xref: /openbmc/linux/arch/x86/events/amd/ibs.c (revision 06ba8020)
1 /*
2  * Performance events - AMD IBS
3  *
4  *  Copyright (C) 2011 Advanced Micro Devices, Inc., Robert Richter
5  *
6  *  For licencing details see kernel-base/COPYING
7  */
8 
9 #include <linux/perf_event.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pci.h>
13 #include <linux/ptrace.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/sched/clock.h>
16 
17 #include <asm/apic.h>
18 
19 #include "../perf_event.h"
20 
21 static u32 ibs_caps;
22 
23 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD)
24 
25 #include <linux/kprobes.h>
26 #include <linux/hardirq.h>
27 
28 #include <asm/nmi.h>
29 #include <asm/amd-ibs.h>
30 
31 #define IBS_FETCH_CONFIG_MASK	(IBS_FETCH_RAND_EN | IBS_FETCH_MAX_CNT)
32 #define IBS_OP_CONFIG_MASK	IBS_OP_MAX_CNT
33 
34 
35 /*
36  * IBS states:
37  *
38  * ENABLED; tracks the pmu::add(), pmu::del() state, when set the counter is taken
39  * and any further add()s must fail.
40  *
41  * STARTED/STOPPING/STOPPED; deal with pmu::start(), pmu::stop() state but are
42  * complicated by the fact that the IBS hardware can send late NMIs (ie. after
43  * we've cleared the EN bit).
44  *
45  * In order to consume these late NMIs we have the STOPPED state, any NMI that
46  * happens after we've cleared the EN state will clear this bit and report the
47  * NMI handled (this is fundamentally racy in the face or multiple NMI sources,
48  * someone else can consume our BIT and our NMI will go unhandled).
49  *
50  * And since we cannot set/clear this separate bit together with the EN bit,
51  * there are races; if we cleared STARTED early, an NMI could land in
52  * between clearing STARTED and clearing the EN bit (in fact multiple NMIs
53  * could happen if the period is small enough), and consume our STOPPED bit
54  * and trigger streams of unhandled NMIs.
55  *
56  * If, however, we clear STARTED late, an NMI can hit between clearing the
57  * EN bit and clearing STARTED, still see STARTED set and process the event.
58  * If this event will have the VALID bit clear, we bail properly, but this
59  * is not a given. With VALID set we can end up calling pmu::stop() again
60  * (the throttle logic) and trigger the WARNs in there.
61  *
62  * So what we do is set STOPPING before clearing EN to avoid the pmu::stop()
63  * nesting, and clear STARTED late, so that we have a well defined state over
64  * the clearing of the EN bit.
65  *
66  * XXX: we could probably be using !atomic bitops for all this.
67  */
68 
69 enum ibs_states {
70 	IBS_ENABLED	= 0,
71 	IBS_STARTED	= 1,
72 	IBS_STOPPING	= 2,
73 	IBS_STOPPED	= 3,
74 
75 	IBS_MAX_STATES,
76 };
77 
78 struct cpu_perf_ibs {
79 	struct perf_event	*event;
80 	unsigned long		state[BITS_TO_LONGS(IBS_MAX_STATES)];
81 };
82 
83 struct perf_ibs {
84 	struct pmu			pmu;
85 	unsigned int			msr;
86 	u64				config_mask;
87 	u64				cnt_mask;
88 	u64				enable_mask;
89 	u64				valid_mask;
90 	u64				max_period;
91 	unsigned long			offset_mask[1];
92 	int				offset_max;
93 	unsigned int			fetch_count_reset_broken : 1;
94 	unsigned int			fetch_ignore_if_zero_rip : 1;
95 	struct cpu_perf_ibs __percpu	*pcpu;
96 
97 	u64				(*get_count)(u64 config);
98 };
99 
100 static int
101 perf_event_set_period(struct hw_perf_event *hwc, u64 min, u64 max, u64 *hw_period)
102 {
103 	s64 left = local64_read(&hwc->period_left);
104 	s64 period = hwc->sample_period;
105 	int overflow = 0;
106 
107 	/*
108 	 * If we are way outside a reasonable range then just skip forward:
109 	 */
110 	if (unlikely(left <= -period)) {
111 		left = period;
112 		local64_set(&hwc->period_left, left);
113 		hwc->last_period = period;
114 		overflow = 1;
115 	}
116 
117 	if (unlikely(left < (s64)min)) {
118 		left += period;
119 		local64_set(&hwc->period_left, left);
120 		hwc->last_period = period;
121 		overflow = 1;
122 	}
123 
124 	/*
125 	 * If the hw period that triggers the sw overflow is too short
126 	 * we might hit the irq handler. This biases the results.
127 	 * Thus we shorten the next-to-last period and set the last
128 	 * period to the max period.
129 	 */
130 	if (left > max) {
131 		left -= max;
132 		if (left > max)
133 			left = max;
134 		else if (left < min)
135 			left = min;
136 	}
137 
138 	*hw_period = (u64)left;
139 
140 	return overflow;
141 }
142 
143 static  int
144 perf_event_try_update(struct perf_event *event, u64 new_raw_count, int width)
145 {
146 	struct hw_perf_event *hwc = &event->hw;
147 	int shift = 64 - width;
148 	u64 prev_raw_count;
149 	u64 delta;
150 
151 	/*
152 	 * Careful: an NMI might modify the previous event value.
153 	 *
154 	 * Our tactic to handle this is to first atomically read and
155 	 * exchange a new raw count - then add that new-prev delta
156 	 * count to the generic event atomically:
157 	 */
158 	prev_raw_count = local64_read(&hwc->prev_count);
159 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 					new_raw_count) != prev_raw_count)
161 		return 0;
162 
163 	/*
164 	 * Now we have the new raw value and have updated the prev
165 	 * timestamp already. We can now calculate the elapsed delta
166 	 * (event-)time and add that to the generic event.
167 	 *
168 	 * Careful, not all hw sign-extends above the physical width
169 	 * of the count.
170 	 */
171 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
172 	delta >>= shift;
173 
174 	local64_add(delta, &event->count);
175 	local64_sub(delta, &hwc->period_left);
176 
177 	return 1;
178 }
179 
180 static struct perf_ibs perf_ibs_fetch;
181 static struct perf_ibs perf_ibs_op;
182 
183 static struct perf_ibs *get_ibs_pmu(int type)
184 {
185 	if (perf_ibs_fetch.pmu.type == type)
186 		return &perf_ibs_fetch;
187 	if (perf_ibs_op.pmu.type == type)
188 		return &perf_ibs_op;
189 	return NULL;
190 }
191 
192 /*
193  * Use IBS for precise event sampling:
194  *
195  *  perf record -a -e cpu-cycles:p ...    # use ibs op counting cycle count
196  *  perf record -a -e r076:p ...          # same as -e cpu-cycles:p
197  *  perf record -a -e r0C1:p ...          # use ibs op counting micro-ops
198  *
199  * IbsOpCntCtl (bit 19) of IBS Execution Control Register (IbsOpCtl,
200  * MSRC001_1033) is used to select either cycle or micro-ops counting
201  * mode.
202  *
203  * The rip of IBS samples has skid 0. Thus, IBS supports precise
204  * levels 1 and 2 and the PERF_EFLAGS_EXACT is set. In rare cases the
205  * rip is invalid when IBS was not able to record the rip correctly.
206  * We clear PERF_EFLAGS_EXACT and take the rip from pt_regs then.
207  *
208  */
209 static int perf_ibs_precise_event(struct perf_event *event, u64 *config)
210 {
211 	switch (event->attr.precise_ip) {
212 	case 0:
213 		return -ENOENT;
214 	case 1:
215 	case 2:
216 		break;
217 	default:
218 		return -EOPNOTSUPP;
219 	}
220 
221 	switch (event->attr.type) {
222 	case PERF_TYPE_HARDWARE:
223 		switch (event->attr.config) {
224 		case PERF_COUNT_HW_CPU_CYCLES:
225 			*config = 0;
226 			return 0;
227 		}
228 		break;
229 	case PERF_TYPE_RAW:
230 		switch (event->attr.config) {
231 		case 0x0076:
232 			*config = 0;
233 			return 0;
234 		case 0x00C1:
235 			*config = IBS_OP_CNT_CTL;
236 			return 0;
237 		}
238 		break;
239 	default:
240 		return -ENOENT;
241 	}
242 
243 	return -EOPNOTSUPP;
244 }
245 
246 static int perf_ibs_init(struct perf_event *event)
247 {
248 	struct hw_perf_event *hwc = &event->hw;
249 	struct perf_ibs *perf_ibs;
250 	u64 max_cnt, config;
251 	int ret;
252 
253 	perf_ibs = get_ibs_pmu(event->attr.type);
254 	if (perf_ibs) {
255 		config = event->attr.config;
256 	} else {
257 		perf_ibs = &perf_ibs_op;
258 		ret = perf_ibs_precise_event(event, &config);
259 		if (ret)
260 			return ret;
261 	}
262 
263 	if (event->pmu != &perf_ibs->pmu)
264 		return -ENOENT;
265 
266 	if (config & ~perf_ibs->config_mask)
267 		return -EINVAL;
268 
269 	if (hwc->sample_period) {
270 		if (config & perf_ibs->cnt_mask)
271 			/* raw max_cnt may not be set */
272 			return -EINVAL;
273 		if (!event->attr.sample_freq && hwc->sample_period & 0x0f)
274 			/*
275 			 * lower 4 bits can not be set in ibs max cnt,
276 			 * but allowing it in case we adjust the
277 			 * sample period to set a frequency.
278 			 */
279 			return -EINVAL;
280 		hwc->sample_period &= ~0x0FULL;
281 		if (!hwc->sample_period)
282 			hwc->sample_period = 0x10;
283 	} else {
284 		max_cnt = config & perf_ibs->cnt_mask;
285 		config &= ~perf_ibs->cnt_mask;
286 		event->attr.sample_period = max_cnt << 4;
287 		hwc->sample_period = event->attr.sample_period;
288 	}
289 
290 	if (!hwc->sample_period)
291 		return -EINVAL;
292 
293 	/*
294 	 * If we modify hwc->sample_period, we also need to update
295 	 * hwc->last_period and hwc->period_left.
296 	 */
297 	hwc->last_period = hwc->sample_period;
298 	local64_set(&hwc->period_left, hwc->sample_period);
299 
300 	hwc->config_base = perf_ibs->msr;
301 	hwc->config = config;
302 
303 	return 0;
304 }
305 
306 static int perf_ibs_set_period(struct perf_ibs *perf_ibs,
307 			       struct hw_perf_event *hwc, u64 *period)
308 {
309 	int overflow;
310 
311 	/* ignore lower 4 bits in min count: */
312 	overflow = perf_event_set_period(hwc, 1<<4, perf_ibs->max_period, period);
313 	local64_set(&hwc->prev_count, 0);
314 
315 	return overflow;
316 }
317 
318 static u64 get_ibs_fetch_count(u64 config)
319 {
320 	union ibs_fetch_ctl fetch_ctl = (union ibs_fetch_ctl)config;
321 
322 	return fetch_ctl.fetch_cnt << 4;
323 }
324 
325 static u64 get_ibs_op_count(u64 config)
326 {
327 	union ibs_op_ctl op_ctl = (union ibs_op_ctl)config;
328 	u64 count = 0;
329 
330 	/*
331 	 * If the internal 27-bit counter rolled over, the count is MaxCnt
332 	 * and the lower 7 bits of CurCnt are randomized.
333 	 * Otherwise CurCnt has the full 27-bit current counter value.
334 	 */
335 	if (op_ctl.op_val) {
336 		count = op_ctl.opmaxcnt << 4;
337 		if (ibs_caps & IBS_CAPS_OPCNTEXT)
338 			count += op_ctl.opmaxcnt_ext << 20;
339 	} else if (ibs_caps & IBS_CAPS_RDWROPCNT) {
340 		count = op_ctl.opcurcnt;
341 	}
342 
343 	return count;
344 }
345 
346 static void
347 perf_ibs_event_update(struct perf_ibs *perf_ibs, struct perf_event *event,
348 		      u64 *config)
349 {
350 	u64 count = perf_ibs->get_count(*config);
351 
352 	/*
353 	 * Set width to 64 since we do not overflow on max width but
354 	 * instead on max count. In perf_ibs_set_period() we clear
355 	 * prev count manually on overflow.
356 	 */
357 	while (!perf_event_try_update(event, count, 64)) {
358 		rdmsrl(event->hw.config_base, *config);
359 		count = perf_ibs->get_count(*config);
360 	}
361 }
362 
363 static inline void perf_ibs_enable_event(struct perf_ibs *perf_ibs,
364 					 struct hw_perf_event *hwc, u64 config)
365 {
366 	u64 tmp = hwc->config | config;
367 
368 	if (perf_ibs->fetch_count_reset_broken)
369 		wrmsrl(hwc->config_base, tmp & ~perf_ibs->enable_mask);
370 
371 	wrmsrl(hwc->config_base, tmp | perf_ibs->enable_mask);
372 }
373 
374 /*
375  * Erratum #420 Instruction-Based Sampling Engine May Generate
376  * Interrupt that Cannot Be Cleared:
377  *
378  * Must clear counter mask first, then clear the enable bit. See
379  * Revision Guide for AMD Family 10h Processors, Publication #41322.
380  */
381 static inline void perf_ibs_disable_event(struct perf_ibs *perf_ibs,
382 					  struct hw_perf_event *hwc, u64 config)
383 {
384 	config &= ~perf_ibs->cnt_mask;
385 	if (boot_cpu_data.x86 == 0x10)
386 		wrmsrl(hwc->config_base, config);
387 	config &= ~perf_ibs->enable_mask;
388 	wrmsrl(hwc->config_base, config);
389 }
390 
391 /*
392  * We cannot restore the ibs pmu state, so we always needs to update
393  * the event while stopping it and then reset the state when starting
394  * again. Thus, ignoring PERF_EF_RELOAD and PERF_EF_UPDATE flags in
395  * perf_ibs_start()/perf_ibs_stop() and instead always do it.
396  */
397 static void perf_ibs_start(struct perf_event *event, int flags)
398 {
399 	struct hw_perf_event *hwc = &event->hw;
400 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
401 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
402 	u64 period, config = 0;
403 
404 	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
405 		return;
406 
407 	WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
408 	hwc->state = 0;
409 
410 	perf_ibs_set_period(perf_ibs, hwc, &period);
411 	if (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_OPCNTEXT)) {
412 		config |= period & IBS_OP_MAX_CNT_EXT_MASK;
413 		period &= ~IBS_OP_MAX_CNT_EXT_MASK;
414 	}
415 	config |= period >> 4;
416 
417 	/*
418 	 * Set STARTED before enabling the hardware, such that a subsequent NMI
419 	 * must observe it.
420 	 */
421 	set_bit(IBS_STARTED,    pcpu->state);
422 	clear_bit(IBS_STOPPING, pcpu->state);
423 	perf_ibs_enable_event(perf_ibs, hwc, config);
424 
425 	perf_event_update_userpage(event);
426 }
427 
428 static void perf_ibs_stop(struct perf_event *event, int flags)
429 {
430 	struct hw_perf_event *hwc = &event->hw;
431 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
432 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
433 	u64 config;
434 	int stopping;
435 
436 	if (test_and_set_bit(IBS_STOPPING, pcpu->state))
437 		return;
438 
439 	stopping = test_bit(IBS_STARTED, pcpu->state);
440 
441 	if (!stopping && (hwc->state & PERF_HES_UPTODATE))
442 		return;
443 
444 	rdmsrl(hwc->config_base, config);
445 
446 	if (stopping) {
447 		/*
448 		 * Set STOPPED before disabling the hardware, such that it
449 		 * must be visible to NMIs the moment we clear the EN bit,
450 		 * at which point we can generate an !VALID sample which
451 		 * we need to consume.
452 		 */
453 		set_bit(IBS_STOPPED, pcpu->state);
454 		perf_ibs_disable_event(perf_ibs, hwc, config);
455 		/*
456 		 * Clear STARTED after disabling the hardware; if it were
457 		 * cleared before an NMI hitting after the clear but before
458 		 * clearing the EN bit might think it a spurious NMI and not
459 		 * handle it.
460 		 *
461 		 * Clearing it after, however, creates the problem of the NMI
462 		 * handler seeing STARTED but not having a valid sample.
463 		 */
464 		clear_bit(IBS_STARTED, pcpu->state);
465 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
466 		hwc->state |= PERF_HES_STOPPED;
467 	}
468 
469 	if (hwc->state & PERF_HES_UPTODATE)
470 		return;
471 
472 	/*
473 	 * Clear valid bit to not count rollovers on update, rollovers
474 	 * are only updated in the irq handler.
475 	 */
476 	config &= ~perf_ibs->valid_mask;
477 
478 	perf_ibs_event_update(perf_ibs, event, &config);
479 	hwc->state |= PERF_HES_UPTODATE;
480 }
481 
482 static int perf_ibs_add(struct perf_event *event, int flags)
483 {
484 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
485 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
486 
487 	if (test_and_set_bit(IBS_ENABLED, pcpu->state))
488 		return -ENOSPC;
489 
490 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
491 
492 	pcpu->event = event;
493 
494 	if (flags & PERF_EF_START)
495 		perf_ibs_start(event, PERF_EF_RELOAD);
496 
497 	return 0;
498 }
499 
500 static void perf_ibs_del(struct perf_event *event, int flags)
501 {
502 	struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
503 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
504 
505 	if (!test_and_clear_bit(IBS_ENABLED, pcpu->state))
506 		return;
507 
508 	perf_ibs_stop(event, PERF_EF_UPDATE);
509 
510 	pcpu->event = NULL;
511 
512 	perf_event_update_userpage(event);
513 }
514 
515 static void perf_ibs_read(struct perf_event *event) { }
516 
517 /*
518  * We need to initialize with empty group if all attributes in the
519  * group are dynamic.
520  */
521 static struct attribute *attrs_empty[] = {
522 	NULL,
523 };
524 
525 static struct attribute_group empty_format_group = {
526 	.name = "format",
527 	.attrs = attrs_empty,
528 };
529 
530 static struct attribute_group empty_caps_group = {
531 	.name = "caps",
532 	.attrs = attrs_empty,
533 };
534 
535 static const struct attribute_group *empty_attr_groups[] = {
536 	&empty_format_group,
537 	&empty_caps_group,
538 	NULL,
539 };
540 
541 PMU_FORMAT_ATTR(rand_en,	"config:57");
542 PMU_FORMAT_ATTR(cnt_ctl,	"config:19");
543 PMU_EVENT_ATTR_STRING(l3missonly, fetch_l3missonly, "config:59");
544 PMU_EVENT_ATTR_STRING(l3missonly, op_l3missonly, "config:16");
545 PMU_EVENT_ATTR_STRING(zen4_ibs_extensions, zen4_ibs_extensions, "1");
546 
547 static umode_t
548 zen4_ibs_extensions_is_visible(struct kobject *kobj, struct attribute *attr, int i)
549 {
550 	return ibs_caps & IBS_CAPS_ZEN4 ? attr->mode : 0;
551 }
552 
553 static struct attribute *rand_en_attrs[] = {
554 	&format_attr_rand_en.attr,
555 	NULL,
556 };
557 
558 static struct attribute *fetch_l3missonly_attrs[] = {
559 	&fetch_l3missonly.attr.attr,
560 	NULL,
561 };
562 
563 static struct attribute *zen4_ibs_extensions_attrs[] = {
564 	&zen4_ibs_extensions.attr.attr,
565 	NULL,
566 };
567 
568 static struct attribute_group group_rand_en = {
569 	.name = "format",
570 	.attrs = rand_en_attrs,
571 };
572 
573 static struct attribute_group group_fetch_l3missonly = {
574 	.name = "format",
575 	.attrs = fetch_l3missonly_attrs,
576 	.is_visible = zen4_ibs_extensions_is_visible,
577 };
578 
579 static struct attribute_group group_zen4_ibs_extensions = {
580 	.name = "caps",
581 	.attrs = zen4_ibs_extensions_attrs,
582 	.is_visible = zen4_ibs_extensions_is_visible,
583 };
584 
585 static const struct attribute_group *fetch_attr_groups[] = {
586 	&group_rand_en,
587 	&empty_caps_group,
588 	NULL,
589 };
590 
591 static const struct attribute_group *fetch_attr_update[] = {
592 	&group_fetch_l3missonly,
593 	&group_zen4_ibs_extensions,
594 	NULL,
595 };
596 
597 static umode_t
598 cnt_ctl_is_visible(struct kobject *kobj, struct attribute *attr, int i)
599 {
600 	return ibs_caps & IBS_CAPS_OPCNT ? attr->mode : 0;
601 }
602 
603 static struct attribute *cnt_ctl_attrs[] = {
604 	&format_attr_cnt_ctl.attr,
605 	NULL,
606 };
607 
608 static struct attribute *op_l3missonly_attrs[] = {
609 	&op_l3missonly.attr.attr,
610 	NULL,
611 };
612 
613 static struct attribute_group group_cnt_ctl = {
614 	.name = "format",
615 	.attrs = cnt_ctl_attrs,
616 	.is_visible = cnt_ctl_is_visible,
617 };
618 
619 static struct attribute_group group_op_l3missonly = {
620 	.name = "format",
621 	.attrs = op_l3missonly_attrs,
622 	.is_visible = zen4_ibs_extensions_is_visible,
623 };
624 
625 static const struct attribute_group *op_attr_update[] = {
626 	&group_cnt_ctl,
627 	&group_op_l3missonly,
628 	&group_zen4_ibs_extensions,
629 	NULL,
630 };
631 
632 static struct perf_ibs perf_ibs_fetch = {
633 	.pmu = {
634 		.task_ctx_nr	= perf_hw_context,
635 
636 		.event_init	= perf_ibs_init,
637 		.add		= perf_ibs_add,
638 		.del		= perf_ibs_del,
639 		.start		= perf_ibs_start,
640 		.stop		= perf_ibs_stop,
641 		.read		= perf_ibs_read,
642 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
643 	},
644 	.msr			= MSR_AMD64_IBSFETCHCTL,
645 	.config_mask		= IBS_FETCH_CONFIG_MASK,
646 	.cnt_mask		= IBS_FETCH_MAX_CNT,
647 	.enable_mask		= IBS_FETCH_ENABLE,
648 	.valid_mask		= IBS_FETCH_VAL,
649 	.max_period		= IBS_FETCH_MAX_CNT << 4,
650 	.offset_mask		= { MSR_AMD64_IBSFETCH_REG_MASK },
651 	.offset_max		= MSR_AMD64_IBSFETCH_REG_COUNT,
652 
653 	.get_count		= get_ibs_fetch_count,
654 };
655 
656 static struct perf_ibs perf_ibs_op = {
657 	.pmu = {
658 		.task_ctx_nr	= perf_hw_context,
659 
660 		.event_init	= perf_ibs_init,
661 		.add		= perf_ibs_add,
662 		.del		= perf_ibs_del,
663 		.start		= perf_ibs_start,
664 		.stop		= perf_ibs_stop,
665 		.read		= perf_ibs_read,
666 		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
667 	},
668 	.msr			= MSR_AMD64_IBSOPCTL,
669 	.config_mask		= IBS_OP_CONFIG_MASK,
670 	.cnt_mask		= IBS_OP_MAX_CNT | IBS_OP_CUR_CNT |
671 				  IBS_OP_CUR_CNT_RAND,
672 	.enable_mask		= IBS_OP_ENABLE,
673 	.valid_mask		= IBS_OP_VAL,
674 	.max_period		= IBS_OP_MAX_CNT << 4,
675 	.offset_mask		= { MSR_AMD64_IBSOP_REG_MASK },
676 	.offset_max		= MSR_AMD64_IBSOP_REG_COUNT,
677 
678 	.get_count		= get_ibs_op_count,
679 };
680 
681 static void perf_ibs_get_mem_op(union ibs_op_data3 *op_data3,
682 				struct perf_sample_data *data)
683 {
684 	union perf_mem_data_src *data_src = &data->data_src;
685 
686 	data_src->mem_op = PERF_MEM_OP_NA;
687 
688 	if (op_data3->ld_op)
689 		data_src->mem_op = PERF_MEM_OP_LOAD;
690 	else if (op_data3->st_op)
691 		data_src->mem_op = PERF_MEM_OP_STORE;
692 }
693 
694 /*
695  * Processors having CPUID_Fn8000001B_EAX[11] aka IBS_CAPS_ZEN4 has
696  * more fine granular DataSrc encodings. Others have coarse.
697  */
698 static u8 perf_ibs_data_src(union ibs_op_data2 *op_data2)
699 {
700 	if (ibs_caps & IBS_CAPS_ZEN4)
701 		return (op_data2->data_src_hi << 3) | op_data2->data_src_lo;
702 
703 	return op_data2->data_src_lo;
704 }
705 
706 static void perf_ibs_get_mem_lvl(union ibs_op_data2 *op_data2,
707 				 union ibs_op_data3 *op_data3,
708 				 struct perf_sample_data *data)
709 {
710 	union perf_mem_data_src *data_src = &data->data_src;
711 	u8 ibs_data_src = perf_ibs_data_src(op_data2);
712 
713 	data_src->mem_lvl = 0;
714 
715 	/*
716 	 * DcMiss, L2Miss, DataSrc, DcMissLat etc. are all invalid for Uncached
717 	 * memory accesses. So, check DcUcMemAcc bit early.
718 	 */
719 	if (op_data3->dc_uc_mem_acc && ibs_data_src != IBS_DATA_SRC_EXT_IO) {
720 		data_src->mem_lvl = PERF_MEM_LVL_UNC | PERF_MEM_LVL_HIT;
721 		return;
722 	}
723 
724 	/* L1 Hit */
725 	if (op_data3->dc_miss == 0) {
726 		data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
727 		return;
728 	}
729 
730 	/* L2 Hit */
731 	if (op_data3->l2_miss == 0) {
732 		/* Erratum #1293 */
733 		if (boot_cpu_data.x86 != 0x19 || boot_cpu_data.x86_model > 0xF ||
734 		    !(op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) {
735 			data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
736 			return;
737 		}
738 	}
739 
740 	/*
741 	 * OP_DATA2 is valid only for load ops. Skip all checks which
742 	 * uses OP_DATA2[DataSrc].
743 	 */
744 	if (data_src->mem_op != PERF_MEM_OP_LOAD)
745 		goto check_mab;
746 
747 	/* L3 Hit */
748 	if (ibs_caps & IBS_CAPS_ZEN4) {
749 		if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE) {
750 			data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
751 			return;
752 		}
753 	} else {
754 		if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) {
755 			data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_REM_CCE1 |
756 					    PERF_MEM_LVL_HIT;
757 			return;
758 		}
759 	}
760 
761 	/* A peer cache in a near CCX */
762 	if (ibs_caps & IBS_CAPS_ZEN4 &&
763 	    ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE) {
764 		data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1 | PERF_MEM_LVL_HIT;
765 		return;
766 	}
767 
768 	/* A peer cache in a far CCX */
769 	if (ibs_caps & IBS_CAPS_ZEN4) {
770 		if (ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE) {
771 			data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT;
772 			return;
773 		}
774 	} else {
775 		if (ibs_data_src == IBS_DATA_SRC_REM_CACHE) {
776 			data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT;
777 			return;
778 		}
779 	}
780 
781 	/* DRAM */
782 	if (ibs_data_src == IBS_DATA_SRC_EXT_DRAM) {
783 		if (op_data2->rmt_node == 0)
784 			data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT;
785 		else
786 			data_src->mem_lvl = PERF_MEM_LVL_REM_RAM1 | PERF_MEM_LVL_HIT;
787 		return;
788 	}
789 
790 	/* PMEM */
791 	if (ibs_caps & IBS_CAPS_ZEN4 && ibs_data_src == IBS_DATA_SRC_EXT_PMEM) {
792 		data_src->mem_lvl_num = PERF_MEM_LVLNUM_PMEM;
793 		if (op_data2->rmt_node) {
794 			data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
795 			/* IBS doesn't provide Remote socket detail */
796 			data_src->mem_hops = PERF_MEM_HOPS_1;
797 		}
798 		return;
799 	}
800 
801 	/* Extension Memory */
802 	if (ibs_caps & IBS_CAPS_ZEN4 &&
803 	    ibs_data_src == IBS_DATA_SRC_EXT_EXT_MEM) {
804 		data_src->mem_lvl_num = PERF_MEM_LVLNUM_CXL;
805 		if (op_data2->rmt_node) {
806 			data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
807 			/* IBS doesn't provide Remote socket detail */
808 			data_src->mem_hops = PERF_MEM_HOPS_1;
809 		}
810 		return;
811 	}
812 
813 	/* IO */
814 	if (ibs_data_src == IBS_DATA_SRC_EXT_IO) {
815 		data_src->mem_lvl = PERF_MEM_LVL_IO;
816 		data_src->mem_lvl_num = PERF_MEM_LVLNUM_IO;
817 		if (op_data2->rmt_node) {
818 			data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
819 			/* IBS doesn't provide Remote socket detail */
820 			data_src->mem_hops = PERF_MEM_HOPS_1;
821 		}
822 		return;
823 	}
824 
825 check_mab:
826 	/*
827 	 * MAB (Miss Address Buffer) Hit. MAB keeps track of outstanding
828 	 * DC misses. However, such data may come from any level in mem
829 	 * hierarchy. IBS provides detail about both MAB as well as actual
830 	 * DataSrc simultaneously. Prioritize DataSrc over MAB, i.e. set
831 	 * MAB only when IBS fails to provide DataSrc.
832 	 */
833 	if (op_data3->dc_miss_no_mab_alloc) {
834 		data_src->mem_lvl = PERF_MEM_LVL_LFB | PERF_MEM_LVL_HIT;
835 		return;
836 	}
837 
838 	data_src->mem_lvl = PERF_MEM_LVL_NA;
839 }
840 
841 static bool perf_ibs_cache_hit_st_valid(void)
842 {
843 	/* 0: Uninitialized, 1: Valid, -1: Invalid */
844 	static int cache_hit_st_valid;
845 
846 	if (unlikely(!cache_hit_st_valid)) {
847 		if (boot_cpu_data.x86 == 0x19 &&
848 		    (boot_cpu_data.x86_model <= 0xF ||
849 		    (boot_cpu_data.x86_model >= 0x20 &&
850 		     boot_cpu_data.x86_model <= 0x5F))) {
851 			cache_hit_st_valid = -1;
852 		} else {
853 			cache_hit_st_valid = 1;
854 		}
855 	}
856 
857 	return cache_hit_st_valid == 1;
858 }
859 
860 static void perf_ibs_get_mem_snoop(union ibs_op_data2 *op_data2,
861 				   struct perf_sample_data *data)
862 {
863 	union perf_mem_data_src *data_src = &data->data_src;
864 	u8 ibs_data_src;
865 
866 	data_src->mem_snoop = PERF_MEM_SNOOP_NA;
867 
868 	if (!perf_ibs_cache_hit_st_valid() ||
869 	    data_src->mem_op != PERF_MEM_OP_LOAD ||
870 	    data_src->mem_lvl & PERF_MEM_LVL_L1 ||
871 	    data_src->mem_lvl & PERF_MEM_LVL_L2 ||
872 	    op_data2->cache_hit_st)
873 		return;
874 
875 	ibs_data_src = perf_ibs_data_src(op_data2);
876 
877 	if (ibs_caps & IBS_CAPS_ZEN4) {
878 		if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE ||
879 		    ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE ||
880 		    ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE)
881 			data_src->mem_snoop = PERF_MEM_SNOOP_HITM;
882 	} else if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) {
883 		data_src->mem_snoop = PERF_MEM_SNOOP_HITM;
884 	}
885 }
886 
887 static void perf_ibs_get_tlb_lvl(union ibs_op_data3 *op_data3,
888 				 struct perf_sample_data *data)
889 {
890 	union perf_mem_data_src *data_src = &data->data_src;
891 
892 	data_src->mem_dtlb = PERF_MEM_TLB_NA;
893 
894 	if (!op_data3->dc_lin_addr_valid)
895 		return;
896 
897 	if (!op_data3->dc_l1tlb_miss) {
898 		data_src->mem_dtlb = PERF_MEM_TLB_L1 | PERF_MEM_TLB_HIT;
899 		return;
900 	}
901 
902 	if (!op_data3->dc_l2tlb_miss) {
903 		data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_HIT;
904 		return;
905 	}
906 
907 	data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_MISS;
908 }
909 
910 static void perf_ibs_get_mem_lock(union ibs_op_data3 *op_data3,
911 				  struct perf_sample_data *data)
912 {
913 	union perf_mem_data_src *data_src = &data->data_src;
914 
915 	data_src->mem_lock = PERF_MEM_LOCK_NA;
916 
917 	if (op_data3->dc_locked_op)
918 		data_src->mem_lock = PERF_MEM_LOCK_LOCKED;
919 }
920 
921 #define ibs_op_msr_idx(msr)	(msr - MSR_AMD64_IBSOPCTL)
922 
923 static void perf_ibs_get_data_src(struct perf_ibs_data *ibs_data,
924 				  struct perf_sample_data *data,
925 				  union ibs_op_data2 *op_data2,
926 				  union ibs_op_data3 *op_data3)
927 {
928 	perf_ibs_get_mem_lvl(op_data2, op_data3, data);
929 	perf_ibs_get_mem_snoop(op_data2, data);
930 	perf_ibs_get_tlb_lvl(op_data3, data);
931 	perf_ibs_get_mem_lock(op_data3, data);
932 }
933 
934 static __u64 perf_ibs_get_op_data2(struct perf_ibs_data *ibs_data,
935 				   union ibs_op_data3 *op_data3)
936 {
937 	__u64 val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA2)];
938 
939 	/* Erratum #1293 */
940 	if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model <= 0xF &&
941 	    (op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) {
942 		/*
943 		 * OP_DATA2 has only two fields on Zen3: DataSrc and RmtNode.
944 		 * DataSrc=0 is 'No valid status' and RmtNode is invalid when
945 		 * DataSrc=0.
946 		 */
947 		val = 0;
948 	}
949 	return val;
950 }
951 
952 static void perf_ibs_parse_ld_st_data(__u64 sample_type,
953 				      struct perf_ibs_data *ibs_data,
954 				      struct perf_sample_data *data)
955 {
956 	union ibs_op_data3 op_data3;
957 	union ibs_op_data2 op_data2;
958 	union ibs_op_data op_data;
959 
960 	data->data_src.val = PERF_MEM_NA;
961 	op_data3.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA3)];
962 
963 	perf_ibs_get_mem_op(&op_data3, data);
964 	if (data->data_src.mem_op != PERF_MEM_OP_LOAD &&
965 	    data->data_src.mem_op != PERF_MEM_OP_STORE)
966 		return;
967 
968 	op_data2.val = perf_ibs_get_op_data2(ibs_data, &op_data3);
969 
970 	if (sample_type & PERF_SAMPLE_DATA_SRC) {
971 		perf_ibs_get_data_src(ibs_data, data, &op_data2, &op_data3);
972 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
973 	}
974 
975 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE && op_data3.dc_miss &&
976 	    data->data_src.mem_op == PERF_MEM_OP_LOAD) {
977 		op_data.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA)];
978 
979 		if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
980 			data->weight.var1_dw = op_data3.dc_miss_lat;
981 			data->weight.var2_w = op_data.tag_to_ret_ctr;
982 		} else if (sample_type & PERF_SAMPLE_WEIGHT) {
983 			data->weight.full = op_data3.dc_miss_lat;
984 		}
985 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
986 	}
987 
988 	if (sample_type & PERF_SAMPLE_ADDR && op_data3.dc_lin_addr_valid) {
989 		data->addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCLINAD)];
990 		data->sample_flags |= PERF_SAMPLE_ADDR;
991 	}
992 
993 	if (sample_type & PERF_SAMPLE_PHYS_ADDR && op_data3.dc_phy_addr_valid) {
994 		data->phys_addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCPHYSAD)];
995 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
996 	}
997 }
998 
999 static int perf_ibs_get_offset_max(struct perf_ibs *perf_ibs, u64 sample_type,
1000 				   int check_rip)
1001 {
1002 	if (sample_type & PERF_SAMPLE_RAW ||
1003 	    (perf_ibs == &perf_ibs_op &&
1004 	     (sample_type & PERF_SAMPLE_DATA_SRC ||
1005 	      sample_type & PERF_SAMPLE_WEIGHT_TYPE ||
1006 	      sample_type & PERF_SAMPLE_ADDR ||
1007 	      sample_type & PERF_SAMPLE_PHYS_ADDR)))
1008 		return perf_ibs->offset_max;
1009 	else if (check_rip)
1010 		return 3;
1011 	return 1;
1012 }
1013 
1014 static int perf_ibs_handle_irq(struct perf_ibs *perf_ibs, struct pt_regs *iregs)
1015 {
1016 	struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
1017 	struct perf_event *event = pcpu->event;
1018 	struct hw_perf_event *hwc;
1019 	struct perf_sample_data data;
1020 	struct perf_raw_record raw;
1021 	struct pt_regs regs;
1022 	struct perf_ibs_data ibs_data;
1023 	int offset, size, check_rip, offset_max, throttle = 0;
1024 	unsigned int msr;
1025 	u64 *buf, *config, period, new_config = 0;
1026 
1027 	if (!test_bit(IBS_STARTED, pcpu->state)) {
1028 fail:
1029 		/*
1030 		 * Catch spurious interrupts after stopping IBS: After
1031 		 * disabling IBS there could be still incoming NMIs
1032 		 * with samples that even have the valid bit cleared.
1033 		 * Mark all this NMIs as handled.
1034 		 */
1035 		if (test_and_clear_bit(IBS_STOPPED, pcpu->state))
1036 			return 1;
1037 
1038 		return 0;
1039 	}
1040 
1041 	if (WARN_ON_ONCE(!event))
1042 		goto fail;
1043 
1044 	hwc = &event->hw;
1045 	msr = hwc->config_base;
1046 	buf = ibs_data.regs;
1047 	rdmsrl(msr, *buf);
1048 	if (!(*buf++ & perf_ibs->valid_mask))
1049 		goto fail;
1050 
1051 	config = &ibs_data.regs[0];
1052 	perf_ibs_event_update(perf_ibs, event, config);
1053 	perf_sample_data_init(&data, 0, hwc->last_period);
1054 	if (!perf_ibs_set_period(perf_ibs, hwc, &period))
1055 		goto out;	/* no sw counter overflow */
1056 
1057 	ibs_data.caps = ibs_caps;
1058 	size = 1;
1059 	offset = 1;
1060 	check_rip = (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_RIPINVALIDCHK));
1061 
1062 	offset_max = perf_ibs_get_offset_max(perf_ibs, event->attr.sample_type, check_rip);
1063 
1064 	do {
1065 		rdmsrl(msr + offset, *buf++);
1066 		size++;
1067 		offset = find_next_bit(perf_ibs->offset_mask,
1068 				       perf_ibs->offset_max,
1069 				       offset + 1);
1070 	} while (offset < offset_max);
1071 	/*
1072 	 * Read IbsBrTarget, IbsOpData4, and IbsExtdCtl separately
1073 	 * depending on their availability.
1074 	 * Can't add to offset_max as they are staggered
1075 	 */
1076 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
1077 		if (perf_ibs == &perf_ibs_op) {
1078 			if (ibs_caps & IBS_CAPS_BRNTRGT) {
1079 				rdmsrl(MSR_AMD64_IBSBRTARGET, *buf++);
1080 				size++;
1081 			}
1082 			if (ibs_caps & IBS_CAPS_OPDATA4) {
1083 				rdmsrl(MSR_AMD64_IBSOPDATA4, *buf++);
1084 				size++;
1085 			}
1086 		}
1087 		if (perf_ibs == &perf_ibs_fetch && (ibs_caps & IBS_CAPS_FETCHCTLEXTD)) {
1088 			rdmsrl(MSR_AMD64_ICIBSEXTDCTL, *buf++);
1089 			size++;
1090 		}
1091 	}
1092 	ibs_data.size = sizeof(u64) * size;
1093 
1094 	regs = *iregs;
1095 	if (check_rip && (ibs_data.regs[2] & IBS_RIP_INVALID)) {
1096 		regs.flags &= ~PERF_EFLAGS_EXACT;
1097 	} else {
1098 		/* Workaround for erratum #1197 */
1099 		if (perf_ibs->fetch_ignore_if_zero_rip && !(ibs_data.regs[1]))
1100 			goto out;
1101 
1102 		set_linear_ip(&regs, ibs_data.regs[1]);
1103 		regs.flags |= PERF_EFLAGS_EXACT;
1104 	}
1105 
1106 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
1107 		raw = (struct perf_raw_record){
1108 			.frag = {
1109 				.size = sizeof(u32) + ibs_data.size,
1110 				.data = ibs_data.data,
1111 			},
1112 		};
1113 		perf_sample_save_raw_data(&data, &raw);
1114 	}
1115 
1116 	if (perf_ibs == &perf_ibs_op)
1117 		perf_ibs_parse_ld_st_data(event->attr.sample_type, &ibs_data, &data);
1118 
1119 	/*
1120 	 * rip recorded by IbsOpRip will not be consistent with rsp and rbp
1121 	 * recorded as part of interrupt regs. Thus we need to use rip from
1122 	 * interrupt regs while unwinding call stack.
1123 	 */
1124 	if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
1125 		perf_sample_save_callchain(&data, event, iregs);
1126 
1127 	throttle = perf_event_overflow(event, &data, &regs);
1128 out:
1129 	if (throttle) {
1130 		perf_ibs_stop(event, 0);
1131 	} else {
1132 		if (perf_ibs == &perf_ibs_op) {
1133 			if (ibs_caps & IBS_CAPS_OPCNTEXT) {
1134 				new_config = period & IBS_OP_MAX_CNT_EXT_MASK;
1135 				period &= ~IBS_OP_MAX_CNT_EXT_MASK;
1136 			}
1137 			if ((ibs_caps & IBS_CAPS_RDWROPCNT) && (*config & IBS_OP_CNT_CTL))
1138 				new_config |= *config & IBS_OP_CUR_CNT_RAND;
1139 		}
1140 		new_config |= period >> 4;
1141 
1142 		perf_ibs_enable_event(perf_ibs, hwc, new_config);
1143 	}
1144 
1145 	perf_event_update_userpage(event);
1146 
1147 	return 1;
1148 }
1149 
1150 static int
1151 perf_ibs_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1152 {
1153 	u64 stamp = sched_clock();
1154 	int handled = 0;
1155 
1156 	handled += perf_ibs_handle_irq(&perf_ibs_fetch, regs);
1157 	handled += perf_ibs_handle_irq(&perf_ibs_op, regs);
1158 
1159 	if (handled)
1160 		inc_irq_stat(apic_perf_irqs);
1161 
1162 	perf_sample_event_took(sched_clock() - stamp);
1163 
1164 	return handled;
1165 }
1166 NOKPROBE_SYMBOL(perf_ibs_nmi_handler);
1167 
1168 static __init int perf_ibs_pmu_init(struct perf_ibs *perf_ibs, char *name)
1169 {
1170 	struct cpu_perf_ibs __percpu *pcpu;
1171 	int ret;
1172 
1173 	pcpu = alloc_percpu(struct cpu_perf_ibs);
1174 	if (!pcpu)
1175 		return -ENOMEM;
1176 
1177 	perf_ibs->pcpu = pcpu;
1178 
1179 	ret = perf_pmu_register(&perf_ibs->pmu, name, -1);
1180 	if (ret) {
1181 		perf_ibs->pcpu = NULL;
1182 		free_percpu(pcpu);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 static __init int perf_ibs_fetch_init(void)
1189 {
1190 	/*
1191 	 * Some chips fail to reset the fetch count when it is written; instead
1192 	 * they need a 0-1 transition of IbsFetchEn.
1193 	 */
1194 	if (boot_cpu_data.x86 >= 0x16 && boot_cpu_data.x86 <= 0x18)
1195 		perf_ibs_fetch.fetch_count_reset_broken = 1;
1196 
1197 	if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model < 0x10)
1198 		perf_ibs_fetch.fetch_ignore_if_zero_rip = 1;
1199 
1200 	if (ibs_caps & IBS_CAPS_ZEN4)
1201 		perf_ibs_fetch.config_mask |= IBS_FETCH_L3MISSONLY;
1202 
1203 	perf_ibs_fetch.pmu.attr_groups = fetch_attr_groups;
1204 	perf_ibs_fetch.pmu.attr_update = fetch_attr_update;
1205 
1206 	return perf_ibs_pmu_init(&perf_ibs_fetch, "ibs_fetch");
1207 }
1208 
1209 static __init int perf_ibs_op_init(void)
1210 {
1211 	if (ibs_caps & IBS_CAPS_OPCNT)
1212 		perf_ibs_op.config_mask |= IBS_OP_CNT_CTL;
1213 
1214 	if (ibs_caps & IBS_CAPS_OPCNTEXT) {
1215 		perf_ibs_op.max_period  |= IBS_OP_MAX_CNT_EXT_MASK;
1216 		perf_ibs_op.config_mask	|= IBS_OP_MAX_CNT_EXT_MASK;
1217 		perf_ibs_op.cnt_mask    |= IBS_OP_MAX_CNT_EXT_MASK;
1218 	}
1219 
1220 	if (ibs_caps & IBS_CAPS_ZEN4)
1221 		perf_ibs_op.config_mask |= IBS_OP_L3MISSONLY;
1222 
1223 	perf_ibs_op.pmu.attr_groups = empty_attr_groups;
1224 	perf_ibs_op.pmu.attr_update = op_attr_update;
1225 
1226 	return perf_ibs_pmu_init(&perf_ibs_op, "ibs_op");
1227 }
1228 
1229 static __init int perf_event_ibs_init(void)
1230 {
1231 	int ret;
1232 
1233 	ret = perf_ibs_fetch_init();
1234 	if (ret)
1235 		return ret;
1236 
1237 	ret = perf_ibs_op_init();
1238 	if (ret)
1239 		goto err_op;
1240 
1241 	ret = register_nmi_handler(NMI_LOCAL, perf_ibs_nmi_handler, 0, "perf_ibs");
1242 	if (ret)
1243 		goto err_nmi;
1244 
1245 	pr_info("perf: AMD IBS detected (0x%08x)\n", ibs_caps);
1246 	return 0;
1247 
1248 err_nmi:
1249 	perf_pmu_unregister(&perf_ibs_op.pmu);
1250 	free_percpu(perf_ibs_op.pcpu);
1251 	perf_ibs_op.pcpu = NULL;
1252 err_op:
1253 	perf_pmu_unregister(&perf_ibs_fetch.pmu);
1254 	free_percpu(perf_ibs_fetch.pcpu);
1255 	perf_ibs_fetch.pcpu = NULL;
1256 
1257 	return ret;
1258 }
1259 
1260 #else /* defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) */
1261 
1262 static __init int perf_event_ibs_init(void)
1263 {
1264 	return 0;
1265 }
1266 
1267 #endif
1268 
1269 /* IBS - apic initialization, for perf and oprofile */
1270 
1271 static __init u32 __get_ibs_caps(void)
1272 {
1273 	u32 caps;
1274 	unsigned int max_level;
1275 
1276 	if (!boot_cpu_has(X86_FEATURE_IBS))
1277 		return 0;
1278 
1279 	/* check IBS cpuid feature flags */
1280 	max_level = cpuid_eax(0x80000000);
1281 	if (max_level < IBS_CPUID_FEATURES)
1282 		return IBS_CAPS_DEFAULT;
1283 
1284 	caps = cpuid_eax(IBS_CPUID_FEATURES);
1285 	if (!(caps & IBS_CAPS_AVAIL))
1286 		/* cpuid flags not valid */
1287 		return IBS_CAPS_DEFAULT;
1288 
1289 	return caps;
1290 }
1291 
1292 u32 get_ibs_caps(void)
1293 {
1294 	return ibs_caps;
1295 }
1296 
1297 EXPORT_SYMBOL(get_ibs_caps);
1298 
1299 static inline int get_eilvt(int offset)
1300 {
1301 	return !setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 1);
1302 }
1303 
1304 static inline int put_eilvt(int offset)
1305 {
1306 	return !setup_APIC_eilvt(offset, 0, 0, 1);
1307 }
1308 
1309 /*
1310  * Check and reserve APIC extended interrupt LVT offset for IBS if available.
1311  */
1312 static inline int ibs_eilvt_valid(void)
1313 {
1314 	int offset;
1315 	u64 val;
1316 	int valid = 0;
1317 
1318 	preempt_disable();
1319 
1320 	rdmsrl(MSR_AMD64_IBSCTL, val);
1321 	offset = val & IBSCTL_LVT_OFFSET_MASK;
1322 
1323 	if (!(val & IBSCTL_LVT_OFFSET_VALID)) {
1324 		pr_err(FW_BUG "cpu %d, invalid IBS interrupt offset %d (MSR%08X=0x%016llx)\n",
1325 		       smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
1326 		goto out;
1327 	}
1328 
1329 	if (!get_eilvt(offset)) {
1330 		pr_err(FW_BUG "cpu %d, IBS interrupt offset %d not available (MSR%08X=0x%016llx)\n",
1331 		       smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
1332 		goto out;
1333 	}
1334 
1335 	valid = 1;
1336 out:
1337 	preempt_enable();
1338 
1339 	return valid;
1340 }
1341 
1342 static int setup_ibs_ctl(int ibs_eilvt_off)
1343 {
1344 	struct pci_dev *cpu_cfg;
1345 	int nodes;
1346 	u32 value = 0;
1347 
1348 	nodes = 0;
1349 	cpu_cfg = NULL;
1350 	do {
1351 		cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD,
1352 					 PCI_DEVICE_ID_AMD_10H_NB_MISC,
1353 					 cpu_cfg);
1354 		if (!cpu_cfg)
1355 			break;
1356 		++nodes;
1357 		pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off
1358 				       | IBSCTL_LVT_OFFSET_VALID);
1359 		pci_read_config_dword(cpu_cfg, IBSCTL, &value);
1360 		if (value != (ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID)) {
1361 			pci_dev_put(cpu_cfg);
1362 			pr_debug("Failed to setup IBS LVT offset, IBSCTL = 0x%08x\n",
1363 				 value);
1364 			return -EINVAL;
1365 		}
1366 	} while (1);
1367 
1368 	if (!nodes) {
1369 		pr_debug("No CPU node configured for IBS\n");
1370 		return -ENODEV;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 /*
1377  * This runs only on the current cpu. We try to find an LVT offset and
1378  * setup the local APIC. For this we must disable preemption. On
1379  * success we initialize all nodes with this offset. This updates then
1380  * the offset in the IBS_CTL per-node msr. The per-core APIC setup of
1381  * the IBS interrupt vector is handled by perf_ibs_cpu_notifier that
1382  * is using the new offset.
1383  */
1384 static void force_ibs_eilvt_setup(void)
1385 {
1386 	int offset;
1387 	int ret;
1388 
1389 	preempt_disable();
1390 	/* find the next free available EILVT entry, skip offset 0 */
1391 	for (offset = 1; offset < APIC_EILVT_NR_MAX; offset++) {
1392 		if (get_eilvt(offset))
1393 			break;
1394 	}
1395 	preempt_enable();
1396 
1397 	if (offset == APIC_EILVT_NR_MAX) {
1398 		pr_debug("No EILVT entry available\n");
1399 		return;
1400 	}
1401 
1402 	ret = setup_ibs_ctl(offset);
1403 	if (ret)
1404 		goto out;
1405 
1406 	if (!ibs_eilvt_valid())
1407 		goto out;
1408 
1409 	pr_info("LVT offset %d assigned\n", offset);
1410 
1411 	return;
1412 out:
1413 	preempt_disable();
1414 	put_eilvt(offset);
1415 	preempt_enable();
1416 	return;
1417 }
1418 
1419 static void ibs_eilvt_setup(void)
1420 {
1421 	/*
1422 	 * Force LVT offset assignment for family 10h: The offsets are
1423 	 * not assigned by the BIOS for this family, so the OS is
1424 	 * responsible for doing it. If the OS assignment fails, fall
1425 	 * back to BIOS settings and try to setup this.
1426 	 */
1427 	if (boot_cpu_data.x86 == 0x10)
1428 		force_ibs_eilvt_setup();
1429 }
1430 
1431 static inline int get_ibs_lvt_offset(void)
1432 {
1433 	u64 val;
1434 
1435 	rdmsrl(MSR_AMD64_IBSCTL, val);
1436 	if (!(val & IBSCTL_LVT_OFFSET_VALID))
1437 		return -EINVAL;
1438 
1439 	return val & IBSCTL_LVT_OFFSET_MASK;
1440 }
1441 
1442 static void setup_APIC_ibs(void)
1443 {
1444 	int offset;
1445 
1446 	offset = get_ibs_lvt_offset();
1447 	if (offset < 0)
1448 		goto failed;
1449 
1450 	if (!setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 0))
1451 		return;
1452 failed:
1453 	pr_warn("perf: IBS APIC setup failed on cpu #%d\n",
1454 		smp_processor_id());
1455 }
1456 
1457 static void clear_APIC_ibs(void)
1458 {
1459 	int offset;
1460 
1461 	offset = get_ibs_lvt_offset();
1462 	if (offset >= 0)
1463 		setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_FIX, 1);
1464 }
1465 
1466 static int x86_pmu_amd_ibs_starting_cpu(unsigned int cpu)
1467 {
1468 	setup_APIC_ibs();
1469 	return 0;
1470 }
1471 
1472 #ifdef CONFIG_PM
1473 
1474 static int perf_ibs_suspend(void)
1475 {
1476 	clear_APIC_ibs();
1477 	return 0;
1478 }
1479 
1480 static void perf_ibs_resume(void)
1481 {
1482 	ibs_eilvt_setup();
1483 	setup_APIC_ibs();
1484 }
1485 
1486 static struct syscore_ops perf_ibs_syscore_ops = {
1487 	.resume		= perf_ibs_resume,
1488 	.suspend	= perf_ibs_suspend,
1489 };
1490 
1491 static void perf_ibs_pm_init(void)
1492 {
1493 	register_syscore_ops(&perf_ibs_syscore_ops);
1494 }
1495 
1496 #else
1497 
1498 static inline void perf_ibs_pm_init(void) { }
1499 
1500 #endif
1501 
1502 static int x86_pmu_amd_ibs_dying_cpu(unsigned int cpu)
1503 {
1504 	clear_APIC_ibs();
1505 	return 0;
1506 }
1507 
1508 static __init int amd_ibs_init(void)
1509 {
1510 	u32 caps;
1511 
1512 	caps = __get_ibs_caps();
1513 	if (!caps)
1514 		return -ENODEV;	/* ibs not supported by the cpu */
1515 
1516 	ibs_eilvt_setup();
1517 
1518 	if (!ibs_eilvt_valid())
1519 		return -EINVAL;
1520 
1521 	perf_ibs_pm_init();
1522 
1523 	ibs_caps = caps;
1524 	/* make ibs_caps visible to other cpus: */
1525 	smp_mb();
1526 	/*
1527 	 * x86_pmu_amd_ibs_starting_cpu will be called from core on
1528 	 * all online cpus.
1529 	 */
1530 	cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_IBS_STARTING,
1531 			  "perf/x86/amd/ibs:starting",
1532 			  x86_pmu_amd_ibs_starting_cpu,
1533 			  x86_pmu_amd_ibs_dying_cpu);
1534 
1535 	return perf_event_ibs_init();
1536 }
1537 
1538 /* Since we need the pci subsystem to init ibs we can't do this earlier: */
1539 device_initcall(amd_ibs_init);
1540