1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/perf_event.h> 3 #include <linux/jump_label.h> 4 #include <linux/export.h> 5 #include <linux/types.h> 6 #include <linux/init.h> 7 #include <linux/slab.h> 8 #include <linux/delay.h> 9 #include <linux/jiffies.h> 10 #include <asm/apicdef.h> 11 #include <asm/apic.h> 12 #include <asm/nmi.h> 13 14 #include "../perf_event.h" 15 16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp); 17 static unsigned long perf_nmi_window; 18 19 /* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */ 20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL) 21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE) 22 23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */ 24 static u64 amd_pmu_global_cntr_mask __read_mostly; 25 26 static __initconst const u64 amd_hw_cache_event_ids 27 [PERF_COUNT_HW_CACHE_MAX] 28 [PERF_COUNT_HW_CACHE_OP_MAX] 29 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 30 { 31 [ C(L1D) ] = { 32 [ C(OP_READ) ] = { 33 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ 34 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */ 35 }, 36 [ C(OP_WRITE) ] = { 37 [ C(RESULT_ACCESS) ] = 0, 38 [ C(RESULT_MISS) ] = 0, 39 }, 40 [ C(OP_PREFETCH) ] = { 41 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ 42 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ 43 }, 44 }, 45 [ C(L1I ) ] = { 46 [ C(OP_READ) ] = { 47 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ 48 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ 49 }, 50 [ C(OP_WRITE) ] = { 51 [ C(RESULT_ACCESS) ] = -1, 52 [ C(RESULT_MISS) ] = -1, 53 }, 54 [ C(OP_PREFETCH) ] = { 55 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ 56 [ C(RESULT_MISS) ] = 0, 57 }, 58 }, 59 [ C(LL ) ] = { 60 [ C(OP_READ) ] = { 61 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ 62 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ 63 }, 64 [ C(OP_WRITE) ] = { 65 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ 66 [ C(RESULT_MISS) ] = 0, 67 }, 68 [ C(OP_PREFETCH) ] = { 69 [ C(RESULT_ACCESS) ] = 0, 70 [ C(RESULT_MISS) ] = 0, 71 }, 72 }, 73 [ C(DTLB) ] = { 74 [ C(OP_READ) ] = { 75 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ 76 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */ 77 }, 78 [ C(OP_WRITE) ] = { 79 [ C(RESULT_ACCESS) ] = 0, 80 [ C(RESULT_MISS) ] = 0, 81 }, 82 [ C(OP_PREFETCH) ] = { 83 [ C(RESULT_ACCESS) ] = 0, 84 [ C(RESULT_MISS) ] = 0, 85 }, 86 }, 87 [ C(ITLB) ] = { 88 [ C(OP_READ) ] = { 89 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ 90 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */ 91 }, 92 [ C(OP_WRITE) ] = { 93 [ C(RESULT_ACCESS) ] = -1, 94 [ C(RESULT_MISS) ] = -1, 95 }, 96 [ C(OP_PREFETCH) ] = { 97 [ C(RESULT_ACCESS) ] = -1, 98 [ C(RESULT_MISS) ] = -1, 99 }, 100 }, 101 [ C(BPU ) ] = { 102 [ C(OP_READ) ] = { 103 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ 104 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ 105 }, 106 [ C(OP_WRITE) ] = { 107 [ C(RESULT_ACCESS) ] = -1, 108 [ C(RESULT_MISS) ] = -1, 109 }, 110 [ C(OP_PREFETCH) ] = { 111 [ C(RESULT_ACCESS) ] = -1, 112 [ C(RESULT_MISS) ] = -1, 113 }, 114 }, 115 [ C(NODE) ] = { 116 [ C(OP_READ) ] = { 117 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */ 118 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */ 119 }, 120 [ C(OP_WRITE) ] = { 121 [ C(RESULT_ACCESS) ] = -1, 122 [ C(RESULT_MISS) ] = -1, 123 }, 124 [ C(OP_PREFETCH) ] = { 125 [ C(RESULT_ACCESS) ] = -1, 126 [ C(RESULT_MISS) ] = -1, 127 }, 128 }, 129 }; 130 131 static __initconst const u64 amd_hw_cache_event_ids_f17h 132 [PERF_COUNT_HW_CACHE_MAX] 133 [PERF_COUNT_HW_CACHE_OP_MAX] 134 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 135 [C(L1D)] = { 136 [C(OP_READ)] = { 137 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */ 138 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */ 139 }, 140 [C(OP_WRITE)] = { 141 [C(RESULT_ACCESS)] = 0, 142 [C(RESULT_MISS)] = 0, 143 }, 144 [C(OP_PREFETCH)] = { 145 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */ 146 [C(RESULT_MISS)] = 0, 147 }, 148 }, 149 [C(L1I)] = { 150 [C(OP_READ)] = { 151 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */ 152 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */ 153 }, 154 [C(OP_WRITE)] = { 155 [C(RESULT_ACCESS)] = -1, 156 [C(RESULT_MISS)] = -1, 157 }, 158 [C(OP_PREFETCH)] = { 159 [C(RESULT_ACCESS)] = 0, 160 [C(RESULT_MISS)] = 0, 161 }, 162 }, 163 [C(LL)] = { 164 [C(OP_READ)] = { 165 [C(RESULT_ACCESS)] = 0, 166 [C(RESULT_MISS)] = 0, 167 }, 168 [C(OP_WRITE)] = { 169 [C(RESULT_ACCESS)] = 0, 170 [C(RESULT_MISS)] = 0, 171 }, 172 [C(OP_PREFETCH)] = { 173 [C(RESULT_ACCESS)] = 0, 174 [C(RESULT_MISS)] = 0, 175 }, 176 }, 177 [C(DTLB)] = { 178 [C(OP_READ)] = { 179 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */ 180 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */ 181 }, 182 [C(OP_WRITE)] = { 183 [C(RESULT_ACCESS)] = 0, 184 [C(RESULT_MISS)] = 0, 185 }, 186 [C(OP_PREFETCH)] = { 187 [C(RESULT_ACCESS)] = 0, 188 [C(RESULT_MISS)] = 0, 189 }, 190 }, 191 [C(ITLB)] = { 192 [C(OP_READ)] = { 193 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */ 194 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */ 195 }, 196 [C(OP_WRITE)] = { 197 [C(RESULT_ACCESS)] = -1, 198 [C(RESULT_MISS)] = -1, 199 }, 200 [C(OP_PREFETCH)] = { 201 [C(RESULT_ACCESS)] = -1, 202 [C(RESULT_MISS)] = -1, 203 }, 204 }, 205 [C(BPU)] = { 206 [C(OP_READ)] = { 207 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */ 208 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */ 209 }, 210 [C(OP_WRITE)] = { 211 [C(RESULT_ACCESS)] = -1, 212 [C(RESULT_MISS)] = -1, 213 }, 214 [C(OP_PREFETCH)] = { 215 [C(RESULT_ACCESS)] = -1, 216 [C(RESULT_MISS)] = -1, 217 }, 218 }, 219 [C(NODE)] = { 220 [C(OP_READ)] = { 221 [C(RESULT_ACCESS)] = 0, 222 [C(RESULT_MISS)] = 0, 223 }, 224 [C(OP_WRITE)] = { 225 [C(RESULT_ACCESS)] = -1, 226 [C(RESULT_MISS)] = -1, 227 }, 228 [C(OP_PREFETCH)] = { 229 [C(RESULT_ACCESS)] = -1, 230 [C(RESULT_MISS)] = -1, 231 }, 232 }, 233 }; 234 235 /* 236 * AMD Performance Monitor K7 and later, up to and including Family 16h: 237 */ 238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] = 239 { 240 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 241 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 242 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d, 243 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e, 244 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 245 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 246 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */ 247 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */ 248 }; 249 250 /* 251 * AMD Performance Monitor Family 17h and later: 252 */ 253 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] = 254 { 255 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 256 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 257 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, 258 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, 259 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 260 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 261 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287, 262 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187, 263 }; 264 265 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] = 266 { 267 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 268 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 269 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, 270 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, 271 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 272 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 273 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9, 274 }; 275 276 static u64 amd_pmu_event_map(int hw_event) 277 { 278 if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19) 279 return amd_zen2_perfmon_event_map[hw_event]; 280 281 if (cpu_feature_enabled(X86_FEATURE_ZEN1)) 282 return amd_zen1_perfmon_event_map[hw_event]; 283 284 return amd_perfmon_event_map[hw_event]; 285 } 286 287 /* 288 * Previously calculated offsets 289 */ 290 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly; 291 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly; 292 293 /* 294 * Legacy CPUs: 295 * 4 counters starting at 0xc0010000 each offset by 1 296 * 297 * CPUs with core performance counter extensions: 298 * 6 counters starting at 0xc0010200 each offset by 2 299 */ 300 static inline int amd_pmu_addr_offset(int index, bool eventsel) 301 { 302 int offset; 303 304 if (!index) 305 return index; 306 307 if (eventsel) 308 offset = event_offsets[index]; 309 else 310 offset = count_offsets[index]; 311 312 if (offset) 313 return offset; 314 315 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 316 offset = index; 317 else 318 offset = index << 1; 319 320 if (eventsel) 321 event_offsets[index] = offset; 322 else 323 count_offsets[index] = offset; 324 325 return offset; 326 } 327 328 /* 329 * AMD64 events are detected based on their event codes. 330 */ 331 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc) 332 { 333 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff); 334 } 335 336 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc) 337 { 338 if (!(x86_pmu.flags & PMU_FL_PAIR)) 339 return false; 340 341 switch (amd_get_event_code(hwc)) { 342 case 0x003: return true; /* Retired SSE/AVX FLOPs */ 343 default: return false; 344 } 345 } 346 347 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config); 348 349 static int amd_core_hw_config(struct perf_event *event) 350 { 351 if (event->attr.exclude_host && event->attr.exclude_guest) 352 /* 353 * When HO == GO == 1 the hardware treats that as GO == HO == 0 354 * and will count in both modes. We don't want to count in that 355 * case so we emulate no-counting by setting US = OS = 0. 356 */ 357 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR | 358 ARCH_PERFMON_EVENTSEL_OS); 359 else if (event->attr.exclude_host) 360 event->hw.config |= AMD64_EVENTSEL_GUESTONLY; 361 else if (event->attr.exclude_guest) 362 event->hw.config |= AMD64_EVENTSEL_HOSTONLY; 363 364 if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw)) 365 event->hw.flags |= PERF_X86_EVENT_PAIR; 366 367 if (has_branch_stack(event)) 368 return static_call(amd_pmu_branch_hw_config)(event); 369 370 return 0; 371 } 372 373 static inline int amd_is_nb_event(struct hw_perf_event *hwc) 374 { 375 return (hwc->config & 0xe0) == 0xe0; 376 } 377 378 static inline int amd_has_nb(struct cpu_hw_events *cpuc) 379 { 380 struct amd_nb *nb = cpuc->amd_nb; 381 382 return nb && nb->nb_id != -1; 383 } 384 385 static int amd_pmu_hw_config(struct perf_event *event) 386 { 387 int ret; 388 389 /* pass precise event sampling to ibs: */ 390 if (event->attr.precise_ip && get_ibs_caps()) 391 return forward_event_to_ibs(event); 392 393 if (has_branch_stack(event) && !x86_pmu.lbr_nr) 394 return -EOPNOTSUPP; 395 396 ret = x86_pmu_hw_config(event); 397 if (ret) 398 return ret; 399 400 if (event->attr.type == PERF_TYPE_RAW) 401 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK; 402 403 return amd_core_hw_config(event); 404 } 405 406 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc, 407 struct perf_event *event) 408 { 409 struct amd_nb *nb = cpuc->amd_nb; 410 int i; 411 412 /* 413 * need to scan whole list because event may not have 414 * been assigned during scheduling 415 * 416 * no race condition possible because event can only 417 * be removed on one CPU at a time AND PMU is disabled 418 * when we come here 419 */ 420 for (i = 0; i < x86_pmu.num_counters; i++) { 421 if (cmpxchg(nb->owners + i, event, NULL) == event) 422 break; 423 } 424 } 425 426 /* 427 * AMD64 NorthBridge events need special treatment because 428 * counter access needs to be synchronized across all cores 429 * of a package. Refer to BKDG section 3.12 430 * 431 * NB events are events measuring L3 cache, Hypertransport 432 * traffic. They are identified by an event code >= 0xe00. 433 * They measure events on the NorthBride which is shared 434 * by all cores on a package. NB events are counted on a 435 * shared set of counters. When a NB event is programmed 436 * in a counter, the data actually comes from a shared 437 * counter. Thus, access to those counters needs to be 438 * synchronized. 439 * 440 * We implement the synchronization such that no two cores 441 * can be measuring NB events using the same counters. Thus, 442 * we maintain a per-NB allocation table. The available slot 443 * is propagated using the event_constraint structure. 444 * 445 * We provide only one choice for each NB event based on 446 * the fact that only NB events have restrictions. Consequently, 447 * if a counter is available, there is a guarantee the NB event 448 * will be assigned to it. If no slot is available, an empty 449 * constraint is returned and scheduling will eventually fail 450 * for this event. 451 * 452 * Note that all cores attached the same NB compete for the same 453 * counters to host NB events, this is why we use atomic ops. Some 454 * multi-chip CPUs may have more than one NB. 455 * 456 * Given that resources are allocated (cmpxchg), they must be 457 * eventually freed for others to use. This is accomplished by 458 * calling __amd_put_nb_event_constraints() 459 * 460 * Non NB events are not impacted by this restriction. 461 */ 462 static struct event_constraint * 463 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 464 struct event_constraint *c) 465 { 466 struct hw_perf_event *hwc = &event->hw; 467 struct amd_nb *nb = cpuc->amd_nb; 468 struct perf_event *old; 469 int idx, new = -1; 470 471 if (!c) 472 c = &unconstrained; 473 474 if (cpuc->is_fake) 475 return c; 476 477 /* 478 * detect if already present, if so reuse 479 * 480 * cannot merge with actual allocation 481 * because of possible holes 482 * 483 * event can already be present yet not assigned (in hwc->idx) 484 * because of successive calls to x86_schedule_events() from 485 * hw_perf_group_sched_in() without hw_perf_enable() 486 */ 487 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) { 488 if (new == -1 || hwc->idx == idx) 489 /* assign free slot, prefer hwc->idx */ 490 old = cmpxchg(nb->owners + idx, NULL, event); 491 else if (nb->owners[idx] == event) 492 /* event already present */ 493 old = event; 494 else 495 continue; 496 497 if (old && old != event) 498 continue; 499 500 /* reassign to this slot */ 501 if (new != -1) 502 cmpxchg(nb->owners + new, event, NULL); 503 new = idx; 504 505 /* already present, reuse */ 506 if (old == event) 507 break; 508 } 509 510 if (new == -1) 511 return &emptyconstraint; 512 513 return &nb->event_constraints[new]; 514 } 515 516 static struct amd_nb *amd_alloc_nb(int cpu) 517 { 518 struct amd_nb *nb; 519 int i; 520 521 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu)); 522 if (!nb) 523 return NULL; 524 525 nb->nb_id = -1; 526 527 /* 528 * initialize all possible NB constraints 529 */ 530 for (i = 0; i < x86_pmu.num_counters; i++) { 531 __set_bit(i, nb->event_constraints[i].idxmsk); 532 nb->event_constraints[i].weight = 1; 533 } 534 return nb; 535 } 536 537 typedef void (amd_pmu_branch_reset_t)(void); 538 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t); 539 540 static void amd_pmu_cpu_reset(int cpu) 541 { 542 if (x86_pmu.lbr_nr) 543 static_call(amd_pmu_branch_reset)(); 544 545 if (x86_pmu.version < 2) 546 return; 547 548 /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */ 549 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0); 550 551 /* 552 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze 553 * and PerfCntrGLobalStatus.PerfCntrOvfl 554 */ 555 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 556 GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask); 557 } 558 559 static int amd_pmu_cpu_prepare(int cpu) 560 { 561 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 562 563 cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL, 564 cpu_to_node(cpu)); 565 if (!cpuc->lbr_sel) 566 return -ENOMEM; 567 568 WARN_ON_ONCE(cpuc->amd_nb); 569 570 if (!x86_pmu.amd_nb_constraints) 571 return 0; 572 573 cpuc->amd_nb = amd_alloc_nb(cpu); 574 if (cpuc->amd_nb) 575 return 0; 576 577 kfree(cpuc->lbr_sel); 578 cpuc->lbr_sel = NULL; 579 580 return -ENOMEM; 581 } 582 583 static void amd_pmu_cpu_starting(int cpu) 584 { 585 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 586 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED]; 587 struct amd_nb *nb; 588 int i, nb_id; 589 590 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; 591 amd_pmu_cpu_reset(cpu); 592 593 if (!x86_pmu.amd_nb_constraints) 594 return; 595 596 nb_id = topology_die_id(cpu); 597 WARN_ON_ONCE(nb_id == BAD_APICID); 598 599 for_each_online_cpu(i) { 600 nb = per_cpu(cpu_hw_events, i).amd_nb; 601 if (WARN_ON_ONCE(!nb)) 602 continue; 603 604 if (nb->nb_id == nb_id) { 605 *onln = cpuc->amd_nb; 606 cpuc->amd_nb = nb; 607 break; 608 } 609 } 610 611 cpuc->amd_nb->nb_id = nb_id; 612 cpuc->amd_nb->refcnt++; 613 } 614 615 static void amd_pmu_cpu_dead(int cpu) 616 { 617 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 618 619 kfree(cpuhw->lbr_sel); 620 cpuhw->lbr_sel = NULL; 621 622 if (!x86_pmu.amd_nb_constraints) 623 return; 624 625 if (cpuhw->amd_nb) { 626 struct amd_nb *nb = cpuhw->amd_nb; 627 628 if (nb->nb_id == -1 || --nb->refcnt == 0) 629 kfree(nb); 630 631 cpuhw->amd_nb = NULL; 632 } 633 } 634 635 static inline void amd_pmu_set_global_ctl(u64 ctl) 636 { 637 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl); 638 } 639 640 static inline u64 amd_pmu_get_global_status(void) 641 { 642 u64 status; 643 644 /* PerfCntrGlobalStatus is read-only */ 645 rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status); 646 647 return status; 648 } 649 650 static inline void amd_pmu_ack_global_status(u64 status) 651 { 652 /* 653 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment 654 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr 655 * clears the same bit in PerfCntrGlobalStatus 656 */ 657 658 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status); 659 } 660 661 static bool amd_pmu_test_overflow_topbit(int idx) 662 { 663 u64 counter; 664 665 rdmsrl(x86_pmu_event_addr(idx), counter); 666 667 return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1)); 668 } 669 670 static bool amd_pmu_test_overflow_status(int idx) 671 { 672 return amd_pmu_get_global_status() & BIT_ULL(idx); 673 } 674 675 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit); 676 677 /* 678 * When a PMC counter overflows, an NMI is used to process the event and 679 * reset the counter. NMI latency can result in the counter being updated 680 * before the NMI can run, which can result in what appear to be spurious 681 * NMIs. This function is intended to wait for the NMI to run and reset 682 * the counter to avoid possible unhandled NMI messages. 683 */ 684 #define OVERFLOW_WAIT_COUNT 50 685 686 static void amd_pmu_wait_on_overflow(int idx) 687 { 688 unsigned int i; 689 690 /* 691 * Wait for the counter to be reset if it has overflowed. This loop 692 * should exit very, very quickly, but just in case, don't wait 693 * forever... 694 */ 695 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) { 696 if (!static_call(amd_pmu_test_overflow)(idx)) 697 break; 698 699 /* Might be in IRQ context, so can't sleep */ 700 udelay(1); 701 } 702 } 703 704 static void amd_pmu_check_overflow(void) 705 { 706 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 707 int idx; 708 709 /* 710 * This shouldn't be called from NMI context, but add a safeguard here 711 * to return, since if we're in NMI context we can't wait for an NMI 712 * to reset an overflowed counter value. 713 */ 714 if (in_nmi()) 715 return; 716 717 /* 718 * Check each counter for overflow and wait for it to be reset by the 719 * NMI if it has overflowed. This relies on the fact that all active 720 * counters are always enabled when this function is called and 721 * ARCH_PERFMON_EVENTSEL_INT is always set. 722 */ 723 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 724 if (!test_bit(idx, cpuc->active_mask)) 725 continue; 726 727 amd_pmu_wait_on_overflow(idx); 728 } 729 } 730 731 static void amd_pmu_enable_event(struct perf_event *event) 732 { 733 x86_pmu_enable_event(event); 734 } 735 736 static void amd_pmu_enable_all(int added) 737 { 738 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 739 int idx; 740 741 amd_brs_enable_all(); 742 743 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 744 /* only activate events which are marked as active */ 745 if (!test_bit(idx, cpuc->active_mask)) 746 continue; 747 748 amd_pmu_enable_event(cpuc->events[idx]); 749 } 750 } 751 752 static void amd_pmu_v2_enable_event(struct perf_event *event) 753 { 754 struct hw_perf_event *hwc = &event->hw; 755 756 /* 757 * Testing cpu_hw_events.enabled should be skipped in this case unlike 758 * in x86_pmu_enable_event(). 759 * 760 * Since cpu_hw_events.enabled is set only after returning from 761 * x86_pmu_start(), the PMCs must be programmed and kept ready. 762 * Counting starts only after x86_pmu_enable_all() is called. 763 */ 764 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 765 } 766 767 static __always_inline void amd_pmu_core_enable_all(void) 768 { 769 amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask); 770 } 771 772 static void amd_pmu_v2_enable_all(int added) 773 { 774 amd_pmu_lbr_enable_all(); 775 amd_pmu_core_enable_all(); 776 } 777 778 static void amd_pmu_disable_event(struct perf_event *event) 779 { 780 x86_pmu_disable_event(event); 781 782 /* 783 * This can be called from NMI context (via x86_pmu_stop). The counter 784 * may have overflowed, but either way, we'll never see it get reset 785 * by the NMI if we're already in the NMI. And the NMI latency support 786 * below will take care of any pending NMI that might have been 787 * generated by the overflow. 788 */ 789 if (in_nmi()) 790 return; 791 792 amd_pmu_wait_on_overflow(event->hw.idx); 793 } 794 795 static void amd_pmu_disable_all(void) 796 { 797 amd_brs_disable_all(); 798 x86_pmu_disable_all(); 799 amd_pmu_check_overflow(); 800 } 801 802 static __always_inline void amd_pmu_core_disable_all(void) 803 { 804 amd_pmu_set_global_ctl(0); 805 } 806 807 static void amd_pmu_v2_disable_all(void) 808 { 809 amd_pmu_core_disable_all(); 810 amd_pmu_lbr_disable_all(); 811 amd_pmu_check_overflow(); 812 } 813 814 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add); 815 816 static void amd_pmu_add_event(struct perf_event *event) 817 { 818 if (needs_branch_stack(event)) 819 static_call(amd_pmu_branch_add)(event); 820 } 821 822 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del); 823 824 static void amd_pmu_del_event(struct perf_event *event) 825 { 826 if (needs_branch_stack(event)) 827 static_call(amd_pmu_branch_del)(event); 828 } 829 830 /* 831 * Because of NMI latency, if multiple PMC counters are active or other sources 832 * of NMIs are received, the perf NMI handler can handle one or more overflowed 833 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI 834 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel 835 * back-to-back NMI support won't be active. This PMC handler needs to take into 836 * account that this can occur, otherwise this could result in unknown NMI 837 * messages being issued. Examples of this is PMC overflow while in the NMI 838 * handler when multiple PMCs are active or PMC overflow while handling some 839 * other source of an NMI. 840 * 841 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs 842 * received during this window will be claimed. This prevents extending the 843 * window past when it is possible that latent NMIs should be received. The 844 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has 845 * handled a counter. When an un-handled NMI is received, it will be claimed 846 * only if arriving within that window. 847 */ 848 static inline int amd_pmu_adjust_nmi_window(int handled) 849 { 850 /* 851 * If a counter was handled, record a timestamp such that un-handled 852 * NMIs will be claimed if arriving within that window. 853 */ 854 if (handled) { 855 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window); 856 857 return handled; 858 } 859 860 if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp))) 861 return NMI_DONE; 862 863 return NMI_HANDLED; 864 } 865 866 static int amd_pmu_handle_irq(struct pt_regs *regs) 867 { 868 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 869 int handled; 870 int pmu_enabled; 871 872 /* 873 * Save the PMU state. 874 * It needs to be restored when leaving the handler. 875 */ 876 pmu_enabled = cpuc->enabled; 877 cpuc->enabled = 0; 878 879 amd_brs_disable_all(); 880 881 /* Drain BRS is in use (could be inactive) */ 882 if (cpuc->lbr_users) 883 amd_brs_drain(); 884 885 /* Process any counter overflows */ 886 handled = x86_pmu_handle_irq(regs); 887 888 cpuc->enabled = pmu_enabled; 889 if (pmu_enabled) 890 amd_brs_enable_all(); 891 892 return amd_pmu_adjust_nmi_window(handled); 893 } 894 895 static int amd_pmu_v2_handle_irq(struct pt_regs *regs) 896 { 897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 898 static atomic64_t status_warned = ATOMIC64_INIT(0); 899 u64 reserved, status, mask, new_bits, prev_bits; 900 struct perf_sample_data data; 901 struct hw_perf_event *hwc; 902 struct perf_event *event; 903 int handled = 0, idx; 904 bool pmu_enabled; 905 906 /* 907 * Save the PMU state as it needs to be restored when leaving the 908 * handler 909 */ 910 pmu_enabled = cpuc->enabled; 911 cpuc->enabled = 0; 912 913 /* Stop counting but do not disable LBR */ 914 amd_pmu_core_disable_all(); 915 916 status = amd_pmu_get_global_status(); 917 918 /* Check if any overflows are pending */ 919 if (!status) 920 goto done; 921 922 /* Read branch records */ 923 if (x86_pmu.lbr_nr) { 924 amd_pmu_lbr_read(); 925 status &= ~GLOBAL_STATUS_LBRS_FROZEN; 926 } 927 928 reserved = status & ~amd_pmu_global_cntr_mask; 929 if (reserved) 930 pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n", 931 reserved); 932 933 /* Clear any reserved bits set by buggy microcode */ 934 status &= amd_pmu_global_cntr_mask; 935 936 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 937 if (!test_bit(idx, cpuc->active_mask)) 938 continue; 939 940 event = cpuc->events[idx]; 941 hwc = &event->hw; 942 x86_perf_event_update(event); 943 mask = BIT_ULL(idx); 944 945 if (!(status & mask)) 946 continue; 947 948 /* Event overflow */ 949 handled++; 950 status &= ~mask; 951 perf_sample_data_init(&data, 0, hwc->last_period); 952 953 if (!x86_perf_event_set_period(event)) 954 continue; 955 956 if (has_branch_stack(event)) 957 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack); 958 959 if (perf_event_overflow(event, &data, regs)) 960 x86_pmu_stop(event, 0); 961 } 962 963 /* 964 * It should never be the case that some overflows are not handled as 965 * the corresponding PMCs are expected to be inactive according to the 966 * active_mask 967 */ 968 if (status > 0) { 969 prev_bits = atomic64_fetch_or(status, &status_warned); 970 // A new bit was set for the very first time. 971 new_bits = status & ~prev_bits; 972 WARN(new_bits, "New overflows for inactive PMCs: %llx\n", new_bits); 973 } 974 975 /* Clear overflow and freeze bits */ 976 amd_pmu_ack_global_status(~status); 977 978 /* 979 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT 980 * PMI entry is not set by the local APIC when a PMC overflow occurs 981 */ 982 inc_irq_stat(apic_perf_irqs); 983 984 done: 985 cpuc->enabled = pmu_enabled; 986 987 /* Resume counting only if PMU is active */ 988 if (pmu_enabled) 989 amd_pmu_core_enable_all(); 990 991 return amd_pmu_adjust_nmi_window(handled); 992 } 993 994 static struct event_constraint * 995 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 996 struct perf_event *event) 997 { 998 /* 999 * if not NB event or no NB, then no constraints 1000 */ 1001 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))) 1002 return &unconstrained; 1003 1004 return __amd_get_nb_event_constraints(cpuc, event, NULL); 1005 } 1006 1007 static void amd_put_event_constraints(struct cpu_hw_events *cpuc, 1008 struct perf_event *event) 1009 { 1010 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)) 1011 __amd_put_nb_event_constraints(cpuc, event); 1012 } 1013 1014 PMU_FORMAT_ATTR(event, "config:0-7,32-35"); 1015 PMU_FORMAT_ATTR(umask, "config:8-15" ); 1016 PMU_FORMAT_ATTR(edge, "config:18" ); 1017 PMU_FORMAT_ATTR(inv, "config:23" ); 1018 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 1019 1020 static struct attribute *amd_format_attr[] = { 1021 &format_attr_event.attr, 1022 &format_attr_umask.attr, 1023 &format_attr_edge.attr, 1024 &format_attr_inv.attr, 1025 &format_attr_cmask.attr, 1026 NULL, 1027 }; 1028 1029 /* AMD Family 15h */ 1030 1031 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL 1032 1033 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL 1034 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL 1035 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL 1036 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL 1037 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL 1038 #define AMD_EVENT_EX_LS 0x000000C0ULL 1039 #define AMD_EVENT_DE 0x000000D0ULL 1040 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL 1041 1042 /* 1043 * AMD family 15h event code/PMC mappings: 1044 * 1045 * type = event_code & 0x0F0: 1046 * 1047 * 0x000 FP PERF_CTL[5:3] 1048 * 0x010 FP PERF_CTL[5:3] 1049 * 0x020 LS PERF_CTL[5:0] 1050 * 0x030 LS PERF_CTL[5:0] 1051 * 0x040 DC PERF_CTL[5:0] 1052 * 0x050 DC PERF_CTL[5:0] 1053 * 0x060 CU PERF_CTL[2:0] 1054 * 0x070 CU PERF_CTL[2:0] 1055 * 0x080 IC/DE PERF_CTL[2:0] 1056 * 0x090 IC/DE PERF_CTL[2:0] 1057 * 0x0A0 --- 1058 * 0x0B0 --- 1059 * 0x0C0 EX/LS PERF_CTL[5:0] 1060 * 0x0D0 DE PERF_CTL[2:0] 1061 * 0x0E0 NB NB_PERF_CTL[3:0] 1062 * 0x0F0 NB NB_PERF_CTL[3:0] 1063 * 1064 * Exceptions: 1065 * 1066 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*) 1067 * 0x003 FP PERF_CTL[3] 1068 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*) 1069 * 0x00B FP PERF_CTL[3] 1070 * 0x00D FP PERF_CTL[3] 1071 * 0x023 DE PERF_CTL[2:0] 1072 * 0x02D LS PERF_CTL[3] 1073 * 0x02E LS PERF_CTL[3,0] 1074 * 0x031 LS PERF_CTL[2:0] (**) 1075 * 0x043 CU PERF_CTL[2:0] 1076 * 0x045 CU PERF_CTL[2:0] 1077 * 0x046 CU PERF_CTL[2:0] 1078 * 0x054 CU PERF_CTL[2:0] 1079 * 0x055 CU PERF_CTL[2:0] 1080 * 0x08F IC PERF_CTL[0] 1081 * 0x187 DE PERF_CTL[0] 1082 * 0x188 DE PERF_CTL[0] 1083 * 0x0DB EX PERF_CTL[5:0] 1084 * 0x0DC LS PERF_CTL[5:0] 1085 * 0x0DD LS PERF_CTL[5:0] 1086 * 0x0DE LS PERF_CTL[5:0] 1087 * 0x0DF LS PERF_CTL[5:0] 1088 * 0x1C0 EX PERF_CTL[5:3] 1089 * 0x1D6 EX PERF_CTL[5:0] 1090 * 0x1D8 EX PERF_CTL[5:0] 1091 * 1092 * (*) depending on the umask all FPU counters may be used 1093 * (**) only one unitmask enabled at a time 1094 */ 1095 1096 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0); 1097 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0); 1098 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0); 1099 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); 1100 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0); 1101 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0); 1102 1103 static struct event_constraint * 1104 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx, 1105 struct perf_event *event) 1106 { 1107 struct hw_perf_event *hwc = &event->hw; 1108 unsigned int event_code = amd_get_event_code(hwc); 1109 1110 switch (event_code & AMD_EVENT_TYPE_MASK) { 1111 case AMD_EVENT_FP: 1112 switch (event_code) { 1113 case 0x000: 1114 if (!(hwc->config & 0x0000F000ULL)) 1115 break; 1116 if (!(hwc->config & 0x00000F00ULL)) 1117 break; 1118 return &amd_f15_PMC3; 1119 case 0x004: 1120 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) 1121 break; 1122 return &amd_f15_PMC3; 1123 case 0x003: 1124 case 0x00B: 1125 case 0x00D: 1126 return &amd_f15_PMC3; 1127 } 1128 return &amd_f15_PMC53; 1129 case AMD_EVENT_LS: 1130 case AMD_EVENT_DC: 1131 case AMD_EVENT_EX_LS: 1132 switch (event_code) { 1133 case 0x023: 1134 case 0x043: 1135 case 0x045: 1136 case 0x046: 1137 case 0x054: 1138 case 0x055: 1139 return &amd_f15_PMC20; 1140 case 0x02D: 1141 return &amd_f15_PMC3; 1142 case 0x02E: 1143 return &amd_f15_PMC30; 1144 case 0x031: 1145 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) 1146 return &amd_f15_PMC20; 1147 return &emptyconstraint; 1148 case 0x1C0: 1149 return &amd_f15_PMC53; 1150 default: 1151 return &amd_f15_PMC50; 1152 } 1153 case AMD_EVENT_CU: 1154 case AMD_EVENT_IC_DE: 1155 case AMD_EVENT_DE: 1156 switch (event_code) { 1157 case 0x08F: 1158 case 0x187: 1159 case 0x188: 1160 return &amd_f15_PMC0; 1161 case 0x0DB ... 0x0DF: 1162 case 0x1D6: 1163 case 0x1D8: 1164 return &amd_f15_PMC50; 1165 default: 1166 return &amd_f15_PMC20; 1167 } 1168 case AMD_EVENT_NB: 1169 /* moved to uncore.c */ 1170 return &emptyconstraint; 1171 default: 1172 return &emptyconstraint; 1173 } 1174 } 1175 1176 static struct event_constraint pair_constraint; 1177 1178 static struct event_constraint * 1179 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx, 1180 struct perf_event *event) 1181 { 1182 struct hw_perf_event *hwc = &event->hw; 1183 1184 if (amd_is_pair_event_code(hwc)) 1185 return &pair_constraint; 1186 1187 return &unconstrained; 1188 } 1189 1190 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc, 1191 struct perf_event *event) 1192 { 1193 struct hw_perf_event *hwc = &event->hw; 1194 1195 if (is_counter_pair(hwc)) 1196 --cpuc->n_pair; 1197 } 1198 1199 /* 1200 * Because of the way BRS operates with an inactive and active phases, and 1201 * the link to one counter, it is not possible to have two events using BRS 1202 * scheduled at the same time. There would be an issue with enforcing the 1203 * period of each one and given that the BRS saturates, it would not be possible 1204 * to guarantee correlated content for all events. Therefore, in situations 1205 * where multiple events want to use BRS, the kernel enforces mutual exclusion. 1206 * Exclusion is enforced by chosing only one counter for events using BRS. 1207 * The event scheduling logic will then automatically multiplex the 1208 * events and ensure that at most one event is actively using BRS. 1209 * 1210 * The BRS counter could be any counter, but there is no constraint on Fam19h, 1211 * therefore all counters are equal and thus we pick the first one: PMC0 1212 */ 1213 static struct event_constraint amd_fam19h_brs_cntr0_constraint = 1214 EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK); 1215 1216 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint = 1217 __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR); 1218 1219 static struct event_constraint * 1220 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx, 1221 struct perf_event *event) 1222 { 1223 struct hw_perf_event *hwc = &event->hw; 1224 bool has_brs = has_amd_brs(hwc); 1225 1226 /* 1227 * In case BRS is used with an event requiring a counter pair, 1228 * the kernel allows it but only on counter 0 & 1 to enforce 1229 * multiplexing requiring to protect BRS in case of multiple 1230 * BRS users 1231 */ 1232 if (amd_is_pair_event_code(hwc)) { 1233 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint 1234 : &pair_constraint; 1235 } 1236 1237 if (has_brs) 1238 return &amd_fam19h_brs_cntr0_constraint; 1239 1240 return &unconstrained; 1241 } 1242 1243 1244 static ssize_t amd_event_sysfs_show(char *page, u64 config) 1245 { 1246 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) | 1247 (config & AMD64_EVENTSEL_EVENT) >> 24; 1248 1249 return x86_event_sysfs_show(page, config, event); 1250 } 1251 1252 static void amd_pmu_limit_period(struct perf_event *event, s64 *left) 1253 { 1254 /* 1255 * Decrease period by the depth of the BRS feature to get the last N 1256 * taken branches and approximate the desired period 1257 */ 1258 if (has_branch_stack(event) && *left > x86_pmu.lbr_nr) 1259 *left -= x86_pmu.lbr_nr; 1260 } 1261 1262 static __initconst const struct x86_pmu amd_pmu = { 1263 .name = "AMD", 1264 .handle_irq = amd_pmu_handle_irq, 1265 .disable_all = amd_pmu_disable_all, 1266 .enable_all = amd_pmu_enable_all, 1267 .enable = amd_pmu_enable_event, 1268 .disable = amd_pmu_disable_event, 1269 .hw_config = amd_pmu_hw_config, 1270 .schedule_events = x86_schedule_events, 1271 .eventsel = MSR_K7_EVNTSEL0, 1272 .perfctr = MSR_K7_PERFCTR0, 1273 .addr_offset = amd_pmu_addr_offset, 1274 .event_map = amd_pmu_event_map, 1275 .max_events = ARRAY_SIZE(amd_perfmon_event_map), 1276 .num_counters = AMD64_NUM_COUNTERS, 1277 .add = amd_pmu_add_event, 1278 .del = amd_pmu_del_event, 1279 .cntval_bits = 48, 1280 .cntval_mask = (1ULL << 48) - 1, 1281 .apic = 1, 1282 /* use highest bit to detect overflow */ 1283 .max_period = (1ULL << 47) - 1, 1284 .get_event_constraints = amd_get_event_constraints, 1285 .put_event_constraints = amd_put_event_constraints, 1286 1287 .format_attrs = amd_format_attr, 1288 .events_sysfs_show = amd_event_sysfs_show, 1289 1290 .cpu_prepare = amd_pmu_cpu_prepare, 1291 .cpu_starting = amd_pmu_cpu_starting, 1292 .cpu_dead = amd_pmu_cpu_dead, 1293 1294 .amd_nb_constraints = 1, 1295 }; 1296 1297 static ssize_t branches_show(struct device *cdev, 1298 struct device_attribute *attr, 1299 char *buf) 1300 { 1301 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 1302 } 1303 1304 static DEVICE_ATTR_RO(branches); 1305 1306 static struct attribute *amd_pmu_branches_attrs[] = { 1307 &dev_attr_branches.attr, 1308 NULL, 1309 }; 1310 1311 static umode_t 1312 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i) 1313 { 1314 return x86_pmu.lbr_nr ? attr->mode : 0; 1315 } 1316 1317 static struct attribute_group group_caps_amd_branches = { 1318 .name = "caps", 1319 .attrs = amd_pmu_branches_attrs, 1320 .is_visible = amd_branches_is_visible, 1321 }; 1322 1323 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1324 1325 EVENT_ATTR_STR(branch-brs, amd_branch_brs, 1326 "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n"); 1327 1328 static struct attribute *amd_brs_events_attrs[] = { 1329 EVENT_PTR(amd_branch_brs), 1330 NULL, 1331 }; 1332 1333 static umode_t 1334 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 1335 { 1336 return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ? 1337 attr->mode : 0; 1338 } 1339 1340 static struct attribute_group group_events_amd_brs = { 1341 .name = "events", 1342 .attrs = amd_brs_events_attrs, 1343 .is_visible = amd_brs_is_visible, 1344 }; 1345 1346 #endif /* CONFIG_PERF_EVENTS_AMD_BRS */ 1347 1348 static const struct attribute_group *amd_attr_update[] = { 1349 &group_caps_amd_branches, 1350 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1351 &group_events_amd_brs, 1352 #endif 1353 NULL, 1354 }; 1355 1356 static int __init amd_core_pmu_init(void) 1357 { 1358 union cpuid_0x80000022_ebx ebx; 1359 u64 even_ctr_mask = 0ULL; 1360 int i; 1361 1362 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 1363 return 0; 1364 1365 /* Avoid calculating the value each time in the NMI handler */ 1366 perf_nmi_window = msecs_to_jiffies(100); 1367 1368 /* 1369 * If core performance counter extensions exists, we must use 1370 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also 1371 * amd_pmu_addr_offset(). 1372 */ 1373 x86_pmu.eventsel = MSR_F15H_PERF_CTL; 1374 x86_pmu.perfctr = MSR_F15H_PERF_CTR; 1375 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE; 1376 1377 /* Check for Performance Monitoring v2 support */ 1378 if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) { 1379 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES); 1380 1381 /* Update PMU version for later usage */ 1382 x86_pmu.version = 2; 1383 1384 /* Find the number of available Core PMCs */ 1385 x86_pmu.num_counters = ebx.split.num_core_pmc; 1386 1387 amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1; 1388 1389 /* Update PMC handling functions */ 1390 x86_pmu.enable_all = amd_pmu_v2_enable_all; 1391 x86_pmu.disable_all = amd_pmu_v2_disable_all; 1392 x86_pmu.enable = amd_pmu_v2_enable_event; 1393 x86_pmu.handle_irq = amd_pmu_v2_handle_irq; 1394 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status); 1395 } 1396 1397 /* 1398 * AMD Core perfctr has separate MSRs for the NB events, see 1399 * the amd/uncore.c driver. 1400 */ 1401 x86_pmu.amd_nb_constraints = 0; 1402 1403 if (boot_cpu_data.x86 == 0x15) { 1404 pr_cont("Fam15h "); 1405 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h; 1406 } 1407 if (boot_cpu_data.x86 >= 0x17) { 1408 pr_cont("Fam17h+ "); 1409 /* 1410 * Family 17h and compatibles have constraints for Large 1411 * Increment per Cycle events: they may only be assigned an 1412 * even numbered counter that has a consecutive adjacent odd 1413 * numbered counter following it. 1414 */ 1415 for (i = 0; i < x86_pmu.num_counters - 1; i += 2) 1416 even_ctr_mask |= BIT_ULL(i); 1417 1418 pair_constraint = (struct event_constraint) 1419 __EVENT_CONSTRAINT(0, even_ctr_mask, 0, 1420 x86_pmu.num_counters / 2, 0, 1421 PERF_X86_EVENT_PAIR); 1422 1423 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h; 1424 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h; 1425 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE; 1426 x86_pmu.flags |= PMU_FL_PAIR; 1427 } 1428 1429 /* LBR and BRS are mutually exclusive features */ 1430 if (!amd_pmu_lbr_init()) { 1431 /* LBR requires flushing on context switch */ 1432 x86_pmu.sched_task = amd_pmu_lbr_sched_task; 1433 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config); 1434 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset); 1435 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add); 1436 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del); 1437 } else if (!amd_brs_init()) { 1438 /* 1439 * BRS requires special event constraints and flushing on ctxsw. 1440 */ 1441 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h; 1442 x86_pmu.sched_task = amd_pmu_brs_sched_task; 1443 x86_pmu.limit_period = amd_pmu_limit_period; 1444 1445 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config); 1446 static_call_update(amd_pmu_branch_reset, amd_brs_reset); 1447 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add); 1448 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del); 1449 1450 /* 1451 * put_event_constraints callback same as Fam17h, set above 1452 */ 1453 1454 /* branch sampling must be stopped when entering low power */ 1455 amd_brs_lopwr_init(); 1456 } 1457 1458 x86_pmu.attr_update = amd_attr_update; 1459 1460 pr_cont("core perfctr, "); 1461 return 0; 1462 } 1463 1464 __init int amd_pmu_init(void) 1465 { 1466 int ret; 1467 1468 /* Performance-monitoring supported from K7 and later: */ 1469 if (boot_cpu_data.x86 < 6) 1470 return -ENODEV; 1471 1472 x86_pmu = amd_pmu; 1473 1474 ret = amd_core_pmu_init(); 1475 if (ret) 1476 return ret; 1477 1478 if (num_possible_cpus() == 1) { 1479 /* 1480 * No point in allocating data structures to serialize 1481 * against other CPUs, when there is only the one CPU. 1482 */ 1483 x86_pmu.amd_nb_constraints = 0; 1484 } 1485 1486 if (boot_cpu_data.x86 >= 0x17) 1487 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids)); 1488 else 1489 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 1490 1491 return 0; 1492 } 1493 1494 static inline void amd_pmu_reload_virt(void) 1495 { 1496 if (x86_pmu.version >= 2) { 1497 /* 1498 * Clear global enable bits, reprogram the PERF_CTL 1499 * registers with updated perf_ctr_virt_mask and then 1500 * set global enable bits once again 1501 */ 1502 amd_pmu_v2_disable_all(); 1503 amd_pmu_enable_all(0); 1504 amd_pmu_v2_enable_all(0); 1505 return; 1506 } 1507 1508 amd_pmu_disable_all(); 1509 amd_pmu_enable_all(0); 1510 } 1511 1512 void amd_pmu_enable_virt(void) 1513 { 1514 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1515 1516 cpuc->perf_ctr_virt_mask = 0; 1517 1518 /* Reload all events */ 1519 amd_pmu_reload_virt(); 1520 } 1521 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt); 1522 1523 void amd_pmu_disable_virt(void) 1524 { 1525 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1526 1527 /* 1528 * We only mask out the Host-only bit so that host-only counting works 1529 * when SVM is disabled. If someone sets up a guest-only counter when 1530 * SVM is disabled the Guest-only bits still gets set and the counter 1531 * will not count anything. 1532 */ 1533 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; 1534 1535 /* Reload all events */ 1536 amd_pmu_reload_virt(); 1537 } 1538 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt); 1539