those events that
902 		 * have a dynamic constraint -- for those the constraint can
903 		 * change due to external factors (sibling state, allow_tfa).
904 		 */
905 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
906 			c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
907 			cpuc->event_constraint[i] = c;
908 		}
909 
910 		wmin = min(wmin, c->weight);
911 		wmax = max(wmax, c->weight);
912 	}
913 
914 	/*
915 	 * fastpath, try to reuse previous register
916 	 */
917 	for (i = 0; i < n; i++) {
918 		hwc = &cpuc->event_list[i]->hw;
919 		c = cpuc->event_constraint[i];
920 
921 		/* never assigned */
922 		if (hwc->idx == -1)
923 			break;
924 
925 		/* constraint still honored */
926 		if (!test_bit(hwc->idx, c->idxmsk))
927 			break;
928 
929 		/* not already used */
930 		if (test_bit(hwc->idx, used_mask))
931 			break;
932 
933 		__set_bit(hwc->idx, used_mask);
934 		if (assign)
935 			assign[i] = hwc->idx;
936 	}
937 
938 	/* slow path */
939 	if (i != n) {
940 		int gpmax = x86_pmu.num_counters;
941 
942 		/*
943 		 * Do not allow scheduling of more than half the available
944 		 * generic counters.
945 		 *
946 		 * This helps avoid counter starvation of sibling thread by
947 		 * ensuring at most half the counters cannot be in exclusive
948 		 * mode. There is no designated counters for the limits. Any
949 		 * N/2 counters can be used. This helps with events with
950 		 * specific counter constraints.
951 		 */
952 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
953 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
954 			gpmax /= 2;
955 
956 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
957 					     wmax, gpmax, assign);
958 	}
959 
960 	/*
961 	 * In case of success (unsched = 0), mark events as committed,
962 	 * so we do not put_constraint() in case new events are added
963 	 * and fail to be scheduled
964 	 *
965 	 * We invoke the lower level commit callback to lock the resource
966 	 *
967 	 * We do not need to do all of this in case we are called to
968 	 * validate an event group (assign == NULL)
969 	 */
970 	if (!unsched && assign) {
971 		for (i = 0; i < n; i++) {
972 			e = cpuc->event_list[i];
973 			if (x86_pmu.commit_scheduling)
974 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
975 		}
976 	} else {
977 		for (i = n0; i < n; i++) {
978 			e = cpuc->event_list[i];
979 
980 			/*
981 			 * release events that failed scheduling
982 			 */
983 			if (x86_pmu.put_event_constraints)
984 				x86_pmu.put_event_constraints(cpuc, e);
985 
986 			cpuc->event_constraint[i] = NULL;
987 		}
988 	}
989 
990 	if (x86_pmu.stop_scheduling)
991 		x86_pmu.stop_scheduling(cpuc);
992 
993 	return unsched ? -EINVAL : 0;
994 }
995 
996 /*
997  * dogrp: true if must collect siblings events (group)
998  * returns total number of events and error code
999  */
1000 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1001 {
1002 	struct perf_event *event;
1003 	int n, max_count;
1004 
1005 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1006 
1007 	/* current number of events already accepted */
1008 	n = cpuc->n_events;
1009 	if (!cpuc->n_events)
1010 		cpuc->pebs_output = 0;
1011 
1012 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1013 		/*
1014 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1015 		 * away, the group was broken down and this singleton event
1016 		 * can't schedule any more.
1017 		 */
1018 		if (is_pebs_pt(leader) && !leader->aux_event)
1019 			return -EINVAL;
1020 
1021 		/*
1022 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1023 		 */
1024 		if (cpuc->pebs_output &&
1025 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1026 			return -EINVAL;
1027 
1028 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1029 	}
1030 
1031 	if (is_x86_event(leader)) {
1032 		if (n >= max_count)
1033 			return -EINVAL;
1034 		cpuc->event_list[n] = leader;
1035 		n++;
1036 	}
1037 	if (!dogrp)
1038 		return n;
1039 
1040 	for_each_sibling_event(event, leader) {
1041 		if (!is_x86_event(event) ||
1042 		    event->state <= PERF_EVENT_STATE_OFF)
1043 			continue;
1044 
1045 		if (n >= max_count)
1046 			return -EINVAL;
1047 
1048 		cpuc->event_list[n] = event;
1049 		n++;
1050 	}
1051 	return n;
1052 }
1053 
1054 static inline void x86_assign_hw_event(struct perf_event *event,
1055 				struct cpu_hw_events *cpuc, int i)
1056 {
1057 	struct hw_perf_event *hwc = &event->hw;
1058 
1059 	hwc->idx = cpuc->assign[i];
1060 	hwc->last_cpu = smp_processor_id();
1061 	hwc->last_tag = ++cpuc->tags[i];
1062 
1063 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1064 		hwc->config_base = 0;
1065 		hwc->event_base	= 0;
1066 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1067 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1068 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1069 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1070 	} else {
1071 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1072 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1073 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1074 	}
1075 }
1076 
1077 /**
1078  * x86_perf_rdpmc_index - Return PMC counter used for event
1079  * @event: the perf_event to which the PMC counter was assigned
1080  *
1081  * The counter assigned to this performance event may change if interrupts
1082  * are enabled. This counter should thus never be used while interrupts are
1083  * enabled. Before this function is used to obtain the assigned counter the
1084  * event should be checked for validity using, for example,
1085  * perf_event_read_local(), within the same interrupt disabled section in
1086  * which this counter is planned to be used.
1087  *
1088  * Return: The index of the performance monitoring counter assigned to
1089  * @perf_event.
1090  */
1091 int x86_perf_rdpmc_index(struct perf_event *event)
1092 {
1093 	lockdep_assert_irqs_disabled();
1094 
1095 	return event->hw.event_base_rdpmc;
1096 }
1097 
1098 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1099 					struct cpu_hw_events *cpuc,
1100 					int i)
1101 {
1102 	return hwc->idx == cpuc->assign[i] &&
1103 		hwc->last_cpu == smp_processor_id() &&
1104 		hwc->last_tag == cpuc->tags[i];
1105 }
1106 
1107 static void x86_pmu_start(struct perf_event *event, int flags);
1108 
1109 static void x86_pmu_enable(struct pmu *pmu)
1110 {
1111 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1112 	struct perf_event *event;
1113 	struct hw_perf_event *hwc;
1114 	int i, added = cpuc->n_added;
1115 
1116 	if (!x86_pmu_initialized())
1117 		return;
1118 
1119 	if (cpuc->enabled)
1120 		return;
1121 
1122 	if (cpuc->n_added) {
1123 		int n_running = cpuc->n_events - cpuc->n_added;
1124 		/*
1125 		 * apply assignment obtained either from
1126 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1127 		 *
1128 		 * step1: save events moving to new counters
1129 		 */
1130 		for (i = 0; i < n_running; i++) {
1131 			event = cpuc->event_list[i];
1132 			hwc = &event->hw;
1133 
1134 			/*
1135 			 * we can avoid reprogramming counter if:
1136 			 * - assigned same counter as last time
1137 			 * - running on same CPU as last time
1138 			 * - no other event has used the counter since
1139 			 */
1140 			if (hwc->idx == -1 ||
1141 			    match_prev_assignment(hwc, cpuc, i))
1142 				continue;
1143 
1144 			/*
1145 			 * Ensure we don't accidentally enable a stopped
1146 			 * counter simply because we rescheduled.
1147 			 */
1148 			if (hwc->state & PERF_HES_STOPPED)
1149 				hwc->state |= PERF_HES_ARCH;
1150 
1151 			x86_pmu_stop(event, PERF_EF_UPDATE);
1152 		}
1153 
1154 		/*
1155 		 * step2: reprogram moved events into new counters
1156 		 */
1157 		for (i = 0; i < cpuc->n_events; i++) {
1158 			event = cpuc->event_list[i];
1159 			hwc = &event->hw;
1160 
1161 			if (!match_prev_assignment(hwc, cpuc, i))
1162 				x86_assign_hw_event(event, cpuc, i);
1163 			else if (i < n_running)
1164 				continue;
1165 
1166 			if (hwc->state & PERF_HES_ARCH)
1167 				continue;
1168 
1169 			x86_pmu_start(event, PERF_EF_RELOAD);
1170 		}
1171 		cpuc->n_added = 0;
1172 		perf_events_lapic_init();
1173 	}
1174 
1175 	cpuc->enabled = 1;
1176 	barrier();
1177 
1178 	x86_pmu.enable_all(added);
1179 }
1180 
1181 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1182 
1183 /*
1184  * Set the next IRQ period, based on the hwc->period_left value.
1185  * To be called with the event disabled in hw:
1186  */
1187 int x86_perf_event_set_period(struct perf_event *event)
1188 {
1189 	struct hw_perf_event *hwc = &event->hw;
1190 	s64 left = local64_read(&hwc->period_left);
1191 	s64 period = hwc->sample_period;
1192 	int ret = 0, idx = hwc->idx;
1193 
1194 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1195 		return 0;
1196 
1197 	/*
1198 	 * If we are way outside a reasonable range then just skip forward:
1199 	 */
1200 	if (unlikely(left <= -period)) {
1201 		left = period;
1202 		local64_set(&hwc->period_left, left);
1203 		hwc->last_period = period;
1204 		ret = 1;
1205 	}
1206 
1207 	if (unlikely(left <= 0)) {
1208 		left += period;
1209 		local64_set(&hwc->period_left, left);
1210 		hwc->last_period = period;
1211 		ret = 1;
1212 	}
1213 	/*
1214 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1215 	 */
1216 	if (unlikely(left < 2))
1217 		left = 2;
1218 
1219 	if (left > x86_pmu.max_period)
1220 		left = x86_pmu.max_period;
1221 
1222 	if (x86_pmu.limit_period)
1223 		left = x86_pmu.limit_period(event, left);
1224 
1225 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1226 
1227 	/*
1228 	 * The hw event starts counting from this event offset,
1229 	 * mark it to be able to extra future deltas:
1230 	 */
1231 	local64_set(&hwc->prev_count, (u64)-left);
1232 
1233 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1234 
1235 	/*
1236 	 * Due to erratum on certan cpu we need
1237 	 * a second write to be sure the register
1238 	 * is updated properly
1239 	 */
1240 	if (x86_pmu.perfctr_second_write) {
1241 		wrmsrl(hwc->event_base,
1242 			(u64)(-left) & x86_pmu.cntval_mask);
1243 	}
1244 
1245 	perf_event_update_userpage(event);
1246 
1247 	return ret;
1248 }
1249 
1250 void x86_pmu_enable_event(struct perf_event *event)
1251 {
1252 	if (__this_cpu_read(cpu_hw_events.enabled))
1253 		__x86_pmu_enable_event(&event->hw,
1254 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1255 }
1256 
1257 /*
1258  * Add a single event to the PMU.
1259  *
1260  * The event is added to the group of enabled events
1261  * but only if it can be scheduled with existing events.
1262  */
1263 static int x86_pmu_add(struct perf_event *event, int flags)
1264 {
1265 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1266 	struct hw_perf_event *hwc;
1267 	int assign[X86_PMC_IDX_MAX];
1268 	int n, n0, ret;
1269 
1270 	hwc = &event->hw;
1271 
1272 	n0 = cpuc->n_events;
1273 	ret = n = collect_events(cpuc, event, false);
1274 	if (ret < 0)
1275 		goto out;
1276 
1277 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1278 	if (!(flags & PERF_EF_START))
1279 		hwc->state |= PERF_HES_ARCH;
1280 
1281 	/*
1282 	 * If group events scheduling transaction was started,
1283 	 * skip the schedulability test here, it will be performed
1284 	 * at commit time (->commit_txn) as a whole.
1285 	 *
1286 	 * If commit fails, we'll call ->del() on all events
1287 	 * for which ->add() was called.
1288 	 */
1289 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1290 		goto done_collect;
1291 
1292 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1293 	if (ret)
1294 		goto out;
1295 	/*
1296 	 * copy new assignment, now we know it is possible
1297 	 * will be used by hw_perf_enable()
1298 	 */
1299 	memcpy(cpuc->assign, assign, n*sizeof(int));
1300 
1301 done_collect:
1302 	/*
1303 	 * Commit the collect_events() state. See x86_pmu_del() and
1304 	 * x86_pmu_*_txn().
1305 	 */
1306 	cpuc->n_events = n;
1307 	cpuc->n_added += n - n0;
1308 	cpuc->n_txn += n - n0;
1309 
1310 	if (x86_pmu.add) {
1311 		/*
1312 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1313 		 * so we enable LBRs before an event needs them etc..
1314 		 */
1315 		x86_pmu.add(event);
1316 	}
1317 
1318 	ret = 0;
1319 out:
1320 	return ret;
1321 }
1322 
1323 static void x86_pmu_start(struct perf_event *event, int flags)
1324 {
1325 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1326 	int idx = event->hw.idx;
1327 
1328 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1329 		return;
1330 
1331 	if (WARN_ON_ONCE(idx == -1))
1332 		return;
1333 
1334 	if (flags & PERF_EF_RELOAD) {
1335 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1336 		x86_perf_event_set_period(event);
1337 	}
1338 
1339 	event->hw.state = 0;
1340 
1341 	cpuc->events[idx] = event;
1342 	__set_bit(idx, cpuc->active_mask);
1343 	__set_bit(idx, cpuc->running);
1344 	x86_pmu.enable(event);
1345 	perf_event_update_userpage(event);
1346 }
1347 
1348 void perf_event_print_debug(void)
1349 {
1350 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1351 	u64 pebs, debugctl;
1352 	struct cpu_hw_events *cpuc;
1353 	unsigned long flags;
1354 	int cpu, idx;
1355 
1356 	if (!x86_pmu.num_counters)
1357 		return;
1358 
1359 	local_irq_save(flags);
1360 
1361 	cpu = smp_processor_id();
1362 	cpuc = &per_cpu(cpu_hw_events, cpu);
1363 
1364 	if (x86_pmu.version >= 2) {
1365 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1366 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1367 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1368 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1369 
1370 		pr_info("\n");
1371 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1372 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1373 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1374 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1375 		if (x86_pmu.pebs_constraints) {
1376 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1377 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1378 		}
1379 		if (x86_pmu.lbr_nr) {
1380 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1381 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1382 		}
1383 	}
1384 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1385 
1386 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1387 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1388 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1389 
1390 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1391 
1392 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1393 			cpu, idx, pmc_ctrl);
1394 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1395 			cpu, idx, pmc_count);
1396 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1397 			cpu, idx, prev_left);
1398 	}
1399 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1400 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1401 
1402 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1403 			cpu, idx, pmc_count);
1404 	}
1405 	local_irq_restore(flags);
1406 }
1407 
1408 void x86_pmu_stop(struct perf_event *event, int flags)
1409 {
1410 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1411 	struct hw_perf_event *hwc = &event->hw;
1412 
1413 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1414 		x86_pmu.disable(event);
1415 		__clear_bit(hwc->idx, cpuc->active_mask);
1416 		cpuc->events[hwc->idx] = NULL;
1417 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1418 		hwc->state |= PERF_HES_STOPPED;
1419 	}
1420 
1421 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1422 		/*
1423 		 * Drain the remaining delta count out of a event
1424 		 * that we are disabling:
1425 		 */
1426 		x86_perf_event_update(event);
1427 		hwc->state |= PERF_HES_UPTODATE;
1428 	}
1429 }
1430 
1431 static void x86_pmu_del(struct perf_event *event, int flags)
1432 {
1433 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1434 	int i;
1435 
1436 	/*
1437 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1438 	 * The events never got scheduled and ->cancel_txn will truncate
1439 	 * the event_list.
1440 	 *
1441 	 * XXX assumes any ->del() called during a TXN will only be on
1442 	 * an event added during that same TXN.
1443 	 */
1444 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1445 		goto do_del;
1446 
1447 	/*
1448 	 * Not a TXN, therefore cleanup properly.
1449 	 */
1450 	x86_pmu_stop(event, PERF_EF_UPDATE);
1451 
1452 	for (i = 0; i < cpuc->n_events; i++) {
1453 		if (event == cpuc->event_list[i])
1454 			break;
1455 	}
1456 
1457 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1458 		return;
1459 
1460 	/* If we have a newly added event; make sure to decrease n_added. */
1461 	if (i >= cpuc->n_events - cpuc->n_added)
1462 		--cpuc->n_added;
1463 
1464 	if (x86_pmu.put_event_constraints)
1465 		x86_pmu.put_event_constraints(cpuc, event);
1466 
1467 	/* Delete the array entry. */
1468 	while (++i < cpuc->n_events) {
1469 		cpuc->event_list[i-1] = cpuc->event_list[i];
1470 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1471 	}
1472 	cpuc->event_constraint[i-1] = NULL;
1473 	--cpuc->n_events;
1474 
1475 	perf_event_update_userpage(event);
1476 
1477 do_del:
1478 	if (x86_pmu.del) {
1479 		/*
1480 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1481 		 * event can need them etc..
1482 		 */
1483 		x86_pmu.del(event);
1484 	}
1485 }
1486 
1487 int x86_pmu_handle_irq(struct pt_regs *regs)
1488 {
1489 	struct perf_sample_data data;
1490 	struct cpu_hw_events *cpuc;
1491 	struct perf_event *event;
1492 	int idx, handled = 0;
1493 	u64 val;
1494 
1495 	cpuc = this_cpu_ptr(&cpu_hw_events);
1496 
1497 	/*
1498 	 * Some chipsets need to unmask the LVTPC in a particular spot
1499 	 * inside the nmi handler.  As a result, the unmasking was pushed
1500 	 * into all the nmi handlers.
1501 	 *
1502 	 * This generic handler doesn't seem to have any issues where the
1503 	 * unmasking occurs so it was left at the top.
1504 	 */
1505 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1506 
1507 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1508 		if (!test_bit(idx, cpuc->active_mask))
1509 			continue;
1510 
1511 		event = cpuc->events[idx];
1512 
1513 		val = x86_perf_event_update(event);
1514 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1515 			continue;
1516 
1517 		/*
1518 		 * event overflow
1519 		 */
1520 		handled++;
1521 		perf_sample_data_init(&data, 0, event->hw.last_period);
1522 
1523 		if (!x86_perf_event_set_period(event))
1524 			continue;
1525 
1526 		if (perf_event_overflow(event, &data, regs))
1527 			x86_pmu_stop(event, 0);
1528 	}
1529 
1530 	if (handled)
1531 		inc_irq_stat(apic_perf_irqs);
1532 
1533 	return handled;
1534 }
1535 
1536 void perf_events_lapic_init(void)
1537 {
1538 	if (!x86_pmu.apic || !x86_pmu_initialized())
1539 		return;
1540 
1541 	/*
1542 	 * Always use NMI for PMU
1543 	 */
1544 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1545 }
1546 
1547 static int
1548 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1549 {
1550 	u64 start_clock;
1551 	u64 finish_clock;
1552 	int ret;
1553 
1554 	/*
1555 	 * All PMUs/events that share this PMI handler should make sure to
1556 	 * increment active_events for their events.
1557 	 */
1558 	if (!atomic_read(&active_events))
1559 		return NMI_DONE;
1560 
1561 	start_clock = sched_clock();
1562 	ret = x86_pmu.handle_irq(regs);
1563 	finish_clock = sched_clock();
1564 
1565 	perf_sample_event_took(finish_clock - start_clock);
1566 
1567 	return ret;
1568 }
1569 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1570 
1571 struct event_constraint emptyconstraint;
1572 struct event_constraint unconstrained;
1573 
1574 static int x86_pmu_prepare_cpu(unsigned int cpu)
1575 {
1576 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1577 	int i;
1578 
1579 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1580 		cpuc->kfree_on_online[i] = NULL;
1581 	if (x86_pmu.cpu_prepare)
1582 		return x86_pmu.cpu_prepare(cpu);
1583 	return 0;
1584 }
1585 
1586 static int x86_pmu_dead_cpu(unsigned int cpu)
1587 {
1588 	if (x86_pmu.cpu_dead)
1589 		x86_pmu.cpu_dead(cpu);
1590 	return 0;
1591 }
1592 
1593 static int x86_pmu_online_cpu(unsigned int cpu)
1594 {
1595 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1596 	int i;
1597 
1598 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1599 		kfree(cpuc->kfree_on_online[i]);
1600 		cpuc->kfree_on_online[i] = NULL;
1601 	}
1602 	return 0;
1603 }
1604 
1605 static int x86_pmu_starting_cpu(unsigned int cpu)
1606 {
1607 	if (x86_pmu.cpu_starting)
1608 		x86_pmu.cpu_starting(cpu);
1609 	return 0;
1610 }
1611 
1612 static int x86_pmu_dying_cpu(unsigned int cpu)
1613 {
1614 	if (x86_pmu.cpu_dying)
1615 		x86_pmu.cpu_dying(cpu);
1616 	return 0;
1617 }
1618 
1619 static void __init pmu_check_apic(void)
1620 {
1621 	if (boot_cpu_has(X86_FEATURE_APIC))
1622 		return;
1623 
1624 	x86_pmu.apic = 0;
1625 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1626 	pr_info("no hardware sampling interrupt available.\n");
1627 
1628 	/*
1629 	 * If we have a PMU initialized but no APIC
1630 	 * interrupts, we cannot sample hardware
1631 	 * events (user-space has to fall back and
1632 	 * sample via a hrtimer based software event):
1633 	 */
1634 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1635 
1636 }
1637 
1638 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1639 	.name = "format",
1640 	.attrs = NULL,
1641 };
1642 
1643 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1644 {
1645 	struct perf_pmu_events_attr *pmu_attr = \
1646 		container_of(attr, struct perf_pmu_events_attr, attr);
1647 	u64 config = x86_pmu.event_map(pmu_attr->id);
1648 
1649 	/* string trumps id */
1650 	if (pmu_attr->event_str)
1651 		return sprintf(page, "%s", pmu_attr->event_str);
1652 
1653 	return x86_pmu.events_sysfs_show(page, config);
1654 }
1655 EXPORT_SYMBOL_GPL(events_sysfs_show);
1656 
1657 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1658 			  char *page)
1659 {
1660 	struct perf_pmu_events_ht_attr *pmu_attr =
1661 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1662 
1663 	/*
1664 	 * Report conditional events depending on Hyper-Threading.
1665 	 *
1666 	 * This is overly conservative as usually the HT special
1667 	 * handling is not needed if the other CPU thread is idle.
1668 	 *
1669 	 * Note this does not (and cannot) handle the case when thread
1670 	 * siblings are invisible, for example with virtualization
1671 	 * if they are owned by some other guest.  The user tool
1672 	 * has to re-read when a thread sibling gets onlined later.
1673 	 */
1674 	return sprintf(page, "%s",
1675 			topology_max_smt_threads() > 1 ?
1676 			pmu_attr->event_str_ht :
1677 			pmu_attr->event_str_noht);
1678 }
1679 
1680 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1681 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1682 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1683 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1684 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1685 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1686 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1687 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1688 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1689 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1690 
1691 static struct attribute *empty_attrs;
1692 
1693 static struct attribute *events_attr[] = {
1694 	EVENT_PTR(CPU_CYCLES),
1695 	EVENT_PTR(INSTRUCTIONS),
1696 	EVENT_PTR(CACHE_REFERENCES),
1697 	EVENT_PTR(CACHE_MISSES),
1698 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1699 	EVENT_PTR(BRANCH_MISSES),
1700 	EVENT_PTR(BUS_CYCLES),
1701 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1702 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1703 	EVENT_PTR(REF_CPU_CYCLES),
1704 	NULL,
1705 };
1706 
1707 /*
1708  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1709  * out of events_attr attributes.
1710  */
1711 static umode_t
1712 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1713 {
1714 	struct perf_pmu_events_attr *pmu_attr;
1715 
1716 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1717 	/* str trumps id */
1718 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1719 }
1720 
1721 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1722 	.name = "events",
1723 	.attrs = events_attr,
1724 	.is_visible = is_visible,
1725 };
1726 
1727 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1728 {
1729 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1730 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1731 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1732 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1733 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1734 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1735 	ssize_t ret;
1736 
1737 	/*
1738 	* We have whole page size to spend and just little data
1739 	* to write, so we can safely use sprintf.
1740 	*/
1741 	ret = sprintf(page, "event=0x%02llx", event);
1742 
1743 	if (umask)
1744 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1745 
1746 	if (edge)
1747 		ret += sprintf(page + ret, ",edge");
1748 
1749 	if (pc)
1750 		ret += sprintf(page + ret, ",pc");
1751 
1752 	if (any)
1753 		ret += sprintf(page + ret, ",any");
1754 
1755 	if (inv)
1756 		ret += sprintf(page + ret, ",inv");
1757 
1758 	if (cmask)
1759 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1760 
1761 	ret += sprintf(page + ret, "\n");
1762 
1763 	return ret;
1764 }
1765 
1766 static struct attribute_group x86_pmu_attr_group;
1767 static struct attribute_group x86_pmu_caps_group;
1768 
1769 static int __init init_hw_perf_events(void)
1770 {
1771 	struct x86_pmu_quirk *quirk;
1772 	int err;
1773 
1774 	pr_info("Performance Events: ");
1775 
1776 	switch (boot_cpu_data.x86_vendor) {
1777 	case X86_VENDOR_INTEL:
1778 		err = intel_pmu_init();
1779 		break;
1780 	case X86_VENDOR_AMD:
1781 		err = amd_pmu_init();
1782 		break;
1783 	case X86_VENDOR_HYGON:
1784 		err = amd_pmu_init();
1785 		x86_pmu.name = "HYGON";
1786 		break;
1787 	default:
1788 		err = -ENOTSUPP;
1789 	}
1790 	if (err != 0) {
1791 		pr_cont("no PMU driver, software events only.\n");
1792 		return 0;
1793 	}
1794 
1795 	pmu_check_apic();
1796 
1797 	/* sanity check that the hardware exists or is emulated */
1798 	if (!check_hw_exists())
1799 		return 0;
1800 
1801 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1802 
1803 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1804 
1805 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1806 		quirk->func();
1807 
1808 	if (!x86_pmu.intel_ctrl)
1809 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1810 
1811 	perf_events_lapic_init();
1812 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1813 
1814 	unconstrained = (struct event_constraint)
1815 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1816 				   0, x86_pmu.num_counters, 0, 0);
1817 
1818 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1819 
1820 	if (!x86_pmu.events_sysfs_show)
1821 		x86_pmu_events_group.attrs = &empty_attrs;
1822 
1823 	pmu.attr_update = x86_pmu.attr_update;
1824 
1825 	pr_info("... version:                %d\n",     x86_pmu.version);
1826 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1827 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1828 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1829 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1830 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1831 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1832 
1833 	/*
1834 	 * Install callbacks. Core will call them for each online
1835 	 * cpu.
1836 	 */
1837 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1838 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1839 	if (err)
1840 		return err;
1841 
1842 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1843 				"perf/x86:starting", x86_pmu_starting_cpu,
1844 				x86_pmu_dying_cpu);
1845 	if (err)
1846 		goto out;
1847 
1848 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1849 				x86_pmu_online_cpu, NULL);
1850 	if (err)
1851 		goto out1;
1852 
1853 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1854 	if (err)
1855 		goto out2;
1856 
1857 	return 0;
1858 
1859 out2:
1860 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1861 out1:
1862 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1863 out:
1864 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1865 	return err;
1866 }
1867 early_initcall(init_hw_perf_events);
1868 
1869 static inline void x86_pmu_read(struct perf_event *event)
1870 {
1871 	if (x86_pmu.read)
1872 		return x86_pmu.read(event);
1873 	x86_perf_event_update(event);
1874 }
1875 
1876 /*
1877  * Start group events scheduling transaction
1878  * Set the flag to make pmu::enable() not perform the
1879  * schedulability test, it will be performed at commit time
1880  *
1881  * We only support PERF_PMU_TXN_ADD transactions. Save the
1882  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1883  * transactions.
1884  */
1885 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1886 {
1887 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1888 
1889 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1890 
1891 	cpuc->txn_flags = txn_flags;
1892 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1893 		return;
1894 
1895 	perf_pmu_disable(pmu);
1896 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1897 }
1898 
1899 /*
1900  * Stop group events scheduling transaction
1901  * Clear the flag and pmu::enable() will perform the
1902  * schedulability test.
1903  */
1904 static void x86_pmu_cancel_txn(struct pmu *pmu)
1905 {
1906 	unsigned int txn_flags;
1907 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1908 
1909 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1910 
1911 	txn_flags = cpuc->txn_flags;
1912 	cpuc->txn_flags = 0;
1913 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1914 		return;
1915 
1916 	/*
1917 	 * Truncate collected array by the number of events added in this
1918 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1919 	 */
1920 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1921 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1922 	perf_pmu_enable(pmu);
1923 }
1924 
1925 /*
1926  * Commit group events scheduling transaction
1927  * Perform the group schedulability test as a whole
1928  * Return 0 if success
1929  *
1930  * Does not cancel the transaction on failure; expects the caller to do this.
1931  */
1932 static int x86_pmu_commit_txn(struct pmu *pmu)
1933 {
1934 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1935 	int assign[X86_PMC_IDX_MAX];
1936 	int n, ret;
1937 
1938 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1939 
1940 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1941 		cpuc->txn_flags = 0;
1942 		return 0;
1943 	}
1944 
1945 	n = cpuc->n_events;
1946 
1947 	if (!x86_pmu_initialized())
1948 		return -EAGAIN;
1949 
1950 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1951 	if (ret)
1952 		return ret;
1953 
1954 	/*
1955 	 * copy new assignment, now we know it is possible
1956 	 * will be used by hw_perf_enable()
1957 	 */
1958 	memcpy(cpuc->assign, assign, n*sizeof(int));
1959 
1960 	cpuc->txn_flags = 0;
1961 	perf_pmu_enable(pmu);
1962 	return 0;
1963 }
1964 /*
1965  * a fake_cpuc is used to validate event groups. Due to
1966  * the extra reg logic, we need to also allocate a fake
1967  * per_core and per_cpu structure. Otherwise, group events
1968  * using extra reg may conflict without the kernel being
1969  * able to catch this when the last event gets added to
1970  * the group.
1971  */
1972 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1973 {
1974 	intel_cpuc_finish(cpuc);
1975 	kfree(cpuc);
1976 }
1977 
1978 static struct cpu_hw_events *allocate_fake_cpuc(void)
1979 {
1980 	struct cpu_hw_events *cpuc;
1981 	int cpu = raw_smp_processor_id();
1982 
1983 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1984 	if (!cpuc)
1985 		return ERR_PTR(-ENOMEM);
1986 	cpuc->is_fake = 1;
1987 
1988 	if (intel_cpuc_prepare(cpuc, cpu))
1989 		goto error;
1990 
1991 	return cpuc;
1992 error:
1993 	free_fake_cpuc(cpuc);
1994 	return ERR_PTR(-ENOMEM);
1995 }
1996 
1997 /*
1998  * validate that we can schedule this event
1999  */
2000 static int validate_event(struct perf_event *event)
2001 {
2002 	struct cpu_hw_events *fake_cpuc;
2003 	struct event_constraint *c;
2004 	int ret = 0;
2005 
2006 	fake_cpuc = allocate_fake_cpuc();
2007 	if (IS_ERR(fake_cpuc))
2008 		return PTR_ERR(fake_cpuc);
2009 
2010 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2011 
2012 	if (!c || !c->weight)
2013 		ret = -EINVAL;
2014 
2015 	if (x86_pmu.put_event_constraints)
2016 		x86_pmu.put_event_constraints(fake_cpuc, event);
2017 
2018 	free_fake_cpuc(fake_cpuc);
2019 
2020 	return ret;
2021 }
2022 
2023 /*
2024  * validate a single event group
2025  *
2026  * validation include:
2027  *	- check events are compatible which each other
2028  *	- events do not compete for the same counter
2029  *	- number of events <= number of counters
2030  *
2031  * validation ensures the group can be loaded onto the
2032  * PMU if it was the only group available.
2033  */
2034 static int validate_group(struct perf_event *event)
2035 {
2036 	struct perf_event *leader = event->group_leader;
2037 	struct cpu_hw_events *fake_cpuc;
2038 	int ret = -EINVAL, n;
2039 
2040 	fake_cpuc = allocate_fake_cpuc();
2041 	if (IS_ERR(fake_cpuc))
2042 		return PTR_ERR(fake_cpuc);
2043 	/*
2044 	 * the event is not yet connected with its
2045 	 * siblings therefore we must first collect
2046 	 * existing siblings, then add the new event
2047 	 * before we can simulate the scheduling
2048 	 */
2049 	n = collect_events(fake_cpuc, leader, true);
2050 	if (n < 0)
2051 		goto out;
2052 
2053 	fake_cpuc->n_events = n;
2054 	n = collect_events(fake_cpuc, event, false);
2055 	if (n < 0)
2056 		goto out;
2057 
2058 	fake_cpuc->n_events = 0;
2059 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2060 
2061 out:
2062 	free_fake_cpuc(fake_cpuc);
2063 	return ret;
2064 }
2065 
2066 static int x86_pmu_event_init(struct perf_event *event)
2067 {
2068 	struct pmu *tmp;
2069 	int err;
2070 
2071 	switch (event->attr.type) {
2072 	case PERF_TYPE_RAW:
2073 	case PERF_TYPE_HARDWARE:
2074 	case PERF_TYPE_HW_CACHE:
2075 		break;
2076 
2077 	default:
2078 		return -ENOENT;
2079 	}
2080 
2081 	err = __x86_pmu_event_init(event);
2082 	if (!err) {
2083 		/*
2084 		 * we temporarily connect event to its pmu
2085 		 * such that validate_group() can classify
2086 		 * it as an x86 event using is_x86_event()
2087 		 */
2088 		tmp = event->pmu;
2089 		event->pmu = &pmu;
2090 
2091 		if (event->group_leader != event)
2092 			err = validate_group(event);
2093 		else
2094 			err = validate_event(event);
2095 
2096 		event->pmu = tmp;
2097 	}
2098 	if (err) {
2099 		if (event->destroy)
2100 			event->destroy(event);
2101 	}
2102 
2103 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2104 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2105 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2106 
2107 	return err;
2108 }
2109 
2110 static void refresh_pce(void *ignored)
2111 {
2112 	load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2113 }
2114 
2115 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2116 {
2117 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2118 		return;
2119 
2120 	/*
2121 	 * This function relies on not being called concurrently in two
2122 	 * tasks in the same mm.  Otherwise one task could observe
2123 	 * perf_rdpmc_allowed > 1 and return all the way back to
2124 	 * userspace with CR4.PCE clear while another task is still
2125 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2126 	 *
2127 	 * For now, this can't happen because all callers hold mmap_sem
2128 	 * for write.  If this changes, we'll need a different solution.
2129 	 */
2130 	lockdep_assert_held_write(&mm->mmap_sem);
2131 
2132 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2133 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2134 }
2135 
2136 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2137 {
2138 
2139 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2140 		return;
2141 
2142 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2143 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2144 }
2145 
2146 static int x86_pmu_event_idx(struct perf_event *event)
2147 {
2148 	int idx = event->hw.idx;
2149 
2150 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2151 		return 0;
2152 
2153 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2154 		idx -= INTEL_PMC_IDX_FIXED;
2155 		idx |= 1 << 30;
2156 	}
2157 
2158 	return idx + 1;
2159 }
2160 
2161 static ssize_t get_attr_rdpmc(struct device *cdev,
2162 			      struct device_attribute *attr,
2163 			      char *buf)
2164 {
2165 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2166 }
2167 
2168 static ssize_t set_attr_rdpmc(struct device *cdev,
2169 			      struct device_attribute *attr,
2170 			      const char *buf, size_t count)
2171 {
2172 	unsigned long val;
2173 	ssize_t ret;
2174 
2175 	ret = kstrtoul(buf, 0, &val);
2176 	if (ret)
2177 		return ret;
2178 
2179 	if (val > 2)
2180 		return -EINVAL;
2181 
2182 	if (x86_pmu.attr_rdpmc_broken)
2183 		return -ENOTSUPP;
2184 
2185 	if (val != x86_pmu.attr_rdpmc) {
2186 		/*
2187 		 * Changing into or out of never available or always available,
2188 		 * aka perf-event-bypassing mode. This path is extremely slow,
2189 		 * but only root can trigger it, so it's okay.
2190 		 */
2191 		if (val == 0)
2192 			static_branch_inc(&rdpmc_never_available_key);
2193 		else if (x86_pmu.attr_rdpmc == 0)
2194 			static_branch_dec(&rdpmc_never_available_key);
2195 
2196 		if (val == 2)
2197 			static_branch_inc(&rdpmc_always_available_key);
2198 		else if (x86_pmu.attr_rdpmc == 2)
2199 			static_branch_dec(&rdpmc_always_available_key);
2200 
2201 		on_each_cpu(refresh_pce, NULL, 1);
2202 		x86_pmu.attr_rdpmc = val;
2203 	}
2204 
2205 	return count;
2206 }
2207 
2208 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2209 
2210 static struct attribute *x86_pmu_attrs[] = {
2211 	&dev_attr_rdpmc.attr,
2212 	NULL,
2213 };
2214 
2215 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2216 	.attrs = x86_pmu_attrs,
2217 };
2218 
2219 static ssize_t max_precise_show(struct device *cdev,
2220 				  struct device_attribute *attr,
2221 				  char *buf)
2222 {
2223 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2224 }
2225 
2226 static DEVICE_ATTR_RO(max_precise);
2227 
2228 static struct attribute *x86_pmu_caps_attrs[] = {
2229 	&dev_attr_max_precise.attr,
2230 	NULL
2231 };
2232 
2233 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2234 	.name = "caps",
2235 	.attrs = x86_pmu_caps_attrs,
2236 };
2237 
2238 static const struct attribute_group *x86_pmu_attr_groups[] = {
2239 	&x86_pmu_attr_group,
2240 	&x86_pmu_format_group,
2241 	&x86_pmu_events_group,
2242 	&x86_pmu_caps_group,
2243 	NULL,
2244 };
2245 
2246 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2247 {
2248 	if (x86_pmu.sched_task)
2249 		x86_pmu.sched_task(ctx, sched_in);
2250 }
2251 
2252 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2253 				  struct perf_event_context *next)
2254 {
2255 	if (x86_pmu.swap_task_ctx)
2256 		x86_pmu.swap_task_ctx(prev, next);
2257 }
2258 
2259 void perf_check_microcode(void)
2260 {
2261 	if (x86_pmu.check_microcode)
2262 		x86_pmu.check_microcode();
2263 }
2264 
2265 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2266 {
2267 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2268 		return -EINVAL;
2269 
2270 	if (value && x86_pmu.limit_period) {
2271 		if (x86_pmu.limit_period(event, value) > value)
2272 			return -EINVAL;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static int x86_pmu_aux_output_match(struct perf_event *event)
2279 {
2280 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2281 		return 0;
2282 
2283 	if (x86_pmu.aux_output_match)
2284 		return x86_pmu.aux_output_match(event);
2285 
2286 	return 0;
2287 }
2288 
2289 static struct pmu pmu = {
2290 	.pmu_enable		= x86_pmu_enable,
2291 	.pmu_disable		= x86_pmu_disable,
2292 
2293 	.attr_groups		= x86_pmu_attr_groups,
2294 
2295 	.event_init		= x86_pmu_event_init,
2296 
2297 	.event_mapped		= x86_pmu_event_mapped,
2298 	.event_unmapped		= x86_pmu_event_unmapped,
2299 
2300 	.add			= x86_pmu_add,
2301 	.del			= x86_pmu_del,
2302 	.start			= x86_pmu_start,
2303 	.stop			= x86_pmu_stop,
2304 	.read			= x86_pmu_read,
2305 
2306 	.start_txn		= x86_pmu_start_txn,
2307 	.cancel_txn		= x86_pmu_cancel_txn,
2308 	.commit_txn		= x86_pmu_commit_txn,
2309 
2310 	.event_idx		= x86_pmu_event_idx,
2311 	.sched_task		= x86_pmu_sched_task,
2312 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2313 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2314 	.check_period		= x86_pmu_check_period,
2315 
2316 	.aux_output_match	= x86_pmu_aux_output_match,
2317 };
2318 
2319 void arch_perf_update_userpage(struct perf_event *event,
2320 			       struct perf_event_mmap_page *userpg, u64 now)
2321 {
2322 	struct cyc2ns_data data;
2323 	u64 offset;
2324 
2325 	userpg->cap_user_time = 0;
2326 	userpg->cap_user_time_zero = 0;
2327 	userpg->cap_user_rdpmc =
2328 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2329 	userpg->pmc_width = x86_pmu.cntval_bits;
2330 
2331 	if (!using_native_sched_clock() || !sched_clock_stable())
2332 		return;
2333 
2334 	cyc2ns_read_begin(&data);
2335 
2336 	offset = data.cyc2ns_offset + __sched_clock_offset;
2337 
2338 	/*
2339 	 * Internal timekeeping for enabled/running/stopped times
2340 	 * is always in the local_clock domain.
2341 	 */
2342 	userpg->cap_user_time = 1;
2343 	userpg->time_mult = data.cyc2ns_mul;
2344 	userpg->time_shift = data.cyc2ns_shift;
2345 	userpg->time_offset = offset - now;
2346 
2347 	/*
2348 	 * cap_user_time_zero doesn't make sense when we're using a different
2349 	 * time base for the records.
2350 	 */
2351 	if (!event->attr.use_clockid) {
2352 		userpg->cap_user_time_zero = 1;
2353 		userpg->time_zero = offset;
2354 	}
2355 
2356 	cyc2ns_read_end();
2357 }
2358 
2359 /*
2360  * Determine whether the regs were taken from an irq/exception handler rather
2361  * than from perf_arch_fetch_caller_regs().
2362  */
2363 static bool perf_hw_regs(struct pt_regs *regs)
2364 {
2365 	return regs->flags & X86_EFLAGS_FIXED;
2366 }
2367 
2368 void
2369 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2370 {
2371 	struct unwind_state state;
2372 	unsigned long addr;
2373 
2374 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2375 		/* TODO: We don't support guest os callchain now */
2376 		return;
2377 	}
2378 
2379 	if (perf_callchain_store(entry, regs->ip))
2380 		return;
2381 
2382 	if (perf_hw_regs(regs))
2383 		unwind_start(&state, current, regs, NULL);
2384 	else
2385 		unwind_start(&state, current, NULL, (void *)regs->sp);
2386 
2387 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2388 		addr = unwind_get_return_address(&state);
2389 		if (!addr || perf_callchain_store(entry, addr))
2390 			return;
2391 	}
2392 }
2393 
2394 static inline int
2395 valid_user_frame(const void __user *fp, unsigned long size)
2396 {
2397 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2398 }
2399 
2400 static unsigned long get_segment_base(unsigned int segment)
2401 {
2402 	struct desc_struct *desc;
2403 	unsigned int idx = segment >> 3;
2404 
2405 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2406 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2407 		struct ldt_struct *ldt;
2408 
2409 		/* IRQs are off, so this synchronizes with smp_store_release */
2410 		ldt = READ_ONCE(current->active_mm->context.ldt);
2411 		if (!ldt || idx >= ldt->nr_entries)
2412 			return 0;
2413 
2414 		desc = &ldt->entries[idx];
2415 #else
2416 		return 0;
2417 #endif
2418 	} else {
2419 		if (idx >= GDT_ENTRIES)
2420 			return 0;
2421 
2422 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2423 	}
2424 
2425 	return get_desc_base(desc);
2426 }
2427 
2428 #ifdef CONFIG_IA32_EMULATION
2429 
2430 #include <linux/compat.h>
2431 
2432 static inline int
2433 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2434 {
2435 	/* 32-bit process in 64-bit kernel. */
2436 	unsigned long ss_base, cs_base;
2437 	struct stack_frame_ia32 frame;
2438 	const void __user *fp;
2439 
2440 	if (!test_thread_flag(TIF_IA32))
2441 		return 0;
2442 
2443 	cs_base = get_segment_base(regs->cs);
2444 	ss_base = get_segment_base(regs->ss);
2445 
2446 	fp = compat_ptr(ss_base + regs->bp);
2447 	pagefault_disable();
2448 	while (entry->nr < entry->max_stack) {
2449 		unsigned long bytes;
2450 		frame.next_frame     = 0;
2451 		frame.return_address = 0;
2452 
2453 		if (!valid_user_frame(fp, sizeof(frame)))
2454 			break;
2455 
2456 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2457 		if (bytes != 0)
2458 			break;
2459 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2460 		if (bytes != 0)
2461 			break;
2462 
2463 		perf_callchain_store(entry, cs_base + frame.return_address);
2464 		fp = compat_ptr(ss_base + frame.next_frame);
2465 	}
2466 	pagefault_enable();
2467 	return 1;
2468 }
2469 #else
2470 static inline int
2471 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2472 {
2473     return 0;
2474 }
2475 #endif
2476 
2477 void
2478 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2479 {
2480 	struct stack_frame frame;
2481 	const unsigned long __user *fp;
2482 
2483 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2484 		/* TODO: We don't support guest os callchain now */
2485 		return;
2486 	}
2487 
2488 	/*
2489 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2490 	 */
2491 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2492 		return;
2493 
2494 	fp = (unsigned long __user *)regs->bp;
2495 
2496 	perf_callchain_store(entry, regs->ip);
2497 
2498 	if (!nmi_uaccess_okay())
2499 		return;
2500 
2501 	if (perf_callchain_user32(regs, entry))
2502 		return;
2503 
2504 	pagefault_disable();
2505 	while (entry->nr < entry->max_stack) {
2506 		unsigned long bytes;
2507 
2508 		frame.next_frame	     = NULL;
2509 		frame.return_address = 0;
2510 
2511 		if (!valid_user_frame(fp, sizeof(frame)))
2512 			break;
2513 
2514 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2515 		if (bytes != 0)
2516 			break;
2517 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2518 		if (bytes != 0)
2519 			break;
2520 
2521 		perf_callchain_store(entry, frame.return_address);
2522 		fp = (void __user *)frame.next_frame;
2523 	}
2524 	pagefault_enable();
2525 }
2526 
2527 /*
2528  * Deal with code segment offsets for the various execution modes:
2529  *
2530  *   VM86 - the good olde 16 bit days, where the linear address is
2531  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2532  *
2533  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2534  *          to figure out what the 32bit base address is.
2535  *
2536  *    X32 - has TIF_X32 set, but is running in x86_64
2537  *
2538  * X86_64 - CS,DS,SS,ES are all zero based.
2539  */
2540 static unsigned long code_segment_base(struct pt_regs *regs)
2541 {
2542 	/*
2543 	 * For IA32 we look at the GDT/LDT segment base to convert the
2544 	 * effective IP to a linear address.
2545 	 */
2546 
2547 #ifdef CONFIG_X86_32
2548 	/*
2549 	 * If we are in VM86 mode, add the segment offset to convert to a
2550 	 * linear address.
2551 	 */
2552 	if (regs->flags & X86_VM_MASK)
2553 		return 0x10 * regs->cs;
2554 
2555 	if (user_mode(regs) && regs->cs != __USER_CS)
2556 		return get_segment_base(regs->cs);
2557 #else
2558 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2559 	    regs->cs != __USER32_CS)
2560 		return get_segment_base(regs->cs);
2561 #endif
2562 	return 0;
2563 }
2564 
2565 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2566 {
2567 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2568 		return perf_guest_cbs->get_guest_ip();
2569 
2570 	return regs->ip + code_segment_base(regs);
2571 }
2572 
2573 unsigned long perf_misc_flags(struct pt_regs *regs)
2574 {
2575 	int misc = 0;
2576 
2577 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2578 		if (perf_guest_cbs->is_user_mode())
2579 			misc |= PERF_RECORD_MISC_GUEST_USER;
2580 		else
2581 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2582 	} else {
2583 		if (user_mode(regs))
2584 			misc |= PERF_RECORD_MISC_USER;
2585 		else
2586 			misc |= PERF_RECORD_MISC_KERNEL;
2587 	}
2588 
2589 	if (regs->flags & PERF_EFLAGS_EXACT)
2590 		misc |= PERF_RECORD_MISC_EXACT_IP;
2591 
2592 	return misc;
2593 }
2594 
2595 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2596 {
2597 	cap->version		= x86_pmu.version;
2598 	cap->num_counters_gp	= x86_pmu.num_counters;
2599 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2600 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2601 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2602 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2603 	cap->events_mask_len	= x86_pmu.events_mask_len;
2604 }
2605 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2606