1 /* 2 * Performance events x86 architecture code 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 #include <linux/capability.h> 17 #include <linux/notifier.h> 18 #include <linux/hardirq.h> 19 #include <linux/kprobes.h> 20 #include <linux/module.h> 21 #include <linux/kdebug.h> 22 #include <linux/sched.h> 23 #include <linux/uaccess.h> 24 #include <linux/slab.h> 25 #include <linux/cpu.h> 26 #include <linux/bitops.h> 27 #include <linux/device.h> 28 29 #include <asm/apic.h> 30 #include <asm/stacktrace.h> 31 #include <asm/nmi.h> 32 #include <asm/smp.h> 33 #include <asm/alternative.h> 34 #include <asm/mmu_context.h> 35 #include <asm/tlbflush.h> 36 #include <asm/timer.h> 37 #include <asm/desc.h> 38 #include <asm/ldt.h> 39 40 #include "perf_event.h" 41 42 struct x86_pmu x86_pmu __read_mostly; 43 44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 45 .enabled = 1, 46 }; 47 48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE; 49 50 u64 __read_mostly hw_cache_event_ids 51 [PERF_COUNT_HW_CACHE_MAX] 52 [PERF_COUNT_HW_CACHE_OP_MAX] 53 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 54 u64 __read_mostly hw_cache_extra_regs 55 [PERF_COUNT_HW_CACHE_MAX] 56 [PERF_COUNT_HW_CACHE_OP_MAX] 57 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 58 59 /* 60 * Propagate event elapsed time into the generic event. 61 * Can only be executed on the CPU where the event is active. 62 * Returns the delta events processed. 63 */ 64 u64 x86_perf_event_update(struct perf_event *event) 65 { 66 struct hw_perf_event *hwc = &event->hw; 67 int shift = 64 - x86_pmu.cntval_bits; 68 u64 prev_raw_count, new_raw_count; 69 int idx = hwc->idx; 70 s64 delta; 71 72 if (idx == INTEL_PMC_IDX_FIXED_BTS) 73 return 0; 74 75 /* 76 * Careful: an NMI might modify the previous event value. 77 * 78 * Our tactic to handle this is to first atomically read and 79 * exchange a new raw count - then add that new-prev delta 80 * count to the generic event atomically: 81 */ 82 again: 83 prev_raw_count = local64_read(&hwc->prev_count); 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 85 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 87 new_raw_count) != prev_raw_count) 88 goto again; 89 90 /* 91 * Now we have the new raw value and have updated the prev 92 * timestamp already. We can now calculate the elapsed delta 93 * (event-)time and add that to the generic event. 94 * 95 * Careful, not all hw sign-extends above the physical width 96 * of the count. 97 */ 98 delta = (new_raw_count << shift) - (prev_raw_count << shift); 99 delta >>= shift; 100 101 local64_add(delta, &event->count); 102 local64_sub(delta, &hwc->period_left); 103 104 return new_raw_count; 105 } 106 107 /* 108 * Find and validate any extra registers to set up. 109 */ 110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event) 111 { 112 struct hw_perf_event_extra *reg; 113 struct extra_reg *er; 114 115 reg = &event->hw.extra_reg; 116 117 if (!x86_pmu.extra_regs) 118 return 0; 119 120 for (er = x86_pmu.extra_regs; er->msr; er++) { 121 if (er->event != (config & er->config_mask)) 122 continue; 123 if (event->attr.config1 & ~er->valid_mask) 124 return -EINVAL; 125 /* Check if the extra msrs can be safely accessed*/ 126 if (!er->extra_msr_access) 127 return -ENXIO; 128 129 reg->idx = er->idx; 130 reg->config = event->attr.config1; 131 reg->reg = er->msr; 132 break; 133 } 134 return 0; 135 } 136 137 static atomic_t active_events; 138 static atomic_t pmc_refcount; 139 static DEFINE_MUTEX(pmc_reserve_mutex); 140 141 #ifdef CONFIG_X86_LOCAL_APIC 142 143 static bool reserve_pmc_hardware(void) 144 { 145 int i; 146 147 for (i = 0; i < x86_pmu.num_counters; i++) { 148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) 149 goto perfctr_fail; 150 } 151 152 for (i = 0; i < x86_pmu.num_counters; i++) { 153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) 154 goto eventsel_fail; 155 } 156 157 return true; 158 159 eventsel_fail: 160 for (i--; i >= 0; i--) 161 release_evntsel_nmi(x86_pmu_config_addr(i)); 162 163 i = x86_pmu.num_counters; 164 165 perfctr_fail: 166 for (i--; i >= 0; i--) 167 release_perfctr_nmi(x86_pmu_event_addr(i)); 168 169 return false; 170 } 171 172 static void release_pmc_hardware(void) 173 { 174 int i; 175 176 for (i = 0; i < x86_pmu.num_counters; i++) { 177 release_perfctr_nmi(x86_pmu_event_addr(i)); 178 release_evntsel_nmi(x86_pmu_config_addr(i)); 179 } 180 } 181 182 #else 183 184 static bool reserve_pmc_hardware(void) { return true; } 185 static void release_pmc_hardware(void) {} 186 187 #endif 188 189 static bool check_hw_exists(void) 190 { 191 u64 val, val_fail, val_new= ~0; 192 int i, reg, reg_fail, ret = 0; 193 int bios_fail = 0; 194 int reg_safe = -1; 195 196 /* 197 * Check to see if the BIOS enabled any of the counters, if so 198 * complain and bail. 199 */ 200 for (i = 0; i < x86_pmu.num_counters; i++) { 201 reg = x86_pmu_config_addr(i); 202 ret = rdmsrl_safe(reg, &val); 203 if (ret) 204 goto msr_fail; 205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { 206 bios_fail = 1; 207 val_fail = val; 208 reg_fail = reg; 209 } else { 210 reg_safe = i; 211 } 212 } 213 214 if (x86_pmu.num_counters_fixed) { 215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 216 ret = rdmsrl_safe(reg, &val); 217 if (ret) 218 goto msr_fail; 219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) { 220 if (val & (0x03 << i*4)) { 221 bios_fail = 1; 222 val_fail = val; 223 reg_fail = reg; 224 } 225 } 226 } 227 228 /* 229 * If all the counters are enabled, the below test will always 230 * fail. The tools will also become useless in this scenario. 231 * Just fail and disable the hardware counters. 232 */ 233 234 if (reg_safe == -1) { 235 reg = reg_safe; 236 goto msr_fail; 237 } 238 239 /* 240 * Read the current value, change it and read it back to see if it 241 * matches, this is needed to detect certain hardware emulators 242 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 243 */ 244 reg = x86_pmu_event_addr(reg_safe); 245 if (rdmsrl_safe(reg, &val)) 246 goto msr_fail; 247 val ^= 0xffffUL; 248 ret = wrmsrl_safe(reg, val); 249 ret |= rdmsrl_safe(reg, &val_new); 250 if (ret || val != val_new) 251 goto msr_fail; 252 253 /* 254 * We still allow the PMU driver to operate: 255 */ 256 if (bios_fail) { 257 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); 258 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", 259 reg_fail, val_fail); 260 } 261 262 return true; 263 264 msr_fail: 265 pr_cont("Broken PMU hardware detected, using software events only.\n"); 266 pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n", 267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR, 268 reg, val_new); 269 270 return false; 271 } 272 273 static void hw_perf_event_destroy(struct perf_event *event) 274 { 275 x86_release_hardware(); 276 atomic_dec(&active_events); 277 } 278 279 void hw_perf_lbr_event_destroy(struct perf_event *event) 280 { 281 hw_perf_event_destroy(event); 282 283 /* undo the lbr/bts event accounting */ 284 x86_del_exclusive(x86_lbr_exclusive_lbr); 285 } 286 287 static inline int x86_pmu_initialized(void) 288 { 289 return x86_pmu.handle_irq != NULL; 290 } 291 292 static inline int 293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) 294 { 295 struct perf_event_attr *attr = &event->attr; 296 unsigned int cache_type, cache_op, cache_result; 297 u64 config, val; 298 299 config = attr->config; 300 301 cache_type = (config >> 0) & 0xff; 302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 303 return -EINVAL; 304 305 cache_op = (config >> 8) & 0xff; 306 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 307 return -EINVAL; 308 309 cache_result = (config >> 16) & 0xff; 310 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 311 return -EINVAL; 312 313 val = hw_cache_event_ids[cache_type][cache_op][cache_result]; 314 315 if (val == 0) 316 return -ENOENT; 317 318 if (val == -1) 319 return -EINVAL; 320 321 hwc->config |= val; 322 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result]; 323 return x86_pmu_extra_regs(val, event); 324 } 325 326 int x86_reserve_hardware(void) 327 { 328 int err = 0; 329 330 if (!atomic_inc_not_zero(&pmc_refcount)) { 331 mutex_lock(&pmc_reserve_mutex); 332 if (atomic_read(&pmc_refcount) == 0) { 333 if (!reserve_pmc_hardware()) 334 err = -EBUSY; 335 else 336 reserve_ds_buffers(); 337 } 338 if (!err) 339 atomic_inc(&pmc_refcount); 340 mutex_unlock(&pmc_reserve_mutex); 341 } 342 343 return err; 344 } 345 346 void x86_release_hardware(void) 347 { 348 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { 349 release_pmc_hardware(); 350 release_ds_buffers(); 351 mutex_unlock(&pmc_reserve_mutex); 352 } 353 } 354 355 /* 356 * Check if we can create event of a certain type (that no conflicting events 357 * are present). 358 */ 359 int x86_add_exclusive(unsigned int what) 360 { 361 int i; 362 363 if (x86_pmu.lbr_pt_coexist) 364 return 0; 365 366 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { 367 mutex_lock(&pmc_reserve_mutex); 368 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { 369 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) 370 goto fail_unlock; 371 } 372 atomic_inc(&x86_pmu.lbr_exclusive[what]); 373 mutex_unlock(&pmc_reserve_mutex); 374 } 375 376 atomic_inc(&active_events); 377 return 0; 378 379 fail_unlock: 380 mutex_unlock(&pmc_reserve_mutex); 381 return -EBUSY; 382 } 383 384 void x86_del_exclusive(unsigned int what) 385 { 386 if (x86_pmu.lbr_pt_coexist) 387 return; 388 389 atomic_dec(&x86_pmu.lbr_exclusive[what]); 390 atomic_dec(&active_events); 391 } 392 393 int x86_setup_perfctr(struct perf_event *event) 394 { 395 struct perf_event_attr *attr = &event->attr; 396 struct hw_perf_event *hwc = &event->hw; 397 u64 config; 398 399 if (!is_sampling_event(event)) { 400 hwc->sample_period = x86_pmu.max_period; 401 hwc->last_period = hwc->sample_period; 402 local64_set(&hwc->period_left, hwc->sample_period); 403 } 404 405 if (attr->type == PERF_TYPE_RAW) 406 return x86_pmu_extra_regs(event->attr.config, event); 407 408 if (attr->type == PERF_TYPE_HW_CACHE) 409 return set_ext_hw_attr(hwc, event); 410 411 if (attr->config >= x86_pmu.max_events) 412 return -EINVAL; 413 414 /* 415 * The generic map: 416 */ 417 config = x86_pmu.event_map(attr->config); 418 419 if (config == 0) 420 return -ENOENT; 421 422 if (config == -1LL) 423 return -EINVAL; 424 425 /* 426 * Branch tracing: 427 */ 428 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS && 429 !attr->freq && hwc->sample_period == 1) { 430 /* BTS is not supported by this architecture. */ 431 if (!x86_pmu.bts_active) 432 return -EOPNOTSUPP; 433 434 /* BTS is currently only allowed for user-mode. */ 435 if (!attr->exclude_kernel) 436 return -EOPNOTSUPP; 437 438 /* disallow bts if conflicting events are present */ 439 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 440 return -EBUSY; 441 442 event->destroy = hw_perf_lbr_event_destroy; 443 } 444 445 hwc->config |= config; 446 447 return 0; 448 } 449 450 /* 451 * check that branch_sample_type is compatible with 452 * settings needed for precise_ip > 1 which implies 453 * using the LBR to capture ALL taken branches at the 454 * priv levels of the measurement 455 */ 456 static inline int precise_br_compat(struct perf_event *event) 457 { 458 u64 m = event->attr.branch_sample_type; 459 u64 b = 0; 460 461 /* must capture all branches */ 462 if (!(m & PERF_SAMPLE_BRANCH_ANY)) 463 return 0; 464 465 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; 466 467 if (!event->attr.exclude_user) 468 b |= PERF_SAMPLE_BRANCH_USER; 469 470 if (!event->attr.exclude_kernel) 471 b |= PERF_SAMPLE_BRANCH_KERNEL; 472 473 /* 474 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 475 */ 476 477 return m == b; 478 } 479 480 int x86_pmu_hw_config(struct perf_event *event) 481 { 482 if (event->attr.precise_ip) { 483 int precise = 0; 484 485 /* Support for constant skid */ 486 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { 487 precise++; 488 489 /* Support for IP fixup */ 490 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) 491 precise++; 492 493 if (x86_pmu.pebs_prec_dist) 494 precise++; 495 } 496 497 if (event->attr.precise_ip > precise) 498 return -EOPNOTSUPP; 499 } 500 /* 501 * check that PEBS LBR correction does not conflict with 502 * whatever the user is asking with attr->branch_sample_type 503 */ 504 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { 505 u64 *br_type = &event->attr.branch_sample_type; 506 507 if (has_branch_stack(event)) { 508 if (!precise_br_compat(event)) 509 return -EOPNOTSUPP; 510 511 /* branch_sample_type is compatible */ 512 513 } else { 514 /* 515 * user did not specify branch_sample_type 516 * 517 * For PEBS fixups, we capture all 518 * the branches at the priv level of the 519 * event. 520 */ 521 *br_type = PERF_SAMPLE_BRANCH_ANY; 522 523 if (!event->attr.exclude_user) 524 *br_type |= PERF_SAMPLE_BRANCH_USER; 525 526 if (!event->attr.exclude_kernel) 527 *br_type |= PERF_SAMPLE_BRANCH_KERNEL; 528 } 529 } 530 531 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) 532 event->attach_state |= PERF_ATTACH_TASK_DATA; 533 534 /* 535 * Generate PMC IRQs: 536 * (keep 'enabled' bit clear for now) 537 */ 538 event->hw.config = ARCH_PERFMON_EVENTSEL_INT; 539 540 /* 541 * Count user and OS events unless requested not to 542 */ 543 if (!event->attr.exclude_user) 544 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; 545 if (!event->attr.exclude_kernel) 546 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; 547 548 if (event->attr.type == PERF_TYPE_RAW) 549 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; 550 551 if (event->attr.sample_period && x86_pmu.limit_period) { 552 if (x86_pmu.limit_period(event, event->attr.sample_period) > 553 event->attr.sample_period) 554 return -EINVAL; 555 } 556 557 return x86_setup_perfctr(event); 558 } 559 560 /* 561 * Setup the hardware configuration for a given attr_type 562 */ 563 static int __x86_pmu_event_init(struct perf_event *event) 564 { 565 int err; 566 567 if (!x86_pmu_initialized()) 568 return -ENODEV; 569 570 err = x86_reserve_hardware(); 571 if (err) 572 return err; 573 574 atomic_inc(&active_events); 575 event->destroy = hw_perf_event_destroy; 576 577 event->hw.idx = -1; 578 event->hw.last_cpu = -1; 579 event->hw.last_tag = ~0ULL; 580 581 /* mark unused */ 582 event->hw.extra_reg.idx = EXTRA_REG_NONE; 583 event->hw.branch_reg.idx = EXTRA_REG_NONE; 584 585 return x86_pmu.hw_config(event); 586 } 587 588 void x86_pmu_disable_all(void) 589 { 590 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 591 int idx; 592 593 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 594 u64 val; 595 596 if (!test_bit(idx, cpuc->active_mask)) 597 continue; 598 rdmsrl(x86_pmu_config_addr(idx), val); 599 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) 600 continue; 601 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 602 wrmsrl(x86_pmu_config_addr(idx), val); 603 } 604 } 605 606 /* 607 * There may be PMI landing after enabled=0. The PMI hitting could be before or 608 * after disable_all. 609 * 610 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. 611 * It will not be re-enabled in the NMI handler again, because enabled=0. After 612 * handling the NMI, disable_all will be called, which will not change the 613 * state either. If PMI hits after disable_all, the PMU is already disabled 614 * before entering NMI handler. The NMI handler will not change the state 615 * either. 616 * 617 * So either situation is harmless. 618 */ 619 static void x86_pmu_disable(struct pmu *pmu) 620 { 621 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 622 623 if (!x86_pmu_initialized()) 624 return; 625 626 if (!cpuc->enabled) 627 return; 628 629 cpuc->n_added = 0; 630 cpuc->enabled = 0; 631 barrier(); 632 633 x86_pmu.disable_all(); 634 } 635 636 void x86_pmu_enable_all(int added) 637 { 638 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 639 int idx; 640 641 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 642 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 643 644 if (!test_bit(idx, cpuc->active_mask)) 645 continue; 646 647 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 648 } 649 } 650 651 static struct pmu pmu; 652 653 static inline int is_x86_event(struct perf_event *event) 654 { 655 return event->pmu == &pmu; 656 } 657 658 /* 659 * Event scheduler state: 660 * 661 * Assign events iterating over all events and counters, beginning 662 * with events with least weights first. Keep the current iterator 663 * state in struct sched_state. 664 */ 665 struct sched_state { 666 int weight; 667 int event; /* event index */ 668 int counter; /* counter index */ 669 int unassigned; /* number of events to be assigned left */ 670 int nr_gp; /* number of GP counters used */ 671 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 672 }; 673 674 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ 675 #define SCHED_STATES_MAX 2 676 677 struct perf_sched { 678 int max_weight; 679 int max_events; 680 int max_gp; 681 int saved_states; 682 struct event_constraint **constraints; 683 struct sched_state state; 684 struct sched_state saved[SCHED_STATES_MAX]; 685 }; 686 687 /* 688 * Initialize interator that runs through all events and counters. 689 */ 690 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, 691 int num, int wmin, int wmax, int gpmax) 692 { 693 int idx; 694 695 memset(sched, 0, sizeof(*sched)); 696 sched->max_events = num; 697 sched->max_weight = wmax; 698 sched->max_gp = gpmax; 699 sched->constraints = constraints; 700 701 for (idx = 0; idx < num; idx++) { 702 if (constraints[idx]->weight == wmin) 703 break; 704 } 705 706 sched->state.event = idx; /* start with min weight */ 707 sched->state.weight = wmin; 708 sched->state.unassigned = num; 709 } 710 711 static void perf_sched_save_state(struct perf_sched *sched) 712 { 713 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) 714 return; 715 716 sched->saved[sched->saved_states] = sched->state; 717 sched->saved_states++; 718 } 719 720 static bool perf_sched_restore_state(struct perf_sched *sched) 721 { 722 if (!sched->saved_states) 723 return false; 724 725 sched->saved_states--; 726 sched->state = sched->saved[sched->saved_states]; 727 728 /* continue with next counter: */ 729 clear_bit(sched->state.counter++, sched->state.used); 730 731 return true; 732 } 733 734 /* 735 * Select a counter for the current event to schedule. Return true on 736 * success. 737 */ 738 static bool __perf_sched_find_counter(struct perf_sched *sched) 739 { 740 struct event_constraint *c; 741 int idx; 742 743 if (!sched->state.unassigned) 744 return false; 745 746 if (sched->state.event >= sched->max_events) 747 return false; 748 749 c = sched->constraints[sched->state.event]; 750 /* Prefer fixed purpose counters */ 751 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { 752 idx = INTEL_PMC_IDX_FIXED; 753 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { 754 if (!__test_and_set_bit(idx, sched->state.used)) 755 goto done; 756 } 757 } 758 759 /* Grab the first unused counter starting with idx */ 760 idx = sched->state.counter; 761 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { 762 if (!__test_and_set_bit(idx, sched->state.used)) { 763 if (sched->state.nr_gp++ >= sched->max_gp) 764 return false; 765 766 goto done; 767 } 768 } 769 770 return false; 771 772 done: 773 sched->state.counter = idx; 774 775 if (c->overlap) 776 perf_sched_save_state(sched); 777 778 return true; 779 } 780 781 static bool perf_sched_find_counter(struct perf_sched *sched) 782 { 783 while (!__perf_sched_find_counter(sched)) { 784 if (!perf_sched_restore_state(sched)) 785 return false; 786 } 787 788 return true; 789 } 790 791 /* 792 * Go through all unassigned events and find the next one to schedule. 793 * Take events with the least weight first. Return true on success. 794 */ 795 static bool perf_sched_next_event(struct perf_sched *sched) 796 { 797 struct event_constraint *c; 798 799 if (!sched->state.unassigned || !--sched->state.unassigned) 800 return false; 801 802 do { 803 /* next event */ 804 sched->state.event++; 805 if (sched->state.event >= sched->max_events) { 806 /* next weight */ 807 sched->state.event = 0; 808 sched->state.weight++; 809 if (sched->state.weight > sched->max_weight) 810 return false; 811 } 812 c = sched->constraints[sched->state.event]; 813 } while (c->weight != sched->state.weight); 814 815 sched->state.counter = 0; /* start with first counter */ 816 817 return true; 818 } 819 820 /* 821 * Assign a counter for each event. 822 */ 823 int perf_assign_events(struct event_constraint **constraints, int n, 824 int wmin, int wmax, int gpmax, int *assign) 825 { 826 struct perf_sched sched; 827 828 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); 829 830 do { 831 if (!perf_sched_find_counter(&sched)) 832 break; /* failed */ 833 if (assign) 834 assign[sched.state.event] = sched.state.counter; 835 } while (perf_sched_next_event(&sched)); 836 837 return sched.state.unassigned; 838 } 839 EXPORT_SYMBOL_GPL(perf_assign_events); 840 841 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 842 { 843 struct event_constraint *c; 844 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 845 struct perf_event *e; 846 int i, wmin, wmax, unsched = 0; 847 struct hw_perf_event *hwc; 848 849 bitmap_zero(used_mask, X86_PMC_IDX_MAX); 850 851 if (x86_pmu.start_scheduling) 852 x86_pmu.start_scheduling(cpuc); 853 854 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { 855 cpuc->event_constraint[i] = NULL; 856 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]); 857 cpuc->event_constraint[i] = c; 858 859 wmin = min(wmin, c->weight); 860 wmax = max(wmax, c->weight); 861 } 862 863 /* 864 * fastpath, try to reuse previous register 865 */ 866 for (i = 0; i < n; i++) { 867 hwc = &cpuc->event_list[i]->hw; 868 c = cpuc->event_constraint[i]; 869 870 /* never assigned */ 871 if (hwc->idx == -1) 872 break; 873 874 /* constraint still honored */ 875 if (!test_bit(hwc->idx, c->idxmsk)) 876 break; 877 878 /* not already used */ 879 if (test_bit(hwc->idx, used_mask)) 880 break; 881 882 __set_bit(hwc->idx, used_mask); 883 if (assign) 884 assign[i] = hwc->idx; 885 } 886 887 /* slow path */ 888 if (i != n) { 889 int gpmax = x86_pmu.num_counters; 890 891 /* 892 * Do not allow scheduling of more than half the available 893 * generic counters. 894 * 895 * This helps avoid counter starvation of sibling thread by 896 * ensuring at most half the counters cannot be in exclusive 897 * mode. There is no designated counters for the limits. Any 898 * N/2 counters can be used. This helps with events with 899 * specific counter constraints. 900 */ 901 if (is_ht_workaround_enabled() && !cpuc->is_fake && 902 READ_ONCE(cpuc->excl_cntrs->exclusive_present)) 903 gpmax /= 2; 904 905 unsched = perf_assign_events(cpuc->event_constraint, n, wmin, 906 wmax, gpmax, assign); 907 } 908 909 /* 910 * In case of success (unsched = 0), mark events as committed, 911 * so we do not put_constraint() in case new events are added 912 * and fail to be scheduled 913 * 914 * We invoke the lower level commit callback to lock the resource 915 * 916 * We do not need to do all of this in case we are called to 917 * validate an event group (assign == NULL) 918 */ 919 if (!unsched && assign) { 920 for (i = 0; i < n; i++) { 921 e = cpuc->event_list[i]; 922 e->hw.flags |= PERF_X86_EVENT_COMMITTED; 923 if (x86_pmu.commit_scheduling) 924 x86_pmu.commit_scheduling(cpuc, i, assign[i]); 925 } 926 } else { 927 for (i = 0; i < n; i++) { 928 e = cpuc->event_list[i]; 929 /* 930 * do not put_constraint() on comitted events, 931 * because they are good to go 932 */ 933 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED)) 934 continue; 935 936 /* 937 * release events that failed scheduling 938 */ 939 if (x86_pmu.put_event_constraints) 940 x86_pmu.put_event_constraints(cpuc, e); 941 } 942 } 943 944 if (x86_pmu.stop_scheduling) 945 x86_pmu.stop_scheduling(cpuc); 946 947 return unsched ? -EINVAL : 0; 948 } 949 950 /* 951 * dogrp: true if must collect siblings events (group) 952 * returns total number of events and error code 953 */ 954 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) 955 { 956 struct perf_event *event; 957 int n, max_count; 958 959 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed; 960 961 /* current number of events already accepted */ 962 n = cpuc->n_events; 963 964 if (is_x86_event(leader)) { 965 if (n >= max_count) 966 return -EINVAL; 967 cpuc->event_list[n] = leader; 968 n++; 969 } 970 if (!dogrp) 971 return n; 972 973 list_for_each_entry(event, &leader->sibling_list, group_entry) { 974 if (!is_x86_event(event) || 975 event->state <= PERF_EVENT_STATE_OFF) 976 continue; 977 978 if (n >= max_count) 979 return -EINVAL; 980 981 cpuc->event_list[n] = event; 982 n++; 983 } 984 return n; 985 } 986 987 static inline void x86_assign_hw_event(struct perf_event *event, 988 struct cpu_hw_events *cpuc, int i) 989 { 990 struct hw_perf_event *hwc = &event->hw; 991 992 hwc->idx = cpuc->assign[i]; 993 hwc->last_cpu = smp_processor_id(); 994 hwc->last_tag = ++cpuc->tags[i]; 995 996 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) { 997 hwc->config_base = 0; 998 hwc->event_base = 0; 999 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1000 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; 1001 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED); 1002 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30; 1003 } else { 1004 hwc->config_base = x86_pmu_config_addr(hwc->idx); 1005 hwc->event_base = x86_pmu_event_addr(hwc->idx); 1006 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); 1007 } 1008 } 1009 1010 static inline int match_prev_assignment(struct hw_perf_event *hwc, 1011 struct cpu_hw_events *cpuc, 1012 int i) 1013 { 1014 return hwc->idx == cpuc->assign[i] && 1015 hwc->last_cpu == smp_processor_id() && 1016 hwc->last_tag == cpuc->tags[i]; 1017 } 1018 1019 static void x86_pmu_start(struct perf_event *event, int flags); 1020 1021 static void x86_pmu_enable(struct pmu *pmu) 1022 { 1023 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1024 struct perf_event *event; 1025 struct hw_perf_event *hwc; 1026 int i, added = cpuc->n_added; 1027 1028 if (!x86_pmu_initialized()) 1029 return; 1030 1031 if (cpuc->enabled) 1032 return; 1033 1034 if (cpuc->n_added) { 1035 int n_running = cpuc->n_events - cpuc->n_added; 1036 /* 1037 * apply assignment obtained either from 1038 * hw_perf_group_sched_in() or x86_pmu_enable() 1039 * 1040 * step1: save events moving to new counters 1041 */ 1042 for (i = 0; i < n_running; i++) { 1043 event = cpuc->event_list[i]; 1044 hwc = &event->hw; 1045 1046 /* 1047 * we can avoid reprogramming counter if: 1048 * - assigned same counter as last time 1049 * - running on same CPU as last time 1050 * - no other event has used the counter since 1051 */ 1052 if (hwc->idx == -1 || 1053 match_prev_assignment(hwc, cpuc, i)) 1054 continue; 1055 1056 /* 1057 * Ensure we don't accidentally enable a stopped 1058 * counter simply because we rescheduled. 1059 */ 1060 if (hwc->state & PERF_HES_STOPPED) 1061 hwc->state |= PERF_HES_ARCH; 1062 1063 x86_pmu_stop(event, PERF_EF_UPDATE); 1064 } 1065 1066 /* 1067 * step2: reprogram moved events into new counters 1068 */ 1069 for (i = 0; i < cpuc->n_events; i++) { 1070 event = cpuc->event_list[i]; 1071 hwc = &event->hw; 1072 1073 if (!match_prev_assignment(hwc, cpuc, i)) 1074 x86_assign_hw_event(event, cpuc, i); 1075 else if (i < n_running) 1076 continue; 1077 1078 if (hwc->state & PERF_HES_ARCH) 1079 continue; 1080 1081 x86_pmu_start(event, PERF_EF_RELOAD); 1082 } 1083 cpuc->n_added = 0; 1084 perf_events_lapic_init(); 1085 } 1086 1087 cpuc->enabled = 1; 1088 barrier(); 1089 1090 x86_pmu.enable_all(added); 1091 } 1092 1093 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1094 1095 /* 1096 * Set the next IRQ period, based on the hwc->period_left value. 1097 * To be called with the event disabled in hw: 1098 */ 1099 int x86_perf_event_set_period(struct perf_event *event) 1100 { 1101 struct hw_perf_event *hwc = &event->hw; 1102 s64 left = local64_read(&hwc->period_left); 1103 s64 period = hwc->sample_period; 1104 int ret = 0, idx = hwc->idx; 1105 1106 if (idx == INTEL_PMC_IDX_FIXED_BTS) 1107 return 0; 1108 1109 /* 1110 * If we are way outside a reasonable range then just skip forward: 1111 */ 1112 if (unlikely(left <= -period)) { 1113 left = period; 1114 local64_set(&hwc->period_left, left); 1115 hwc->last_period = period; 1116 ret = 1; 1117 } 1118 1119 if (unlikely(left <= 0)) { 1120 left += period; 1121 local64_set(&hwc->period_left, left); 1122 hwc->last_period = period; 1123 ret = 1; 1124 } 1125 /* 1126 * Quirk: certain CPUs dont like it if just 1 hw_event is left: 1127 */ 1128 if (unlikely(left < 2)) 1129 left = 2; 1130 1131 if (left > x86_pmu.max_period) 1132 left = x86_pmu.max_period; 1133 1134 if (x86_pmu.limit_period) 1135 left = x86_pmu.limit_period(event, left); 1136 1137 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; 1138 1139 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) || 1140 local64_read(&hwc->prev_count) != (u64)-left) { 1141 /* 1142 * The hw event starts counting from this event offset, 1143 * mark it to be able to extra future deltas: 1144 */ 1145 local64_set(&hwc->prev_count, (u64)-left); 1146 1147 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1148 } 1149 1150 /* 1151 * Due to erratum on certan cpu we need 1152 * a second write to be sure the register 1153 * is updated properly 1154 */ 1155 if (x86_pmu.perfctr_second_write) { 1156 wrmsrl(hwc->event_base, 1157 (u64)(-left) & x86_pmu.cntval_mask); 1158 } 1159 1160 perf_event_update_userpage(event); 1161 1162 return ret; 1163 } 1164 1165 void x86_pmu_enable_event(struct perf_event *event) 1166 { 1167 if (__this_cpu_read(cpu_hw_events.enabled)) 1168 __x86_pmu_enable_event(&event->hw, 1169 ARCH_PERFMON_EVENTSEL_ENABLE); 1170 } 1171 1172 /* 1173 * Add a single event to the PMU. 1174 * 1175 * The event is added to the group of enabled events 1176 * but only if it can be scehduled with existing events. 1177 */ 1178 static int x86_pmu_add(struct perf_event *event, int flags) 1179 { 1180 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1181 struct hw_perf_event *hwc; 1182 int assign[X86_PMC_IDX_MAX]; 1183 int n, n0, ret; 1184 1185 hwc = &event->hw; 1186 1187 n0 = cpuc->n_events; 1188 ret = n = collect_events(cpuc, event, false); 1189 if (ret < 0) 1190 goto out; 1191 1192 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1193 if (!(flags & PERF_EF_START)) 1194 hwc->state |= PERF_HES_ARCH; 1195 1196 /* 1197 * If group events scheduling transaction was started, 1198 * skip the schedulability test here, it will be performed 1199 * at commit time (->commit_txn) as a whole. 1200 */ 1201 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1202 goto done_collect; 1203 1204 ret = x86_pmu.schedule_events(cpuc, n, assign); 1205 if (ret) 1206 goto out; 1207 /* 1208 * copy new assignment, now we know it is possible 1209 * will be used by hw_perf_enable() 1210 */ 1211 memcpy(cpuc->assign, assign, n*sizeof(int)); 1212 1213 done_collect: 1214 /* 1215 * Commit the collect_events() state. See x86_pmu_del() and 1216 * x86_pmu_*_txn(). 1217 */ 1218 cpuc->n_events = n; 1219 cpuc->n_added += n - n0; 1220 cpuc->n_txn += n - n0; 1221 1222 ret = 0; 1223 out: 1224 return ret; 1225 } 1226 1227 static void x86_pmu_start(struct perf_event *event, int flags) 1228 { 1229 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1230 int idx = event->hw.idx; 1231 1232 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1233 return; 1234 1235 if (WARN_ON_ONCE(idx == -1)) 1236 return; 1237 1238 if (flags & PERF_EF_RELOAD) { 1239 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1240 x86_perf_event_set_period(event); 1241 } 1242 1243 event->hw.state = 0; 1244 1245 cpuc->events[idx] = event; 1246 __set_bit(idx, cpuc->active_mask); 1247 __set_bit(idx, cpuc->running); 1248 x86_pmu.enable(event); 1249 perf_event_update_userpage(event); 1250 } 1251 1252 void perf_event_print_debug(void) 1253 { 1254 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; 1255 u64 pebs, debugctl; 1256 struct cpu_hw_events *cpuc; 1257 unsigned long flags; 1258 int cpu, idx; 1259 1260 if (!x86_pmu.num_counters) 1261 return; 1262 1263 local_irq_save(flags); 1264 1265 cpu = smp_processor_id(); 1266 cpuc = &per_cpu(cpu_hw_events, cpu); 1267 1268 if (x86_pmu.version >= 2) { 1269 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); 1270 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 1271 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); 1272 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); 1273 1274 pr_info("\n"); 1275 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); 1276 pr_info("CPU#%d: status: %016llx\n", cpu, status); 1277 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); 1278 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); 1279 if (x86_pmu.pebs_constraints) { 1280 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); 1281 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); 1282 } 1283 if (x86_pmu.lbr_nr) { 1284 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1285 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); 1286 } 1287 } 1288 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); 1289 1290 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1291 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); 1292 rdmsrl(x86_pmu_event_addr(idx), pmc_count); 1293 1294 prev_left = per_cpu(pmc_prev_left[idx], cpu); 1295 1296 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", 1297 cpu, idx, pmc_ctrl); 1298 pr_info("CPU#%d: gen-PMC%d count: %016llx\n", 1299 cpu, idx, pmc_count); 1300 pr_info("CPU#%d: gen-PMC%d left: %016llx\n", 1301 cpu, idx, prev_left); 1302 } 1303 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) { 1304 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); 1305 1306 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", 1307 cpu, idx, pmc_count); 1308 } 1309 local_irq_restore(flags); 1310 } 1311 1312 void x86_pmu_stop(struct perf_event *event, int flags) 1313 { 1314 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1315 struct hw_perf_event *hwc = &event->hw; 1316 1317 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) { 1318 x86_pmu.disable(event); 1319 cpuc->events[hwc->idx] = NULL; 1320 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1321 hwc->state |= PERF_HES_STOPPED; 1322 } 1323 1324 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1325 /* 1326 * Drain the remaining delta count out of a event 1327 * that we are disabling: 1328 */ 1329 x86_perf_event_update(event); 1330 hwc->state |= PERF_HES_UPTODATE; 1331 } 1332 } 1333 1334 static void x86_pmu_del(struct perf_event *event, int flags) 1335 { 1336 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1337 int i; 1338 1339 /* 1340 * event is descheduled 1341 */ 1342 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED; 1343 1344 /* 1345 * If we're called during a txn, we don't need to do anything. 1346 * The events never got scheduled and ->cancel_txn will truncate 1347 * the event_list. 1348 * 1349 * XXX assumes any ->del() called during a TXN will only be on 1350 * an event added during that same TXN. 1351 */ 1352 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1353 return; 1354 1355 /* 1356 * Not a TXN, therefore cleanup properly. 1357 */ 1358 x86_pmu_stop(event, PERF_EF_UPDATE); 1359 1360 for (i = 0; i < cpuc->n_events; i++) { 1361 if (event == cpuc->event_list[i]) 1362 break; 1363 } 1364 1365 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ 1366 return; 1367 1368 /* If we have a newly added event; make sure to decrease n_added. */ 1369 if (i >= cpuc->n_events - cpuc->n_added) 1370 --cpuc->n_added; 1371 1372 if (x86_pmu.put_event_constraints) 1373 x86_pmu.put_event_constraints(cpuc, event); 1374 1375 /* Delete the array entry. */ 1376 while (++i < cpuc->n_events) { 1377 cpuc->event_list[i-1] = cpuc->event_list[i]; 1378 cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; 1379 } 1380 --cpuc->n_events; 1381 1382 perf_event_update_userpage(event); 1383 } 1384 1385 int x86_pmu_handle_irq(struct pt_regs *regs) 1386 { 1387 struct perf_sample_data data; 1388 struct cpu_hw_events *cpuc; 1389 struct perf_event *event; 1390 int idx, handled = 0; 1391 u64 val; 1392 1393 cpuc = this_cpu_ptr(&cpu_hw_events); 1394 1395 /* 1396 * Some chipsets need to unmask the LVTPC in a particular spot 1397 * inside the nmi handler. As a result, the unmasking was pushed 1398 * into all the nmi handlers. 1399 * 1400 * This generic handler doesn't seem to have any issues where the 1401 * unmasking occurs so it was left at the top. 1402 */ 1403 apic_write(APIC_LVTPC, APIC_DM_NMI); 1404 1405 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1406 if (!test_bit(idx, cpuc->active_mask)) { 1407 /* 1408 * Though we deactivated the counter some cpus 1409 * might still deliver spurious interrupts still 1410 * in flight. Catch them: 1411 */ 1412 if (__test_and_clear_bit(idx, cpuc->running)) 1413 handled++; 1414 continue; 1415 } 1416 1417 event = cpuc->events[idx]; 1418 1419 val = x86_perf_event_update(event); 1420 if (val & (1ULL << (x86_pmu.cntval_bits - 1))) 1421 continue; 1422 1423 /* 1424 * event overflow 1425 */ 1426 handled++; 1427 perf_sample_data_init(&data, 0, event->hw.last_period); 1428 1429 if (!x86_perf_event_set_period(event)) 1430 continue; 1431 1432 if (perf_event_overflow(event, &data, regs)) 1433 x86_pmu_stop(event, 0); 1434 } 1435 1436 if (handled) 1437 inc_irq_stat(apic_perf_irqs); 1438 1439 return handled; 1440 } 1441 1442 void perf_events_lapic_init(void) 1443 { 1444 if (!x86_pmu.apic || !x86_pmu_initialized()) 1445 return; 1446 1447 /* 1448 * Always use NMI for PMU 1449 */ 1450 apic_write(APIC_LVTPC, APIC_DM_NMI); 1451 } 1452 1453 static int 1454 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) 1455 { 1456 u64 start_clock; 1457 u64 finish_clock; 1458 int ret; 1459 1460 /* 1461 * All PMUs/events that share this PMI handler should make sure to 1462 * increment active_events for their events. 1463 */ 1464 if (!atomic_read(&active_events)) 1465 return NMI_DONE; 1466 1467 start_clock = sched_clock(); 1468 ret = x86_pmu.handle_irq(regs); 1469 finish_clock = sched_clock(); 1470 1471 perf_sample_event_took(finish_clock - start_clock); 1472 1473 return ret; 1474 } 1475 NOKPROBE_SYMBOL(perf_event_nmi_handler); 1476 1477 struct event_constraint emptyconstraint; 1478 struct event_constraint unconstrained; 1479 1480 static int 1481 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 1482 { 1483 unsigned int cpu = (long)hcpu; 1484 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 1485 int i, ret = NOTIFY_OK; 1486 1487 switch (action & ~CPU_TASKS_FROZEN) { 1488 case CPU_UP_PREPARE: 1489 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) 1490 cpuc->kfree_on_online[i] = NULL; 1491 if (x86_pmu.cpu_prepare) 1492 ret = x86_pmu.cpu_prepare(cpu); 1493 break; 1494 1495 case CPU_STARTING: 1496 if (x86_pmu.cpu_starting) 1497 x86_pmu.cpu_starting(cpu); 1498 break; 1499 1500 case CPU_ONLINE: 1501 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { 1502 kfree(cpuc->kfree_on_online[i]); 1503 cpuc->kfree_on_online[i] = NULL; 1504 } 1505 break; 1506 1507 case CPU_DYING: 1508 if (x86_pmu.cpu_dying) 1509 x86_pmu.cpu_dying(cpu); 1510 break; 1511 1512 case CPU_UP_CANCELED: 1513 case CPU_DEAD: 1514 if (x86_pmu.cpu_dead) 1515 x86_pmu.cpu_dead(cpu); 1516 break; 1517 1518 default: 1519 break; 1520 } 1521 1522 return ret; 1523 } 1524 1525 static void __init pmu_check_apic(void) 1526 { 1527 if (boot_cpu_has(X86_FEATURE_APIC)) 1528 return; 1529 1530 x86_pmu.apic = 0; 1531 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); 1532 pr_info("no hardware sampling interrupt available.\n"); 1533 1534 /* 1535 * If we have a PMU initialized but no APIC 1536 * interrupts, we cannot sample hardware 1537 * events (user-space has to fall back and 1538 * sample via a hrtimer based software event): 1539 */ 1540 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1541 1542 } 1543 1544 static struct attribute_group x86_pmu_format_group = { 1545 .name = "format", 1546 .attrs = NULL, 1547 }; 1548 1549 /* 1550 * Remove all undefined events (x86_pmu.event_map(id) == 0) 1551 * out of events_attr attributes. 1552 */ 1553 static void __init filter_events(struct attribute **attrs) 1554 { 1555 struct device_attribute *d; 1556 struct perf_pmu_events_attr *pmu_attr; 1557 int offset = 0; 1558 int i, j; 1559 1560 for (i = 0; attrs[i]; i++) { 1561 d = (struct device_attribute *)attrs[i]; 1562 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr); 1563 /* str trumps id */ 1564 if (pmu_attr->event_str) 1565 continue; 1566 if (x86_pmu.event_map(i + offset)) 1567 continue; 1568 1569 for (j = i; attrs[j]; j++) 1570 attrs[j] = attrs[j + 1]; 1571 1572 /* Check the shifted attr. */ 1573 i--; 1574 1575 /* 1576 * event_map() is index based, the attrs array is organized 1577 * by increasing event index. If we shift the events, then 1578 * we need to compensate for the event_map(), otherwise 1579 * we are looking up the wrong event in the map 1580 */ 1581 offset++; 1582 } 1583 } 1584 1585 /* Merge two pointer arrays */ 1586 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b) 1587 { 1588 struct attribute **new; 1589 int j, i; 1590 1591 for (j = 0; a[j]; j++) 1592 ; 1593 for (i = 0; b[i]; i++) 1594 j++; 1595 j++; 1596 1597 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL); 1598 if (!new) 1599 return NULL; 1600 1601 j = 0; 1602 for (i = 0; a[i]; i++) 1603 new[j++] = a[i]; 1604 for (i = 0; b[i]; i++) 1605 new[j++] = b[i]; 1606 new[j] = NULL; 1607 1608 return new; 1609 } 1610 1611 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) 1612 { 1613 struct perf_pmu_events_attr *pmu_attr = \ 1614 container_of(attr, struct perf_pmu_events_attr, attr); 1615 u64 config = x86_pmu.event_map(pmu_attr->id); 1616 1617 /* string trumps id */ 1618 if (pmu_attr->event_str) 1619 return sprintf(page, "%s", pmu_attr->event_str); 1620 1621 return x86_pmu.events_sysfs_show(page, config); 1622 } 1623 EXPORT_SYMBOL_GPL(events_sysfs_show); 1624 1625 EVENT_ATTR(cpu-cycles, CPU_CYCLES ); 1626 EVENT_ATTR(instructions, INSTRUCTIONS ); 1627 EVENT_ATTR(cache-references, CACHE_REFERENCES ); 1628 EVENT_ATTR(cache-misses, CACHE_MISSES ); 1629 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); 1630 EVENT_ATTR(branch-misses, BRANCH_MISSES ); 1631 EVENT_ATTR(bus-cycles, BUS_CYCLES ); 1632 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); 1633 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); 1634 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); 1635 1636 static struct attribute *empty_attrs; 1637 1638 static struct attribute *events_attr[] = { 1639 EVENT_PTR(CPU_CYCLES), 1640 EVENT_PTR(INSTRUCTIONS), 1641 EVENT_PTR(CACHE_REFERENCES), 1642 EVENT_PTR(CACHE_MISSES), 1643 EVENT_PTR(BRANCH_INSTRUCTIONS), 1644 EVENT_PTR(BRANCH_MISSES), 1645 EVENT_PTR(BUS_CYCLES), 1646 EVENT_PTR(STALLED_CYCLES_FRONTEND), 1647 EVENT_PTR(STALLED_CYCLES_BACKEND), 1648 EVENT_PTR(REF_CPU_CYCLES), 1649 NULL, 1650 }; 1651 1652 static struct attribute_group x86_pmu_events_group = { 1653 .name = "events", 1654 .attrs = events_attr, 1655 }; 1656 1657 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) 1658 { 1659 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 1660 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; 1661 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); 1662 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); 1663 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); 1664 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); 1665 ssize_t ret; 1666 1667 /* 1668 * We have whole page size to spend and just little data 1669 * to write, so we can safely use sprintf. 1670 */ 1671 ret = sprintf(page, "event=0x%02llx", event); 1672 1673 if (umask) 1674 ret += sprintf(page + ret, ",umask=0x%02llx", umask); 1675 1676 if (edge) 1677 ret += sprintf(page + ret, ",edge"); 1678 1679 if (pc) 1680 ret += sprintf(page + ret, ",pc"); 1681 1682 if (any) 1683 ret += sprintf(page + ret, ",any"); 1684 1685 if (inv) 1686 ret += sprintf(page + ret, ",inv"); 1687 1688 if (cmask) 1689 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); 1690 1691 ret += sprintf(page + ret, "\n"); 1692 1693 return ret; 1694 } 1695 1696 static int __init init_hw_perf_events(void) 1697 { 1698 struct x86_pmu_quirk *quirk; 1699 int err; 1700 1701 pr_info("Performance Events: "); 1702 1703 switch (boot_cpu_data.x86_vendor) { 1704 case X86_VENDOR_INTEL: 1705 err = intel_pmu_init(); 1706 break; 1707 case X86_VENDOR_AMD: 1708 err = amd_pmu_init(); 1709 break; 1710 default: 1711 err = -ENOTSUPP; 1712 } 1713 if (err != 0) { 1714 pr_cont("no PMU driver, software events only.\n"); 1715 return 0; 1716 } 1717 1718 pmu_check_apic(); 1719 1720 /* sanity check that the hardware exists or is emulated */ 1721 if (!check_hw_exists()) 1722 return 0; 1723 1724 pr_cont("%s PMU driver.\n", x86_pmu.name); 1725 1726 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ 1727 1728 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) 1729 quirk->func(); 1730 1731 if (!x86_pmu.intel_ctrl) 1732 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; 1733 1734 perf_events_lapic_init(); 1735 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); 1736 1737 unconstrained = (struct event_constraint) 1738 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, 1739 0, x86_pmu.num_counters, 0, 0); 1740 1741 x86_pmu_format_group.attrs = x86_pmu.format_attrs; 1742 1743 if (x86_pmu.event_attrs) 1744 x86_pmu_events_group.attrs = x86_pmu.event_attrs; 1745 1746 if (!x86_pmu.events_sysfs_show) 1747 x86_pmu_events_group.attrs = &empty_attrs; 1748 else 1749 filter_events(x86_pmu_events_group.attrs); 1750 1751 if (x86_pmu.cpu_events) { 1752 struct attribute **tmp; 1753 1754 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events); 1755 if (!WARN_ON(!tmp)) 1756 x86_pmu_events_group.attrs = tmp; 1757 } 1758 1759 pr_info("... version: %d\n", x86_pmu.version); 1760 pr_info("... bit width: %d\n", x86_pmu.cntval_bits); 1761 pr_info("... generic registers: %d\n", x86_pmu.num_counters); 1762 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); 1763 pr_info("... max period: %016Lx\n", x86_pmu.max_period); 1764 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed); 1765 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl); 1766 1767 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1768 perf_cpu_notifier(x86_pmu_notifier); 1769 1770 return 0; 1771 } 1772 early_initcall(init_hw_perf_events); 1773 1774 static inline void x86_pmu_read(struct perf_event *event) 1775 { 1776 x86_perf_event_update(event); 1777 } 1778 1779 /* 1780 * Start group events scheduling transaction 1781 * Set the flag to make pmu::enable() not perform the 1782 * schedulability test, it will be performed at commit time 1783 * 1784 * We only support PERF_PMU_TXN_ADD transactions. Save the 1785 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1786 * transactions. 1787 */ 1788 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1789 { 1790 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1791 1792 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ 1793 1794 cpuc->txn_flags = txn_flags; 1795 if (txn_flags & ~PERF_PMU_TXN_ADD) 1796 return; 1797 1798 perf_pmu_disable(pmu); 1799 __this_cpu_write(cpu_hw_events.n_txn, 0); 1800 } 1801 1802 /* 1803 * Stop group events scheduling transaction 1804 * Clear the flag and pmu::enable() will perform the 1805 * schedulability test. 1806 */ 1807 static void x86_pmu_cancel_txn(struct pmu *pmu) 1808 { 1809 unsigned int txn_flags; 1810 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1811 1812 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1813 1814 txn_flags = cpuc->txn_flags; 1815 cpuc->txn_flags = 0; 1816 if (txn_flags & ~PERF_PMU_TXN_ADD) 1817 return; 1818 1819 /* 1820 * Truncate collected array by the number of events added in this 1821 * transaction. See x86_pmu_add() and x86_pmu_*_txn(). 1822 */ 1823 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); 1824 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); 1825 perf_pmu_enable(pmu); 1826 } 1827 1828 /* 1829 * Commit group events scheduling transaction 1830 * Perform the group schedulability test as a whole 1831 * Return 0 if success 1832 * 1833 * Does not cancel the transaction on failure; expects the caller to do this. 1834 */ 1835 static int x86_pmu_commit_txn(struct pmu *pmu) 1836 { 1837 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1838 int assign[X86_PMC_IDX_MAX]; 1839 int n, ret; 1840 1841 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1842 1843 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 1844 cpuc->txn_flags = 0; 1845 return 0; 1846 } 1847 1848 n = cpuc->n_events; 1849 1850 if (!x86_pmu_initialized()) 1851 return -EAGAIN; 1852 1853 ret = x86_pmu.schedule_events(cpuc, n, assign); 1854 if (ret) 1855 return ret; 1856 1857 /* 1858 * copy new assignment, now we know it is possible 1859 * will be used by hw_perf_enable() 1860 */ 1861 memcpy(cpuc->assign, assign, n*sizeof(int)); 1862 1863 cpuc->txn_flags = 0; 1864 perf_pmu_enable(pmu); 1865 return 0; 1866 } 1867 /* 1868 * a fake_cpuc is used to validate event groups. Due to 1869 * the extra reg logic, we need to also allocate a fake 1870 * per_core and per_cpu structure. Otherwise, group events 1871 * using extra reg may conflict without the kernel being 1872 * able to catch this when the last event gets added to 1873 * the group. 1874 */ 1875 static void free_fake_cpuc(struct cpu_hw_events *cpuc) 1876 { 1877 kfree(cpuc->shared_regs); 1878 kfree(cpuc); 1879 } 1880 1881 static struct cpu_hw_events *allocate_fake_cpuc(void) 1882 { 1883 struct cpu_hw_events *cpuc; 1884 int cpu = raw_smp_processor_id(); 1885 1886 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); 1887 if (!cpuc) 1888 return ERR_PTR(-ENOMEM); 1889 1890 /* only needed, if we have extra_regs */ 1891 if (x86_pmu.extra_regs) { 1892 cpuc->shared_regs = allocate_shared_regs(cpu); 1893 if (!cpuc->shared_regs) 1894 goto error; 1895 } 1896 cpuc->is_fake = 1; 1897 return cpuc; 1898 error: 1899 free_fake_cpuc(cpuc); 1900 return ERR_PTR(-ENOMEM); 1901 } 1902 1903 /* 1904 * validate that we can schedule this event 1905 */ 1906 static int validate_event(struct perf_event *event) 1907 { 1908 struct cpu_hw_events *fake_cpuc; 1909 struct event_constraint *c; 1910 int ret = 0; 1911 1912 fake_cpuc = allocate_fake_cpuc(); 1913 if (IS_ERR(fake_cpuc)) 1914 return PTR_ERR(fake_cpuc); 1915 1916 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event); 1917 1918 if (!c || !c->weight) 1919 ret = -EINVAL; 1920 1921 if (x86_pmu.put_event_constraints) 1922 x86_pmu.put_event_constraints(fake_cpuc, event); 1923 1924 free_fake_cpuc(fake_cpuc); 1925 1926 return ret; 1927 } 1928 1929 /* 1930 * validate a single event group 1931 * 1932 * validation include: 1933 * - check events are compatible which each other 1934 * - events do not compete for the same counter 1935 * - number of events <= number of counters 1936 * 1937 * validation ensures the group can be loaded onto the 1938 * PMU if it was the only group available. 1939 */ 1940 static int validate_group(struct perf_event *event) 1941 { 1942 struct perf_event *leader = event->group_leader; 1943 struct cpu_hw_events *fake_cpuc; 1944 int ret = -EINVAL, n; 1945 1946 fake_cpuc = allocate_fake_cpuc(); 1947 if (IS_ERR(fake_cpuc)) 1948 return PTR_ERR(fake_cpuc); 1949 /* 1950 * the event is not yet connected with its 1951 * siblings therefore we must first collect 1952 * existing siblings, then add the new event 1953 * before we can simulate the scheduling 1954 */ 1955 n = collect_events(fake_cpuc, leader, true); 1956 if (n < 0) 1957 goto out; 1958 1959 fake_cpuc->n_events = n; 1960 n = collect_events(fake_cpuc, event, false); 1961 if (n < 0) 1962 goto out; 1963 1964 fake_cpuc->n_events = n; 1965 1966 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); 1967 1968 out: 1969 free_fake_cpuc(fake_cpuc); 1970 return ret; 1971 } 1972 1973 static int x86_pmu_event_init(struct perf_event *event) 1974 { 1975 struct pmu *tmp; 1976 int err; 1977 1978 switch (event->attr.type) { 1979 case PERF_TYPE_RAW: 1980 case PERF_TYPE_HARDWARE: 1981 case PERF_TYPE_HW_CACHE: 1982 break; 1983 1984 default: 1985 return -ENOENT; 1986 } 1987 1988 err = __x86_pmu_event_init(event); 1989 if (!err) { 1990 /* 1991 * we temporarily connect event to its pmu 1992 * such that validate_group() can classify 1993 * it as an x86 event using is_x86_event() 1994 */ 1995 tmp = event->pmu; 1996 event->pmu = &pmu; 1997 1998 if (event->group_leader != event) 1999 err = validate_group(event); 2000 else 2001 err = validate_event(event); 2002 2003 event->pmu = tmp; 2004 } 2005 if (err) { 2006 if (event->destroy) 2007 event->destroy(event); 2008 } 2009 2010 if (ACCESS_ONCE(x86_pmu.attr_rdpmc)) 2011 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED; 2012 2013 return err; 2014 } 2015 2016 static void refresh_pce(void *ignored) 2017 { 2018 if (current->mm) 2019 load_mm_cr4(current->mm); 2020 } 2021 2022 static void x86_pmu_event_mapped(struct perf_event *event) 2023 { 2024 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2025 return; 2026 2027 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1) 2028 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1); 2029 } 2030 2031 static void x86_pmu_event_unmapped(struct perf_event *event) 2032 { 2033 if (!current->mm) 2034 return; 2035 2036 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2037 return; 2038 2039 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed)) 2040 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1); 2041 } 2042 2043 static int x86_pmu_event_idx(struct perf_event *event) 2044 { 2045 int idx = event->hw.idx; 2046 2047 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED)) 2048 return 0; 2049 2050 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) { 2051 idx -= INTEL_PMC_IDX_FIXED; 2052 idx |= 1 << 30; 2053 } 2054 2055 return idx + 1; 2056 } 2057 2058 static ssize_t get_attr_rdpmc(struct device *cdev, 2059 struct device_attribute *attr, 2060 char *buf) 2061 { 2062 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); 2063 } 2064 2065 static ssize_t set_attr_rdpmc(struct device *cdev, 2066 struct device_attribute *attr, 2067 const char *buf, size_t count) 2068 { 2069 unsigned long val; 2070 ssize_t ret; 2071 2072 ret = kstrtoul(buf, 0, &val); 2073 if (ret) 2074 return ret; 2075 2076 if (val > 2) 2077 return -EINVAL; 2078 2079 if (x86_pmu.attr_rdpmc_broken) 2080 return -ENOTSUPP; 2081 2082 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) { 2083 /* 2084 * Changing into or out of always available, aka 2085 * perf-event-bypassing mode. This path is extremely slow, 2086 * but only root can trigger it, so it's okay. 2087 */ 2088 if (val == 2) 2089 static_key_slow_inc(&rdpmc_always_available); 2090 else 2091 static_key_slow_dec(&rdpmc_always_available); 2092 on_each_cpu(refresh_pce, NULL, 1); 2093 } 2094 2095 x86_pmu.attr_rdpmc = val; 2096 2097 return count; 2098 } 2099 2100 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); 2101 2102 static struct attribute *x86_pmu_attrs[] = { 2103 &dev_attr_rdpmc.attr, 2104 NULL, 2105 }; 2106 2107 static struct attribute_group x86_pmu_attr_group = { 2108 .attrs = x86_pmu_attrs, 2109 }; 2110 2111 static const struct attribute_group *x86_pmu_attr_groups[] = { 2112 &x86_pmu_attr_group, 2113 &x86_pmu_format_group, 2114 &x86_pmu_events_group, 2115 NULL, 2116 }; 2117 2118 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 2119 { 2120 if (x86_pmu.sched_task) 2121 x86_pmu.sched_task(ctx, sched_in); 2122 } 2123 2124 void perf_check_microcode(void) 2125 { 2126 if (x86_pmu.check_microcode) 2127 x86_pmu.check_microcode(); 2128 } 2129 EXPORT_SYMBOL_GPL(perf_check_microcode); 2130 2131 static struct pmu pmu = { 2132 .pmu_enable = x86_pmu_enable, 2133 .pmu_disable = x86_pmu_disable, 2134 2135 .attr_groups = x86_pmu_attr_groups, 2136 2137 .event_init = x86_pmu_event_init, 2138 2139 .event_mapped = x86_pmu_event_mapped, 2140 .event_unmapped = x86_pmu_event_unmapped, 2141 2142 .add = x86_pmu_add, 2143 .del = x86_pmu_del, 2144 .start = x86_pmu_start, 2145 .stop = x86_pmu_stop, 2146 .read = x86_pmu_read, 2147 2148 .start_txn = x86_pmu_start_txn, 2149 .cancel_txn = x86_pmu_cancel_txn, 2150 .commit_txn = x86_pmu_commit_txn, 2151 2152 .event_idx = x86_pmu_event_idx, 2153 .sched_task = x86_pmu_sched_task, 2154 .task_ctx_size = sizeof(struct x86_perf_task_context), 2155 }; 2156 2157 void arch_perf_update_userpage(struct perf_event *event, 2158 struct perf_event_mmap_page *userpg, u64 now) 2159 { 2160 struct cyc2ns_data *data; 2161 2162 userpg->cap_user_time = 0; 2163 userpg->cap_user_time_zero = 0; 2164 userpg->cap_user_rdpmc = 2165 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED); 2166 userpg->pmc_width = x86_pmu.cntval_bits; 2167 2168 if (!sched_clock_stable()) 2169 return; 2170 2171 data = cyc2ns_read_begin(); 2172 2173 /* 2174 * Internal timekeeping for enabled/running/stopped times 2175 * is always in the local_clock domain. 2176 */ 2177 userpg->cap_user_time = 1; 2178 userpg->time_mult = data->cyc2ns_mul; 2179 userpg->time_shift = data->cyc2ns_shift; 2180 userpg->time_offset = data->cyc2ns_offset - now; 2181 2182 /* 2183 * cap_user_time_zero doesn't make sense when we're using a different 2184 * time base for the records. 2185 */ 2186 if (!event->attr.use_clockid) { 2187 userpg->cap_user_time_zero = 1; 2188 userpg->time_zero = data->cyc2ns_offset; 2189 } 2190 2191 cyc2ns_read_end(data); 2192 } 2193 2194 /* 2195 * callchain support 2196 */ 2197 2198 static int backtrace_stack(void *data, char *name) 2199 { 2200 return 0; 2201 } 2202 2203 static int backtrace_address(void *data, unsigned long addr, int reliable) 2204 { 2205 struct perf_callchain_entry_ctx *entry = data; 2206 2207 return perf_callchain_store(entry, addr); 2208 } 2209 2210 static const struct stacktrace_ops backtrace_ops = { 2211 .stack = backtrace_stack, 2212 .address = backtrace_address, 2213 .walk_stack = print_context_stack_bp, 2214 }; 2215 2216 void 2217 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2218 { 2219 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2220 /* TODO: We don't support guest os callchain now */ 2221 return; 2222 } 2223 2224 perf_callchain_store(entry, regs->ip); 2225 2226 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry); 2227 } 2228 2229 static inline int 2230 valid_user_frame(const void __user *fp, unsigned long size) 2231 { 2232 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 2233 } 2234 2235 static unsigned long get_segment_base(unsigned int segment) 2236 { 2237 struct desc_struct *desc; 2238 int idx = segment >> 3; 2239 2240 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { 2241 #ifdef CONFIG_MODIFY_LDT_SYSCALL 2242 struct ldt_struct *ldt; 2243 2244 if (idx > LDT_ENTRIES) 2245 return 0; 2246 2247 /* IRQs are off, so this synchronizes with smp_store_release */ 2248 ldt = lockless_dereference(current->active_mm->context.ldt); 2249 if (!ldt || idx > ldt->size) 2250 return 0; 2251 2252 desc = &ldt->entries[idx]; 2253 #else 2254 return 0; 2255 #endif 2256 } else { 2257 if (idx > GDT_ENTRIES) 2258 return 0; 2259 2260 desc = raw_cpu_ptr(gdt_page.gdt) + idx; 2261 } 2262 2263 return get_desc_base(desc); 2264 } 2265 2266 #ifdef CONFIG_IA32_EMULATION 2267 2268 #include <asm/compat.h> 2269 2270 static inline int 2271 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2272 { 2273 /* 32-bit process in 64-bit kernel. */ 2274 unsigned long ss_base, cs_base; 2275 struct stack_frame_ia32 frame; 2276 const void __user *fp; 2277 2278 if (!test_thread_flag(TIF_IA32)) 2279 return 0; 2280 2281 cs_base = get_segment_base(regs->cs); 2282 ss_base = get_segment_base(regs->ss); 2283 2284 fp = compat_ptr(ss_base + regs->bp); 2285 pagefault_disable(); 2286 while (entry->nr < entry->max_stack) { 2287 unsigned long bytes; 2288 frame.next_frame = 0; 2289 frame.return_address = 0; 2290 2291 if (!access_ok(VERIFY_READ, fp, 8)) 2292 break; 2293 2294 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4); 2295 if (bytes != 0) 2296 break; 2297 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4); 2298 if (bytes != 0) 2299 break; 2300 2301 if (!valid_user_frame(fp, sizeof(frame))) 2302 break; 2303 2304 perf_callchain_store(entry, cs_base + frame.return_address); 2305 fp = compat_ptr(ss_base + frame.next_frame); 2306 } 2307 pagefault_enable(); 2308 return 1; 2309 } 2310 #else 2311 static inline int 2312 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) 2313 { 2314 return 0; 2315 } 2316 #endif 2317 2318 void 2319 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 2320 { 2321 struct stack_frame frame; 2322 const void __user *fp; 2323 2324 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2325 /* TODO: We don't support guest os callchain now */ 2326 return; 2327 } 2328 2329 /* 2330 * We don't know what to do with VM86 stacks.. ignore them for now. 2331 */ 2332 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) 2333 return; 2334 2335 fp = (void __user *)regs->bp; 2336 2337 perf_callchain_store(entry, regs->ip); 2338 2339 if (!current->mm) 2340 return; 2341 2342 if (perf_callchain_user32(regs, entry)) 2343 return; 2344 2345 pagefault_disable(); 2346 while (entry->nr < entry->max_stack) { 2347 unsigned long bytes; 2348 frame.next_frame = NULL; 2349 frame.return_address = 0; 2350 2351 if (!access_ok(VERIFY_READ, fp, 16)) 2352 break; 2353 2354 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8); 2355 if (bytes != 0) 2356 break; 2357 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8); 2358 if (bytes != 0) 2359 break; 2360 2361 if (!valid_user_frame(fp, sizeof(frame))) 2362 break; 2363 2364 perf_callchain_store(entry, frame.return_address); 2365 fp = (void __user *)frame.next_frame; 2366 } 2367 pagefault_enable(); 2368 } 2369 2370 /* 2371 * Deal with code segment offsets for the various execution modes: 2372 * 2373 * VM86 - the good olde 16 bit days, where the linear address is 2374 * 20 bits and we use regs->ip + 0x10 * regs->cs. 2375 * 2376 * IA32 - Where we need to look at GDT/LDT segment descriptor tables 2377 * to figure out what the 32bit base address is. 2378 * 2379 * X32 - has TIF_X32 set, but is running in x86_64 2380 * 2381 * X86_64 - CS,DS,SS,ES are all zero based. 2382 */ 2383 static unsigned long code_segment_base(struct pt_regs *regs) 2384 { 2385 /* 2386 * For IA32 we look at the GDT/LDT segment base to convert the 2387 * effective IP to a linear address. 2388 */ 2389 2390 #ifdef CONFIG_X86_32 2391 /* 2392 * If we are in VM86 mode, add the segment offset to convert to a 2393 * linear address. 2394 */ 2395 if (regs->flags & X86_VM_MASK) 2396 return 0x10 * regs->cs; 2397 2398 if (user_mode(regs) && regs->cs != __USER_CS) 2399 return get_segment_base(regs->cs); 2400 #else 2401 if (user_mode(regs) && !user_64bit_mode(regs) && 2402 regs->cs != __USER32_CS) 2403 return get_segment_base(regs->cs); 2404 #endif 2405 return 0; 2406 } 2407 2408 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2409 { 2410 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) 2411 return perf_guest_cbs->get_guest_ip(); 2412 2413 return regs->ip + code_segment_base(regs); 2414 } 2415 2416 unsigned long perf_misc_flags(struct pt_regs *regs) 2417 { 2418 int misc = 0; 2419 2420 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { 2421 if (perf_guest_cbs->is_user_mode()) 2422 misc |= PERF_RECORD_MISC_GUEST_USER; 2423 else 2424 misc |= PERF_RECORD_MISC_GUEST_KERNEL; 2425 } else { 2426 if (user_mode(regs)) 2427 misc |= PERF_RECORD_MISC_USER; 2428 else 2429 misc |= PERF_RECORD_MISC_KERNEL; 2430 } 2431 2432 if (regs->flags & PERF_EFLAGS_EXACT) 2433 misc |= PERF_RECORD_MISC_EXACT_IP; 2434 2435 return misc; 2436 } 2437 2438 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) 2439 { 2440 cap->version = x86_pmu.version; 2441 cap->num_counters_gp = x86_pmu.num_counters; 2442 cap->num_counters_fixed = x86_pmu.num_counters_fixed; 2443 cap->bit_width_gp = x86_pmu.cntval_bits; 2444 cap->bit_width_fixed = x86_pmu.cntval_bits; 2445 cap->events_mask = (unsigned int)x86_pmu.events_maskl; 2446 cap->events_mask_len = x86_pmu.events_mask_len; 2447 } 2448 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); 2449