xref: /openbmc/linux/arch/x86/events/core.c (revision 0edbfea5)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49 
50 u64 __read_mostly hw_cache_event_ids
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 	struct hw_perf_event *hwc = &event->hw;
67 	int shift = 64 - x86_pmu.cntval_bits;
68 	u64 prev_raw_count, new_raw_count;
69 	int idx = hwc->idx;
70 	s64 delta;
71 
72 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 		return 0;
74 
75 	/*
76 	 * Careful: an NMI might modify the previous event value.
77 	 *
78 	 * Our tactic to handle this is to first atomically read and
79 	 * exchange a new raw count - then add that new-prev delta
80 	 * count to the generic event atomically:
81 	 */
82 again:
83 	prev_raw_count = local64_read(&hwc->prev_count);
84 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85 
86 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 					new_raw_count) != prev_raw_count)
88 		goto again;
89 
90 	/*
91 	 * Now we have the new raw value and have updated the prev
92 	 * timestamp already. We can now calculate the elapsed delta
93 	 * (event-)time and add that to the generic event.
94 	 *
95 	 * Careful, not all hw sign-extends above the physical width
96 	 * of the count.
97 	 */
98 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 	delta >>= shift;
100 
101 	local64_add(delta, &event->count);
102 	local64_sub(delta, &hwc->period_left);
103 
104 	return new_raw_count;
105 }
106 
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 	struct hw_perf_event_extra *reg;
113 	struct extra_reg *er;
114 
115 	reg = &event->hw.extra_reg;
116 
117 	if (!x86_pmu.extra_regs)
118 		return 0;
119 
120 	for (er = x86_pmu.extra_regs; er->msr; er++) {
121 		if (er->event != (config & er->config_mask))
122 			continue;
123 		if (event->attr.config1 & ~er->valid_mask)
124 			return -EINVAL;
125 		/* Check if the extra msrs can be safely accessed*/
126 		if (!er->extra_msr_access)
127 			return -ENXIO;
128 
129 		reg->idx = er->idx;
130 		reg->config = event->attr.config1;
131 		reg->reg = er->msr;
132 		break;
133 	}
134 	return 0;
135 }
136 
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140 
141 #ifdef CONFIG_X86_LOCAL_APIC
142 
143 static bool reserve_pmc_hardware(void)
144 {
145 	int i;
146 
147 	for (i = 0; i < x86_pmu.num_counters; i++) {
148 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 			goto perfctr_fail;
150 	}
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 			goto eventsel_fail;
155 	}
156 
157 	return true;
158 
159 eventsel_fail:
160 	for (i--; i >= 0; i--)
161 		release_evntsel_nmi(x86_pmu_config_addr(i));
162 
163 	i = x86_pmu.num_counters;
164 
165 perfctr_fail:
166 	for (i--; i >= 0; i--)
167 		release_perfctr_nmi(x86_pmu_event_addr(i));
168 
169 	return false;
170 }
171 
172 static void release_pmc_hardware(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.num_counters; i++) {
177 		release_perfctr_nmi(x86_pmu_event_addr(i));
178 		release_evntsel_nmi(x86_pmu_config_addr(i));
179 	}
180 }
181 
182 #else
183 
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186 
187 #endif
188 
189 static bool check_hw_exists(void)
190 {
191 	u64 val, val_fail, val_new= ~0;
192 	int i, reg, reg_fail, ret = 0;
193 	int bios_fail = 0;
194 	int reg_safe = -1;
195 
196 	/*
197 	 * Check to see if the BIOS enabled any of the counters, if so
198 	 * complain and bail.
199 	 */
200 	for (i = 0; i < x86_pmu.num_counters; i++) {
201 		reg = x86_pmu_config_addr(i);
202 		ret = rdmsrl_safe(reg, &val);
203 		if (ret)
204 			goto msr_fail;
205 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 			bios_fail = 1;
207 			val_fail = val;
208 			reg_fail = reg;
209 		} else {
210 			reg_safe = i;
211 		}
212 	}
213 
214 	if (x86_pmu.num_counters_fixed) {
215 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 		ret = rdmsrl_safe(reg, &val);
217 		if (ret)
218 			goto msr_fail;
219 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 			if (val & (0x03 << i*4)) {
221 				bios_fail = 1;
222 				val_fail = val;
223 				reg_fail = reg;
224 			}
225 		}
226 	}
227 
228 	/*
229 	 * If all the counters are enabled, the below test will always
230 	 * fail.  The tools will also become useless in this scenario.
231 	 * Just fail and disable the hardware counters.
232 	 */
233 
234 	if (reg_safe == -1) {
235 		reg = reg_safe;
236 		goto msr_fail;
237 	}
238 
239 	/*
240 	 * Read the current value, change it and read it back to see if it
241 	 * matches, this is needed to detect certain hardware emulators
242 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 	 */
244 	reg = x86_pmu_event_addr(reg_safe);
245 	if (rdmsrl_safe(reg, &val))
246 		goto msr_fail;
247 	val ^= 0xffffUL;
248 	ret = wrmsrl_safe(reg, val);
249 	ret |= rdmsrl_safe(reg, &val_new);
250 	if (ret || val != val_new)
251 		goto msr_fail;
252 
253 	/*
254 	 * We still allow the PMU driver to operate:
255 	 */
256 	if (bios_fail) {
257 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 			      reg_fail, val_fail);
260 	}
261 
262 	return true;
263 
264 msr_fail:
265 	pr_cont("Broken PMU hardware detected, using software events only.\n");
266 	pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 		reg, val_new);
269 
270 	return false;
271 }
272 
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 	x86_release_hardware();
276 	atomic_dec(&active_events);
277 }
278 
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 	hw_perf_event_destroy(event);
282 
283 	/* undo the lbr/bts event accounting */
284 	x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286 
287 static inline int x86_pmu_initialized(void)
288 {
289 	return x86_pmu.handle_irq != NULL;
290 }
291 
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 	struct perf_event_attr *attr = &event->attr;
296 	unsigned int cache_type, cache_op, cache_result;
297 	u64 config, val;
298 
299 	config = attr->config;
300 
301 	cache_type = (config >>  0) & 0xff;
302 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 		return -EINVAL;
304 
305 	cache_op = (config >>  8) & 0xff;
306 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 		return -EINVAL;
308 
309 	cache_result = (config >> 16) & 0xff;
310 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 		return -EINVAL;
312 
313 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314 
315 	if (val == 0)
316 		return -ENOENT;
317 
318 	if (val == -1)
319 		return -EINVAL;
320 
321 	hwc->config |= val;
322 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 	return x86_pmu_extra_regs(val, event);
324 }
325 
326 int x86_reserve_hardware(void)
327 {
328 	int err = 0;
329 
330 	if (!atomic_inc_not_zero(&pmc_refcount)) {
331 		mutex_lock(&pmc_reserve_mutex);
332 		if (atomic_read(&pmc_refcount) == 0) {
333 			if (!reserve_pmc_hardware())
334 				err = -EBUSY;
335 			else
336 				reserve_ds_buffers();
337 		}
338 		if (!err)
339 			atomic_inc(&pmc_refcount);
340 		mutex_unlock(&pmc_reserve_mutex);
341 	}
342 
343 	return err;
344 }
345 
346 void x86_release_hardware(void)
347 {
348 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349 		release_pmc_hardware();
350 		release_ds_buffers();
351 		mutex_unlock(&pmc_reserve_mutex);
352 	}
353 }
354 
355 /*
356  * Check if we can create event of a certain type (that no conflicting events
357  * are present).
358  */
359 int x86_add_exclusive(unsigned int what)
360 {
361 	int i;
362 
363 	if (x86_pmu.lbr_pt_coexist)
364 		return 0;
365 
366 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 		mutex_lock(&pmc_reserve_mutex);
368 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 				goto fail_unlock;
371 		}
372 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 		mutex_unlock(&pmc_reserve_mutex);
374 	}
375 
376 	atomic_inc(&active_events);
377 	return 0;
378 
379 fail_unlock:
380 	mutex_unlock(&pmc_reserve_mutex);
381 	return -EBUSY;
382 }
383 
384 void x86_del_exclusive(unsigned int what)
385 {
386 	if (x86_pmu.lbr_pt_coexist)
387 		return;
388 
389 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
390 	atomic_dec(&active_events);
391 }
392 
393 int x86_setup_perfctr(struct perf_event *event)
394 {
395 	struct perf_event_attr *attr = &event->attr;
396 	struct hw_perf_event *hwc = &event->hw;
397 	u64 config;
398 
399 	if (!is_sampling_event(event)) {
400 		hwc->sample_period = x86_pmu.max_period;
401 		hwc->last_period = hwc->sample_period;
402 		local64_set(&hwc->period_left, hwc->sample_period);
403 	}
404 
405 	if (attr->type == PERF_TYPE_RAW)
406 		return x86_pmu_extra_regs(event->attr.config, event);
407 
408 	if (attr->type == PERF_TYPE_HW_CACHE)
409 		return set_ext_hw_attr(hwc, event);
410 
411 	if (attr->config >= x86_pmu.max_events)
412 		return -EINVAL;
413 
414 	/*
415 	 * The generic map:
416 	 */
417 	config = x86_pmu.event_map(attr->config);
418 
419 	if (config == 0)
420 		return -ENOENT;
421 
422 	if (config == -1LL)
423 		return -EINVAL;
424 
425 	/*
426 	 * Branch tracing:
427 	 */
428 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
429 	    !attr->freq && hwc->sample_period == 1) {
430 		/* BTS is not supported by this architecture. */
431 		if (!x86_pmu.bts_active)
432 			return -EOPNOTSUPP;
433 
434 		/* BTS is currently only allowed for user-mode. */
435 		if (!attr->exclude_kernel)
436 			return -EOPNOTSUPP;
437 
438 		/* disallow bts if conflicting events are present */
439 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
440 			return -EBUSY;
441 
442 		event->destroy = hw_perf_lbr_event_destroy;
443 	}
444 
445 	hwc->config |= config;
446 
447 	return 0;
448 }
449 
450 /*
451  * check that branch_sample_type is compatible with
452  * settings needed for precise_ip > 1 which implies
453  * using the LBR to capture ALL taken branches at the
454  * priv levels of the measurement
455  */
456 static inline int precise_br_compat(struct perf_event *event)
457 {
458 	u64 m = event->attr.branch_sample_type;
459 	u64 b = 0;
460 
461 	/* must capture all branches */
462 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
463 		return 0;
464 
465 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
466 
467 	if (!event->attr.exclude_user)
468 		b |= PERF_SAMPLE_BRANCH_USER;
469 
470 	if (!event->attr.exclude_kernel)
471 		b |= PERF_SAMPLE_BRANCH_KERNEL;
472 
473 	/*
474 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
475 	 */
476 
477 	return m == b;
478 }
479 
480 int x86_pmu_hw_config(struct perf_event *event)
481 {
482 	if (event->attr.precise_ip) {
483 		int precise = 0;
484 
485 		/* Support for constant skid */
486 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 			precise++;
488 
489 			/* Support for IP fixup */
490 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 				precise++;
492 
493 			if (x86_pmu.pebs_prec_dist)
494 				precise++;
495 		}
496 
497 		if (event->attr.precise_ip > precise)
498 			return -EOPNOTSUPP;
499 	}
500 	/*
501 	 * check that PEBS LBR correction does not conflict with
502 	 * whatever the user is asking with attr->branch_sample_type
503 	 */
504 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
505 		u64 *br_type = &event->attr.branch_sample_type;
506 
507 		if (has_branch_stack(event)) {
508 			if (!precise_br_compat(event))
509 				return -EOPNOTSUPP;
510 
511 			/* branch_sample_type is compatible */
512 
513 		} else {
514 			/*
515 			 * user did not specify  branch_sample_type
516 			 *
517 			 * For PEBS fixups, we capture all
518 			 * the branches at the priv level of the
519 			 * event.
520 			 */
521 			*br_type = PERF_SAMPLE_BRANCH_ANY;
522 
523 			if (!event->attr.exclude_user)
524 				*br_type |= PERF_SAMPLE_BRANCH_USER;
525 
526 			if (!event->attr.exclude_kernel)
527 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
528 		}
529 	}
530 
531 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
532 		event->attach_state |= PERF_ATTACH_TASK_DATA;
533 
534 	/*
535 	 * Generate PMC IRQs:
536 	 * (keep 'enabled' bit clear for now)
537 	 */
538 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
539 
540 	/*
541 	 * Count user and OS events unless requested not to
542 	 */
543 	if (!event->attr.exclude_user)
544 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
545 	if (!event->attr.exclude_kernel)
546 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
547 
548 	if (event->attr.type == PERF_TYPE_RAW)
549 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
550 
551 	if (event->attr.sample_period && x86_pmu.limit_period) {
552 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
553 				event->attr.sample_period)
554 			return -EINVAL;
555 	}
556 
557 	return x86_setup_perfctr(event);
558 }
559 
560 /*
561  * Setup the hardware configuration for a given attr_type
562  */
563 static int __x86_pmu_event_init(struct perf_event *event)
564 {
565 	int err;
566 
567 	if (!x86_pmu_initialized())
568 		return -ENODEV;
569 
570 	err = x86_reserve_hardware();
571 	if (err)
572 		return err;
573 
574 	atomic_inc(&active_events);
575 	event->destroy = hw_perf_event_destroy;
576 
577 	event->hw.idx = -1;
578 	event->hw.last_cpu = -1;
579 	event->hw.last_tag = ~0ULL;
580 
581 	/* mark unused */
582 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
583 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
584 
585 	return x86_pmu.hw_config(event);
586 }
587 
588 void x86_pmu_disable_all(void)
589 {
590 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
591 	int idx;
592 
593 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
594 		u64 val;
595 
596 		if (!test_bit(idx, cpuc->active_mask))
597 			continue;
598 		rdmsrl(x86_pmu_config_addr(idx), val);
599 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
600 			continue;
601 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
602 		wrmsrl(x86_pmu_config_addr(idx), val);
603 	}
604 }
605 
606 /*
607  * There may be PMI landing after enabled=0. The PMI hitting could be before or
608  * after disable_all.
609  *
610  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
611  * It will not be re-enabled in the NMI handler again, because enabled=0. After
612  * handling the NMI, disable_all will be called, which will not change the
613  * state either. If PMI hits after disable_all, the PMU is already disabled
614  * before entering NMI handler. The NMI handler will not change the state
615  * either.
616  *
617  * So either situation is harmless.
618  */
619 static void x86_pmu_disable(struct pmu *pmu)
620 {
621 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
622 
623 	if (!x86_pmu_initialized())
624 		return;
625 
626 	if (!cpuc->enabled)
627 		return;
628 
629 	cpuc->n_added = 0;
630 	cpuc->enabled = 0;
631 	barrier();
632 
633 	x86_pmu.disable_all();
634 }
635 
636 void x86_pmu_enable_all(int added)
637 {
638 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
639 	int idx;
640 
641 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
642 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
643 
644 		if (!test_bit(idx, cpuc->active_mask))
645 			continue;
646 
647 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
648 	}
649 }
650 
651 static struct pmu pmu;
652 
653 static inline int is_x86_event(struct perf_event *event)
654 {
655 	return event->pmu == &pmu;
656 }
657 
658 /*
659  * Event scheduler state:
660  *
661  * Assign events iterating over all events and counters, beginning
662  * with events with least weights first. Keep the current iterator
663  * state in struct sched_state.
664  */
665 struct sched_state {
666 	int	weight;
667 	int	event;		/* event index */
668 	int	counter;	/* counter index */
669 	int	unassigned;	/* number of events to be assigned left */
670 	int	nr_gp;		/* number of GP counters used */
671 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
672 };
673 
674 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
675 #define	SCHED_STATES_MAX	2
676 
677 struct perf_sched {
678 	int			max_weight;
679 	int			max_events;
680 	int			max_gp;
681 	int			saved_states;
682 	struct event_constraint	**constraints;
683 	struct sched_state	state;
684 	struct sched_state	saved[SCHED_STATES_MAX];
685 };
686 
687 /*
688  * Initialize interator that runs through all events and counters.
689  */
690 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
691 			    int num, int wmin, int wmax, int gpmax)
692 {
693 	int idx;
694 
695 	memset(sched, 0, sizeof(*sched));
696 	sched->max_events	= num;
697 	sched->max_weight	= wmax;
698 	sched->max_gp		= gpmax;
699 	sched->constraints	= constraints;
700 
701 	for (idx = 0; idx < num; idx++) {
702 		if (constraints[idx]->weight == wmin)
703 			break;
704 	}
705 
706 	sched->state.event	= idx;		/* start with min weight */
707 	sched->state.weight	= wmin;
708 	sched->state.unassigned	= num;
709 }
710 
711 static void perf_sched_save_state(struct perf_sched *sched)
712 {
713 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
714 		return;
715 
716 	sched->saved[sched->saved_states] = sched->state;
717 	sched->saved_states++;
718 }
719 
720 static bool perf_sched_restore_state(struct perf_sched *sched)
721 {
722 	if (!sched->saved_states)
723 		return false;
724 
725 	sched->saved_states--;
726 	sched->state = sched->saved[sched->saved_states];
727 
728 	/* continue with next counter: */
729 	clear_bit(sched->state.counter++, sched->state.used);
730 
731 	return true;
732 }
733 
734 /*
735  * Select a counter for the current event to schedule. Return true on
736  * success.
737  */
738 static bool __perf_sched_find_counter(struct perf_sched *sched)
739 {
740 	struct event_constraint *c;
741 	int idx;
742 
743 	if (!sched->state.unassigned)
744 		return false;
745 
746 	if (sched->state.event >= sched->max_events)
747 		return false;
748 
749 	c = sched->constraints[sched->state.event];
750 	/* Prefer fixed purpose counters */
751 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
752 		idx = INTEL_PMC_IDX_FIXED;
753 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
754 			if (!__test_and_set_bit(idx, sched->state.used))
755 				goto done;
756 		}
757 	}
758 
759 	/* Grab the first unused counter starting with idx */
760 	idx = sched->state.counter;
761 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
762 		if (!__test_and_set_bit(idx, sched->state.used)) {
763 			if (sched->state.nr_gp++ >= sched->max_gp)
764 				return false;
765 
766 			goto done;
767 		}
768 	}
769 
770 	return false;
771 
772 done:
773 	sched->state.counter = idx;
774 
775 	if (c->overlap)
776 		perf_sched_save_state(sched);
777 
778 	return true;
779 }
780 
781 static bool perf_sched_find_counter(struct perf_sched *sched)
782 {
783 	while (!__perf_sched_find_counter(sched)) {
784 		if (!perf_sched_restore_state(sched))
785 			return false;
786 	}
787 
788 	return true;
789 }
790 
791 /*
792  * Go through all unassigned events and find the next one to schedule.
793  * Take events with the least weight first. Return true on success.
794  */
795 static bool perf_sched_next_event(struct perf_sched *sched)
796 {
797 	struct event_constraint *c;
798 
799 	if (!sched->state.unassigned || !--sched->state.unassigned)
800 		return false;
801 
802 	do {
803 		/* next event */
804 		sched->state.event++;
805 		if (sched->state.event >= sched->max_events) {
806 			/* next weight */
807 			sched->state.event = 0;
808 			sched->state.weight++;
809 			if (sched->state.weight > sched->max_weight)
810 				return false;
811 		}
812 		c = sched->constraints[sched->state.event];
813 	} while (c->weight != sched->state.weight);
814 
815 	sched->state.counter = 0;	/* start with first counter */
816 
817 	return true;
818 }
819 
820 /*
821  * Assign a counter for each event.
822  */
823 int perf_assign_events(struct event_constraint **constraints, int n,
824 			int wmin, int wmax, int gpmax, int *assign)
825 {
826 	struct perf_sched sched;
827 
828 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
829 
830 	do {
831 		if (!perf_sched_find_counter(&sched))
832 			break;	/* failed */
833 		if (assign)
834 			assign[sched.state.event] = sched.state.counter;
835 	} while (perf_sched_next_event(&sched));
836 
837 	return sched.state.unassigned;
838 }
839 EXPORT_SYMBOL_GPL(perf_assign_events);
840 
841 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
842 {
843 	struct event_constraint *c;
844 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
845 	struct perf_event *e;
846 	int i, wmin, wmax, unsched = 0;
847 	struct hw_perf_event *hwc;
848 
849 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
850 
851 	if (x86_pmu.start_scheduling)
852 		x86_pmu.start_scheduling(cpuc);
853 
854 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
855 		cpuc->event_constraint[i] = NULL;
856 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
857 		cpuc->event_constraint[i] = c;
858 
859 		wmin = min(wmin, c->weight);
860 		wmax = max(wmax, c->weight);
861 	}
862 
863 	/*
864 	 * fastpath, try to reuse previous register
865 	 */
866 	for (i = 0; i < n; i++) {
867 		hwc = &cpuc->event_list[i]->hw;
868 		c = cpuc->event_constraint[i];
869 
870 		/* never assigned */
871 		if (hwc->idx == -1)
872 			break;
873 
874 		/* constraint still honored */
875 		if (!test_bit(hwc->idx, c->idxmsk))
876 			break;
877 
878 		/* not already used */
879 		if (test_bit(hwc->idx, used_mask))
880 			break;
881 
882 		__set_bit(hwc->idx, used_mask);
883 		if (assign)
884 			assign[i] = hwc->idx;
885 	}
886 
887 	/* slow path */
888 	if (i != n) {
889 		int gpmax = x86_pmu.num_counters;
890 
891 		/*
892 		 * Do not allow scheduling of more than half the available
893 		 * generic counters.
894 		 *
895 		 * This helps avoid counter starvation of sibling thread by
896 		 * ensuring at most half the counters cannot be in exclusive
897 		 * mode. There is no designated counters for the limits. Any
898 		 * N/2 counters can be used. This helps with events with
899 		 * specific counter constraints.
900 		 */
901 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
902 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
903 			gpmax /= 2;
904 
905 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
906 					     wmax, gpmax, assign);
907 	}
908 
909 	/*
910 	 * In case of success (unsched = 0), mark events as committed,
911 	 * so we do not put_constraint() in case new events are added
912 	 * and fail to be scheduled
913 	 *
914 	 * We invoke the lower level commit callback to lock the resource
915 	 *
916 	 * We do not need to do all of this in case we are called to
917 	 * validate an event group (assign == NULL)
918 	 */
919 	if (!unsched && assign) {
920 		for (i = 0; i < n; i++) {
921 			e = cpuc->event_list[i];
922 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
923 			if (x86_pmu.commit_scheduling)
924 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
925 		}
926 	} else {
927 		for (i = 0; i < n; i++) {
928 			e = cpuc->event_list[i];
929 			/*
930 			 * do not put_constraint() on comitted events,
931 			 * because they are good to go
932 			 */
933 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
934 				continue;
935 
936 			/*
937 			 * release events that failed scheduling
938 			 */
939 			if (x86_pmu.put_event_constraints)
940 				x86_pmu.put_event_constraints(cpuc, e);
941 		}
942 	}
943 
944 	if (x86_pmu.stop_scheduling)
945 		x86_pmu.stop_scheduling(cpuc);
946 
947 	return unsched ? -EINVAL : 0;
948 }
949 
950 /*
951  * dogrp: true if must collect siblings events (group)
952  * returns total number of events and error code
953  */
954 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
955 {
956 	struct perf_event *event;
957 	int n, max_count;
958 
959 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
960 
961 	/* current number of events already accepted */
962 	n = cpuc->n_events;
963 
964 	if (is_x86_event(leader)) {
965 		if (n >= max_count)
966 			return -EINVAL;
967 		cpuc->event_list[n] = leader;
968 		n++;
969 	}
970 	if (!dogrp)
971 		return n;
972 
973 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
974 		if (!is_x86_event(event) ||
975 		    event->state <= PERF_EVENT_STATE_OFF)
976 			continue;
977 
978 		if (n >= max_count)
979 			return -EINVAL;
980 
981 		cpuc->event_list[n] = event;
982 		n++;
983 	}
984 	return n;
985 }
986 
987 static inline void x86_assign_hw_event(struct perf_event *event,
988 				struct cpu_hw_events *cpuc, int i)
989 {
990 	struct hw_perf_event *hwc = &event->hw;
991 
992 	hwc->idx = cpuc->assign[i];
993 	hwc->last_cpu = smp_processor_id();
994 	hwc->last_tag = ++cpuc->tags[i];
995 
996 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
997 		hwc->config_base = 0;
998 		hwc->event_base	= 0;
999 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1000 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1001 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1002 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1003 	} else {
1004 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1005 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1006 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1007 	}
1008 }
1009 
1010 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1011 					struct cpu_hw_events *cpuc,
1012 					int i)
1013 {
1014 	return hwc->idx == cpuc->assign[i] &&
1015 		hwc->last_cpu == smp_processor_id() &&
1016 		hwc->last_tag == cpuc->tags[i];
1017 }
1018 
1019 static void x86_pmu_start(struct perf_event *event, int flags);
1020 
1021 static void x86_pmu_enable(struct pmu *pmu)
1022 {
1023 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1024 	struct perf_event *event;
1025 	struct hw_perf_event *hwc;
1026 	int i, added = cpuc->n_added;
1027 
1028 	if (!x86_pmu_initialized())
1029 		return;
1030 
1031 	if (cpuc->enabled)
1032 		return;
1033 
1034 	if (cpuc->n_added) {
1035 		int n_running = cpuc->n_events - cpuc->n_added;
1036 		/*
1037 		 * apply assignment obtained either from
1038 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 		 *
1040 		 * step1: save events moving to new counters
1041 		 */
1042 		for (i = 0; i < n_running; i++) {
1043 			event = cpuc->event_list[i];
1044 			hwc = &event->hw;
1045 
1046 			/*
1047 			 * we can avoid reprogramming counter if:
1048 			 * - assigned same counter as last time
1049 			 * - running on same CPU as last time
1050 			 * - no other event has used the counter since
1051 			 */
1052 			if (hwc->idx == -1 ||
1053 			    match_prev_assignment(hwc, cpuc, i))
1054 				continue;
1055 
1056 			/*
1057 			 * Ensure we don't accidentally enable a stopped
1058 			 * counter simply because we rescheduled.
1059 			 */
1060 			if (hwc->state & PERF_HES_STOPPED)
1061 				hwc->state |= PERF_HES_ARCH;
1062 
1063 			x86_pmu_stop(event, PERF_EF_UPDATE);
1064 		}
1065 
1066 		/*
1067 		 * step2: reprogram moved events into new counters
1068 		 */
1069 		for (i = 0; i < cpuc->n_events; i++) {
1070 			event = cpuc->event_list[i];
1071 			hwc = &event->hw;
1072 
1073 			if (!match_prev_assignment(hwc, cpuc, i))
1074 				x86_assign_hw_event(event, cpuc, i);
1075 			else if (i < n_running)
1076 				continue;
1077 
1078 			if (hwc->state & PERF_HES_ARCH)
1079 				continue;
1080 
1081 			x86_pmu_start(event, PERF_EF_RELOAD);
1082 		}
1083 		cpuc->n_added = 0;
1084 		perf_events_lapic_init();
1085 	}
1086 
1087 	cpuc->enabled = 1;
1088 	barrier();
1089 
1090 	x86_pmu.enable_all(added);
1091 }
1092 
1093 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1094 
1095 /*
1096  * Set the next IRQ period, based on the hwc->period_left value.
1097  * To be called with the event disabled in hw:
1098  */
1099 int x86_perf_event_set_period(struct perf_event *event)
1100 {
1101 	struct hw_perf_event *hwc = &event->hw;
1102 	s64 left = local64_read(&hwc->period_left);
1103 	s64 period = hwc->sample_period;
1104 	int ret = 0, idx = hwc->idx;
1105 
1106 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1107 		return 0;
1108 
1109 	/*
1110 	 * If we are way outside a reasonable range then just skip forward:
1111 	 */
1112 	if (unlikely(left <= -period)) {
1113 		left = period;
1114 		local64_set(&hwc->period_left, left);
1115 		hwc->last_period = period;
1116 		ret = 1;
1117 	}
1118 
1119 	if (unlikely(left <= 0)) {
1120 		left += period;
1121 		local64_set(&hwc->period_left, left);
1122 		hwc->last_period = period;
1123 		ret = 1;
1124 	}
1125 	/*
1126 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1127 	 */
1128 	if (unlikely(left < 2))
1129 		left = 2;
1130 
1131 	if (left > x86_pmu.max_period)
1132 		left = x86_pmu.max_period;
1133 
1134 	if (x86_pmu.limit_period)
1135 		left = x86_pmu.limit_period(event, left);
1136 
1137 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1138 
1139 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1140 	    local64_read(&hwc->prev_count) != (u64)-left) {
1141 		/*
1142 		 * The hw event starts counting from this event offset,
1143 		 * mark it to be able to extra future deltas:
1144 		 */
1145 		local64_set(&hwc->prev_count, (u64)-left);
1146 
1147 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1148 	}
1149 
1150 	/*
1151 	 * Due to erratum on certan cpu we need
1152 	 * a second write to be sure the register
1153 	 * is updated properly
1154 	 */
1155 	if (x86_pmu.perfctr_second_write) {
1156 		wrmsrl(hwc->event_base,
1157 			(u64)(-left) & x86_pmu.cntval_mask);
1158 	}
1159 
1160 	perf_event_update_userpage(event);
1161 
1162 	return ret;
1163 }
1164 
1165 void x86_pmu_enable_event(struct perf_event *event)
1166 {
1167 	if (__this_cpu_read(cpu_hw_events.enabled))
1168 		__x86_pmu_enable_event(&event->hw,
1169 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1170 }
1171 
1172 /*
1173  * Add a single event to the PMU.
1174  *
1175  * The event is added to the group of enabled events
1176  * but only if it can be scehduled with existing events.
1177  */
1178 static int x86_pmu_add(struct perf_event *event, int flags)
1179 {
1180 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1181 	struct hw_perf_event *hwc;
1182 	int assign[X86_PMC_IDX_MAX];
1183 	int n, n0, ret;
1184 
1185 	hwc = &event->hw;
1186 
1187 	n0 = cpuc->n_events;
1188 	ret = n = collect_events(cpuc, event, false);
1189 	if (ret < 0)
1190 		goto out;
1191 
1192 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1193 	if (!(flags & PERF_EF_START))
1194 		hwc->state |= PERF_HES_ARCH;
1195 
1196 	/*
1197 	 * If group events scheduling transaction was started,
1198 	 * skip the schedulability test here, it will be performed
1199 	 * at commit time (->commit_txn) as a whole.
1200 	 */
1201 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1202 		goto done_collect;
1203 
1204 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1205 	if (ret)
1206 		goto out;
1207 	/*
1208 	 * copy new assignment, now we know it is possible
1209 	 * will be used by hw_perf_enable()
1210 	 */
1211 	memcpy(cpuc->assign, assign, n*sizeof(int));
1212 
1213 done_collect:
1214 	/*
1215 	 * Commit the collect_events() state. See x86_pmu_del() and
1216 	 * x86_pmu_*_txn().
1217 	 */
1218 	cpuc->n_events = n;
1219 	cpuc->n_added += n - n0;
1220 	cpuc->n_txn += n - n0;
1221 
1222 	ret = 0;
1223 out:
1224 	return ret;
1225 }
1226 
1227 static void x86_pmu_start(struct perf_event *event, int flags)
1228 {
1229 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1230 	int idx = event->hw.idx;
1231 
1232 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1233 		return;
1234 
1235 	if (WARN_ON_ONCE(idx == -1))
1236 		return;
1237 
1238 	if (flags & PERF_EF_RELOAD) {
1239 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1240 		x86_perf_event_set_period(event);
1241 	}
1242 
1243 	event->hw.state = 0;
1244 
1245 	cpuc->events[idx] = event;
1246 	__set_bit(idx, cpuc->active_mask);
1247 	__set_bit(idx, cpuc->running);
1248 	x86_pmu.enable(event);
1249 	perf_event_update_userpage(event);
1250 }
1251 
1252 void perf_event_print_debug(void)
1253 {
1254 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1255 	u64 pebs, debugctl;
1256 	struct cpu_hw_events *cpuc;
1257 	unsigned long flags;
1258 	int cpu, idx;
1259 
1260 	if (!x86_pmu.num_counters)
1261 		return;
1262 
1263 	local_irq_save(flags);
1264 
1265 	cpu = smp_processor_id();
1266 	cpuc = &per_cpu(cpu_hw_events, cpu);
1267 
1268 	if (x86_pmu.version >= 2) {
1269 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1270 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1271 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1272 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1273 
1274 		pr_info("\n");
1275 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1276 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1277 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1278 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1279 		if (x86_pmu.pebs_constraints) {
1280 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1281 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1282 		}
1283 		if (x86_pmu.lbr_nr) {
1284 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1285 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1286 		}
1287 	}
1288 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1289 
1290 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1291 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1292 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1293 
1294 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1295 
1296 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1297 			cpu, idx, pmc_ctrl);
1298 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1299 			cpu, idx, pmc_count);
1300 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1301 			cpu, idx, prev_left);
1302 	}
1303 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1304 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1305 
1306 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1307 			cpu, idx, pmc_count);
1308 	}
1309 	local_irq_restore(flags);
1310 }
1311 
1312 void x86_pmu_stop(struct perf_event *event, int flags)
1313 {
1314 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1315 	struct hw_perf_event *hwc = &event->hw;
1316 
1317 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1318 		x86_pmu.disable(event);
1319 		cpuc->events[hwc->idx] = NULL;
1320 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1321 		hwc->state |= PERF_HES_STOPPED;
1322 	}
1323 
1324 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1325 		/*
1326 		 * Drain the remaining delta count out of a event
1327 		 * that we are disabling:
1328 		 */
1329 		x86_perf_event_update(event);
1330 		hwc->state |= PERF_HES_UPTODATE;
1331 	}
1332 }
1333 
1334 static void x86_pmu_del(struct perf_event *event, int flags)
1335 {
1336 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1337 	int i;
1338 
1339 	/*
1340 	 * event is descheduled
1341 	 */
1342 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1343 
1344 	/*
1345 	 * If we're called during a txn, we don't need to do anything.
1346 	 * The events never got scheduled and ->cancel_txn will truncate
1347 	 * the event_list.
1348 	 *
1349 	 * XXX assumes any ->del() called during a TXN will only be on
1350 	 * an event added during that same TXN.
1351 	 */
1352 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1353 		return;
1354 
1355 	/*
1356 	 * Not a TXN, therefore cleanup properly.
1357 	 */
1358 	x86_pmu_stop(event, PERF_EF_UPDATE);
1359 
1360 	for (i = 0; i < cpuc->n_events; i++) {
1361 		if (event == cpuc->event_list[i])
1362 			break;
1363 	}
1364 
1365 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1366 		return;
1367 
1368 	/* If we have a newly added event; make sure to decrease n_added. */
1369 	if (i >= cpuc->n_events - cpuc->n_added)
1370 		--cpuc->n_added;
1371 
1372 	if (x86_pmu.put_event_constraints)
1373 		x86_pmu.put_event_constraints(cpuc, event);
1374 
1375 	/* Delete the array entry. */
1376 	while (++i < cpuc->n_events) {
1377 		cpuc->event_list[i-1] = cpuc->event_list[i];
1378 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1379 	}
1380 	--cpuc->n_events;
1381 
1382 	perf_event_update_userpage(event);
1383 }
1384 
1385 int x86_pmu_handle_irq(struct pt_regs *regs)
1386 {
1387 	struct perf_sample_data data;
1388 	struct cpu_hw_events *cpuc;
1389 	struct perf_event *event;
1390 	int idx, handled = 0;
1391 	u64 val;
1392 
1393 	cpuc = this_cpu_ptr(&cpu_hw_events);
1394 
1395 	/*
1396 	 * Some chipsets need to unmask the LVTPC in a particular spot
1397 	 * inside the nmi handler.  As a result, the unmasking was pushed
1398 	 * into all the nmi handlers.
1399 	 *
1400 	 * This generic handler doesn't seem to have any issues where the
1401 	 * unmasking occurs so it was left at the top.
1402 	 */
1403 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1404 
1405 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1406 		if (!test_bit(idx, cpuc->active_mask)) {
1407 			/*
1408 			 * Though we deactivated the counter some cpus
1409 			 * might still deliver spurious interrupts still
1410 			 * in flight. Catch them:
1411 			 */
1412 			if (__test_and_clear_bit(idx, cpuc->running))
1413 				handled++;
1414 			continue;
1415 		}
1416 
1417 		event = cpuc->events[idx];
1418 
1419 		val = x86_perf_event_update(event);
1420 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1421 			continue;
1422 
1423 		/*
1424 		 * event overflow
1425 		 */
1426 		handled++;
1427 		perf_sample_data_init(&data, 0, event->hw.last_period);
1428 
1429 		if (!x86_perf_event_set_period(event))
1430 			continue;
1431 
1432 		if (perf_event_overflow(event, &data, regs))
1433 			x86_pmu_stop(event, 0);
1434 	}
1435 
1436 	if (handled)
1437 		inc_irq_stat(apic_perf_irqs);
1438 
1439 	return handled;
1440 }
1441 
1442 void perf_events_lapic_init(void)
1443 {
1444 	if (!x86_pmu.apic || !x86_pmu_initialized())
1445 		return;
1446 
1447 	/*
1448 	 * Always use NMI for PMU
1449 	 */
1450 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1451 }
1452 
1453 static int
1454 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1455 {
1456 	u64 start_clock;
1457 	u64 finish_clock;
1458 	int ret;
1459 
1460 	/*
1461 	 * All PMUs/events that share this PMI handler should make sure to
1462 	 * increment active_events for their events.
1463 	 */
1464 	if (!atomic_read(&active_events))
1465 		return NMI_DONE;
1466 
1467 	start_clock = sched_clock();
1468 	ret = x86_pmu.handle_irq(regs);
1469 	finish_clock = sched_clock();
1470 
1471 	perf_sample_event_took(finish_clock - start_clock);
1472 
1473 	return ret;
1474 }
1475 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1476 
1477 struct event_constraint emptyconstraint;
1478 struct event_constraint unconstrained;
1479 
1480 static int
1481 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1482 {
1483 	unsigned int cpu = (long)hcpu;
1484 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1485 	int i, ret = NOTIFY_OK;
1486 
1487 	switch (action & ~CPU_TASKS_FROZEN) {
1488 	case CPU_UP_PREPARE:
1489 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1490 			cpuc->kfree_on_online[i] = NULL;
1491 		if (x86_pmu.cpu_prepare)
1492 			ret = x86_pmu.cpu_prepare(cpu);
1493 		break;
1494 
1495 	case CPU_STARTING:
1496 		if (x86_pmu.cpu_starting)
1497 			x86_pmu.cpu_starting(cpu);
1498 		break;
1499 
1500 	case CPU_ONLINE:
1501 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1502 			kfree(cpuc->kfree_on_online[i]);
1503 			cpuc->kfree_on_online[i] = NULL;
1504 		}
1505 		break;
1506 
1507 	case CPU_DYING:
1508 		if (x86_pmu.cpu_dying)
1509 			x86_pmu.cpu_dying(cpu);
1510 		break;
1511 
1512 	case CPU_UP_CANCELED:
1513 	case CPU_DEAD:
1514 		if (x86_pmu.cpu_dead)
1515 			x86_pmu.cpu_dead(cpu);
1516 		break;
1517 
1518 	default:
1519 		break;
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 static void __init pmu_check_apic(void)
1526 {
1527 	if (boot_cpu_has(X86_FEATURE_APIC))
1528 		return;
1529 
1530 	x86_pmu.apic = 0;
1531 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1532 	pr_info("no hardware sampling interrupt available.\n");
1533 
1534 	/*
1535 	 * If we have a PMU initialized but no APIC
1536 	 * interrupts, we cannot sample hardware
1537 	 * events (user-space has to fall back and
1538 	 * sample via a hrtimer based software event):
1539 	 */
1540 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1541 
1542 }
1543 
1544 static struct attribute_group x86_pmu_format_group = {
1545 	.name = "format",
1546 	.attrs = NULL,
1547 };
1548 
1549 /*
1550  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1551  * out of events_attr attributes.
1552  */
1553 static void __init filter_events(struct attribute **attrs)
1554 {
1555 	struct device_attribute *d;
1556 	struct perf_pmu_events_attr *pmu_attr;
1557 	int offset = 0;
1558 	int i, j;
1559 
1560 	for (i = 0; attrs[i]; i++) {
1561 		d = (struct device_attribute *)attrs[i];
1562 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1563 		/* str trumps id */
1564 		if (pmu_attr->event_str)
1565 			continue;
1566 		if (x86_pmu.event_map(i + offset))
1567 			continue;
1568 
1569 		for (j = i; attrs[j]; j++)
1570 			attrs[j] = attrs[j + 1];
1571 
1572 		/* Check the shifted attr. */
1573 		i--;
1574 
1575 		/*
1576 		 * event_map() is index based, the attrs array is organized
1577 		 * by increasing event index. If we shift the events, then
1578 		 * we need to compensate for the event_map(), otherwise
1579 		 * we are looking up the wrong event in the map
1580 		 */
1581 		offset++;
1582 	}
1583 }
1584 
1585 /* Merge two pointer arrays */
1586 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1587 {
1588 	struct attribute **new;
1589 	int j, i;
1590 
1591 	for (j = 0; a[j]; j++)
1592 		;
1593 	for (i = 0; b[i]; i++)
1594 		j++;
1595 	j++;
1596 
1597 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1598 	if (!new)
1599 		return NULL;
1600 
1601 	j = 0;
1602 	for (i = 0; a[i]; i++)
1603 		new[j++] = a[i];
1604 	for (i = 0; b[i]; i++)
1605 		new[j++] = b[i];
1606 	new[j] = NULL;
1607 
1608 	return new;
1609 }
1610 
1611 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1612 {
1613 	struct perf_pmu_events_attr *pmu_attr = \
1614 		container_of(attr, struct perf_pmu_events_attr, attr);
1615 	u64 config = x86_pmu.event_map(pmu_attr->id);
1616 
1617 	/* string trumps id */
1618 	if (pmu_attr->event_str)
1619 		return sprintf(page, "%s", pmu_attr->event_str);
1620 
1621 	return x86_pmu.events_sysfs_show(page, config);
1622 }
1623 EXPORT_SYMBOL_GPL(events_sysfs_show);
1624 
1625 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1626 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1627 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1628 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1629 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1630 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1631 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1632 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1633 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1634 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1635 
1636 static struct attribute *empty_attrs;
1637 
1638 static struct attribute *events_attr[] = {
1639 	EVENT_PTR(CPU_CYCLES),
1640 	EVENT_PTR(INSTRUCTIONS),
1641 	EVENT_PTR(CACHE_REFERENCES),
1642 	EVENT_PTR(CACHE_MISSES),
1643 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1644 	EVENT_PTR(BRANCH_MISSES),
1645 	EVENT_PTR(BUS_CYCLES),
1646 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1647 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1648 	EVENT_PTR(REF_CPU_CYCLES),
1649 	NULL,
1650 };
1651 
1652 static struct attribute_group x86_pmu_events_group = {
1653 	.name = "events",
1654 	.attrs = events_attr,
1655 };
1656 
1657 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1658 {
1659 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1660 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1661 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1662 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1663 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1664 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1665 	ssize_t ret;
1666 
1667 	/*
1668 	* We have whole page size to spend and just little data
1669 	* to write, so we can safely use sprintf.
1670 	*/
1671 	ret = sprintf(page, "event=0x%02llx", event);
1672 
1673 	if (umask)
1674 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1675 
1676 	if (edge)
1677 		ret += sprintf(page + ret, ",edge");
1678 
1679 	if (pc)
1680 		ret += sprintf(page + ret, ",pc");
1681 
1682 	if (any)
1683 		ret += sprintf(page + ret, ",any");
1684 
1685 	if (inv)
1686 		ret += sprintf(page + ret, ",inv");
1687 
1688 	if (cmask)
1689 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1690 
1691 	ret += sprintf(page + ret, "\n");
1692 
1693 	return ret;
1694 }
1695 
1696 static int __init init_hw_perf_events(void)
1697 {
1698 	struct x86_pmu_quirk *quirk;
1699 	int err;
1700 
1701 	pr_info("Performance Events: ");
1702 
1703 	switch (boot_cpu_data.x86_vendor) {
1704 	case X86_VENDOR_INTEL:
1705 		err = intel_pmu_init();
1706 		break;
1707 	case X86_VENDOR_AMD:
1708 		err = amd_pmu_init();
1709 		break;
1710 	default:
1711 		err = -ENOTSUPP;
1712 	}
1713 	if (err != 0) {
1714 		pr_cont("no PMU driver, software events only.\n");
1715 		return 0;
1716 	}
1717 
1718 	pmu_check_apic();
1719 
1720 	/* sanity check that the hardware exists or is emulated */
1721 	if (!check_hw_exists())
1722 		return 0;
1723 
1724 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1725 
1726 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1727 
1728 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1729 		quirk->func();
1730 
1731 	if (!x86_pmu.intel_ctrl)
1732 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1733 
1734 	perf_events_lapic_init();
1735 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1736 
1737 	unconstrained = (struct event_constraint)
1738 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1739 				   0, x86_pmu.num_counters, 0, 0);
1740 
1741 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1742 
1743 	if (x86_pmu.event_attrs)
1744 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1745 
1746 	if (!x86_pmu.events_sysfs_show)
1747 		x86_pmu_events_group.attrs = &empty_attrs;
1748 	else
1749 		filter_events(x86_pmu_events_group.attrs);
1750 
1751 	if (x86_pmu.cpu_events) {
1752 		struct attribute **tmp;
1753 
1754 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1755 		if (!WARN_ON(!tmp))
1756 			x86_pmu_events_group.attrs = tmp;
1757 	}
1758 
1759 	pr_info("... version:                %d\n",     x86_pmu.version);
1760 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1761 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1762 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1763 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1764 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1765 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1766 
1767 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1768 	perf_cpu_notifier(x86_pmu_notifier);
1769 
1770 	return 0;
1771 }
1772 early_initcall(init_hw_perf_events);
1773 
1774 static inline void x86_pmu_read(struct perf_event *event)
1775 {
1776 	x86_perf_event_update(event);
1777 }
1778 
1779 /*
1780  * Start group events scheduling transaction
1781  * Set the flag to make pmu::enable() not perform the
1782  * schedulability test, it will be performed at commit time
1783  *
1784  * We only support PERF_PMU_TXN_ADD transactions. Save the
1785  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1786  * transactions.
1787  */
1788 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1789 {
1790 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1791 
1792 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1793 
1794 	cpuc->txn_flags = txn_flags;
1795 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1796 		return;
1797 
1798 	perf_pmu_disable(pmu);
1799 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1800 }
1801 
1802 /*
1803  * Stop group events scheduling transaction
1804  * Clear the flag and pmu::enable() will perform the
1805  * schedulability test.
1806  */
1807 static void x86_pmu_cancel_txn(struct pmu *pmu)
1808 {
1809 	unsigned int txn_flags;
1810 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811 
1812 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1813 
1814 	txn_flags = cpuc->txn_flags;
1815 	cpuc->txn_flags = 0;
1816 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1817 		return;
1818 
1819 	/*
1820 	 * Truncate collected array by the number of events added in this
1821 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1822 	 */
1823 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1824 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1825 	perf_pmu_enable(pmu);
1826 }
1827 
1828 /*
1829  * Commit group events scheduling transaction
1830  * Perform the group schedulability test as a whole
1831  * Return 0 if success
1832  *
1833  * Does not cancel the transaction on failure; expects the caller to do this.
1834  */
1835 static int x86_pmu_commit_txn(struct pmu *pmu)
1836 {
1837 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1838 	int assign[X86_PMC_IDX_MAX];
1839 	int n, ret;
1840 
1841 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1842 
1843 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1844 		cpuc->txn_flags = 0;
1845 		return 0;
1846 	}
1847 
1848 	n = cpuc->n_events;
1849 
1850 	if (!x86_pmu_initialized())
1851 		return -EAGAIN;
1852 
1853 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1854 	if (ret)
1855 		return ret;
1856 
1857 	/*
1858 	 * copy new assignment, now we know it is possible
1859 	 * will be used by hw_perf_enable()
1860 	 */
1861 	memcpy(cpuc->assign, assign, n*sizeof(int));
1862 
1863 	cpuc->txn_flags = 0;
1864 	perf_pmu_enable(pmu);
1865 	return 0;
1866 }
1867 /*
1868  * a fake_cpuc is used to validate event groups. Due to
1869  * the extra reg logic, we need to also allocate a fake
1870  * per_core and per_cpu structure. Otherwise, group events
1871  * using extra reg may conflict without the kernel being
1872  * able to catch this when the last event gets added to
1873  * the group.
1874  */
1875 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1876 {
1877 	kfree(cpuc->shared_regs);
1878 	kfree(cpuc);
1879 }
1880 
1881 static struct cpu_hw_events *allocate_fake_cpuc(void)
1882 {
1883 	struct cpu_hw_events *cpuc;
1884 	int cpu = raw_smp_processor_id();
1885 
1886 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1887 	if (!cpuc)
1888 		return ERR_PTR(-ENOMEM);
1889 
1890 	/* only needed, if we have extra_regs */
1891 	if (x86_pmu.extra_regs) {
1892 		cpuc->shared_regs = allocate_shared_regs(cpu);
1893 		if (!cpuc->shared_regs)
1894 			goto error;
1895 	}
1896 	cpuc->is_fake = 1;
1897 	return cpuc;
1898 error:
1899 	free_fake_cpuc(cpuc);
1900 	return ERR_PTR(-ENOMEM);
1901 }
1902 
1903 /*
1904  * validate that we can schedule this event
1905  */
1906 static int validate_event(struct perf_event *event)
1907 {
1908 	struct cpu_hw_events *fake_cpuc;
1909 	struct event_constraint *c;
1910 	int ret = 0;
1911 
1912 	fake_cpuc = allocate_fake_cpuc();
1913 	if (IS_ERR(fake_cpuc))
1914 		return PTR_ERR(fake_cpuc);
1915 
1916 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1917 
1918 	if (!c || !c->weight)
1919 		ret = -EINVAL;
1920 
1921 	if (x86_pmu.put_event_constraints)
1922 		x86_pmu.put_event_constraints(fake_cpuc, event);
1923 
1924 	free_fake_cpuc(fake_cpuc);
1925 
1926 	return ret;
1927 }
1928 
1929 /*
1930  * validate a single event group
1931  *
1932  * validation include:
1933  *	- check events are compatible which each other
1934  *	- events do not compete for the same counter
1935  *	- number of events <= number of counters
1936  *
1937  * validation ensures the group can be loaded onto the
1938  * PMU if it was the only group available.
1939  */
1940 static int validate_group(struct perf_event *event)
1941 {
1942 	struct perf_event *leader = event->group_leader;
1943 	struct cpu_hw_events *fake_cpuc;
1944 	int ret = -EINVAL, n;
1945 
1946 	fake_cpuc = allocate_fake_cpuc();
1947 	if (IS_ERR(fake_cpuc))
1948 		return PTR_ERR(fake_cpuc);
1949 	/*
1950 	 * the event is not yet connected with its
1951 	 * siblings therefore we must first collect
1952 	 * existing siblings, then add the new event
1953 	 * before we can simulate the scheduling
1954 	 */
1955 	n = collect_events(fake_cpuc, leader, true);
1956 	if (n < 0)
1957 		goto out;
1958 
1959 	fake_cpuc->n_events = n;
1960 	n = collect_events(fake_cpuc, event, false);
1961 	if (n < 0)
1962 		goto out;
1963 
1964 	fake_cpuc->n_events = n;
1965 
1966 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1967 
1968 out:
1969 	free_fake_cpuc(fake_cpuc);
1970 	return ret;
1971 }
1972 
1973 static int x86_pmu_event_init(struct perf_event *event)
1974 {
1975 	struct pmu *tmp;
1976 	int err;
1977 
1978 	switch (event->attr.type) {
1979 	case PERF_TYPE_RAW:
1980 	case PERF_TYPE_HARDWARE:
1981 	case PERF_TYPE_HW_CACHE:
1982 		break;
1983 
1984 	default:
1985 		return -ENOENT;
1986 	}
1987 
1988 	err = __x86_pmu_event_init(event);
1989 	if (!err) {
1990 		/*
1991 		 * we temporarily connect event to its pmu
1992 		 * such that validate_group() can classify
1993 		 * it as an x86 event using is_x86_event()
1994 		 */
1995 		tmp = event->pmu;
1996 		event->pmu = &pmu;
1997 
1998 		if (event->group_leader != event)
1999 			err = validate_group(event);
2000 		else
2001 			err = validate_event(event);
2002 
2003 		event->pmu = tmp;
2004 	}
2005 	if (err) {
2006 		if (event->destroy)
2007 			event->destroy(event);
2008 	}
2009 
2010 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2011 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2012 
2013 	return err;
2014 }
2015 
2016 static void refresh_pce(void *ignored)
2017 {
2018 	if (current->mm)
2019 		load_mm_cr4(current->mm);
2020 }
2021 
2022 static void x86_pmu_event_mapped(struct perf_event *event)
2023 {
2024 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2025 		return;
2026 
2027 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2028 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2029 }
2030 
2031 static void x86_pmu_event_unmapped(struct perf_event *event)
2032 {
2033 	if (!current->mm)
2034 		return;
2035 
2036 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2037 		return;
2038 
2039 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2040 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2041 }
2042 
2043 static int x86_pmu_event_idx(struct perf_event *event)
2044 {
2045 	int idx = event->hw.idx;
2046 
2047 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2048 		return 0;
2049 
2050 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2051 		idx -= INTEL_PMC_IDX_FIXED;
2052 		idx |= 1 << 30;
2053 	}
2054 
2055 	return idx + 1;
2056 }
2057 
2058 static ssize_t get_attr_rdpmc(struct device *cdev,
2059 			      struct device_attribute *attr,
2060 			      char *buf)
2061 {
2062 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2063 }
2064 
2065 static ssize_t set_attr_rdpmc(struct device *cdev,
2066 			      struct device_attribute *attr,
2067 			      const char *buf, size_t count)
2068 {
2069 	unsigned long val;
2070 	ssize_t ret;
2071 
2072 	ret = kstrtoul(buf, 0, &val);
2073 	if (ret)
2074 		return ret;
2075 
2076 	if (val > 2)
2077 		return -EINVAL;
2078 
2079 	if (x86_pmu.attr_rdpmc_broken)
2080 		return -ENOTSUPP;
2081 
2082 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2083 		/*
2084 		 * Changing into or out of always available, aka
2085 		 * perf-event-bypassing mode.  This path is extremely slow,
2086 		 * but only root can trigger it, so it's okay.
2087 		 */
2088 		if (val == 2)
2089 			static_key_slow_inc(&rdpmc_always_available);
2090 		else
2091 			static_key_slow_dec(&rdpmc_always_available);
2092 		on_each_cpu(refresh_pce, NULL, 1);
2093 	}
2094 
2095 	x86_pmu.attr_rdpmc = val;
2096 
2097 	return count;
2098 }
2099 
2100 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2101 
2102 static struct attribute *x86_pmu_attrs[] = {
2103 	&dev_attr_rdpmc.attr,
2104 	NULL,
2105 };
2106 
2107 static struct attribute_group x86_pmu_attr_group = {
2108 	.attrs = x86_pmu_attrs,
2109 };
2110 
2111 static const struct attribute_group *x86_pmu_attr_groups[] = {
2112 	&x86_pmu_attr_group,
2113 	&x86_pmu_format_group,
2114 	&x86_pmu_events_group,
2115 	NULL,
2116 };
2117 
2118 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2119 {
2120 	if (x86_pmu.sched_task)
2121 		x86_pmu.sched_task(ctx, sched_in);
2122 }
2123 
2124 void perf_check_microcode(void)
2125 {
2126 	if (x86_pmu.check_microcode)
2127 		x86_pmu.check_microcode();
2128 }
2129 EXPORT_SYMBOL_GPL(perf_check_microcode);
2130 
2131 static struct pmu pmu = {
2132 	.pmu_enable		= x86_pmu_enable,
2133 	.pmu_disable		= x86_pmu_disable,
2134 
2135 	.attr_groups		= x86_pmu_attr_groups,
2136 
2137 	.event_init		= x86_pmu_event_init,
2138 
2139 	.event_mapped		= x86_pmu_event_mapped,
2140 	.event_unmapped		= x86_pmu_event_unmapped,
2141 
2142 	.add			= x86_pmu_add,
2143 	.del			= x86_pmu_del,
2144 	.start			= x86_pmu_start,
2145 	.stop			= x86_pmu_stop,
2146 	.read			= x86_pmu_read,
2147 
2148 	.start_txn		= x86_pmu_start_txn,
2149 	.cancel_txn		= x86_pmu_cancel_txn,
2150 	.commit_txn		= x86_pmu_commit_txn,
2151 
2152 	.event_idx		= x86_pmu_event_idx,
2153 	.sched_task		= x86_pmu_sched_task,
2154 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2155 };
2156 
2157 void arch_perf_update_userpage(struct perf_event *event,
2158 			       struct perf_event_mmap_page *userpg, u64 now)
2159 {
2160 	struct cyc2ns_data *data;
2161 
2162 	userpg->cap_user_time = 0;
2163 	userpg->cap_user_time_zero = 0;
2164 	userpg->cap_user_rdpmc =
2165 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2166 	userpg->pmc_width = x86_pmu.cntval_bits;
2167 
2168 	if (!sched_clock_stable())
2169 		return;
2170 
2171 	data = cyc2ns_read_begin();
2172 
2173 	/*
2174 	 * Internal timekeeping for enabled/running/stopped times
2175 	 * is always in the local_clock domain.
2176 	 */
2177 	userpg->cap_user_time = 1;
2178 	userpg->time_mult = data->cyc2ns_mul;
2179 	userpg->time_shift = data->cyc2ns_shift;
2180 	userpg->time_offset = data->cyc2ns_offset - now;
2181 
2182 	/*
2183 	 * cap_user_time_zero doesn't make sense when we're using a different
2184 	 * time base for the records.
2185 	 */
2186 	if (!event->attr.use_clockid) {
2187 		userpg->cap_user_time_zero = 1;
2188 		userpg->time_zero = data->cyc2ns_offset;
2189 	}
2190 
2191 	cyc2ns_read_end(data);
2192 }
2193 
2194 /*
2195  * callchain support
2196  */
2197 
2198 static int backtrace_stack(void *data, char *name)
2199 {
2200 	return 0;
2201 }
2202 
2203 static int backtrace_address(void *data, unsigned long addr, int reliable)
2204 {
2205 	struct perf_callchain_entry_ctx *entry = data;
2206 
2207 	return perf_callchain_store(entry, addr);
2208 }
2209 
2210 static const struct stacktrace_ops backtrace_ops = {
2211 	.stack			= backtrace_stack,
2212 	.address		= backtrace_address,
2213 	.walk_stack		= print_context_stack_bp,
2214 };
2215 
2216 void
2217 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2218 {
2219 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2220 		/* TODO: We don't support guest os callchain now */
2221 		return;
2222 	}
2223 
2224 	perf_callchain_store(entry, regs->ip);
2225 
2226 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2227 }
2228 
2229 static inline int
2230 valid_user_frame(const void __user *fp, unsigned long size)
2231 {
2232 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2233 }
2234 
2235 static unsigned long get_segment_base(unsigned int segment)
2236 {
2237 	struct desc_struct *desc;
2238 	int idx = segment >> 3;
2239 
2240 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2241 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2242 		struct ldt_struct *ldt;
2243 
2244 		if (idx > LDT_ENTRIES)
2245 			return 0;
2246 
2247 		/* IRQs are off, so this synchronizes with smp_store_release */
2248 		ldt = lockless_dereference(current->active_mm->context.ldt);
2249 		if (!ldt || idx > ldt->size)
2250 			return 0;
2251 
2252 		desc = &ldt->entries[idx];
2253 #else
2254 		return 0;
2255 #endif
2256 	} else {
2257 		if (idx > GDT_ENTRIES)
2258 			return 0;
2259 
2260 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2261 	}
2262 
2263 	return get_desc_base(desc);
2264 }
2265 
2266 #ifdef CONFIG_IA32_EMULATION
2267 
2268 #include <asm/compat.h>
2269 
2270 static inline int
2271 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2272 {
2273 	/* 32-bit process in 64-bit kernel. */
2274 	unsigned long ss_base, cs_base;
2275 	struct stack_frame_ia32 frame;
2276 	const void __user *fp;
2277 
2278 	if (!test_thread_flag(TIF_IA32))
2279 		return 0;
2280 
2281 	cs_base = get_segment_base(regs->cs);
2282 	ss_base = get_segment_base(regs->ss);
2283 
2284 	fp = compat_ptr(ss_base + regs->bp);
2285 	pagefault_disable();
2286 	while (entry->nr < entry->max_stack) {
2287 		unsigned long bytes;
2288 		frame.next_frame     = 0;
2289 		frame.return_address = 0;
2290 
2291 		if (!access_ok(VERIFY_READ, fp, 8))
2292 			break;
2293 
2294 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2295 		if (bytes != 0)
2296 			break;
2297 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2298 		if (bytes != 0)
2299 			break;
2300 
2301 		if (!valid_user_frame(fp, sizeof(frame)))
2302 			break;
2303 
2304 		perf_callchain_store(entry, cs_base + frame.return_address);
2305 		fp = compat_ptr(ss_base + frame.next_frame);
2306 	}
2307 	pagefault_enable();
2308 	return 1;
2309 }
2310 #else
2311 static inline int
2312 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2313 {
2314     return 0;
2315 }
2316 #endif
2317 
2318 void
2319 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2320 {
2321 	struct stack_frame frame;
2322 	const void __user *fp;
2323 
2324 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2325 		/* TODO: We don't support guest os callchain now */
2326 		return;
2327 	}
2328 
2329 	/*
2330 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2331 	 */
2332 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2333 		return;
2334 
2335 	fp = (void __user *)regs->bp;
2336 
2337 	perf_callchain_store(entry, regs->ip);
2338 
2339 	if (!current->mm)
2340 		return;
2341 
2342 	if (perf_callchain_user32(regs, entry))
2343 		return;
2344 
2345 	pagefault_disable();
2346 	while (entry->nr < entry->max_stack) {
2347 		unsigned long bytes;
2348 		frame.next_frame	     = NULL;
2349 		frame.return_address = 0;
2350 
2351 		if (!access_ok(VERIFY_READ, fp, 16))
2352 			break;
2353 
2354 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2355 		if (bytes != 0)
2356 			break;
2357 		bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2358 		if (bytes != 0)
2359 			break;
2360 
2361 		if (!valid_user_frame(fp, sizeof(frame)))
2362 			break;
2363 
2364 		perf_callchain_store(entry, frame.return_address);
2365 		fp = (void __user *)frame.next_frame;
2366 	}
2367 	pagefault_enable();
2368 }
2369 
2370 /*
2371  * Deal with code segment offsets for the various execution modes:
2372  *
2373  *   VM86 - the good olde 16 bit days, where the linear address is
2374  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2375  *
2376  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2377  *          to figure out what the 32bit base address is.
2378  *
2379  *    X32 - has TIF_X32 set, but is running in x86_64
2380  *
2381  * X86_64 - CS,DS,SS,ES are all zero based.
2382  */
2383 static unsigned long code_segment_base(struct pt_regs *regs)
2384 {
2385 	/*
2386 	 * For IA32 we look at the GDT/LDT segment base to convert the
2387 	 * effective IP to a linear address.
2388 	 */
2389 
2390 #ifdef CONFIG_X86_32
2391 	/*
2392 	 * If we are in VM86 mode, add the segment offset to convert to a
2393 	 * linear address.
2394 	 */
2395 	if (regs->flags & X86_VM_MASK)
2396 		return 0x10 * regs->cs;
2397 
2398 	if (user_mode(regs) && regs->cs != __USER_CS)
2399 		return get_segment_base(regs->cs);
2400 #else
2401 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2402 	    regs->cs != __USER32_CS)
2403 		return get_segment_base(regs->cs);
2404 #endif
2405 	return 0;
2406 }
2407 
2408 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2409 {
2410 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2411 		return perf_guest_cbs->get_guest_ip();
2412 
2413 	return regs->ip + code_segment_base(regs);
2414 }
2415 
2416 unsigned long perf_misc_flags(struct pt_regs *regs)
2417 {
2418 	int misc = 0;
2419 
2420 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2421 		if (perf_guest_cbs->is_user_mode())
2422 			misc |= PERF_RECORD_MISC_GUEST_USER;
2423 		else
2424 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2425 	} else {
2426 		if (user_mode(regs))
2427 			misc |= PERF_RECORD_MISC_USER;
2428 		else
2429 			misc |= PERF_RECORD_MISC_KERNEL;
2430 	}
2431 
2432 	if (regs->flags & PERF_EFLAGS_EXACT)
2433 		misc |= PERF_RECORD_MISC_EXACT_IP;
2434 
2435 	return misc;
2436 }
2437 
2438 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2439 {
2440 	cap->version		= x86_pmu.version;
2441 	cap->num_counters_gp	= x86_pmu.num_counters;
2442 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2443 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2444 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2445 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2446 	cap->events_mask_len	= x86_pmu.events_mask_len;
2447 }
2448 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2449