xref: /openbmc/linux/arch/x86/events/core.c (revision 29c37341)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54 
55 u64 __read_mostly hw_cache_event_ids
56 				[PERF_COUNT_HW_CACHE_MAX]
57 				[PERF_COUNT_HW_CACHE_OP_MAX]
58 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 				[PERF_COUNT_HW_CACHE_MAX]
61 				[PERF_COUNT_HW_CACHE_OP_MAX]
62 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
63 
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71 	struct hw_perf_event *hwc = &event->hw;
72 	int shift = 64 - x86_pmu.cntval_bits;
73 	u64 prev_raw_count, new_raw_count;
74 	u64 delta;
75 
76 	if (unlikely(!hwc->event_base))
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 		/* Check if the extra msrs can be safely accessed*/
130 		if (!er->extra_msr_access)
131 			return -ENXIO;
132 
133 		reg->idx = er->idx;
134 		reg->config = event->attr.config1;
135 		reg->reg = er->msr;
136 		break;
137 	}
138 	return 0;
139 }
140 
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144 
145 #ifdef CONFIG_X86_LOCAL_APIC
146 
147 static bool reserve_pmc_hardware(void)
148 {
149 	int i;
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 			goto perfctr_fail;
154 	}
155 
156 	for (i = 0; i < x86_pmu.num_counters; i++) {
157 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 			goto eventsel_fail;
159 	}
160 
161 	return true;
162 
163 eventsel_fail:
164 	for (i--; i >= 0; i--)
165 		release_evntsel_nmi(x86_pmu_config_addr(i));
166 
167 	i = x86_pmu.num_counters;
168 
169 perfctr_fail:
170 	for (i--; i >= 0; i--)
171 		release_perfctr_nmi(x86_pmu_event_addr(i));
172 
173 	return false;
174 }
175 
176 static void release_pmc_hardware(void)
177 {
178 	int i;
179 
180 	for (i = 0; i < x86_pmu.num_counters; i++) {
181 		release_perfctr_nmi(x86_pmu_event_addr(i));
182 		release_evntsel_nmi(x86_pmu_config_addr(i));
183 	}
184 }
185 
186 #else
187 
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190 
191 #endif
192 
193 static bool check_hw_exists(void)
194 {
195 	u64 val, val_fail = -1, val_new= ~0;
196 	int i, reg, reg_fail = -1, ret = 0;
197 	int bios_fail = 0;
198 	int reg_safe = -1;
199 
200 	/*
201 	 * Check to see if the BIOS enabled any of the counters, if so
202 	 * complain and bail.
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		reg = x86_pmu_config_addr(i);
206 		ret = rdmsrl_safe(reg, &val);
207 		if (ret)
208 			goto msr_fail;
209 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 			bios_fail = 1;
211 			val_fail = val;
212 			reg_fail = reg;
213 		} else {
214 			reg_safe = i;
215 		}
216 	}
217 
218 	if (x86_pmu.num_counters_fixed) {
219 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 		ret = rdmsrl_safe(reg, &val);
221 		if (ret)
222 			goto msr_fail;
223 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 			if (val & (0x03 << i*4)) {
225 				bios_fail = 1;
226 				val_fail = val;
227 				reg_fail = reg;
228 			}
229 		}
230 	}
231 
232 	/*
233 	 * If all the counters are enabled, the below test will always
234 	 * fail.  The tools will also become useless in this scenario.
235 	 * Just fail and disable the hardware counters.
236 	 */
237 
238 	if (reg_safe == -1) {
239 		reg = reg_safe;
240 		goto msr_fail;
241 	}
242 
243 	/*
244 	 * Read the current value, change it and read it back to see if it
245 	 * matches, this is needed to detect certain hardware emulators
246 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 	 */
248 	reg = x86_pmu_event_addr(reg_safe);
249 	if (rdmsrl_safe(reg, &val))
250 		goto msr_fail;
251 	val ^= 0xffffUL;
252 	ret = wrmsrl_safe(reg, val);
253 	ret |= rdmsrl_safe(reg, &val_new);
254 	if (ret || val != val_new)
255 		goto msr_fail;
256 
257 	/*
258 	 * We still allow the PMU driver to operate:
259 	 */
260 	if (bios_fail) {
261 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 			      reg_fail, val_fail);
264 	}
265 
266 	return true;
267 
268 msr_fail:
269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 		pr_cont("PMU not available due to virtualization, using software events only.\n");
271 	} else {
272 		pr_cont("Broken PMU hardware detected, using software events only.\n");
273 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 		       reg, val_new);
275 	}
276 
277 	return false;
278 }
279 
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 	x86_release_hardware();
283 	atomic_dec(&active_events);
284 }
285 
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 	hw_perf_event_destroy(event);
289 
290 	/* undo the lbr/bts event accounting */
291 	x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293 
294 static inline int x86_pmu_initialized(void)
295 {
296 	return x86_pmu.handle_irq != NULL;
297 }
298 
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	unsigned int cache_type, cache_op, cache_result;
304 	u64 config, val;
305 
306 	config = attr->config;
307 
308 	cache_type = (config >> 0) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 
313 	cache_op = (config >>  8) & 0xff;
314 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 		return -EINVAL;
316 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 
318 	cache_result = (config >> 16) & 0xff;
319 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 		return -EINVAL;
321 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 
323 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 
325 	if (val == 0)
326 		return -ENOENT;
327 
328 	if (val == -1)
329 		return -EINVAL;
330 
331 	hwc->config |= val;
332 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 	return x86_pmu_extra_regs(val, event);
334 }
335 
336 int x86_reserve_hardware(void)
337 {
338 	int err = 0;
339 
340 	if (!atomic_inc_not_zero(&pmc_refcount)) {
341 		mutex_lock(&pmc_reserve_mutex);
342 		if (atomic_read(&pmc_refcount) == 0) {
343 			if (!reserve_pmc_hardware())
344 				err = -EBUSY;
345 			else
346 				reserve_ds_buffers();
347 		}
348 		if (!err)
349 			atomic_inc(&pmc_refcount);
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 
353 	return err;
354 }
355 
356 void x86_release_hardware(void)
357 {
358 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 		release_pmc_hardware();
360 		release_ds_buffers();
361 		release_lbr_buffers();
362 		mutex_unlock(&pmc_reserve_mutex);
363 	}
364 }
365 
366 /*
367  * Check if we can create event of a certain type (that no conflicting events
368  * are present).
369  */
370 int x86_add_exclusive(unsigned int what)
371 {
372 	int i;
373 
374 	/*
375 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
376 	 * LBR and BTS are still mutually exclusive.
377 	 */
378 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
379 		goto out;
380 
381 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
382 		mutex_lock(&pmc_reserve_mutex);
383 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
384 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
385 				goto fail_unlock;
386 		}
387 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
388 		mutex_unlock(&pmc_reserve_mutex);
389 	}
390 
391 out:
392 	atomic_inc(&active_events);
393 	return 0;
394 
395 fail_unlock:
396 	mutex_unlock(&pmc_reserve_mutex);
397 	return -EBUSY;
398 }
399 
400 void x86_del_exclusive(unsigned int what)
401 {
402 	atomic_dec(&active_events);
403 
404 	/*
405 	 * See the comment in x86_add_exclusive().
406 	 */
407 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
408 		return;
409 
410 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
411 }
412 
413 int x86_setup_perfctr(struct perf_event *event)
414 {
415 	struct perf_event_attr *attr = &event->attr;
416 	struct hw_perf_event *hwc = &event->hw;
417 	u64 config;
418 
419 	if (!is_sampling_event(event)) {
420 		hwc->sample_period = x86_pmu.max_period;
421 		hwc->last_period = hwc->sample_period;
422 		local64_set(&hwc->period_left, hwc->sample_period);
423 	}
424 
425 	if (attr->type == PERF_TYPE_RAW)
426 		return x86_pmu_extra_regs(event->attr.config, event);
427 
428 	if (attr->type == PERF_TYPE_HW_CACHE)
429 		return set_ext_hw_attr(hwc, event);
430 
431 	if (attr->config >= x86_pmu.max_events)
432 		return -EINVAL;
433 
434 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
435 
436 	/*
437 	 * The generic map:
438 	 */
439 	config = x86_pmu.event_map(attr->config);
440 
441 	if (config == 0)
442 		return -ENOENT;
443 
444 	if (config == -1LL)
445 		return -EINVAL;
446 
447 	hwc->config |= config;
448 
449 	return 0;
450 }
451 
452 /*
453  * check that branch_sample_type is compatible with
454  * settings needed for precise_ip > 1 which implies
455  * using the LBR to capture ALL taken branches at the
456  * priv levels of the measurement
457  */
458 static inline int precise_br_compat(struct perf_event *event)
459 {
460 	u64 m = event->attr.branch_sample_type;
461 	u64 b = 0;
462 
463 	/* must capture all branches */
464 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
465 		return 0;
466 
467 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
468 
469 	if (!event->attr.exclude_user)
470 		b |= PERF_SAMPLE_BRANCH_USER;
471 
472 	if (!event->attr.exclude_kernel)
473 		b |= PERF_SAMPLE_BRANCH_KERNEL;
474 
475 	/*
476 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
477 	 */
478 
479 	return m == b;
480 }
481 
482 int x86_pmu_max_precise(void)
483 {
484 	int precise = 0;
485 
486 	/* Support for constant skid */
487 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
488 		precise++;
489 
490 		/* Support for IP fixup */
491 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
492 			precise++;
493 
494 		if (x86_pmu.pebs_prec_dist)
495 			precise++;
496 	}
497 	return precise;
498 }
499 
500 int x86_pmu_hw_config(struct perf_event *event)
501 {
502 	if (event->attr.precise_ip) {
503 		int precise = x86_pmu_max_precise();
504 
505 		if (event->attr.precise_ip > precise)
506 			return -EOPNOTSUPP;
507 
508 		/* There's no sense in having PEBS for non sampling events: */
509 		if (!is_sampling_event(event))
510 			return -EINVAL;
511 	}
512 	/*
513 	 * check that PEBS LBR correction does not conflict with
514 	 * whatever the user is asking with attr->branch_sample_type
515 	 */
516 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
517 		u64 *br_type = &event->attr.branch_sample_type;
518 
519 		if (has_branch_stack(event)) {
520 			if (!precise_br_compat(event))
521 				return -EOPNOTSUPP;
522 
523 			/* branch_sample_type is compatible */
524 
525 		} else {
526 			/*
527 			 * user did not specify  branch_sample_type
528 			 *
529 			 * For PEBS fixups, we capture all
530 			 * the branches at the priv level of the
531 			 * event.
532 			 */
533 			*br_type = PERF_SAMPLE_BRANCH_ANY;
534 
535 			if (!event->attr.exclude_user)
536 				*br_type |= PERF_SAMPLE_BRANCH_USER;
537 
538 			if (!event->attr.exclude_kernel)
539 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
540 		}
541 	}
542 
543 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
544 		event->attach_state |= PERF_ATTACH_TASK_DATA;
545 
546 	/*
547 	 * Generate PMC IRQs:
548 	 * (keep 'enabled' bit clear for now)
549 	 */
550 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
551 
552 	/*
553 	 * Count user and OS events unless requested not to
554 	 */
555 	if (!event->attr.exclude_user)
556 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
557 	if (!event->attr.exclude_kernel)
558 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
559 
560 	if (event->attr.type == PERF_TYPE_RAW)
561 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
562 
563 	if (event->attr.sample_period && x86_pmu.limit_period) {
564 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
565 				event->attr.sample_period)
566 			return -EINVAL;
567 	}
568 
569 	/* sample_regs_user never support XMM registers */
570 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
571 		return -EINVAL;
572 	/*
573 	 * Besides the general purpose registers, XMM registers may
574 	 * be collected in PEBS on some platforms, e.g. Icelake
575 	 */
576 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
577 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
578 			return -EINVAL;
579 
580 		if (!event->attr.precise_ip)
581 			return -EINVAL;
582 	}
583 
584 	return x86_setup_perfctr(event);
585 }
586 
587 /*
588  * Setup the hardware configuration for a given attr_type
589  */
590 static int __x86_pmu_event_init(struct perf_event *event)
591 {
592 	int err;
593 
594 	if (!x86_pmu_initialized())
595 		return -ENODEV;
596 
597 	err = x86_reserve_hardware();
598 	if (err)
599 		return err;
600 
601 	atomic_inc(&active_events);
602 	event->destroy = hw_perf_event_destroy;
603 
604 	event->hw.idx = -1;
605 	event->hw.last_cpu = -1;
606 	event->hw.last_tag = ~0ULL;
607 
608 	/* mark unused */
609 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
610 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
611 
612 	return x86_pmu.hw_config(event);
613 }
614 
615 void x86_pmu_disable_all(void)
616 {
617 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618 	int idx;
619 
620 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
621 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
622 		u64 val;
623 
624 		if (!test_bit(idx, cpuc->active_mask))
625 			continue;
626 		rdmsrl(x86_pmu_config_addr(idx), val);
627 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
628 			continue;
629 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
630 		wrmsrl(x86_pmu_config_addr(idx), val);
631 		if (is_counter_pair(hwc))
632 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
633 	}
634 }
635 
636 /*
637  * There may be PMI landing after enabled=0. The PMI hitting could be before or
638  * after disable_all.
639  *
640  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
641  * It will not be re-enabled in the NMI handler again, because enabled=0. After
642  * handling the NMI, disable_all will be called, which will not change the
643  * state either. If PMI hits after disable_all, the PMU is already disabled
644  * before entering NMI handler. The NMI handler will not change the state
645  * either.
646  *
647  * So either situation is harmless.
648  */
649 static void x86_pmu_disable(struct pmu *pmu)
650 {
651 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652 
653 	if (!x86_pmu_initialized())
654 		return;
655 
656 	if (!cpuc->enabled)
657 		return;
658 
659 	cpuc->n_added = 0;
660 	cpuc->enabled = 0;
661 	barrier();
662 
663 	x86_pmu.disable_all();
664 }
665 
666 void x86_pmu_enable_all(int added)
667 {
668 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
669 	int idx;
670 
671 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
672 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
673 
674 		if (!test_bit(idx, cpuc->active_mask))
675 			continue;
676 
677 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
678 	}
679 }
680 
681 static struct pmu pmu;
682 
683 static inline int is_x86_event(struct perf_event *event)
684 {
685 	return event->pmu == &pmu;
686 }
687 
688 struct pmu *x86_get_pmu(void)
689 {
690 	return &pmu;
691 }
692 /*
693  * Event scheduler state:
694  *
695  * Assign events iterating over all events and counters, beginning
696  * with events with least weights first. Keep the current iterator
697  * state in struct sched_state.
698  */
699 struct sched_state {
700 	int	weight;
701 	int	event;		/* event index */
702 	int	counter;	/* counter index */
703 	int	unassigned;	/* number of events to be assigned left */
704 	int	nr_gp;		/* number of GP counters used */
705 	u64	used;
706 };
707 
708 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
709 #define	SCHED_STATES_MAX	2
710 
711 struct perf_sched {
712 	int			max_weight;
713 	int			max_events;
714 	int			max_gp;
715 	int			saved_states;
716 	struct event_constraint	**constraints;
717 	struct sched_state	state;
718 	struct sched_state	saved[SCHED_STATES_MAX];
719 };
720 
721 /*
722  * Initialize interator that runs through all events and counters.
723  */
724 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
725 			    int num, int wmin, int wmax, int gpmax)
726 {
727 	int idx;
728 
729 	memset(sched, 0, sizeof(*sched));
730 	sched->max_events	= num;
731 	sched->max_weight	= wmax;
732 	sched->max_gp		= gpmax;
733 	sched->constraints	= constraints;
734 
735 	for (idx = 0; idx < num; idx++) {
736 		if (constraints[idx]->weight == wmin)
737 			break;
738 	}
739 
740 	sched->state.event	= idx;		/* start with min weight */
741 	sched->state.weight	= wmin;
742 	sched->state.unassigned	= num;
743 }
744 
745 static void perf_sched_save_state(struct perf_sched *sched)
746 {
747 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
748 		return;
749 
750 	sched->saved[sched->saved_states] = sched->state;
751 	sched->saved_states++;
752 }
753 
754 static bool perf_sched_restore_state(struct perf_sched *sched)
755 {
756 	if (!sched->saved_states)
757 		return false;
758 
759 	sched->saved_states--;
760 	sched->state = sched->saved[sched->saved_states];
761 
762 	/* this assignment didn't work out */
763 	/* XXX broken vs EVENT_PAIR */
764 	sched->state.used &= ~BIT_ULL(sched->state.counter);
765 
766 	/* try the next one */
767 	sched->state.counter++;
768 
769 	return true;
770 }
771 
772 /*
773  * Select a counter for the current event to schedule. Return true on
774  * success.
775  */
776 static bool __perf_sched_find_counter(struct perf_sched *sched)
777 {
778 	struct event_constraint *c;
779 	int idx;
780 
781 	if (!sched->state.unassigned)
782 		return false;
783 
784 	if (sched->state.event >= sched->max_events)
785 		return false;
786 
787 	c = sched->constraints[sched->state.event];
788 	/* Prefer fixed purpose counters */
789 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
790 		idx = INTEL_PMC_IDX_FIXED;
791 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
792 			u64 mask = BIT_ULL(idx);
793 
794 			if (sched->state.used & mask)
795 				continue;
796 
797 			sched->state.used |= mask;
798 			goto done;
799 		}
800 	}
801 
802 	/* Grab the first unused counter starting with idx */
803 	idx = sched->state.counter;
804 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
805 		u64 mask = BIT_ULL(idx);
806 
807 		if (c->flags & PERF_X86_EVENT_PAIR)
808 			mask |= mask << 1;
809 
810 		if (sched->state.used & mask)
811 			continue;
812 
813 		if (sched->state.nr_gp++ >= sched->max_gp)
814 			return false;
815 
816 		sched->state.used |= mask;
817 		goto done;
818 	}
819 
820 	return false;
821 
822 done:
823 	sched->state.counter = idx;
824 
825 	if (c->overlap)
826 		perf_sched_save_state(sched);
827 
828 	return true;
829 }
830 
831 static bool perf_sched_find_counter(struct perf_sched *sched)
832 {
833 	while (!__perf_sched_find_counter(sched)) {
834 		if (!perf_sched_restore_state(sched))
835 			return false;
836 	}
837 
838 	return true;
839 }
840 
841 /*
842  * Go through all unassigned events and find the next one to schedule.
843  * Take events with the least weight first. Return true on success.
844  */
845 static bool perf_sched_next_event(struct perf_sched *sched)
846 {
847 	struct event_constraint *c;
848 
849 	if (!sched->state.unassigned || !--sched->state.unassigned)
850 		return false;
851 
852 	do {
853 		/* next event */
854 		sched->state.event++;
855 		if (sched->state.event >= sched->max_events) {
856 			/* next weight */
857 			sched->state.event = 0;
858 			sched->state.weight++;
859 			if (sched->state.weight > sched->max_weight)
860 				return false;
861 		}
862 		c = sched->constraints[sched->state.event];
863 	} while (c->weight != sched->state.weight);
864 
865 	sched->state.counter = 0;	/* start with first counter */
866 
867 	return true;
868 }
869 
870 /*
871  * Assign a counter for each event.
872  */
873 int perf_assign_events(struct event_constraint **constraints, int n,
874 			int wmin, int wmax, int gpmax, int *assign)
875 {
876 	struct perf_sched sched;
877 
878 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
879 
880 	do {
881 		if (!perf_sched_find_counter(&sched))
882 			break;	/* failed */
883 		if (assign)
884 			assign[sched.state.event] = sched.state.counter;
885 	} while (perf_sched_next_event(&sched));
886 
887 	return sched.state.unassigned;
888 }
889 EXPORT_SYMBOL_GPL(perf_assign_events);
890 
891 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
892 {
893 	struct event_constraint *c;
894 	struct perf_event *e;
895 	int n0, i, wmin, wmax, unsched = 0;
896 	struct hw_perf_event *hwc;
897 	u64 used_mask = 0;
898 
899 	/*
900 	 * Compute the number of events already present; see x86_pmu_add(),
901 	 * validate_group() and x86_pmu_commit_txn(). For the former two
902 	 * cpuc->n_events hasn't been updated yet, while for the latter
903 	 * cpuc->n_txn contains the number of events added in the current
904 	 * transaction.
905 	 */
906 	n0 = cpuc->n_events;
907 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
908 		n0 -= cpuc->n_txn;
909 
910 	if (x86_pmu.start_scheduling)
911 		x86_pmu.start_scheduling(cpuc);
912 
913 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
914 		c = cpuc->event_constraint[i];
915 
916 		/*
917 		 * Previously scheduled events should have a cached constraint,
918 		 * while new events should not have one.
919 		 */
920 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
921 
922 		/*
923 		 * Request constraints for new events; or for those events that
924 		 * have a dynamic constraint -- for those the constraint can
925 		 * change due to external factors (sibling state, allow_tfa).
926 		 */
927 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
928 			c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
929 			cpuc->event_constraint[i] = c;
930 		}
931 
932 		wmin = min(wmin, c->weight);
933 		wmax = max(wmax, c->weight);
934 	}
935 
936 	/*
937 	 * fastpath, try to reuse previous register
938 	 */
939 	for (i = 0; i < n; i++) {
940 		u64 mask;
941 
942 		hwc = &cpuc->event_list[i]->hw;
943 		c = cpuc->event_constraint[i];
944 
945 		/* never assigned */
946 		if (hwc->idx == -1)
947 			break;
948 
949 		/* constraint still honored */
950 		if (!test_bit(hwc->idx, c->idxmsk))
951 			break;
952 
953 		mask = BIT_ULL(hwc->idx);
954 		if (is_counter_pair(hwc))
955 			mask |= mask << 1;
956 
957 		/* not already used */
958 		if (used_mask & mask)
959 			break;
960 
961 		used_mask |= mask;
962 
963 		if (assign)
964 			assign[i] = hwc->idx;
965 	}
966 
967 	/* slow path */
968 	if (i != n) {
969 		int gpmax = x86_pmu.num_counters;
970 
971 		/*
972 		 * Do not allow scheduling of more than half the available
973 		 * generic counters.
974 		 *
975 		 * This helps avoid counter starvation of sibling thread by
976 		 * ensuring at most half the counters cannot be in exclusive
977 		 * mode. There is no designated counters for the limits. Any
978 		 * N/2 counters can be used. This helps with events with
979 		 * specific counter constraints.
980 		 */
981 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
982 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
983 			gpmax /= 2;
984 
985 		/*
986 		 * Reduce the amount of available counters to allow fitting
987 		 * the extra Merge events needed by large increment events.
988 		 */
989 		if (x86_pmu.flags & PMU_FL_PAIR) {
990 			gpmax = x86_pmu.num_counters - cpuc->n_pair;
991 			WARN_ON(gpmax <= 0);
992 		}
993 
994 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
995 					     wmax, gpmax, assign);
996 	}
997 
998 	/*
999 	 * In case of success (unsched = 0), mark events as committed,
1000 	 * so we do not put_constraint() in case new events are added
1001 	 * and fail to be scheduled
1002 	 *
1003 	 * We invoke the lower level commit callback to lock the resource
1004 	 *
1005 	 * We do not need to do all of this in case we are called to
1006 	 * validate an event group (assign == NULL)
1007 	 */
1008 	if (!unsched && assign) {
1009 		for (i = 0; i < n; i++) {
1010 			e = cpuc->event_list[i];
1011 			if (x86_pmu.commit_scheduling)
1012 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1013 		}
1014 	} else {
1015 		for (i = n0; i < n; i++) {
1016 			e = cpuc->event_list[i];
1017 
1018 			/*
1019 			 * release events that failed scheduling
1020 			 */
1021 			if (x86_pmu.put_event_constraints)
1022 				x86_pmu.put_event_constraints(cpuc, e);
1023 
1024 			cpuc->event_constraint[i] = NULL;
1025 		}
1026 	}
1027 
1028 	if (x86_pmu.stop_scheduling)
1029 		x86_pmu.stop_scheduling(cpuc);
1030 
1031 	return unsched ? -EINVAL : 0;
1032 }
1033 
1034 /*
1035  * dogrp: true if must collect siblings events (group)
1036  * returns total number of events and error code
1037  */
1038 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1039 {
1040 	struct perf_event *event;
1041 	int n, max_count;
1042 
1043 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1044 
1045 	/* current number of events already accepted */
1046 	n = cpuc->n_events;
1047 	if (!cpuc->n_events)
1048 		cpuc->pebs_output = 0;
1049 
1050 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1051 		/*
1052 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1053 		 * away, the group was broken down and this singleton event
1054 		 * can't schedule any more.
1055 		 */
1056 		if (is_pebs_pt(leader) && !leader->aux_event)
1057 			return -EINVAL;
1058 
1059 		/*
1060 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1061 		 */
1062 		if (cpuc->pebs_output &&
1063 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1064 			return -EINVAL;
1065 
1066 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1067 	}
1068 
1069 	if (is_x86_event(leader)) {
1070 		if (n >= max_count)
1071 			return -EINVAL;
1072 		cpuc->event_list[n] = leader;
1073 		n++;
1074 		if (is_counter_pair(&leader->hw))
1075 			cpuc->n_pair++;
1076 	}
1077 	if (!dogrp)
1078 		return n;
1079 
1080 	for_each_sibling_event(event, leader) {
1081 		if (!is_x86_event(event) ||
1082 		    event->state <= PERF_EVENT_STATE_OFF)
1083 			continue;
1084 
1085 		if (n >= max_count)
1086 			return -EINVAL;
1087 
1088 		cpuc->event_list[n] = event;
1089 		n++;
1090 		if (is_counter_pair(&event->hw))
1091 			cpuc->n_pair++;
1092 	}
1093 	return n;
1094 }
1095 
1096 static inline void x86_assign_hw_event(struct perf_event *event,
1097 				struct cpu_hw_events *cpuc, int i)
1098 {
1099 	struct hw_perf_event *hwc = &event->hw;
1100 	int idx;
1101 
1102 	idx = hwc->idx = cpuc->assign[i];
1103 	hwc->last_cpu = smp_processor_id();
1104 	hwc->last_tag = ++cpuc->tags[i];
1105 
1106 	switch (hwc->idx) {
1107 	case INTEL_PMC_IDX_FIXED_BTS:
1108 	case INTEL_PMC_IDX_FIXED_VLBR:
1109 		hwc->config_base = 0;
1110 		hwc->event_base	= 0;
1111 		break;
1112 
1113 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1114 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1115 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1116 				(idx - INTEL_PMC_IDX_FIXED);
1117 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1118 		break;
1119 
1120 	default:
1121 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1122 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1123 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1124 		break;
1125 	}
1126 }
1127 
1128 /**
1129  * x86_perf_rdpmc_index - Return PMC counter used for event
1130  * @event: the perf_event to which the PMC counter was assigned
1131  *
1132  * The counter assigned to this performance event may change if interrupts
1133  * are enabled. This counter should thus never be used while interrupts are
1134  * enabled. Before this function is used to obtain the assigned counter the
1135  * event should be checked for validity using, for example,
1136  * perf_event_read_local(), within the same interrupt disabled section in
1137  * which this counter is planned to be used.
1138  *
1139  * Return: The index of the performance monitoring counter assigned to
1140  * @perf_event.
1141  */
1142 int x86_perf_rdpmc_index(struct perf_event *event)
1143 {
1144 	lockdep_assert_irqs_disabled();
1145 
1146 	return event->hw.event_base_rdpmc;
1147 }
1148 
1149 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1150 					struct cpu_hw_events *cpuc,
1151 					int i)
1152 {
1153 	return hwc->idx == cpuc->assign[i] &&
1154 		hwc->last_cpu == smp_processor_id() &&
1155 		hwc->last_tag == cpuc->tags[i];
1156 }
1157 
1158 static void x86_pmu_start(struct perf_event *event, int flags);
1159 
1160 static void x86_pmu_enable(struct pmu *pmu)
1161 {
1162 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163 	struct perf_event *event;
1164 	struct hw_perf_event *hwc;
1165 	int i, added = cpuc->n_added;
1166 
1167 	if (!x86_pmu_initialized())
1168 		return;
1169 
1170 	if (cpuc->enabled)
1171 		return;
1172 
1173 	if (cpuc->n_added) {
1174 		int n_running = cpuc->n_events - cpuc->n_added;
1175 		/*
1176 		 * apply assignment obtained either from
1177 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1178 		 *
1179 		 * step1: save events moving to new counters
1180 		 */
1181 		for (i = 0; i < n_running; i++) {
1182 			event = cpuc->event_list[i];
1183 			hwc = &event->hw;
1184 
1185 			/*
1186 			 * we can avoid reprogramming counter if:
1187 			 * - assigned same counter as last time
1188 			 * - running on same CPU as last time
1189 			 * - no other event has used the counter since
1190 			 */
1191 			if (hwc->idx == -1 ||
1192 			    match_prev_assignment(hwc, cpuc, i))
1193 				continue;
1194 
1195 			/*
1196 			 * Ensure we don't accidentally enable a stopped
1197 			 * counter simply because we rescheduled.
1198 			 */
1199 			if (hwc->state & PERF_HES_STOPPED)
1200 				hwc->state |= PERF_HES_ARCH;
1201 
1202 			x86_pmu_stop(event, PERF_EF_UPDATE);
1203 		}
1204 
1205 		/*
1206 		 * step2: reprogram moved events into new counters
1207 		 */
1208 		for (i = 0; i < cpuc->n_events; i++) {
1209 			event = cpuc->event_list[i];
1210 			hwc = &event->hw;
1211 
1212 			if (!match_prev_assignment(hwc, cpuc, i))
1213 				x86_assign_hw_event(event, cpuc, i);
1214 			else if (i < n_running)
1215 				continue;
1216 
1217 			if (hwc->state & PERF_HES_ARCH)
1218 				continue;
1219 
1220 			x86_pmu_start(event, PERF_EF_RELOAD);
1221 		}
1222 		cpuc->n_added = 0;
1223 		perf_events_lapic_init();
1224 	}
1225 
1226 	cpuc->enabled = 1;
1227 	barrier();
1228 
1229 	x86_pmu.enable_all(added);
1230 }
1231 
1232 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1233 
1234 /*
1235  * Set the next IRQ period, based on the hwc->period_left value.
1236  * To be called with the event disabled in hw:
1237  */
1238 int x86_perf_event_set_period(struct perf_event *event)
1239 {
1240 	struct hw_perf_event *hwc = &event->hw;
1241 	s64 left = local64_read(&hwc->period_left);
1242 	s64 period = hwc->sample_period;
1243 	int ret = 0, idx = hwc->idx;
1244 
1245 	if (unlikely(!hwc->event_base))
1246 		return 0;
1247 
1248 	/*
1249 	 * If we are way outside a reasonable range then just skip forward:
1250 	 */
1251 	if (unlikely(left <= -period)) {
1252 		left = period;
1253 		local64_set(&hwc->period_left, left);
1254 		hwc->last_period = period;
1255 		ret = 1;
1256 	}
1257 
1258 	if (unlikely(left <= 0)) {
1259 		left += period;
1260 		local64_set(&hwc->period_left, left);
1261 		hwc->last_period = period;
1262 		ret = 1;
1263 	}
1264 	/*
1265 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1266 	 */
1267 	if (unlikely(left < 2))
1268 		left = 2;
1269 
1270 	if (left > x86_pmu.max_period)
1271 		left = x86_pmu.max_period;
1272 
1273 	if (x86_pmu.limit_period)
1274 		left = x86_pmu.limit_period(event, left);
1275 
1276 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1277 
1278 	/*
1279 	 * The hw event starts counting from this event offset,
1280 	 * mark it to be able to extra future deltas:
1281 	 */
1282 	local64_set(&hwc->prev_count, (u64)-left);
1283 
1284 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1285 
1286 	/*
1287 	 * Clear the Merge event counter's upper 16 bits since
1288 	 * we currently declare a 48-bit counter width
1289 	 */
1290 	if (is_counter_pair(hwc))
1291 		wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1292 
1293 	/*
1294 	 * Due to erratum on certan cpu we need
1295 	 * a second write to be sure the register
1296 	 * is updated properly
1297 	 */
1298 	if (x86_pmu.perfctr_second_write) {
1299 		wrmsrl(hwc->event_base,
1300 			(u64)(-left) & x86_pmu.cntval_mask);
1301 	}
1302 
1303 	perf_event_update_userpage(event);
1304 
1305 	return ret;
1306 }
1307 
1308 void x86_pmu_enable_event(struct perf_event *event)
1309 {
1310 	if (__this_cpu_read(cpu_hw_events.enabled))
1311 		__x86_pmu_enable_event(&event->hw,
1312 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1313 }
1314 
1315 /*
1316  * Add a single event to the PMU.
1317  *
1318  * The event is added to the group of enabled events
1319  * but only if it can be scheduled with existing events.
1320  */
1321 static int x86_pmu_add(struct perf_event *event, int flags)
1322 {
1323 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1324 	struct hw_perf_event *hwc;
1325 	int assign[X86_PMC_IDX_MAX];
1326 	int n, n0, ret;
1327 
1328 	hwc = &event->hw;
1329 
1330 	n0 = cpuc->n_events;
1331 	ret = n = collect_events(cpuc, event, false);
1332 	if (ret < 0)
1333 		goto out;
1334 
1335 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1336 	if (!(flags & PERF_EF_START))
1337 		hwc->state |= PERF_HES_ARCH;
1338 
1339 	/*
1340 	 * If group events scheduling transaction was started,
1341 	 * skip the schedulability test here, it will be performed
1342 	 * at commit time (->commit_txn) as a whole.
1343 	 *
1344 	 * If commit fails, we'll call ->del() on all events
1345 	 * for which ->add() was called.
1346 	 */
1347 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1348 		goto done_collect;
1349 
1350 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1351 	if (ret)
1352 		goto out;
1353 	/*
1354 	 * copy new assignment, now we know it is possible
1355 	 * will be used by hw_perf_enable()
1356 	 */
1357 	memcpy(cpuc->assign, assign, n*sizeof(int));
1358 
1359 done_collect:
1360 	/*
1361 	 * Commit the collect_events() state. See x86_pmu_del() and
1362 	 * x86_pmu_*_txn().
1363 	 */
1364 	cpuc->n_events = n;
1365 	cpuc->n_added += n - n0;
1366 	cpuc->n_txn += n - n0;
1367 
1368 	if (x86_pmu.add) {
1369 		/*
1370 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1371 		 * so we enable LBRs before an event needs them etc..
1372 		 */
1373 		x86_pmu.add(event);
1374 	}
1375 
1376 	ret = 0;
1377 out:
1378 	return ret;
1379 }
1380 
1381 static void x86_pmu_start(struct perf_event *event, int flags)
1382 {
1383 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384 	int idx = event->hw.idx;
1385 
1386 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1387 		return;
1388 
1389 	if (WARN_ON_ONCE(idx == -1))
1390 		return;
1391 
1392 	if (flags & PERF_EF_RELOAD) {
1393 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1394 		x86_perf_event_set_period(event);
1395 	}
1396 
1397 	event->hw.state = 0;
1398 
1399 	cpuc->events[idx] = event;
1400 	__set_bit(idx, cpuc->active_mask);
1401 	__set_bit(idx, cpuc->running);
1402 	x86_pmu.enable(event);
1403 	perf_event_update_userpage(event);
1404 }
1405 
1406 void perf_event_print_debug(void)
1407 {
1408 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1409 	u64 pebs, debugctl;
1410 	struct cpu_hw_events *cpuc;
1411 	unsigned long flags;
1412 	int cpu, idx;
1413 
1414 	if (!x86_pmu.num_counters)
1415 		return;
1416 
1417 	local_irq_save(flags);
1418 
1419 	cpu = smp_processor_id();
1420 	cpuc = &per_cpu(cpu_hw_events, cpu);
1421 
1422 	if (x86_pmu.version >= 2) {
1423 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1424 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1425 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1426 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1427 
1428 		pr_info("\n");
1429 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1430 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1431 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1432 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1433 		if (x86_pmu.pebs_constraints) {
1434 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1435 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1436 		}
1437 		if (x86_pmu.lbr_nr) {
1438 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1439 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1440 		}
1441 	}
1442 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1443 
1444 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1445 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1446 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1447 
1448 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1449 
1450 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1451 			cpu, idx, pmc_ctrl);
1452 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1453 			cpu, idx, pmc_count);
1454 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1455 			cpu, idx, prev_left);
1456 	}
1457 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1458 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1459 
1460 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1461 			cpu, idx, pmc_count);
1462 	}
1463 	local_irq_restore(flags);
1464 }
1465 
1466 void x86_pmu_stop(struct perf_event *event, int flags)
1467 {
1468 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1469 	struct hw_perf_event *hwc = &event->hw;
1470 
1471 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1472 		x86_pmu.disable(event);
1473 		__clear_bit(hwc->idx, cpuc->active_mask);
1474 		cpuc->events[hwc->idx] = NULL;
1475 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1476 		hwc->state |= PERF_HES_STOPPED;
1477 	}
1478 
1479 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1480 		/*
1481 		 * Drain the remaining delta count out of a event
1482 		 * that we are disabling:
1483 		 */
1484 		x86_perf_event_update(event);
1485 		hwc->state |= PERF_HES_UPTODATE;
1486 	}
1487 }
1488 
1489 static void x86_pmu_del(struct perf_event *event, int flags)
1490 {
1491 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492 	int i;
1493 
1494 	/*
1495 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1496 	 * The events never got scheduled and ->cancel_txn will truncate
1497 	 * the event_list.
1498 	 *
1499 	 * XXX assumes any ->del() called during a TXN will only be on
1500 	 * an event added during that same TXN.
1501 	 */
1502 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1503 		goto do_del;
1504 
1505 	/*
1506 	 * Not a TXN, therefore cleanup properly.
1507 	 */
1508 	x86_pmu_stop(event, PERF_EF_UPDATE);
1509 
1510 	for (i = 0; i < cpuc->n_events; i++) {
1511 		if (event == cpuc->event_list[i])
1512 			break;
1513 	}
1514 
1515 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1516 		return;
1517 
1518 	/* If we have a newly added event; make sure to decrease n_added. */
1519 	if (i >= cpuc->n_events - cpuc->n_added)
1520 		--cpuc->n_added;
1521 
1522 	if (x86_pmu.put_event_constraints)
1523 		x86_pmu.put_event_constraints(cpuc, event);
1524 
1525 	/* Delete the array entry. */
1526 	while (++i < cpuc->n_events) {
1527 		cpuc->event_list[i-1] = cpuc->event_list[i];
1528 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1529 	}
1530 	cpuc->event_constraint[i-1] = NULL;
1531 	--cpuc->n_events;
1532 
1533 	perf_event_update_userpage(event);
1534 
1535 do_del:
1536 	if (x86_pmu.del) {
1537 		/*
1538 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1539 		 * event can need them etc..
1540 		 */
1541 		x86_pmu.del(event);
1542 	}
1543 }
1544 
1545 int x86_pmu_handle_irq(struct pt_regs *regs)
1546 {
1547 	struct perf_sample_data data;
1548 	struct cpu_hw_events *cpuc;
1549 	struct perf_event *event;
1550 	int idx, handled = 0;
1551 	u64 val;
1552 
1553 	cpuc = this_cpu_ptr(&cpu_hw_events);
1554 
1555 	/*
1556 	 * Some chipsets need to unmask the LVTPC in a particular spot
1557 	 * inside the nmi handler.  As a result, the unmasking was pushed
1558 	 * into all the nmi handlers.
1559 	 *
1560 	 * This generic handler doesn't seem to have any issues where the
1561 	 * unmasking occurs so it was left at the top.
1562 	 */
1563 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1564 
1565 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1566 		if (!test_bit(idx, cpuc->active_mask))
1567 			continue;
1568 
1569 		event = cpuc->events[idx];
1570 
1571 		val = x86_perf_event_update(event);
1572 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1573 			continue;
1574 
1575 		/*
1576 		 * event overflow
1577 		 */
1578 		handled++;
1579 		perf_sample_data_init(&data, 0, event->hw.last_period);
1580 
1581 		if (!x86_perf_event_set_period(event))
1582 			continue;
1583 
1584 		if (perf_event_overflow(event, &data, regs))
1585 			x86_pmu_stop(event, 0);
1586 	}
1587 
1588 	if (handled)
1589 		inc_irq_stat(apic_perf_irqs);
1590 
1591 	return handled;
1592 }
1593 
1594 void perf_events_lapic_init(void)
1595 {
1596 	if (!x86_pmu.apic || !x86_pmu_initialized())
1597 		return;
1598 
1599 	/*
1600 	 * Always use NMI for PMU
1601 	 */
1602 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1603 }
1604 
1605 static int
1606 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1607 {
1608 	u64 start_clock;
1609 	u64 finish_clock;
1610 	int ret;
1611 
1612 	/*
1613 	 * All PMUs/events that share this PMI handler should make sure to
1614 	 * increment active_events for their events.
1615 	 */
1616 	if (!atomic_read(&active_events))
1617 		return NMI_DONE;
1618 
1619 	start_clock = sched_clock();
1620 	ret = x86_pmu.handle_irq(regs);
1621 	finish_clock = sched_clock();
1622 
1623 	perf_sample_event_took(finish_clock - start_clock);
1624 
1625 	return ret;
1626 }
1627 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1628 
1629 struct event_constraint emptyconstraint;
1630 struct event_constraint unconstrained;
1631 
1632 static int x86_pmu_prepare_cpu(unsigned int cpu)
1633 {
1634 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1635 	int i;
1636 
1637 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1638 		cpuc->kfree_on_online[i] = NULL;
1639 	if (x86_pmu.cpu_prepare)
1640 		return x86_pmu.cpu_prepare(cpu);
1641 	return 0;
1642 }
1643 
1644 static int x86_pmu_dead_cpu(unsigned int cpu)
1645 {
1646 	if (x86_pmu.cpu_dead)
1647 		x86_pmu.cpu_dead(cpu);
1648 	return 0;
1649 }
1650 
1651 static int x86_pmu_online_cpu(unsigned int cpu)
1652 {
1653 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1654 	int i;
1655 
1656 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1657 		kfree(cpuc->kfree_on_online[i]);
1658 		cpuc->kfree_on_online[i] = NULL;
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int x86_pmu_starting_cpu(unsigned int cpu)
1664 {
1665 	if (x86_pmu.cpu_starting)
1666 		x86_pmu.cpu_starting(cpu);
1667 	return 0;
1668 }
1669 
1670 static int x86_pmu_dying_cpu(unsigned int cpu)
1671 {
1672 	if (x86_pmu.cpu_dying)
1673 		x86_pmu.cpu_dying(cpu);
1674 	return 0;
1675 }
1676 
1677 static void __init pmu_check_apic(void)
1678 {
1679 	if (boot_cpu_has(X86_FEATURE_APIC))
1680 		return;
1681 
1682 	x86_pmu.apic = 0;
1683 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1684 	pr_info("no hardware sampling interrupt available.\n");
1685 
1686 	/*
1687 	 * If we have a PMU initialized but no APIC
1688 	 * interrupts, we cannot sample hardware
1689 	 * events (user-space has to fall back and
1690 	 * sample via a hrtimer based software event):
1691 	 */
1692 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1693 
1694 }
1695 
1696 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1697 	.name = "format",
1698 	.attrs = NULL,
1699 };
1700 
1701 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1702 {
1703 	struct perf_pmu_events_attr *pmu_attr =
1704 		container_of(attr, struct perf_pmu_events_attr, attr);
1705 	u64 config = 0;
1706 
1707 	if (pmu_attr->id < x86_pmu.max_events)
1708 		config = x86_pmu.event_map(pmu_attr->id);
1709 
1710 	/* string trumps id */
1711 	if (pmu_attr->event_str)
1712 		return sprintf(page, "%s", pmu_attr->event_str);
1713 
1714 	return x86_pmu.events_sysfs_show(page, config);
1715 }
1716 EXPORT_SYMBOL_GPL(events_sysfs_show);
1717 
1718 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1719 			  char *page)
1720 {
1721 	struct perf_pmu_events_ht_attr *pmu_attr =
1722 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1723 
1724 	/*
1725 	 * Report conditional events depending on Hyper-Threading.
1726 	 *
1727 	 * This is overly conservative as usually the HT special
1728 	 * handling is not needed if the other CPU thread is idle.
1729 	 *
1730 	 * Note this does not (and cannot) handle the case when thread
1731 	 * siblings are invisible, for example with virtualization
1732 	 * if they are owned by some other guest.  The user tool
1733 	 * has to re-read when a thread sibling gets onlined later.
1734 	 */
1735 	return sprintf(page, "%s",
1736 			topology_max_smt_threads() > 1 ?
1737 			pmu_attr->event_str_ht :
1738 			pmu_attr->event_str_noht);
1739 }
1740 
1741 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1742 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1743 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1744 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1745 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1746 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1747 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1748 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1749 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1750 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1751 
1752 static struct attribute *empty_attrs;
1753 
1754 static struct attribute *events_attr[] = {
1755 	EVENT_PTR(CPU_CYCLES),
1756 	EVENT_PTR(INSTRUCTIONS),
1757 	EVENT_PTR(CACHE_REFERENCES),
1758 	EVENT_PTR(CACHE_MISSES),
1759 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1760 	EVENT_PTR(BRANCH_MISSES),
1761 	EVENT_PTR(BUS_CYCLES),
1762 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1763 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1764 	EVENT_PTR(REF_CPU_CYCLES),
1765 	NULL,
1766 };
1767 
1768 /*
1769  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1770  * out of events_attr attributes.
1771  */
1772 static umode_t
1773 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1774 {
1775 	struct perf_pmu_events_attr *pmu_attr;
1776 
1777 	if (idx >= x86_pmu.max_events)
1778 		return 0;
1779 
1780 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1781 	/* str trumps id */
1782 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1783 }
1784 
1785 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1786 	.name = "events",
1787 	.attrs = events_attr,
1788 	.is_visible = is_visible,
1789 };
1790 
1791 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1792 {
1793 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1794 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1795 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1796 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1797 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1798 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1799 	ssize_t ret;
1800 
1801 	/*
1802 	* We have whole page size to spend and just little data
1803 	* to write, so we can safely use sprintf.
1804 	*/
1805 	ret = sprintf(page, "event=0x%02llx", event);
1806 
1807 	if (umask)
1808 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1809 
1810 	if (edge)
1811 		ret += sprintf(page + ret, ",edge");
1812 
1813 	if (pc)
1814 		ret += sprintf(page + ret, ",pc");
1815 
1816 	if (any)
1817 		ret += sprintf(page + ret, ",any");
1818 
1819 	if (inv)
1820 		ret += sprintf(page + ret, ",inv");
1821 
1822 	if (cmask)
1823 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1824 
1825 	ret += sprintf(page + ret, "\n");
1826 
1827 	return ret;
1828 }
1829 
1830 static struct attribute_group x86_pmu_attr_group;
1831 static struct attribute_group x86_pmu_caps_group;
1832 
1833 static int __init init_hw_perf_events(void)
1834 {
1835 	struct x86_pmu_quirk *quirk;
1836 	int err;
1837 
1838 	pr_info("Performance Events: ");
1839 
1840 	switch (boot_cpu_data.x86_vendor) {
1841 	case X86_VENDOR_INTEL:
1842 		err = intel_pmu_init();
1843 		break;
1844 	case X86_VENDOR_AMD:
1845 		err = amd_pmu_init();
1846 		break;
1847 	case X86_VENDOR_HYGON:
1848 		err = amd_pmu_init();
1849 		x86_pmu.name = "HYGON";
1850 		break;
1851 	case X86_VENDOR_ZHAOXIN:
1852 	case X86_VENDOR_CENTAUR:
1853 		err = zhaoxin_pmu_init();
1854 		break;
1855 	default:
1856 		err = -ENOTSUPP;
1857 	}
1858 	if (err != 0) {
1859 		pr_cont("no PMU driver, software events only.\n");
1860 		return 0;
1861 	}
1862 
1863 	pmu_check_apic();
1864 
1865 	/* sanity check that the hardware exists or is emulated */
1866 	if (!check_hw_exists())
1867 		return 0;
1868 
1869 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1870 
1871 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1872 
1873 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1874 		quirk->func();
1875 
1876 	if (!x86_pmu.intel_ctrl)
1877 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1878 
1879 	perf_events_lapic_init();
1880 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1881 
1882 	unconstrained = (struct event_constraint)
1883 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1884 				   0, x86_pmu.num_counters, 0, 0);
1885 
1886 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1887 
1888 	if (!x86_pmu.events_sysfs_show)
1889 		x86_pmu_events_group.attrs = &empty_attrs;
1890 
1891 	pmu.attr_update = x86_pmu.attr_update;
1892 
1893 	pr_info("... version:                %d\n",     x86_pmu.version);
1894 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1895 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1896 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1897 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1898 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1899 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1900 
1901 	/*
1902 	 * Install callbacks. Core will call them for each online
1903 	 * cpu.
1904 	 */
1905 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1906 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1907 	if (err)
1908 		return err;
1909 
1910 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1911 				"perf/x86:starting", x86_pmu_starting_cpu,
1912 				x86_pmu_dying_cpu);
1913 	if (err)
1914 		goto out;
1915 
1916 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1917 				x86_pmu_online_cpu, NULL);
1918 	if (err)
1919 		goto out1;
1920 
1921 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1922 	if (err)
1923 		goto out2;
1924 
1925 	return 0;
1926 
1927 out2:
1928 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1929 out1:
1930 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1931 out:
1932 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1933 	return err;
1934 }
1935 early_initcall(init_hw_perf_events);
1936 
1937 static inline void x86_pmu_read(struct perf_event *event)
1938 {
1939 	if (x86_pmu.read)
1940 		return x86_pmu.read(event);
1941 	x86_perf_event_update(event);
1942 }
1943 
1944 /*
1945  * Start group events scheduling transaction
1946  * Set the flag to make pmu::enable() not perform the
1947  * schedulability test, it will be performed at commit time
1948  *
1949  * We only support PERF_PMU_TXN_ADD transactions. Save the
1950  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1951  * transactions.
1952  */
1953 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1954 {
1955 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1956 
1957 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1958 
1959 	cpuc->txn_flags = txn_flags;
1960 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1961 		return;
1962 
1963 	perf_pmu_disable(pmu);
1964 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1965 }
1966 
1967 /*
1968  * Stop group events scheduling transaction
1969  * Clear the flag and pmu::enable() will perform the
1970  * schedulability test.
1971  */
1972 static void x86_pmu_cancel_txn(struct pmu *pmu)
1973 {
1974 	unsigned int txn_flags;
1975 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1976 
1977 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1978 
1979 	txn_flags = cpuc->txn_flags;
1980 	cpuc->txn_flags = 0;
1981 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1982 		return;
1983 
1984 	/*
1985 	 * Truncate collected array by the number of events added in this
1986 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1987 	 */
1988 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1989 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1990 	perf_pmu_enable(pmu);
1991 }
1992 
1993 /*
1994  * Commit group events scheduling transaction
1995  * Perform the group schedulability test as a whole
1996  * Return 0 if success
1997  *
1998  * Does not cancel the transaction on failure; expects the caller to do this.
1999  */
2000 static int x86_pmu_commit_txn(struct pmu *pmu)
2001 {
2002 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2003 	int assign[X86_PMC_IDX_MAX];
2004 	int n, ret;
2005 
2006 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2007 
2008 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2009 		cpuc->txn_flags = 0;
2010 		return 0;
2011 	}
2012 
2013 	n = cpuc->n_events;
2014 
2015 	if (!x86_pmu_initialized())
2016 		return -EAGAIN;
2017 
2018 	ret = x86_pmu.schedule_events(cpuc, n, assign);
2019 	if (ret)
2020 		return ret;
2021 
2022 	/*
2023 	 * copy new assignment, now we know it is possible
2024 	 * will be used by hw_perf_enable()
2025 	 */
2026 	memcpy(cpuc->assign, assign, n*sizeof(int));
2027 
2028 	cpuc->txn_flags = 0;
2029 	perf_pmu_enable(pmu);
2030 	return 0;
2031 }
2032 /*
2033  * a fake_cpuc is used to validate event groups. Due to
2034  * the extra reg logic, we need to also allocate a fake
2035  * per_core and per_cpu structure. Otherwise, group events
2036  * using extra reg may conflict without the kernel being
2037  * able to catch this when the last event gets added to
2038  * the group.
2039  */
2040 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2041 {
2042 	intel_cpuc_finish(cpuc);
2043 	kfree(cpuc);
2044 }
2045 
2046 static struct cpu_hw_events *allocate_fake_cpuc(void)
2047 {
2048 	struct cpu_hw_events *cpuc;
2049 	int cpu = raw_smp_processor_id();
2050 
2051 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2052 	if (!cpuc)
2053 		return ERR_PTR(-ENOMEM);
2054 	cpuc->is_fake = 1;
2055 
2056 	if (intel_cpuc_prepare(cpuc, cpu))
2057 		goto error;
2058 
2059 	return cpuc;
2060 error:
2061 	free_fake_cpuc(cpuc);
2062 	return ERR_PTR(-ENOMEM);
2063 }
2064 
2065 /*
2066  * validate that we can schedule this event
2067  */
2068 static int validate_event(struct perf_event *event)
2069 {
2070 	struct cpu_hw_events *fake_cpuc;
2071 	struct event_constraint *c;
2072 	int ret = 0;
2073 
2074 	fake_cpuc = allocate_fake_cpuc();
2075 	if (IS_ERR(fake_cpuc))
2076 		return PTR_ERR(fake_cpuc);
2077 
2078 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2079 
2080 	if (!c || !c->weight)
2081 		ret = -EINVAL;
2082 
2083 	if (x86_pmu.put_event_constraints)
2084 		x86_pmu.put_event_constraints(fake_cpuc, event);
2085 
2086 	free_fake_cpuc(fake_cpuc);
2087 
2088 	return ret;
2089 }
2090 
2091 /*
2092  * validate a single event group
2093  *
2094  * validation include:
2095  *	- check events are compatible which each other
2096  *	- events do not compete for the same counter
2097  *	- number of events <= number of counters
2098  *
2099  * validation ensures the group can be loaded onto the
2100  * PMU if it was the only group available.
2101  */
2102 static int validate_group(struct perf_event *event)
2103 {
2104 	struct perf_event *leader = event->group_leader;
2105 	struct cpu_hw_events *fake_cpuc;
2106 	int ret = -EINVAL, n;
2107 
2108 	fake_cpuc = allocate_fake_cpuc();
2109 	if (IS_ERR(fake_cpuc))
2110 		return PTR_ERR(fake_cpuc);
2111 	/*
2112 	 * the event is not yet connected with its
2113 	 * siblings therefore we must first collect
2114 	 * existing siblings, then add the new event
2115 	 * before we can simulate the scheduling
2116 	 */
2117 	n = collect_events(fake_cpuc, leader, true);
2118 	if (n < 0)
2119 		goto out;
2120 
2121 	fake_cpuc->n_events = n;
2122 	n = collect_events(fake_cpuc, event, false);
2123 	if (n < 0)
2124 		goto out;
2125 
2126 	fake_cpuc->n_events = 0;
2127 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2128 
2129 out:
2130 	free_fake_cpuc(fake_cpuc);
2131 	return ret;
2132 }
2133 
2134 static int x86_pmu_event_init(struct perf_event *event)
2135 {
2136 	struct pmu *tmp;
2137 	int err;
2138 
2139 	switch (event->attr.type) {
2140 	case PERF_TYPE_RAW:
2141 	case PERF_TYPE_HARDWARE:
2142 	case PERF_TYPE_HW_CACHE:
2143 		break;
2144 
2145 	default:
2146 		return -ENOENT;
2147 	}
2148 
2149 	err = __x86_pmu_event_init(event);
2150 	if (!err) {
2151 		/*
2152 		 * we temporarily connect event to its pmu
2153 		 * such that validate_group() can classify
2154 		 * it as an x86 event using is_x86_event()
2155 		 */
2156 		tmp = event->pmu;
2157 		event->pmu = &pmu;
2158 
2159 		if (event->group_leader != event)
2160 			err = validate_group(event);
2161 		else
2162 			err = validate_event(event);
2163 
2164 		event->pmu = tmp;
2165 	}
2166 	if (err) {
2167 		if (event->destroy)
2168 			event->destroy(event);
2169 	}
2170 
2171 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2172 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2173 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2174 
2175 	return err;
2176 }
2177 
2178 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2179 {
2180 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2181 		return;
2182 
2183 	/*
2184 	 * This function relies on not being called concurrently in two
2185 	 * tasks in the same mm.  Otherwise one task could observe
2186 	 * perf_rdpmc_allowed > 1 and return all the way back to
2187 	 * userspace with CR4.PCE clear while another task is still
2188 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2189 	 *
2190 	 * For now, this can't happen because all callers hold mmap_lock
2191 	 * for write.  If this changes, we'll need a different solution.
2192 	 */
2193 	mmap_assert_write_locked(mm);
2194 
2195 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2196 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2197 }
2198 
2199 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2200 {
2201 
2202 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2203 		return;
2204 
2205 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2206 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2207 }
2208 
2209 static int x86_pmu_event_idx(struct perf_event *event)
2210 {
2211 	int idx = event->hw.idx;
2212 
2213 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2214 		return 0;
2215 
2216 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2217 		idx -= INTEL_PMC_IDX_FIXED;
2218 		idx |= 1 << 30;
2219 	}
2220 
2221 	return idx + 1;
2222 }
2223 
2224 static ssize_t get_attr_rdpmc(struct device *cdev,
2225 			      struct device_attribute *attr,
2226 			      char *buf)
2227 {
2228 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2229 }
2230 
2231 static ssize_t set_attr_rdpmc(struct device *cdev,
2232 			      struct device_attribute *attr,
2233 			      const char *buf, size_t count)
2234 {
2235 	unsigned long val;
2236 	ssize_t ret;
2237 
2238 	ret = kstrtoul(buf, 0, &val);
2239 	if (ret)
2240 		return ret;
2241 
2242 	if (val > 2)
2243 		return -EINVAL;
2244 
2245 	if (x86_pmu.attr_rdpmc_broken)
2246 		return -ENOTSUPP;
2247 
2248 	if (val != x86_pmu.attr_rdpmc) {
2249 		/*
2250 		 * Changing into or out of never available or always available,
2251 		 * aka perf-event-bypassing mode. This path is extremely slow,
2252 		 * but only root can trigger it, so it's okay.
2253 		 */
2254 		if (val == 0)
2255 			static_branch_inc(&rdpmc_never_available_key);
2256 		else if (x86_pmu.attr_rdpmc == 0)
2257 			static_branch_dec(&rdpmc_never_available_key);
2258 
2259 		if (val == 2)
2260 			static_branch_inc(&rdpmc_always_available_key);
2261 		else if (x86_pmu.attr_rdpmc == 2)
2262 			static_branch_dec(&rdpmc_always_available_key);
2263 
2264 		on_each_cpu(cr4_update_pce, NULL, 1);
2265 		x86_pmu.attr_rdpmc = val;
2266 	}
2267 
2268 	return count;
2269 }
2270 
2271 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2272 
2273 static struct attribute *x86_pmu_attrs[] = {
2274 	&dev_attr_rdpmc.attr,
2275 	NULL,
2276 };
2277 
2278 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2279 	.attrs = x86_pmu_attrs,
2280 };
2281 
2282 static ssize_t max_precise_show(struct device *cdev,
2283 				  struct device_attribute *attr,
2284 				  char *buf)
2285 {
2286 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2287 }
2288 
2289 static DEVICE_ATTR_RO(max_precise);
2290 
2291 static struct attribute *x86_pmu_caps_attrs[] = {
2292 	&dev_attr_max_precise.attr,
2293 	NULL
2294 };
2295 
2296 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2297 	.name = "caps",
2298 	.attrs = x86_pmu_caps_attrs,
2299 };
2300 
2301 static const struct attribute_group *x86_pmu_attr_groups[] = {
2302 	&x86_pmu_attr_group,
2303 	&x86_pmu_format_group,
2304 	&x86_pmu_events_group,
2305 	&x86_pmu_caps_group,
2306 	NULL,
2307 };
2308 
2309 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2310 {
2311 	if (x86_pmu.sched_task)
2312 		x86_pmu.sched_task(ctx, sched_in);
2313 }
2314 
2315 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2316 				  struct perf_event_context *next)
2317 {
2318 	if (x86_pmu.swap_task_ctx)
2319 		x86_pmu.swap_task_ctx(prev, next);
2320 }
2321 
2322 void perf_check_microcode(void)
2323 {
2324 	if (x86_pmu.check_microcode)
2325 		x86_pmu.check_microcode();
2326 }
2327 
2328 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2329 {
2330 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2331 		return -EINVAL;
2332 
2333 	if (value && x86_pmu.limit_period) {
2334 		if (x86_pmu.limit_period(event, value) > value)
2335 			return -EINVAL;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static int x86_pmu_aux_output_match(struct perf_event *event)
2342 {
2343 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2344 		return 0;
2345 
2346 	if (x86_pmu.aux_output_match)
2347 		return x86_pmu.aux_output_match(event);
2348 
2349 	return 0;
2350 }
2351 
2352 static struct pmu pmu = {
2353 	.pmu_enable		= x86_pmu_enable,
2354 	.pmu_disable		= x86_pmu_disable,
2355 
2356 	.attr_groups		= x86_pmu_attr_groups,
2357 
2358 	.event_init		= x86_pmu_event_init,
2359 
2360 	.event_mapped		= x86_pmu_event_mapped,
2361 	.event_unmapped		= x86_pmu_event_unmapped,
2362 
2363 	.add			= x86_pmu_add,
2364 	.del			= x86_pmu_del,
2365 	.start			= x86_pmu_start,
2366 	.stop			= x86_pmu_stop,
2367 	.read			= x86_pmu_read,
2368 
2369 	.start_txn		= x86_pmu_start_txn,
2370 	.cancel_txn		= x86_pmu_cancel_txn,
2371 	.commit_txn		= x86_pmu_commit_txn,
2372 
2373 	.event_idx		= x86_pmu_event_idx,
2374 	.sched_task		= x86_pmu_sched_task,
2375 	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2376 	.check_period		= x86_pmu_check_period,
2377 
2378 	.aux_output_match	= x86_pmu_aux_output_match,
2379 };
2380 
2381 void arch_perf_update_userpage(struct perf_event *event,
2382 			       struct perf_event_mmap_page *userpg, u64 now)
2383 {
2384 	struct cyc2ns_data data;
2385 	u64 offset;
2386 
2387 	userpg->cap_user_time = 0;
2388 	userpg->cap_user_time_zero = 0;
2389 	userpg->cap_user_rdpmc =
2390 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2391 	userpg->pmc_width = x86_pmu.cntval_bits;
2392 
2393 	if (!using_native_sched_clock() || !sched_clock_stable())
2394 		return;
2395 
2396 	cyc2ns_read_begin(&data);
2397 
2398 	offset = data.cyc2ns_offset + __sched_clock_offset;
2399 
2400 	/*
2401 	 * Internal timekeeping for enabled/running/stopped times
2402 	 * is always in the local_clock domain.
2403 	 */
2404 	userpg->cap_user_time = 1;
2405 	userpg->time_mult = data.cyc2ns_mul;
2406 	userpg->time_shift = data.cyc2ns_shift;
2407 	userpg->time_offset = offset - now;
2408 
2409 	/*
2410 	 * cap_user_time_zero doesn't make sense when we're using a different
2411 	 * time base for the records.
2412 	 */
2413 	if (!event->attr.use_clockid) {
2414 		userpg->cap_user_time_zero = 1;
2415 		userpg->time_zero = offset;
2416 	}
2417 
2418 	cyc2ns_read_end();
2419 }
2420 
2421 /*
2422  * Determine whether the regs were taken from an irq/exception handler rather
2423  * than from perf_arch_fetch_caller_regs().
2424  */
2425 static bool perf_hw_regs(struct pt_regs *regs)
2426 {
2427 	return regs->flags & X86_EFLAGS_FIXED;
2428 }
2429 
2430 void
2431 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2432 {
2433 	struct unwind_state state;
2434 	unsigned long addr;
2435 
2436 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2437 		/* TODO: We don't support guest os callchain now */
2438 		return;
2439 	}
2440 
2441 	if (perf_callchain_store(entry, regs->ip))
2442 		return;
2443 
2444 	if (perf_hw_regs(regs))
2445 		unwind_start(&state, current, regs, NULL);
2446 	else
2447 		unwind_start(&state, current, NULL, (void *)regs->sp);
2448 
2449 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2450 		addr = unwind_get_return_address(&state);
2451 		if (!addr || perf_callchain_store(entry, addr))
2452 			return;
2453 	}
2454 }
2455 
2456 static inline int
2457 valid_user_frame(const void __user *fp, unsigned long size)
2458 {
2459 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2460 }
2461 
2462 static unsigned long get_segment_base(unsigned int segment)
2463 {
2464 	struct desc_struct *desc;
2465 	unsigned int idx = segment >> 3;
2466 
2467 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2468 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2469 		struct ldt_struct *ldt;
2470 
2471 		/* IRQs are off, so this synchronizes with smp_store_release */
2472 		ldt = READ_ONCE(current->active_mm->context.ldt);
2473 		if (!ldt || idx >= ldt->nr_entries)
2474 			return 0;
2475 
2476 		desc = &ldt->entries[idx];
2477 #else
2478 		return 0;
2479 #endif
2480 	} else {
2481 		if (idx >= GDT_ENTRIES)
2482 			return 0;
2483 
2484 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2485 	}
2486 
2487 	return get_desc_base(desc);
2488 }
2489 
2490 #ifdef CONFIG_IA32_EMULATION
2491 
2492 #include <linux/compat.h>
2493 
2494 static inline int
2495 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2496 {
2497 	/* 32-bit process in 64-bit kernel. */
2498 	unsigned long ss_base, cs_base;
2499 	struct stack_frame_ia32 frame;
2500 	const struct stack_frame_ia32 __user *fp;
2501 
2502 	if (!test_thread_flag(TIF_IA32))
2503 		return 0;
2504 
2505 	cs_base = get_segment_base(regs->cs);
2506 	ss_base = get_segment_base(regs->ss);
2507 
2508 	fp = compat_ptr(ss_base + regs->bp);
2509 	pagefault_disable();
2510 	while (entry->nr < entry->max_stack) {
2511 		if (!valid_user_frame(fp, sizeof(frame)))
2512 			break;
2513 
2514 		if (__get_user(frame.next_frame, &fp->next_frame))
2515 			break;
2516 		if (__get_user(frame.return_address, &fp->return_address))
2517 			break;
2518 
2519 		perf_callchain_store(entry, cs_base + frame.return_address);
2520 		fp = compat_ptr(ss_base + frame.next_frame);
2521 	}
2522 	pagefault_enable();
2523 	return 1;
2524 }
2525 #else
2526 static inline int
2527 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2528 {
2529     return 0;
2530 }
2531 #endif
2532 
2533 void
2534 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2535 {
2536 	struct stack_frame frame;
2537 	const struct stack_frame __user *fp;
2538 
2539 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2540 		/* TODO: We don't support guest os callchain now */
2541 		return;
2542 	}
2543 
2544 	/*
2545 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2546 	 */
2547 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2548 		return;
2549 
2550 	fp = (void __user *)regs->bp;
2551 
2552 	perf_callchain_store(entry, regs->ip);
2553 
2554 	if (!nmi_uaccess_okay())
2555 		return;
2556 
2557 	if (perf_callchain_user32(regs, entry))
2558 		return;
2559 
2560 	pagefault_disable();
2561 	while (entry->nr < entry->max_stack) {
2562 		if (!valid_user_frame(fp, sizeof(frame)))
2563 			break;
2564 
2565 		if (__get_user(frame.next_frame, &fp->next_frame))
2566 			break;
2567 		if (__get_user(frame.return_address, &fp->return_address))
2568 			break;
2569 
2570 		perf_callchain_store(entry, frame.return_address);
2571 		fp = (void __user *)frame.next_frame;
2572 	}
2573 	pagefault_enable();
2574 }
2575 
2576 /*
2577  * Deal with code segment offsets for the various execution modes:
2578  *
2579  *   VM86 - the good olde 16 bit days, where the linear address is
2580  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2581  *
2582  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2583  *          to figure out what the 32bit base address is.
2584  *
2585  *    X32 - has TIF_X32 set, but is running in x86_64
2586  *
2587  * X86_64 - CS,DS,SS,ES are all zero based.
2588  */
2589 static unsigned long code_segment_base(struct pt_regs *regs)
2590 {
2591 	/*
2592 	 * For IA32 we look at the GDT/LDT segment base to convert the
2593 	 * effective IP to a linear address.
2594 	 */
2595 
2596 #ifdef CONFIG_X86_32
2597 	/*
2598 	 * If we are in VM86 mode, add the segment offset to convert to a
2599 	 * linear address.
2600 	 */
2601 	if (regs->flags & X86_VM_MASK)
2602 		return 0x10 * regs->cs;
2603 
2604 	if (user_mode(regs) && regs->cs != __USER_CS)
2605 		return get_segment_base(regs->cs);
2606 #else
2607 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2608 	    regs->cs != __USER32_CS)
2609 		return get_segment_base(regs->cs);
2610 #endif
2611 	return 0;
2612 }
2613 
2614 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2615 {
2616 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2617 		return perf_guest_cbs->get_guest_ip();
2618 
2619 	return regs->ip + code_segment_base(regs);
2620 }
2621 
2622 unsigned long perf_misc_flags(struct pt_regs *regs)
2623 {
2624 	int misc = 0;
2625 
2626 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2627 		if (perf_guest_cbs->is_user_mode())
2628 			misc |= PERF_RECORD_MISC_GUEST_USER;
2629 		else
2630 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2631 	} else {
2632 		if (user_mode(regs))
2633 			misc |= PERF_RECORD_MISC_USER;
2634 		else
2635 			misc |= PERF_RECORD_MISC_KERNEL;
2636 	}
2637 
2638 	if (regs->flags & PERF_EFLAGS_EXACT)
2639 		misc |= PERF_RECORD_MISC_EXACT_IP;
2640 
2641 	return misc;
2642 }
2643 
2644 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2645 {
2646 	cap->version		= x86_pmu.version;
2647 	cap->num_counters_gp	= x86_pmu.num_counters;
2648 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2649 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2650 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2651 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2652 	cap->events_mask_len	= x86_pmu.events_mask_len;
2653 }
2654 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2655