xref: /openbmc/linux/arch/x86/events/core.c (revision 110e6f26)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49 
50 u64 __read_mostly hw_cache_event_ids
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 	struct hw_perf_event *hwc = &event->hw;
67 	int shift = 64 - x86_pmu.cntval_bits;
68 	u64 prev_raw_count, new_raw_count;
69 	int idx = hwc->idx;
70 	s64 delta;
71 
72 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 		return 0;
74 
75 	/*
76 	 * Careful: an NMI might modify the previous event value.
77 	 *
78 	 * Our tactic to handle this is to first atomically read and
79 	 * exchange a new raw count - then add that new-prev delta
80 	 * count to the generic event atomically:
81 	 */
82 again:
83 	prev_raw_count = local64_read(&hwc->prev_count);
84 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85 
86 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 					new_raw_count) != prev_raw_count)
88 		goto again;
89 
90 	/*
91 	 * Now we have the new raw value and have updated the prev
92 	 * timestamp already. We can now calculate the elapsed delta
93 	 * (event-)time and add that to the generic event.
94 	 *
95 	 * Careful, not all hw sign-extends above the physical width
96 	 * of the count.
97 	 */
98 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 	delta >>= shift;
100 
101 	local64_add(delta, &event->count);
102 	local64_sub(delta, &hwc->period_left);
103 
104 	return new_raw_count;
105 }
106 
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 	struct hw_perf_event_extra *reg;
113 	struct extra_reg *er;
114 
115 	reg = &event->hw.extra_reg;
116 
117 	if (!x86_pmu.extra_regs)
118 		return 0;
119 
120 	for (er = x86_pmu.extra_regs; er->msr; er++) {
121 		if (er->event != (config & er->config_mask))
122 			continue;
123 		if (event->attr.config1 & ~er->valid_mask)
124 			return -EINVAL;
125 		/* Check if the extra msrs can be safely accessed*/
126 		if (!er->extra_msr_access)
127 			return -ENXIO;
128 
129 		reg->idx = er->idx;
130 		reg->config = event->attr.config1;
131 		reg->reg = er->msr;
132 		break;
133 	}
134 	return 0;
135 }
136 
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140 
141 #ifdef CONFIG_X86_LOCAL_APIC
142 
143 static bool reserve_pmc_hardware(void)
144 {
145 	int i;
146 
147 	for (i = 0; i < x86_pmu.num_counters; i++) {
148 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 			goto perfctr_fail;
150 	}
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 			goto eventsel_fail;
155 	}
156 
157 	return true;
158 
159 eventsel_fail:
160 	for (i--; i >= 0; i--)
161 		release_evntsel_nmi(x86_pmu_config_addr(i));
162 
163 	i = x86_pmu.num_counters;
164 
165 perfctr_fail:
166 	for (i--; i >= 0; i--)
167 		release_perfctr_nmi(x86_pmu_event_addr(i));
168 
169 	return false;
170 }
171 
172 static void release_pmc_hardware(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.num_counters; i++) {
177 		release_perfctr_nmi(x86_pmu_event_addr(i));
178 		release_evntsel_nmi(x86_pmu_config_addr(i));
179 	}
180 }
181 
182 #else
183 
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186 
187 #endif
188 
189 static bool check_hw_exists(void)
190 {
191 	u64 val, val_fail, val_new= ~0;
192 	int i, reg, reg_fail, ret = 0;
193 	int bios_fail = 0;
194 	int reg_safe = -1;
195 
196 	/*
197 	 * Check to see if the BIOS enabled any of the counters, if so
198 	 * complain and bail.
199 	 */
200 	for (i = 0; i < x86_pmu.num_counters; i++) {
201 		reg = x86_pmu_config_addr(i);
202 		ret = rdmsrl_safe(reg, &val);
203 		if (ret)
204 			goto msr_fail;
205 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 			bios_fail = 1;
207 			val_fail = val;
208 			reg_fail = reg;
209 		} else {
210 			reg_safe = i;
211 		}
212 	}
213 
214 	if (x86_pmu.num_counters_fixed) {
215 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 		ret = rdmsrl_safe(reg, &val);
217 		if (ret)
218 			goto msr_fail;
219 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 			if (val & (0x03 << i*4)) {
221 				bios_fail = 1;
222 				val_fail = val;
223 				reg_fail = reg;
224 			}
225 		}
226 	}
227 
228 	/*
229 	 * If all the counters are enabled, the below test will always
230 	 * fail.  The tools will also become useless in this scenario.
231 	 * Just fail and disable the hardware counters.
232 	 */
233 
234 	if (reg_safe == -1) {
235 		reg = reg_safe;
236 		goto msr_fail;
237 	}
238 
239 	/*
240 	 * Read the current value, change it and read it back to see if it
241 	 * matches, this is needed to detect certain hardware emulators
242 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 	 */
244 	reg = x86_pmu_event_addr(reg_safe);
245 	if (rdmsrl_safe(reg, &val))
246 		goto msr_fail;
247 	val ^= 0xffffUL;
248 	ret = wrmsrl_safe(reg, val);
249 	ret |= rdmsrl_safe(reg, &val_new);
250 	if (ret || val != val_new)
251 		goto msr_fail;
252 
253 	/*
254 	 * We still allow the PMU driver to operate:
255 	 */
256 	if (bios_fail) {
257 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 			      reg_fail, val_fail);
260 	}
261 
262 	return true;
263 
264 msr_fail:
265 	pr_cont("Broken PMU hardware detected, using software events only.\n");
266 	pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 		reg, val_new);
269 
270 	return false;
271 }
272 
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 	x86_release_hardware();
276 	atomic_dec(&active_events);
277 }
278 
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 	hw_perf_event_destroy(event);
282 
283 	/* undo the lbr/bts event accounting */
284 	x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286 
287 static inline int x86_pmu_initialized(void)
288 {
289 	return x86_pmu.handle_irq != NULL;
290 }
291 
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 	struct perf_event_attr *attr = &event->attr;
296 	unsigned int cache_type, cache_op, cache_result;
297 	u64 config, val;
298 
299 	config = attr->config;
300 
301 	cache_type = (config >>  0) & 0xff;
302 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 		return -EINVAL;
304 
305 	cache_op = (config >>  8) & 0xff;
306 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 		return -EINVAL;
308 
309 	cache_result = (config >> 16) & 0xff;
310 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 		return -EINVAL;
312 
313 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314 
315 	if (val == 0)
316 		return -ENOENT;
317 
318 	if (val == -1)
319 		return -EINVAL;
320 
321 	hwc->config |= val;
322 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 	return x86_pmu_extra_regs(val, event);
324 }
325 
326 int x86_reserve_hardware(void)
327 {
328 	int err = 0;
329 
330 	if (!atomic_inc_not_zero(&pmc_refcount)) {
331 		mutex_lock(&pmc_reserve_mutex);
332 		if (atomic_read(&pmc_refcount) == 0) {
333 			if (!reserve_pmc_hardware())
334 				err = -EBUSY;
335 			else
336 				reserve_ds_buffers();
337 		}
338 		if (!err)
339 			atomic_inc(&pmc_refcount);
340 		mutex_unlock(&pmc_reserve_mutex);
341 	}
342 
343 	return err;
344 }
345 
346 void x86_release_hardware(void)
347 {
348 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349 		release_pmc_hardware();
350 		release_ds_buffers();
351 		mutex_unlock(&pmc_reserve_mutex);
352 	}
353 }
354 
355 /*
356  * Check if we can create event of a certain type (that no conflicting events
357  * are present).
358  */
359 int x86_add_exclusive(unsigned int what)
360 {
361 	int i;
362 
363 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
364 		mutex_lock(&pmc_reserve_mutex);
365 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
366 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
367 				goto fail_unlock;
368 		}
369 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
370 		mutex_unlock(&pmc_reserve_mutex);
371 	}
372 
373 	atomic_inc(&active_events);
374 	return 0;
375 
376 fail_unlock:
377 	mutex_unlock(&pmc_reserve_mutex);
378 	return -EBUSY;
379 }
380 
381 void x86_del_exclusive(unsigned int what)
382 {
383 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
384 	atomic_dec(&active_events);
385 }
386 
387 int x86_setup_perfctr(struct perf_event *event)
388 {
389 	struct perf_event_attr *attr = &event->attr;
390 	struct hw_perf_event *hwc = &event->hw;
391 	u64 config;
392 
393 	if (!is_sampling_event(event)) {
394 		hwc->sample_period = x86_pmu.max_period;
395 		hwc->last_period = hwc->sample_period;
396 		local64_set(&hwc->period_left, hwc->sample_period);
397 	}
398 
399 	if (attr->type == PERF_TYPE_RAW)
400 		return x86_pmu_extra_regs(event->attr.config, event);
401 
402 	if (attr->type == PERF_TYPE_HW_CACHE)
403 		return set_ext_hw_attr(hwc, event);
404 
405 	if (attr->config >= x86_pmu.max_events)
406 		return -EINVAL;
407 
408 	/*
409 	 * The generic map:
410 	 */
411 	config = x86_pmu.event_map(attr->config);
412 
413 	if (config == 0)
414 		return -ENOENT;
415 
416 	if (config == -1LL)
417 		return -EINVAL;
418 
419 	/*
420 	 * Branch tracing:
421 	 */
422 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
423 	    !attr->freq && hwc->sample_period == 1) {
424 		/* BTS is not supported by this architecture. */
425 		if (!x86_pmu.bts_active)
426 			return -EOPNOTSUPP;
427 
428 		/* BTS is currently only allowed for user-mode. */
429 		if (!attr->exclude_kernel)
430 			return -EOPNOTSUPP;
431 
432 		/* disallow bts if conflicting events are present */
433 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
434 			return -EBUSY;
435 
436 		event->destroy = hw_perf_lbr_event_destroy;
437 	}
438 
439 	hwc->config |= config;
440 
441 	return 0;
442 }
443 
444 /*
445  * check that branch_sample_type is compatible with
446  * settings needed for precise_ip > 1 which implies
447  * using the LBR to capture ALL taken branches at the
448  * priv levels of the measurement
449  */
450 static inline int precise_br_compat(struct perf_event *event)
451 {
452 	u64 m = event->attr.branch_sample_type;
453 	u64 b = 0;
454 
455 	/* must capture all branches */
456 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
457 		return 0;
458 
459 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
460 
461 	if (!event->attr.exclude_user)
462 		b |= PERF_SAMPLE_BRANCH_USER;
463 
464 	if (!event->attr.exclude_kernel)
465 		b |= PERF_SAMPLE_BRANCH_KERNEL;
466 
467 	/*
468 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469 	 */
470 
471 	return m == b;
472 }
473 
474 int x86_pmu_hw_config(struct perf_event *event)
475 {
476 	if (event->attr.precise_ip) {
477 		int precise = 0;
478 
479 		/* Support for constant skid */
480 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
481 			precise++;
482 
483 			/* Support for IP fixup */
484 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
485 				precise++;
486 
487 			if (x86_pmu.pebs_prec_dist)
488 				precise++;
489 		}
490 
491 		if (event->attr.precise_ip > precise)
492 			return -EOPNOTSUPP;
493 	}
494 	/*
495 	 * check that PEBS LBR correction does not conflict with
496 	 * whatever the user is asking with attr->branch_sample_type
497 	 */
498 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
499 		u64 *br_type = &event->attr.branch_sample_type;
500 
501 		if (has_branch_stack(event)) {
502 			if (!precise_br_compat(event))
503 				return -EOPNOTSUPP;
504 
505 			/* branch_sample_type is compatible */
506 
507 		} else {
508 			/*
509 			 * user did not specify  branch_sample_type
510 			 *
511 			 * For PEBS fixups, we capture all
512 			 * the branches at the priv level of the
513 			 * event.
514 			 */
515 			*br_type = PERF_SAMPLE_BRANCH_ANY;
516 
517 			if (!event->attr.exclude_user)
518 				*br_type |= PERF_SAMPLE_BRANCH_USER;
519 
520 			if (!event->attr.exclude_kernel)
521 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
522 		}
523 	}
524 
525 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
526 		event->attach_state |= PERF_ATTACH_TASK_DATA;
527 
528 	/*
529 	 * Generate PMC IRQs:
530 	 * (keep 'enabled' bit clear for now)
531 	 */
532 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
533 
534 	/*
535 	 * Count user and OS events unless requested not to
536 	 */
537 	if (!event->attr.exclude_user)
538 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
539 	if (!event->attr.exclude_kernel)
540 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
541 
542 	if (event->attr.type == PERF_TYPE_RAW)
543 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
544 
545 	if (event->attr.sample_period && x86_pmu.limit_period) {
546 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
547 				event->attr.sample_period)
548 			return -EINVAL;
549 	}
550 
551 	return x86_setup_perfctr(event);
552 }
553 
554 /*
555  * Setup the hardware configuration for a given attr_type
556  */
557 static int __x86_pmu_event_init(struct perf_event *event)
558 {
559 	int err;
560 
561 	if (!x86_pmu_initialized())
562 		return -ENODEV;
563 
564 	err = x86_reserve_hardware();
565 	if (err)
566 		return err;
567 
568 	atomic_inc(&active_events);
569 	event->destroy = hw_perf_event_destroy;
570 
571 	event->hw.idx = -1;
572 	event->hw.last_cpu = -1;
573 	event->hw.last_tag = ~0ULL;
574 
575 	/* mark unused */
576 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
577 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
578 
579 	return x86_pmu.hw_config(event);
580 }
581 
582 void x86_pmu_disable_all(void)
583 {
584 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585 	int idx;
586 
587 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
588 		u64 val;
589 
590 		if (!test_bit(idx, cpuc->active_mask))
591 			continue;
592 		rdmsrl(x86_pmu_config_addr(idx), val);
593 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
594 			continue;
595 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
596 		wrmsrl(x86_pmu_config_addr(idx), val);
597 	}
598 }
599 
600 /*
601  * There may be PMI landing after enabled=0. The PMI hitting could be before or
602  * after disable_all.
603  *
604  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
605  * It will not be re-enabled in the NMI handler again, because enabled=0. After
606  * handling the NMI, disable_all will be called, which will not change the
607  * state either. If PMI hits after disable_all, the PMU is already disabled
608  * before entering NMI handler. The NMI handler will not change the state
609  * either.
610  *
611  * So either situation is harmless.
612  */
613 static void x86_pmu_disable(struct pmu *pmu)
614 {
615 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
616 
617 	if (!x86_pmu_initialized())
618 		return;
619 
620 	if (!cpuc->enabled)
621 		return;
622 
623 	cpuc->n_added = 0;
624 	cpuc->enabled = 0;
625 	barrier();
626 
627 	x86_pmu.disable_all();
628 }
629 
630 void x86_pmu_enable_all(int added)
631 {
632 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
633 	int idx;
634 
635 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
636 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
637 
638 		if (!test_bit(idx, cpuc->active_mask))
639 			continue;
640 
641 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
642 	}
643 }
644 
645 static struct pmu pmu;
646 
647 static inline int is_x86_event(struct perf_event *event)
648 {
649 	return event->pmu == &pmu;
650 }
651 
652 /*
653  * Event scheduler state:
654  *
655  * Assign events iterating over all events and counters, beginning
656  * with events with least weights first. Keep the current iterator
657  * state in struct sched_state.
658  */
659 struct sched_state {
660 	int	weight;
661 	int	event;		/* event index */
662 	int	counter;	/* counter index */
663 	int	unassigned;	/* number of events to be assigned left */
664 	int	nr_gp;		/* number of GP counters used */
665 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
666 };
667 
668 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
669 #define	SCHED_STATES_MAX	2
670 
671 struct perf_sched {
672 	int			max_weight;
673 	int			max_events;
674 	int			max_gp;
675 	int			saved_states;
676 	struct event_constraint	**constraints;
677 	struct sched_state	state;
678 	struct sched_state	saved[SCHED_STATES_MAX];
679 };
680 
681 /*
682  * Initialize interator that runs through all events and counters.
683  */
684 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
685 			    int num, int wmin, int wmax, int gpmax)
686 {
687 	int idx;
688 
689 	memset(sched, 0, sizeof(*sched));
690 	sched->max_events	= num;
691 	sched->max_weight	= wmax;
692 	sched->max_gp		= gpmax;
693 	sched->constraints	= constraints;
694 
695 	for (idx = 0; idx < num; idx++) {
696 		if (constraints[idx]->weight == wmin)
697 			break;
698 	}
699 
700 	sched->state.event	= idx;		/* start with min weight */
701 	sched->state.weight	= wmin;
702 	sched->state.unassigned	= num;
703 }
704 
705 static void perf_sched_save_state(struct perf_sched *sched)
706 {
707 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
708 		return;
709 
710 	sched->saved[sched->saved_states] = sched->state;
711 	sched->saved_states++;
712 }
713 
714 static bool perf_sched_restore_state(struct perf_sched *sched)
715 {
716 	if (!sched->saved_states)
717 		return false;
718 
719 	sched->saved_states--;
720 	sched->state = sched->saved[sched->saved_states];
721 
722 	/* continue with next counter: */
723 	clear_bit(sched->state.counter++, sched->state.used);
724 
725 	return true;
726 }
727 
728 /*
729  * Select a counter for the current event to schedule. Return true on
730  * success.
731  */
732 static bool __perf_sched_find_counter(struct perf_sched *sched)
733 {
734 	struct event_constraint *c;
735 	int idx;
736 
737 	if (!sched->state.unassigned)
738 		return false;
739 
740 	if (sched->state.event >= sched->max_events)
741 		return false;
742 
743 	c = sched->constraints[sched->state.event];
744 	/* Prefer fixed purpose counters */
745 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
746 		idx = INTEL_PMC_IDX_FIXED;
747 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
748 			if (!__test_and_set_bit(idx, sched->state.used))
749 				goto done;
750 		}
751 	}
752 
753 	/* Grab the first unused counter starting with idx */
754 	idx = sched->state.counter;
755 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
756 		if (!__test_and_set_bit(idx, sched->state.used)) {
757 			if (sched->state.nr_gp++ >= sched->max_gp)
758 				return false;
759 
760 			goto done;
761 		}
762 	}
763 
764 	return false;
765 
766 done:
767 	sched->state.counter = idx;
768 
769 	if (c->overlap)
770 		perf_sched_save_state(sched);
771 
772 	return true;
773 }
774 
775 static bool perf_sched_find_counter(struct perf_sched *sched)
776 {
777 	while (!__perf_sched_find_counter(sched)) {
778 		if (!perf_sched_restore_state(sched))
779 			return false;
780 	}
781 
782 	return true;
783 }
784 
785 /*
786  * Go through all unassigned events and find the next one to schedule.
787  * Take events with the least weight first. Return true on success.
788  */
789 static bool perf_sched_next_event(struct perf_sched *sched)
790 {
791 	struct event_constraint *c;
792 
793 	if (!sched->state.unassigned || !--sched->state.unassigned)
794 		return false;
795 
796 	do {
797 		/* next event */
798 		sched->state.event++;
799 		if (sched->state.event >= sched->max_events) {
800 			/* next weight */
801 			sched->state.event = 0;
802 			sched->state.weight++;
803 			if (sched->state.weight > sched->max_weight)
804 				return false;
805 		}
806 		c = sched->constraints[sched->state.event];
807 	} while (c->weight != sched->state.weight);
808 
809 	sched->state.counter = 0;	/* start with first counter */
810 
811 	return true;
812 }
813 
814 /*
815  * Assign a counter for each event.
816  */
817 int perf_assign_events(struct event_constraint **constraints, int n,
818 			int wmin, int wmax, int gpmax, int *assign)
819 {
820 	struct perf_sched sched;
821 
822 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
823 
824 	do {
825 		if (!perf_sched_find_counter(&sched))
826 			break;	/* failed */
827 		if (assign)
828 			assign[sched.state.event] = sched.state.counter;
829 	} while (perf_sched_next_event(&sched));
830 
831 	return sched.state.unassigned;
832 }
833 EXPORT_SYMBOL_GPL(perf_assign_events);
834 
835 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
836 {
837 	struct event_constraint *c;
838 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
839 	struct perf_event *e;
840 	int i, wmin, wmax, unsched = 0;
841 	struct hw_perf_event *hwc;
842 
843 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
844 
845 	if (x86_pmu.start_scheduling)
846 		x86_pmu.start_scheduling(cpuc);
847 
848 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
849 		cpuc->event_constraint[i] = NULL;
850 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
851 		cpuc->event_constraint[i] = c;
852 
853 		wmin = min(wmin, c->weight);
854 		wmax = max(wmax, c->weight);
855 	}
856 
857 	/*
858 	 * fastpath, try to reuse previous register
859 	 */
860 	for (i = 0; i < n; i++) {
861 		hwc = &cpuc->event_list[i]->hw;
862 		c = cpuc->event_constraint[i];
863 
864 		/* never assigned */
865 		if (hwc->idx == -1)
866 			break;
867 
868 		/* constraint still honored */
869 		if (!test_bit(hwc->idx, c->idxmsk))
870 			break;
871 
872 		/* not already used */
873 		if (test_bit(hwc->idx, used_mask))
874 			break;
875 
876 		__set_bit(hwc->idx, used_mask);
877 		if (assign)
878 			assign[i] = hwc->idx;
879 	}
880 
881 	/* slow path */
882 	if (i != n) {
883 		int gpmax = x86_pmu.num_counters;
884 
885 		/*
886 		 * Do not allow scheduling of more than half the available
887 		 * generic counters.
888 		 *
889 		 * This helps avoid counter starvation of sibling thread by
890 		 * ensuring at most half the counters cannot be in exclusive
891 		 * mode. There is no designated counters for the limits. Any
892 		 * N/2 counters can be used. This helps with events with
893 		 * specific counter constraints.
894 		 */
895 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
896 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
897 			gpmax /= 2;
898 
899 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
900 					     wmax, gpmax, assign);
901 	}
902 
903 	/*
904 	 * In case of success (unsched = 0), mark events as committed,
905 	 * so we do not put_constraint() in case new events are added
906 	 * and fail to be scheduled
907 	 *
908 	 * We invoke the lower level commit callback to lock the resource
909 	 *
910 	 * We do not need to do all of this in case we are called to
911 	 * validate an event group (assign == NULL)
912 	 */
913 	if (!unsched && assign) {
914 		for (i = 0; i < n; i++) {
915 			e = cpuc->event_list[i];
916 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
917 			if (x86_pmu.commit_scheduling)
918 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
919 		}
920 	} else {
921 		for (i = 0; i < n; i++) {
922 			e = cpuc->event_list[i];
923 			/*
924 			 * do not put_constraint() on comitted events,
925 			 * because they are good to go
926 			 */
927 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
928 				continue;
929 
930 			/*
931 			 * release events that failed scheduling
932 			 */
933 			if (x86_pmu.put_event_constraints)
934 				x86_pmu.put_event_constraints(cpuc, e);
935 		}
936 	}
937 
938 	if (x86_pmu.stop_scheduling)
939 		x86_pmu.stop_scheduling(cpuc);
940 
941 	return unsched ? -EINVAL : 0;
942 }
943 
944 /*
945  * dogrp: true if must collect siblings events (group)
946  * returns total number of events and error code
947  */
948 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
949 {
950 	struct perf_event *event;
951 	int n, max_count;
952 
953 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
954 
955 	/* current number of events already accepted */
956 	n = cpuc->n_events;
957 
958 	if (is_x86_event(leader)) {
959 		if (n >= max_count)
960 			return -EINVAL;
961 		cpuc->event_list[n] = leader;
962 		n++;
963 	}
964 	if (!dogrp)
965 		return n;
966 
967 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
968 		if (!is_x86_event(event) ||
969 		    event->state <= PERF_EVENT_STATE_OFF)
970 			continue;
971 
972 		if (n >= max_count)
973 			return -EINVAL;
974 
975 		cpuc->event_list[n] = event;
976 		n++;
977 	}
978 	return n;
979 }
980 
981 static inline void x86_assign_hw_event(struct perf_event *event,
982 				struct cpu_hw_events *cpuc, int i)
983 {
984 	struct hw_perf_event *hwc = &event->hw;
985 
986 	hwc->idx = cpuc->assign[i];
987 	hwc->last_cpu = smp_processor_id();
988 	hwc->last_tag = ++cpuc->tags[i];
989 
990 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
991 		hwc->config_base = 0;
992 		hwc->event_base	= 0;
993 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
994 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
995 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
996 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
997 	} else {
998 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
999 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1000 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1001 	}
1002 }
1003 
1004 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1005 					struct cpu_hw_events *cpuc,
1006 					int i)
1007 {
1008 	return hwc->idx == cpuc->assign[i] &&
1009 		hwc->last_cpu == smp_processor_id() &&
1010 		hwc->last_tag == cpuc->tags[i];
1011 }
1012 
1013 static void x86_pmu_start(struct perf_event *event, int flags);
1014 
1015 static void x86_pmu_enable(struct pmu *pmu)
1016 {
1017 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018 	struct perf_event *event;
1019 	struct hw_perf_event *hwc;
1020 	int i, added = cpuc->n_added;
1021 
1022 	if (!x86_pmu_initialized())
1023 		return;
1024 
1025 	if (cpuc->enabled)
1026 		return;
1027 
1028 	if (cpuc->n_added) {
1029 		int n_running = cpuc->n_events - cpuc->n_added;
1030 		/*
1031 		 * apply assignment obtained either from
1032 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1033 		 *
1034 		 * step1: save events moving to new counters
1035 		 */
1036 		for (i = 0; i < n_running; i++) {
1037 			event = cpuc->event_list[i];
1038 			hwc = &event->hw;
1039 
1040 			/*
1041 			 * we can avoid reprogramming counter if:
1042 			 * - assigned same counter as last time
1043 			 * - running on same CPU as last time
1044 			 * - no other event has used the counter since
1045 			 */
1046 			if (hwc->idx == -1 ||
1047 			    match_prev_assignment(hwc, cpuc, i))
1048 				continue;
1049 
1050 			/*
1051 			 * Ensure we don't accidentally enable a stopped
1052 			 * counter simply because we rescheduled.
1053 			 */
1054 			if (hwc->state & PERF_HES_STOPPED)
1055 				hwc->state |= PERF_HES_ARCH;
1056 
1057 			x86_pmu_stop(event, PERF_EF_UPDATE);
1058 		}
1059 
1060 		/*
1061 		 * step2: reprogram moved events into new counters
1062 		 */
1063 		for (i = 0; i < cpuc->n_events; i++) {
1064 			event = cpuc->event_list[i];
1065 			hwc = &event->hw;
1066 
1067 			if (!match_prev_assignment(hwc, cpuc, i))
1068 				x86_assign_hw_event(event, cpuc, i);
1069 			else if (i < n_running)
1070 				continue;
1071 
1072 			if (hwc->state & PERF_HES_ARCH)
1073 				continue;
1074 
1075 			x86_pmu_start(event, PERF_EF_RELOAD);
1076 		}
1077 		cpuc->n_added = 0;
1078 		perf_events_lapic_init();
1079 	}
1080 
1081 	cpuc->enabled = 1;
1082 	barrier();
1083 
1084 	x86_pmu.enable_all(added);
1085 }
1086 
1087 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1088 
1089 /*
1090  * Set the next IRQ period, based on the hwc->period_left value.
1091  * To be called with the event disabled in hw:
1092  */
1093 int x86_perf_event_set_period(struct perf_event *event)
1094 {
1095 	struct hw_perf_event *hwc = &event->hw;
1096 	s64 left = local64_read(&hwc->period_left);
1097 	s64 period = hwc->sample_period;
1098 	int ret = 0, idx = hwc->idx;
1099 
1100 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1101 		return 0;
1102 
1103 	/*
1104 	 * If we are way outside a reasonable range then just skip forward:
1105 	 */
1106 	if (unlikely(left <= -period)) {
1107 		left = period;
1108 		local64_set(&hwc->period_left, left);
1109 		hwc->last_period = period;
1110 		ret = 1;
1111 	}
1112 
1113 	if (unlikely(left <= 0)) {
1114 		left += period;
1115 		local64_set(&hwc->period_left, left);
1116 		hwc->last_period = period;
1117 		ret = 1;
1118 	}
1119 	/*
1120 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1121 	 */
1122 	if (unlikely(left < 2))
1123 		left = 2;
1124 
1125 	if (left > x86_pmu.max_period)
1126 		left = x86_pmu.max_period;
1127 
1128 	if (x86_pmu.limit_period)
1129 		left = x86_pmu.limit_period(event, left);
1130 
1131 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1132 
1133 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1134 	    local64_read(&hwc->prev_count) != (u64)-left) {
1135 		/*
1136 		 * The hw event starts counting from this event offset,
1137 		 * mark it to be able to extra future deltas:
1138 		 */
1139 		local64_set(&hwc->prev_count, (u64)-left);
1140 
1141 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1142 	}
1143 
1144 	/*
1145 	 * Due to erratum on certan cpu we need
1146 	 * a second write to be sure the register
1147 	 * is updated properly
1148 	 */
1149 	if (x86_pmu.perfctr_second_write) {
1150 		wrmsrl(hwc->event_base,
1151 			(u64)(-left) & x86_pmu.cntval_mask);
1152 	}
1153 
1154 	perf_event_update_userpage(event);
1155 
1156 	return ret;
1157 }
1158 
1159 void x86_pmu_enable_event(struct perf_event *event)
1160 {
1161 	if (__this_cpu_read(cpu_hw_events.enabled))
1162 		__x86_pmu_enable_event(&event->hw,
1163 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1164 }
1165 
1166 /*
1167  * Add a single event to the PMU.
1168  *
1169  * The event is added to the group of enabled events
1170  * but only if it can be scehduled with existing events.
1171  */
1172 static int x86_pmu_add(struct perf_event *event, int flags)
1173 {
1174 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1175 	struct hw_perf_event *hwc;
1176 	int assign[X86_PMC_IDX_MAX];
1177 	int n, n0, ret;
1178 
1179 	hwc = &event->hw;
1180 
1181 	n0 = cpuc->n_events;
1182 	ret = n = collect_events(cpuc, event, false);
1183 	if (ret < 0)
1184 		goto out;
1185 
1186 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1187 	if (!(flags & PERF_EF_START))
1188 		hwc->state |= PERF_HES_ARCH;
1189 
1190 	/*
1191 	 * If group events scheduling transaction was started,
1192 	 * skip the schedulability test here, it will be performed
1193 	 * at commit time (->commit_txn) as a whole.
1194 	 */
1195 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1196 		goto done_collect;
1197 
1198 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1199 	if (ret)
1200 		goto out;
1201 	/*
1202 	 * copy new assignment, now we know it is possible
1203 	 * will be used by hw_perf_enable()
1204 	 */
1205 	memcpy(cpuc->assign, assign, n*sizeof(int));
1206 
1207 done_collect:
1208 	/*
1209 	 * Commit the collect_events() state. See x86_pmu_del() and
1210 	 * x86_pmu_*_txn().
1211 	 */
1212 	cpuc->n_events = n;
1213 	cpuc->n_added += n - n0;
1214 	cpuc->n_txn += n - n0;
1215 
1216 	ret = 0;
1217 out:
1218 	return ret;
1219 }
1220 
1221 static void x86_pmu_start(struct perf_event *event, int flags)
1222 {
1223 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1224 	int idx = event->hw.idx;
1225 
1226 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1227 		return;
1228 
1229 	if (WARN_ON_ONCE(idx == -1))
1230 		return;
1231 
1232 	if (flags & PERF_EF_RELOAD) {
1233 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1234 		x86_perf_event_set_period(event);
1235 	}
1236 
1237 	event->hw.state = 0;
1238 
1239 	cpuc->events[idx] = event;
1240 	__set_bit(idx, cpuc->active_mask);
1241 	__set_bit(idx, cpuc->running);
1242 	x86_pmu.enable(event);
1243 	perf_event_update_userpage(event);
1244 }
1245 
1246 void perf_event_print_debug(void)
1247 {
1248 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1249 	u64 pebs, debugctl;
1250 	struct cpu_hw_events *cpuc;
1251 	unsigned long flags;
1252 	int cpu, idx;
1253 
1254 	if (!x86_pmu.num_counters)
1255 		return;
1256 
1257 	local_irq_save(flags);
1258 
1259 	cpu = smp_processor_id();
1260 	cpuc = &per_cpu(cpu_hw_events, cpu);
1261 
1262 	if (x86_pmu.version >= 2) {
1263 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1264 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1265 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1266 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1267 
1268 		pr_info("\n");
1269 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1270 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1271 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1272 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1273 		if (x86_pmu.pebs_constraints) {
1274 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1275 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1276 		}
1277 		if (x86_pmu.lbr_nr) {
1278 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1279 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1280 		}
1281 	}
1282 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1283 
1284 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1285 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1286 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1287 
1288 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1289 
1290 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1291 			cpu, idx, pmc_ctrl);
1292 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1293 			cpu, idx, pmc_count);
1294 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1295 			cpu, idx, prev_left);
1296 	}
1297 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1298 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1299 
1300 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1301 			cpu, idx, pmc_count);
1302 	}
1303 	local_irq_restore(flags);
1304 }
1305 
1306 void x86_pmu_stop(struct perf_event *event, int flags)
1307 {
1308 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1309 	struct hw_perf_event *hwc = &event->hw;
1310 
1311 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1312 		x86_pmu.disable(event);
1313 		cpuc->events[hwc->idx] = NULL;
1314 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1315 		hwc->state |= PERF_HES_STOPPED;
1316 	}
1317 
1318 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1319 		/*
1320 		 * Drain the remaining delta count out of a event
1321 		 * that we are disabling:
1322 		 */
1323 		x86_perf_event_update(event);
1324 		hwc->state |= PERF_HES_UPTODATE;
1325 	}
1326 }
1327 
1328 static void x86_pmu_del(struct perf_event *event, int flags)
1329 {
1330 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1331 	int i;
1332 
1333 	/*
1334 	 * event is descheduled
1335 	 */
1336 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1337 
1338 	/*
1339 	 * If we're called during a txn, we don't need to do anything.
1340 	 * The events never got scheduled and ->cancel_txn will truncate
1341 	 * the event_list.
1342 	 *
1343 	 * XXX assumes any ->del() called during a TXN will only be on
1344 	 * an event added during that same TXN.
1345 	 */
1346 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1347 		return;
1348 
1349 	/*
1350 	 * Not a TXN, therefore cleanup properly.
1351 	 */
1352 	x86_pmu_stop(event, PERF_EF_UPDATE);
1353 
1354 	for (i = 0; i < cpuc->n_events; i++) {
1355 		if (event == cpuc->event_list[i])
1356 			break;
1357 	}
1358 
1359 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1360 		return;
1361 
1362 	/* If we have a newly added event; make sure to decrease n_added. */
1363 	if (i >= cpuc->n_events - cpuc->n_added)
1364 		--cpuc->n_added;
1365 
1366 	if (x86_pmu.put_event_constraints)
1367 		x86_pmu.put_event_constraints(cpuc, event);
1368 
1369 	/* Delete the array entry. */
1370 	while (++i < cpuc->n_events) {
1371 		cpuc->event_list[i-1] = cpuc->event_list[i];
1372 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1373 	}
1374 	--cpuc->n_events;
1375 
1376 	perf_event_update_userpage(event);
1377 }
1378 
1379 int x86_pmu_handle_irq(struct pt_regs *regs)
1380 {
1381 	struct perf_sample_data data;
1382 	struct cpu_hw_events *cpuc;
1383 	struct perf_event *event;
1384 	int idx, handled = 0;
1385 	u64 val;
1386 
1387 	cpuc = this_cpu_ptr(&cpu_hw_events);
1388 
1389 	/*
1390 	 * Some chipsets need to unmask the LVTPC in a particular spot
1391 	 * inside the nmi handler.  As a result, the unmasking was pushed
1392 	 * into all the nmi handlers.
1393 	 *
1394 	 * This generic handler doesn't seem to have any issues where the
1395 	 * unmasking occurs so it was left at the top.
1396 	 */
1397 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1398 
1399 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1400 		if (!test_bit(idx, cpuc->active_mask)) {
1401 			/*
1402 			 * Though we deactivated the counter some cpus
1403 			 * might still deliver spurious interrupts still
1404 			 * in flight. Catch them:
1405 			 */
1406 			if (__test_and_clear_bit(idx, cpuc->running))
1407 				handled++;
1408 			continue;
1409 		}
1410 
1411 		event = cpuc->events[idx];
1412 
1413 		val = x86_perf_event_update(event);
1414 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1415 			continue;
1416 
1417 		/*
1418 		 * event overflow
1419 		 */
1420 		handled++;
1421 		perf_sample_data_init(&data, 0, event->hw.last_period);
1422 
1423 		if (!x86_perf_event_set_period(event))
1424 			continue;
1425 
1426 		if (perf_event_overflow(event, &data, regs))
1427 			x86_pmu_stop(event, 0);
1428 	}
1429 
1430 	if (handled)
1431 		inc_irq_stat(apic_perf_irqs);
1432 
1433 	return handled;
1434 }
1435 
1436 void perf_events_lapic_init(void)
1437 {
1438 	if (!x86_pmu.apic || !x86_pmu_initialized())
1439 		return;
1440 
1441 	/*
1442 	 * Always use NMI for PMU
1443 	 */
1444 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1445 }
1446 
1447 static int
1448 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1449 {
1450 	u64 start_clock;
1451 	u64 finish_clock;
1452 	int ret;
1453 
1454 	/*
1455 	 * All PMUs/events that share this PMI handler should make sure to
1456 	 * increment active_events for their events.
1457 	 */
1458 	if (!atomic_read(&active_events))
1459 		return NMI_DONE;
1460 
1461 	start_clock = sched_clock();
1462 	ret = x86_pmu.handle_irq(regs);
1463 	finish_clock = sched_clock();
1464 
1465 	perf_sample_event_took(finish_clock - start_clock);
1466 
1467 	return ret;
1468 }
1469 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1470 
1471 struct event_constraint emptyconstraint;
1472 struct event_constraint unconstrained;
1473 
1474 static int
1475 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1476 {
1477 	unsigned int cpu = (long)hcpu;
1478 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1479 	int i, ret = NOTIFY_OK;
1480 
1481 	switch (action & ~CPU_TASKS_FROZEN) {
1482 	case CPU_UP_PREPARE:
1483 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1484 			cpuc->kfree_on_online[i] = NULL;
1485 		if (x86_pmu.cpu_prepare)
1486 			ret = x86_pmu.cpu_prepare(cpu);
1487 		break;
1488 
1489 	case CPU_STARTING:
1490 		if (x86_pmu.cpu_starting)
1491 			x86_pmu.cpu_starting(cpu);
1492 		break;
1493 
1494 	case CPU_ONLINE:
1495 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1496 			kfree(cpuc->kfree_on_online[i]);
1497 			cpuc->kfree_on_online[i] = NULL;
1498 		}
1499 		break;
1500 
1501 	case CPU_DYING:
1502 		if (x86_pmu.cpu_dying)
1503 			x86_pmu.cpu_dying(cpu);
1504 		break;
1505 
1506 	case CPU_UP_CANCELED:
1507 	case CPU_DEAD:
1508 		if (x86_pmu.cpu_dead)
1509 			x86_pmu.cpu_dead(cpu);
1510 		break;
1511 
1512 	default:
1513 		break;
1514 	}
1515 
1516 	return ret;
1517 }
1518 
1519 static void __init pmu_check_apic(void)
1520 {
1521 	if (cpu_has_apic)
1522 		return;
1523 
1524 	x86_pmu.apic = 0;
1525 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1526 	pr_info("no hardware sampling interrupt available.\n");
1527 
1528 	/*
1529 	 * If we have a PMU initialized but no APIC
1530 	 * interrupts, we cannot sample hardware
1531 	 * events (user-space has to fall back and
1532 	 * sample via a hrtimer based software event):
1533 	 */
1534 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1535 
1536 }
1537 
1538 static struct attribute_group x86_pmu_format_group = {
1539 	.name = "format",
1540 	.attrs = NULL,
1541 };
1542 
1543 /*
1544  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1545  * out of events_attr attributes.
1546  */
1547 static void __init filter_events(struct attribute **attrs)
1548 {
1549 	struct device_attribute *d;
1550 	struct perf_pmu_events_attr *pmu_attr;
1551 	int offset = 0;
1552 	int i, j;
1553 
1554 	for (i = 0; attrs[i]; i++) {
1555 		d = (struct device_attribute *)attrs[i];
1556 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1557 		/* str trumps id */
1558 		if (pmu_attr->event_str)
1559 			continue;
1560 		if (x86_pmu.event_map(i + offset))
1561 			continue;
1562 
1563 		for (j = i; attrs[j]; j++)
1564 			attrs[j] = attrs[j + 1];
1565 
1566 		/* Check the shifted attr. */
1567 		i--;
1568 
1569 		/*
1570 		 * event_map() is index based, the attrs array is organized
1571 		 * by increasing event index. If we shift the events, then
1572 		 * we need to compensate for the event_map(), otherwise
1573 		 * we are looking up the wrong event in the map
1574 		 */
1575 		offset++;
1576 	}
1577 }
1578 
1579 /* Merge two pointer arrays */
1580 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1581 {
1582 	struct attribute **new;
1583 	int j, i;
1584 
1585 	for (j = 0; a[j]; j++)
1586 		;
1587 	for (i = 0; b[i]; i++)
1588 		j++;
1589 	j++;
1590 
1591 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1592 	if (!new)
1593 		return NULL;
1594 
1595 	j = 0;
1596 	for (i = 0; a[i]; i++)
1597 		new[j++] = a[i];
1598 	for (i = 0; b[i]; i++)
1599 		new[j++] = b[i];
1600 	new[j] = NULL;
1601 
1602 	return new;
1603 }
1604 
1605 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1606 {
1607 	struct perf_pmu_events_attr *pmu_attr = \
1608 		container_of(attr, struct perf_pmu_events_attr, attr);
1609 	u64 config = x86_pmu.event_map(pmu_attr->id);
1610 
1611 	/* string trumps id */
1612 	if (pmu_attr->event_str)
1613 		return sprintf(page, "%s", pmu_attr->event_str);
1614 
1615 	return x86_pmu.events_sysfs_show(page, config);
1616 }
1617 EXPORT_SYMBOL_GPL(events_sysfs_show);
1618 
1619 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1620 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1621 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1622 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1623 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1624 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1625 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1626 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1627 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1628 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1629 
1630 static struct attribute *empty_attrs;
1631 
1632 static struct attribute *events_attr[] = {
1633 	EVENT_PTR(CPU_CYCLES),
1634 	EVENT_PTR(INSTRUCTIONS),
1635 	EVENT_PTR(CACHE_REFERENCES),
1636 	EVENT_PTR(CACHE_MISSES),
1637 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1638 	EVENT_PTR(BRANCH_MISSES),
1639 	EVENT_PTR(BUS_CYCLES),
1640 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1641 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1642 	EVENT_PTR(REF_CPU_CYCLES),
1643 	NULL,
1644 };
1645 
1646 static struct attribute_group x86_pmu_events_group = {
1647 	.name = "events",
1648 	.attrs = events_attr,
1649 };
1650 
1651 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1652 {
1653 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1654 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1655 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1656 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1657 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1658 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1659 	ssize_t ret;
1660 
1661 	/*
1662 	* We have whole page size to spend and just little data
1663 	* to write, so we can safely use sprintf.
1664 	*/
1665 	ret = sprintf(page, "event=0x%02llx", event);
1666 
1667 	if (umask)
1668 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1669 
1670 	if (edge)
1671 		ret += sprintf(page + ret, ",edge");
1672 
1673 	if (pc)
1674 		ret += sprintf(page + ret, ",pc");
1675 
1676 	if (any)
1677 		ret += sprintf(page + ret, ",any");
1678 
1679 	if (inv)
1680 		ret += sprintf(page + ret, ",inv");
1681 
1682 	if (cmask)
1683 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1684 
1685 	ret += sprintf(page + ret, "\n");
1686 
1687 	return ret;
1688 }
1689 
1690 static int __init init_hw_perf_events(void)
1691 {
1692 	struct x86_pmu_quirk *quirk;
1693 	int err;
1694 
1695 	pr_info("Performance Events: ");
1696 
1697 	switch (boot_cpu_data.x86_vendor) {
1698 	case X86_VENDOR_INTEL:
1699 		err = intel_pmu_init();
1700 		break;
1701 	case X86_VENDOR_AMD:
1702 		err = amd_pmu_init();
1703 		break;
1704 	default:
1705 		err = -ENOTSUPP;
1706 	}
1707 	if (err != 0) {
1708 		pr_cont("no PMU driver, software events only.\n");
1709 		return 0;
1710 	}
1711 
1712 	pmu_check_apic();
1713 
1714 	/* sanity check that the hardware exists or is emulated */
1715 	if (!check_hw_exists())
1716 		return 0;
1717 
1718 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1719 
1720 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1721 
1722 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1723 		quirk->func();
1724 
1725 	if (!x86_pmu.intel_ctrl)
1726 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1727 
1728 	perf_events_lapic_init();
1729 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1730 
1731 	unconstrained = (struct event_constraint)
1732 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1733 				   0, x86_pmu.num_counters, 0, 0);
1734 
1735 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1736 
1737 	if (x86_pmu.event_attrs)
1738 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1739 
1740 	if (!x86_pmu.events_sysfs_show)
1741 		x86_pmu_events_group.attrs = &empty_attrs;
1742 	else
1743 		filter_events(x86_pmu_events_group.attrs);
1744 
1745 	if (x86_pmu.cpu_events) {
1746 		struct attribute **tmp;
1747 
1748 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1749 		if (!WARN_ON(!tmp))
1750 			x86_pmu_events_group.attrs = tmp;
1751 	}
1752 
1753 	pr_info("... version:                %d\n",     x86_pmu.version);
1754 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1755 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1756 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1757 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1758 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1759 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1760 
1761 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1762 	perf_cpu_notifier(x86_pmu_notifier);
1763 
1764 	return 0;
1765 }
1766 early_initcall(init_hw_perf_events);
1767 
1768 static inline void x86_pmu_read(struct perf_event *event)
1769 {
1770 	x86_perf_event_update(event);
1771 }
1772 
1773 /*
1774  * Start group events scheduling transaction
1775  * Set the flag to make pmu::enable() not perform the
1776  * schedulability test, it will be performed at commit time
1777  *
1778  * We only support PERF_PMU_TXN_ADD transactions. Save the
1779  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1780  * transactions.
1781  */
1782 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1783 {
1784 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785 
1786 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1787 
1788 	cpuc->txn_flags = txn_flags;
1789 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1790 		return;
1791 
1792 	perf_pmu_disable(pmu);
1793 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1794 }
1795 
1796 /*
1797  * Stop group events scheduling transaction
1798  * Clear the flag and pmu::enable() will perform the
1799  * schedulability test.
1800  */
1801 static void x86_pmu_cancel_txn(struct pmu *pmu)
1802 {
1803 	unsigned int txn_flags;
1804 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1805 
1806 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1807 
1808 	txn_flags = cpuc->txn_flags;
1809 	cpuc->txn_flags = 0;
1810 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1811 		return;
1812 
1813 	/*
1814 	 * Truncate collected array by the number of events added in this
1815 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1816 	 */
1817 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1818 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1819 	perf_pmu_enable(pmu);
1820 }
1821 
1822 /*
1823  * Commit group events scheduling transaction
1824  * Perform the group schedulability test as a whole
1825  * Return 0 if success
1826  *
1827  * Does not cancel the transaction on failure; expects the caller to do this.
1828  */
1829 static int x86_pmu_commit_txn(struct pmu *pmu)
1830 {
1831 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1832 	int assign[X86_PMC_IDX_MAX];
1833 	int n, ret;
1834 
1835 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1836 
1837 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1838 		cpuc->txn_flags = 0;
1839 		return 0;
1840 	}
1841 
1842 	n = cpuc->n_events;
1843 
1844 	if (!x86_pmu_initialized())
1845 		return -EAGAIN;
1846 
1847 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1848 	if (ret)
1849 		return ret;
1850 
1851 	/*
1852 	 * copy new assignment, now we know it is possible
1853 	 * will be used by hw_perf_enable()
1854 	 */
1855 	memcpy(cpuc->assign, assign, n*sizeof(int));
1856 
1857 	cpuc->txn_flags = 0;
1858 	perf_pmu_enable(pmu);
1859 	return 0;
1860 }
1861 /*
1862  * a fake_cpuc is used to validate event groups. Due to
1863  * the extra reg logic, we need to also allocate a fake
1864  * per_core and per_cpu structure. Otherwise, group events
1865  * using extra reg may conflict without the kernel being
1866  * able to catch this when the last event gets added to
1867  * the group.
1868  */
1869 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1870 {
1871 	kfree(cpuc->shared_regs);
1872 	kfree(cpuc);
1873 }
1874 
1875 static struct cpu_hw_events *allocate_fake_cpuc(void)
1876 {
1877 	struct cpu_hw_events *cpuc;
1878 	int cpu = raw_smp_processor_id();
1879 
1880 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1881 	if (!cpuc)
1882 		return ERR_PTR(-ENOMEM);
1883 
1884 	/* only needed, if we have extra_regs */
1885 	if (x86_pmu.extra_regs) {
1886 		cpuc->shared_regs = allocate_shared_regs(cpu);
1887 		if (!cpuc->shared_regs)
1888 			goto error;
1889 	}
1890 	cpuc->is_fake = 1;
1891 	return cpuc;
1892 error:
1893 	free_fake_cpuc(cpuc);
1894 	return ERR_PTR(-ENOMEM);
1895 }
1896 
1897 /*
1898  * validate that we can schedule this event
1899  */
1900 static int validate_event(struct perf_event *event)
1901 {
1902 	struct cpu_hw_events *fake_cpuc;
1903 	struct event_constraint *c;
1904 	int ret = 0;
1905 
1906 	fake_cpuc = allocate_fake_cpuc();
1907 	if (IS_ERR(fake_cpuc))
1908 		return PTR_ERR(fake_cpuc);
1909 
1910 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1911 
1912 	if (!c || !c->weight)
1913 		ret = -EINVAL;
1914 
1915 	if (x86_pmu.put_event_constraints)
1916 		x86_pmu.put_event_constraints(fake_cpuc, event);
1917 
1918 	free_fake_cpuc(fake_cpuc);
1919 
1920 	return ret;
1921 }
1922 
1923 /*
1924  * validate a single event group
1925  *
1926  * validation include:
1927  *	- check events are compatible which each other
1928  *	- events do not compete for the same counter
1929  *	- number of events <= number of counters
1930  *
1931  * validation ensures the group can be loaded onto the
1932  * PMU if it was the only group available.
1933  */
1934 static int validate_group(struct perf_event *event)
1935 {
1936 	struct perf_event *leader = event->group_leader;
1937 	struct cpu_hw_events *fake_cpuc;
1938 	int ret = -EINVAL, n;
1939 
1940 	fake_cpuc = allocate_fake_cpuc();
1941 	if (IS_ERR(fake_cpuc))
1942 		return PTR_ERR(fake_cpuc);
1943 	/*
1944 	 * the event is not yet connected with its
1945 	 * siblings therefore we must first collect
1946 	 * existing siblings, then add the new event
1947 	 * before we can simulate the scheduling
1948 	 */
1949 	n = collect_events(fake_cpuc, leader, true);
1950 	if (n < 0)
1951 		goto out;
1952 
1953 	fake_cpuc->n_events = n;
1954 	n = collect_events(fake_cpuc, event, false);
1955 	if (n < 0)
1956 		goto out;
1957 
1958 	fake_cpuc->n_events = n;
1959 
1960 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1961 
1962 out:
1963 	free_fake_cpuc(fake_cpuc);
1964 	return ret;
1965 }
1966 
1967 static int x86_pmu_event_init(struct perf_event *event)
1968 {
1969 	struct pmu *tmp;
1970 	int err;
1971 
1972 	switch (event->attr.type) {
1973 	case PERF_TYPE_RAW:
1974 	case PERF_TYPE_HARDWARE:
1975 	case PERF_TYPE_HW_CACHE:
1976 		break;
1977 
1978 	default:
1979 		return -ENOENT;
1980 	}
1981 
1982 	err = __x86_pmu_event_init(event);
1983 	if (!err) {
1984 		/*
1985 		 * we temporarily connect event to its pmu
1986 		 * such that validate_group() can classify
1987 		 * it as an x86 event using is_x86_event()
1988 		 */
1989 		tmp = event->pmu;
1990 		event->pmu = &pmu;
1991 
1992 		if (event->group_leader != event)
1993 			err = validate_group(event);
1994 		else
1995 			err = validate_event(event);
1996 
1997 		event->pmu = tmp;
1998 	}
1999 	if (err) {
2000 		if (event->destroy)
2001 			event->destroy(event);
2002 	}
2003 
2004 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2005 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2006 
2007 	return err;
2008 }
2009 
2010 static void refresh_pce(void *ignored)
2011 {
2012 	if (current->mm)
2013 		load_mm_cr4(current->mm);
2014 }
2015 
2016 static void x86_pmu_event_mapped(struct perf_event *event)
2017 {
2018 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2019 		return;
2020 
2021 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2022 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2023 }
2024 
2025 static void x86_pmu_event_unmapped(struct perf_event *event)
2026 {
2027 	if (!current->mm)
2028 		return;
2029 
2030 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2031 		return;
2032 
2033 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2034 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2035 }
2036 
2037 static int x86_pmu_event_idx(struct perf_event *event)
2038 {
2039 	int idx = event->hw.idx;
2040 
2041 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2042 		return 0;
2043 
2044 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2045 		idx -= INTEL_PMC_IDX_FIXED;
2046 		idx |= 1 << 30;
2047 	}
2048 
2049 	return idx + 1;
2050 }
2051 
2052 static ssize_t get_attr_rdpmc(struct device *cdev,
2053 			      struct device_attribute *attr,
2054 			      char *buf)
2055 {
2056 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2057 }
2058 
2059 static ssize_t set_attr_rdpmc(struct device *cdev,
2060 			      struct device_attribute *attr,
2061 			      const char *buf, size_t count)
2062 {
2063 	unsigned long val;
2064 	ssize_t ret;
2065 
2066 	ret = kstrtoul(buf, 0, &val);
2067 	if (ret)
2068 		return ret;
2069 
2070 	if (val > 2)
2071 		return -EINVAL;
2072 
2073 	if (x86_pmu.attr_rdpmc_broken)
2074 		return -ENOTSUPP;
2075 
2076 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2077 		/*
2078 		 * Changing into or out of always available, aka
2079 		 * perf-event-bypassing mode.  This path is extremely slow,
2080 		 * but only root can trigger it, so it's okay.
2081 		 */
2082 		if (val == 2)
2083 			static_key_slow_inc(&rdpmc_always_available);
2084 		else
2085 			static_key_slow_dec(&rdpmc_always_available);
2086 		on_each_cpu(refresh_pce, NULL, 1);
2087 	}
2088 
2089 	x86_pmu.attr_rdpmc = val;
2090 
2091 	return count;
2092 }
2093 
2094 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2095 
2096 static struct attribute *x86_pmu_attrs[] = {
2097 	&dev_attr_rdpmc.attr,
2098 	NULL,
2099 };
2100 
2101 static struct attribute_group x86_pmu_attr_group = {
2102 	.attrs = x86_pmu_attrs,
2103 };
2104 
2105 static const struct attribute_group *x86_pmu_attr_groups[] = {
2106 	&x86_pmu_attr_group,
2107 	&x86_pmu_format_group,
2108 	&x86_pmu_events_group,
2109 	NULL,
2110 };
2111 
2112 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2113 {
2114 	if (x86_pmu.sched_task)
2115 		x86_pmu.sched_task(ctx, sched_in);
2116 }
2117 
2118 void perf_check_microcode(void)
2119 {
2120 	if (x86_pmu.check_microcode)
2121 		x86_pmu.check_microcode();
2122 }
2123 EXPORT_SYMBOL_GPL(perf_check_microcode);
2124 
2125 static struct pmu pmu = {
2126 	.pmu_enable		= x86_pmu_enable,
2127 	.pmu_disable		= x86_pmu_disable,
2128 
2129 	.attr_groups		= x86_pmu_attr_groups,
2130 
2131 	.event_init		= x86_pmu_event_init,
2132 
2133 	.event_mapped		= x86_pmu_event_mapped,
2134 	.event_unmapped		= x86_pmu_event_unmapped,
2135 
2136 	.add			= x86_pmu_add,
2137 	.del			= x86_pmu_del,
2138 	.start			= x86_pmu_start,
2139 	.stop			= x86_pmu_stop,
2140 	.read			= x86_pmu_read,
2141 
2142 	.start_txn		= x86_pmu_start_txn,
2143 	.cancel_txn		= x86_pmu_cancel_txn,
2144 	.commit_txn		= x86_pmu_commit_txn,
2145 
2146 	.event_idx		= x86_pmu_event_idx,
2147 	.sched_task		= x86_pmu_sched_task,
2148 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2149 };
2150 
2151 void arch_perf_update_userpage(struct perf_event *event,
2152 			       struct perf_event_mmap_page *userpg, u64 now)
2153 {
2154 	struct cyc2ns_data *data;
2155 
2156 	userpg->cap_user_time = 0;
2157 	userpg->cap_user_time_zero = 0;
2158 	userpg->cap_user_rdpmc =
2159 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2160 	userpg->pmc_width = x86_pmu.cntval_bits;
2161 
2162 	if (!sched_clock_stable())
2163 		return;
2164 
2165 	data = cyc2ns_read_begin();
2166 
2167 	/*
2168 	 * Internal timekeeping for enabled/running/stopped times
2169 	 * is always in the local_clock domain.
2170 	 */
2171 	userpg->cap_user_time = 1;
2172 	userpg->time_mult = data->cyc2ns_mul;
2173 	userpg->time_shift = data->cyc2ns_shift;
2174 	userpg->time_offset = data->cyc2ns_offset - now;
2175 
2176 	/*
2177 	 * cap_user_time_zero doesn't make sense when we're using a different
2178 	 * time base for the records.
2179 	 */
2180 	if (event->clock == &local_clock) {
2181 		userpg->cap_user_time_zero = 1;
2182 		userpg->time_zero = data->cyc2ns_offset;
2183 	}
2184 
2185 	cyc2ns_read_end(data);
2186 }
2187 
2188 /*
2189  * callchain support
2190  */
2191 
2192 static int backtrace_stack(void *data, char *name)
2193 {
2194 	return 0;
2195 }
2196 
2197 static int backtrace_address(void *data, unsigned long addr, int reliable)
2198 {
2199 	struct perf_callchain_entry *entry = data;
2200 
2201 	return perf_callchain_store(entry, addr);
2202 }
2203 
2204 static const struct stacktrace_ops backtrace_ops = {
2205 	.stack			= backtrace_stack,
2206 	.address		= backtrace_address,
2207 	.walk_stack		= print_context_stack_bp,
2208 };
2209 
2210 void
2211 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2212 {
2213 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2214 		/* TODO: We don't support guest os callchain now */
2215 		return;
2216 	}
2217 
2218 	perf_callchain_store(entry, regs->ip);
2219 
2220 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2221 }
2222 
2223 static inline int
2224 valid_user_frame(const void __user *fp, unsigned long size)
2225 {
2226 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2227 }
2228 
2229 static unsigned long get_segment_base(unsigned int segment)
2230 {
2231 	struct desc_struct *desc;
2232 	int idx = segment >> 3;
2233 
2234 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2235 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2236 		struct ldt_struct *ldt;
2237 
2238 		if (idx > LDT_ENTRIES)
2239 			return 0;
2240 
2241 		/* IRQs are off, so this synchronizes with smp_store_release */
2242 		ldt = lockless_dereference(current->active_mm->context.ldt);
2243 		if (!ldt || idx > ldt->size)
2244 			return 0;
2245 
2246 		desc = &ldt->entries[idx];
2247 #else
2248 		return 0;
2249 #endif
2250 	} else {
2251 		if (idx > GDT_ENTRIES)
2252 			return 0;
2253 
2254 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2255 	}
2256 
2257 	return get_desc_base(desc);
2258 }
2259 
2260 #ifdef CONFIG_IA32_EMULATION
2261 
2262 #include <asm/compat.h>
2263 
2264 static inline int
2265 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2266 {
2267 	/* 32-bit process in 64-bit kernel. */
2268 	unsigned long ss_base, cs_base;
2269 	struct stack_frame_ia32 frame;
2270 	const void __user *fp;
2271 
2272 	if (!test_thread_flag(TIF_IA32))
2273 		return 0;
2274 
2275 	cs_base = get_segment_base(regs->cs);
2276 	ss_base = get_segment_base(regs->ss);
2277 
2278 	fp = compat_ptr(ss_base + regs->bp);
2279 	pagefault_disable();
2280 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2281 		unsigned long bytes;
2282 		frame.next_frame     = 0;
2283 		frame.return_address = 0;
2284 
2285 		if (!access_ok(VERIFY_READ, fp, 8))
2286 			break;
2287 
2288 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2289 		if (bytes != 0)
2290 			break;
2291 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2292 		if (bytes != 0)
2293 			break;
2294 
2295 		if (!valid_user_frame(fp, sizeof(frame)))
2296 			break;
2297 
2298 		perf_callchain_store(entry, cs_base + frame.return_address);
2299 		fp = compat_ptr(ss_base + frame.next_frame);
2300 	}
2301 	pagefault_enable();
2302 	return 1;
2303 }
2304 #else
2305 static inline int
2306 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2307 {
2308     return 0;
2309 }
2310 #endif
2311 
2312 void
2313 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2314 {
2315 	struct stack_frame frame;
2316 	const void __user *fp;
2317 
2318 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2319 		/* TODO: We don't support guest os callchain now */
2320 		return;
2321 	}
2322 
2323 	/*
2324 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2325 	 */
2326 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2327 		return;
2328 
2329 	fp = (void __user *)regs->bp;
2330 
2331 	perf_callchain_store(entry, regs->ip);
2332 
2333 	if (!current->mm)
2334 		return;
2335 
2336 	if (perf_callchain_user32(regs, entry))
2337 		return;
2338 
2339 	pagefault_disable();
2340 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2341 		unsigned long bytes;
2342 		frame.next_frame	     = NULL;
2343 		frame.return_address = 0;
2344 
2345 		if (!access_ok(VERIFY_READ, fp, 16))
2346 			break;
2347 
2348 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2349 		if (bytes != 0)
2350 			break;
2351 		bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2352 		if (bytes != 0)
2353 			break;
2354 
2355 		if (!valid_user_frame(fp, sizeof(frame)))
2356 			break;
2357 
2358 		perf_callchain_store(entry, frame.return_address);
2359 		fp = (void __user *)frame.next_frame;
2360 	}
2361 	pagefault_enable();
2362 }
2363 
2364 /*
2365  * Deal with code segment offsets for the various execution modes:
2366  *
2367  *   VM86 - the good olde 16 bit days, where the linear address is
2368  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2369  *
2370  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2371  *          to figure out what the 32bit base address is.
2372  *
2373  *    X32 - has TIF_X32 set, but is running in x86_64
2374  *
2375  * X86_64 - CS,DS,SS,ES are all zero based.
2376  */
2377 static unsigned long code_segment_base(struct pt_regs *regs)
2378 {
2379 	/*
2380 	 * For IA32 we look at the GDT/LDT segment base to convert the
2381 	 * effective IP to a linear address.
2382 	 */
2383 
2384 #ifdef CONFIG_X86_32
2385 	/*
2386 	 * If we are in VM86 mode, add the segment offset to convert to a
2387 	 * linear address.
2388 	 */
2389 	if (regs->flags & X86_VM_MASK)
2390 		return 0x10 * regs->cs;
2391 
2392 	if (user_mode(regs) && regs->cs != __USER_CS)
2393 		return get_segment_base(regs->cs);
2394 #else
2395 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2396 	    regs->cs != __USER32_CS)
2397 		return get_segment_base(regs->cs);
2398 #endif
2399 	return 0;
2400 }
2401 
2402 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2403 {
2404 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2405 		return perf_guest_cbs->get_guest_ip();
2406 
2407 	return regs->ip + code_segment_base(regs);
2408 }
2409 
2410 unsigned long perf_misc_flags(struct pt_regs *regs)
2411 {
2412 	int misc = 0;
2413 
2414 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2415 		if (perf_guest_cbs->is_user_mode())
2416 			misc |= PERF_RECORD_MISC_GUEST_USER;
2417 		else
2418 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2419 	} else {
2420 		if (user_mode(regs))
2421 			misc |= PERF_RECORD_MISC_USER;
2422 		else
2423 			misc |= PERF_RECORD_MISC_KERNEL;
2424 	}
2425 
2426 	if (regs->flags & PERF_EFLAGS_EXACT)
2427 		misc |= PERF_RECORD_MISC_EXACT_IP;
2428 
2429 	return misc;
2430 }
2431 
2432 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2433 {
2434 	cap->version		= x86_pmu.version;
2435 	cap->num_counters_gp	= x86_pmu.num_counters;
2436 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2437 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2438 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2439 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2440 	cap->events_mask_len	= x86_pmu.events_mask_len;
2441 }
2442 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2443