xref: /openbmc/linux/arch/x86/events/amd/core.c (revision 3213486f)
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <linux/delay.h>
7 #include <asm/apicdef.h>
8 #include <asm/nmi.h>
9 
10 #include "../perf_event.h"
11 
12 static DEFINE_PER_CPU(unsigned int, perf_nmi_counter);
13 
14 static __initconst const u64 amd_hw_cache_event_ids
15 				[PERF_COUNT_HW_CACHE_MAX]
16 				[PERF_COUNT_HW_CACHE_OP_MAX]
17 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
18 {
19  [ C(L1D) ] = {
20 	[ C(OP_READ) ] = {
21 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
22 		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
23 	},
24 	[ C(OP_WRITE) ] = {
25 		[ C(RESULT_ACCESS) ] = 0,
26 		[ C(RESULT_MISS)   ] = 0,
27 	},
28 	[ C(OP_PREFETCH) ] = {
29 		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
30 		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
31 	},
32  },
33  [ C(L1I ) ] = {
34 	[ C(OP_READ) ] = {
35 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
36 		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
37 	},
38 	[ C(OP_WRITE) ] = {
39 		[ C(RESULT_ACCESS) ] = -1,
40 		[ C(RESULT_MISS)   ] = -1,
41 	},
42 	[ C(OP_PREFETCH) ] = {
43 		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
44 		[ C(RESULT_MISS)   ] = 0,
45 	},
46  },
47  [ C(LL  ) ] = {
48 	[ C(OP_READ) ] = {
49 		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
50 		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
51 	},
52 	[ C(OP_WRITE) ] = {
53 		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
54 		[ C(RESULT_MISS)   ] = 0,
55 	},
56 	[ C(OP_PREFETCH) ] = {
57 		[ C(RESULT_ACCESS) ] = 0,
58 		[ C(RESULT_MISS)   ] = 0,
59 	},
60  },
61  [ C(DTLB) ] = {
62 	[ C(OP_READ) ] = {
63 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
64 		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
65 	},
66 	[ C(OP_WRITE) ] = {
67 		[ C(RESULT_ACCESS) ] = 0,
68 		[ C(RESULT_MISS)   ] = 0,
69 	},
70 	[ C(OP_PREFETCH) ] = {
71 		[ C(RESULT_ACCESS) ] = 0,
72 		[ C(RESULT_MISS)   ] = 0,
73 	},
74  },
75  [ C(ITLB) ] = {
76 	[ C(OP_READ) ] = {
77 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
78 		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
79 	},
80 	[ C(OP_WRITE) ] = {
81 		[ C(RESULT_ACCESS) ] = -1,
82 		[ C(RESULT_MISS)   ] = -1,
83 	},
84 	[ C(OP_PREFETCH) ] = {
85 		[ C(RESULT_ACCESS) ] = -1,
86 		[ C(RESULT_MISS)   ] = -1,
87 	},
88  },
89  [ C(BPU ) ] = {
90 	[ C(OP_READ) ] = {
91 		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
92 		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
93 	},
94 	[ C(OP_WRITE) ] = {
95 		[ C(RESULT_ACCESS) ] = -1,
96 		[ C(RESULT_MISS)   ] = -1,
97 	},
98 	[ C(OP_PREFETCH) ] = {
99 		[ C(RESULT_ACCESS) ] = -1,
100 		[ C(RESULT_MISS)   ] = -1,
101 	},
102  },
103  [ C(NODE) ] = {
104 	[ C(OP_READ) ] = {
105 		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
106 		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
107 	},
108 	[ C(OP_WRITE) ] = {
109 		[ C(RESULT_ACCESS) ] = -1,
110 		[ C(RESULT_MISS)   ] = -1,
111 	},
112 	[ C(OP_PREFETCH) ] = {
113 		[ C(RESULT_ACCESS) ] = -1,
114 		[ C(RESULT_MISS)   ] = -1,
115 	},
116  },
117 };
118 
119 /*
120  * AMD Performance Monitor K7 and later, up to and including Family 16h:
121  */
122 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
123 {
124 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
125 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
126 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
127 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
128 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
129 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
130 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
131 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
132 };
133 
134 /*
135  * AMD Performance Monitor Family 17h and later:
136  */
137 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
138 {
139 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
140 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
141 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
142 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
143 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
144 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
145 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
146 };
147 
148 static u64 amd_pmu_event_map(int hw_event)
149 {
150 	if (boot_cpu_data.x86 >= 0x17)
151 		return amd_f17h_perfmon_event_map[hw_event];
152 
153 	return amd_perfmon_event_map[hw_event];
154 }
155 
156 /*
157  * Previously calculated offsets
158  */
159 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
160 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
161 
162 /*
163  * Legacy CPUs:
164  *   4 counters starting at 0xc0010000 each offset by 1
165  *
166  * CPUs with core performance counter extensions:
167  *   6 counters starting at 0xc0010200 each offset by 2
168  */
169 static inline int amd_pmu_addr_offset(int index, bool eventsel)
170 {
171 	int offset;
172 
173 	if (!index)
174 		return index;
175 
176 	if (eventsel)
177 		offset = event_offsets[index];
178 	else
179 		offset = count_offsets[index];
180 
181 	if (offset)
182 		return offset;
183 
184 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
185 		offset = index;
186 	else
187 		offset = index << 1;
188 
189 	if (eventsel)
190 		event_offsets[index] = offset;
191 	else
192 		count_offsets[index] = offset;
193 
194 	return offset;
195 }
196 
197 static int amd_core_hw_config(struct perf_event *event)
198 {
199 	if (event->attr.exclude_host && event->attr.exclude_guest)
200 		/*
201 		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
202 		 * and will count in both modes. We don't want to count in that
203 		 * case so we emulate no-counting by setting US = OS = 0.
204 		 */
205 		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
206 				      ARCH_PERFMON_EVENTSEL_OS);
207 	else if (event->attr.exclude_host)
208 		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
209 	else if (event->attr.exclude_guest)
210 		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
211 
212 	return 0;
213 }
214 
215 /*
216  * AMD64 events are detected based on their event codes.
217  */
218 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
219 {
220 	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
221 }
222 
223 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
224 {
225 	return (hwc->config & 0xe0) == 0xe0;
226 }
227 
228 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
229 {
230 	struct amd_nb *nb = cpuc->amd_nb;
231 
232 	return nb && nb->nb_id != -1;
233 }
234 
235 static int amd_pmu_hw_config(struct perf_event *event)
236 {
237 	int ret;
238 
239 	/* pass precise event sampling to ibs: */
240 	if (event->attr.precise_ip && get_ibs_caps())
241 		return -ENOENT;
242 
243 	if (has_branch_stack(event))
244 		return -EOPNOTSUPP;
245 
246 	ret = x86_pmu_hw_config(event);
247 	if (ret)
248 		return ret;
249 
250 	if (event->attr.type == PERF_TYPE_RAW)
251 		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
252 
253 	return amd_core_hw_config(event);
254 }
255 
256 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
257 					   struct perf_event *event)
258 {
259 	struct amd_nb *nb = cpuc->amd_nb;
260 	int i;
261 
262 	/*
263 	 * need to scan whole list because event may not have
264 	 * been assigned during scheduling
265 	 *
266 	 * no race condition possible because event can only
267 	 * be removed on one CPU at a time AND PMU is disabled
268 	 * when we come here
269 	 */
270 	for (i = 0; i < x86_pmu.num_counters; i++) {
271 		if (cmpxchg(nb->owners + i, event, NULL) == event)
272 			break;
273 	}
274 }
275 
276  /*
277   * AMD64 NorthBridge events need special treatment because
278   * counter access needs to be synchronized across all cores
279   * of a package. Refer to BKDG section 3.12
280   *
281   * NB events are events measuring L3 cache, Hypertransport
282   * traffic. They are identified by an event code >= 0xe00.
283   * They measure events on the NorthBride which is shared
284   * by all cores on a package. NB events are counted on a
285   * shared set of counters. When a NB event is programmed
286   * in a counter, the data actually comes from a shared
287   * counter. Thus, access to those counters needs to be
288   * synchronized.
289   *
290   * We implement the synchronization such that no two cores
291   * can be measuring NB events using the same counters. Thus,
292   * we maintain a per-NB allocation table. The available slot
293   * is propagated using the event_constraint structure.
294   *
295   * We provide only one choice for each NB event based on
296   * the fact that only NB events have restrictions. Consequently,
297   * if a counter is available, there is a guarantee the NB event
298   * will be assigned to it. If no slot is available, an empty
299   * constraint is returned and scheduling will eventually fail
300   * for this event.
301   *
302   * Note that all cores attached the same NB compete for the same
303   * counters to host NB events, this is why we use atomic ops. Some
304   * multi-chip CPUs may have more than one NB.
305   *
306   * Given that resources are allocated (cmpxchg), they must be
307   * eventually freed for others to use. This is accomplished by
308   * calling __amd_put_nb_event_constraints()
309   *
310   * Non NB events are not impacted by this restriction.
311   */
312 static struct event_constraint *
313 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
314 			       struct event_constraint *c)
315 {
316 	struct hw_perf_event *hwc = &event->hw;
317 	struct amd_nb *nb = cpuc->amd_nb;
318 	struct perf_event *old;
319 	int idx, new = -1;
320 
321 	if (!c)
322 		c = &unconstrained;
323 
324 	if (cpuc->is_fake)
325 		return c;
326 
327 	/*
328 	 * detect if already present, if so reuse
329 	 *
330 	 * cannot merge with actual allocation
331 	 * because of possible holes
332 	 *
333 	 * event can already be present yet not assigned (in hwc->idx)
334 	 * because of successive calls to x86_schedule_events() from
335 	 * hw_perf_group_sched_in() without hw_perf_enable()
336 	 */
337 	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
338 		if (new == -1 || hwc->idx == idx)
339 			/* assign free slot, prefer hwc->idx */
340 			old = cmpxchg(nb->owners + idx, NULL, event);
341 		else if (nb->owners[idx] == event)
342 			/* event already present */
343 			old = event;
344 		else
345 			continue;
346 
347 		if (old && old != event)
348 			continue;
349 
350 		/* reassign to this slot */
351 		if (new != -1)
352 			cmpxchg(nb->owners + new, event, NULL);
353 		new = idx;
354 
355 		/* already present, reuse */
356 		if (old == event)
357 			break;
358 	}
359 
360 	if (new == -1)
361 		return &emptyconstraint;
362 
363 	return &nb->event_constraints[new];
364 }
365 
366 static struct amd_nb *amd_alloc_nb(int cpu)
367 {
368 	struct amd_nb *nb;
369 	int i;
370 
371 	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
372 	if (!nb)
373 		return NULL;
374 
375 	nb->nb_id = -1;
376 
377 	/*
378 	 * initialize all possible NB constraints
379 	 */
380 	for (i = 0; i < x86_pmu.num_counters; i++) {
381 		__set_bit(i, nb->event_constraints[i].idxmsk);
382 		nb->event_constraints[i].weight = 1;
383 	}
384 	return nb;
385 }
386 
387 static int amd_pmu_cpu_prepare(int cpu)
388 {
389 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
390 
391 	WARN_ON_ONCE(cpuc->amd_nb);
392 
393 	if (!x86_pmu.amd_nb_constraints)
394 		return 0;
395 
396 	cpuc->amd_nb = amd_alloc_nb(cpu);
397 	if (!cpuc->amd_nb)
398 		return -ENOMEM;
399 
400 	return 0;
401 }
402 
403 static void amd_pmu_cpu_starting(int cpu)
404 {
405 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
406 	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
407 	struct amd_nb *nb;
408 	int i, nb_id;
409 
410 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
411 
412 	if (!x86_pmu.amd_nb_constraints)
413 		return;
414 
415 	nb_id = amd_get_nb_id(cpu);
416 	WARN_ON_ONCE(nb_id == BAD_APICID);
417 
418 	for_each_online_cpu(i) {
419 		nb = per_cpu(cpu_hw_events, i).amd_nb;
420 		if (WARN_ON_ONCE(!nb))
421 			continue;
422 
423 		if (nb->nb_id == nb_id) {
424 			*onln = cpuc->amd_nb;
425 			cpuc->amd_nb = nb;
426 			break;
427 		}
428 	}
429 
430 	cpuc->amd_nb->nb_id = nb_id;
431 	cpuc->amd_nb->refcnt++;
432 }
433 
434 static void amd_pmu_cpu_dead(int cpu)
435 {
436 	struct cpu_hw_events *cpuhw;
437 
438 	if (!x86_pmu.amd_nb_constraints)
439 		return;
440 
441 	cpuhw = &per_cpu(cpu_hw_events, cpu);
442 
443 	if (cpuhw->amd_nb) {
444 		struct amd_nb *nb = cpuhw->amd_nb;
445 
446 		if (nb->nb_id == -1 || --nb->refcnt == 0)
447 			kfree(nb);
448 
449 		cpuhw->amd_nb = NULL;
450 	}
451 }
452 
453 /*
454  * When a PMC counter overflows, an NMI is used to process the event and
455  * reset the counter. NMI latency can result in the counter being updated
456  * before the NMI can run, which can result in what appear to be spurious
457  * NMIs. This function is intended to wait for the NMI to run and reset
458  * the counter to avoid possible unhandled NMI messages.
459  */
460 #define OVERFLOW_WAIT_COUNT	50
461 
462 static void amd_pmu_wait_on_overflow(int idx)
463 {
464 	unsigned int i;
465 	u64 counter;
466 
467 	/*
468 	 * Wait for the counter to be reset if it has overflowed. This loop
469 	 * should exit very, very quickly, but just in case, don't wait
470 	 * forever...
471 	 */
472 	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
473 		rdmsrl(x86_pmu_event_addr(idx), counter);
474 		if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
475 			break;
476 
477 		/* Might be in IRQ context, so can't sleep */
478 		udelay(1);
479 	}
480 }
481 
482 static void amd_pmu_disable_all(void)
483 {
484 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
485 	int idx;
486 
487 	x86_pmu_disable_all();
488 
489 	/*
490 	 * This shouldn't be called from NMI context, but add a safeguard here
491 	 * to return, since if we're in NMI context we can't wait for an NMI
492 	 * to reset an overflowed counter value.
493 	 */
494 	if (in_nmi())
495 		return;
496 
497 	/*
498 	 * Check each counter for overflow and wait for it to be reset by the
499 	 * NMI if it has overflowed. This relies on the fact that all active
500 	 * counters are always enabled when this function is caled and
501 	 * ARCH_PERFMON_EVENTSEL_INT is always set.
502 	 */
503 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
504 		if (!test_bit(idx, cpuc->active_mask))
505 			continue;
506 
507 		amd_pmu_wait_on_overflow(idx);
508 	}
509 }
510 
511 static void amd_pmu_disable_event(struct perf_event *event)
512 {
513 	x86_pmu_disable_event(event);
514 
515 	/*
516 	 * This can be called from NMI context (via x86_pmu_stop). The counter
517 	 * may have overflowed, but either way, we'll never see it get reset
518 	 * by the NMI if we're already in the NMI. And the NMI latency support
519 	 * below will take care of any pending NMI that might have been
520 	 * generated by the overflow.
521 	 */
522 	if (in_nmi())
523 		return;
524 
525 	amd_pmu_wait_on_overflow(event->hw.idx);
526 }
527 
528 /*
529  * Because of NMI latency, if multiple PMC counters are active or other sources
530  * of NMIs are received, the perf NMI handler can handle one or more overflowed
531  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
532  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
533  * back-to-back NMI support won't be active. This PMC handler needs to take into
534  * account that this can occur, otherwise this could result in unknown NMI
535  * messages being issued. Examples of this is PMC overflow while in the NMI
536  * handler when multiple PMCs are active or PMC overflow while handling some
537  * other source of an NMI.
538  *
539  * Attempt to mitigate this by using the number of active PMCs to determine
540  * whether to return NMI_HANDLED if the perf NMI handler did not handle/reset
541  * any PMCs. The per-CPU perf_nmi_counter variable is set to a minimum of the
542  * number of active PMCs or 2. The value of 2 is used in case an NMI does not
543  * arrive at the LAPIC in time to be collapsed into an already pending NMI.
544  */
545 static int amd_pmu_handle_irq(struct pt_regs *regs)
546 {
547 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
548 	int active, handled;
549 
550 	/*
551 	 * Obtain the active count before calling x86_pmu_handle_irq() since
552 	 * it is possible that x86_pmu_handle_irq() may make a counter
553 	 * inactive (through x86_pmu_stop).
554 	 */
555 	active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);
556 
557 	/* Process any counter overflows */
558 	handled = x86_pmu_handle_irq(regs);
559 
560 	/*
561 	 * If a counter was handled, record the number of possible remaining
562 	 * NMIs that can occur.
563 	 */
564 	if (handled) {
565 		this_cpu_write(perf_nmi_counter,
566 			       min_t(unsigned int, 2, active));
567 
568 		return handled;
569 	}
570 
571 	if (!this_cpu_read(perf_nmi_counter))
572 		return NMI_DONE;
573 
574 	this_cpu_dec(perf_nmi_counter);
575 
576 	return NMI_HANDLED;
577 }
578 
579 static struct event_constraint *
580 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
581 			  struct perf_event *event)
582 {
583 	/*
584 	 * if not NB event or no NB, then no constraints
585 	 */
586 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
587 		return &unconstrained;
588 
589 	return __amd_get_nb_event_constraints(cpuc, event, NULL);
590 }
591 
592 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
593 				      struct perf_event *event)
594 {
595 	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
596 		__amd_put_nb_event_constraints(cpuc, event);
597 }
598 
599 PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
600 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
601 PMU_FORMAT_ATTR(edge,	"config:18"	);
602 PMU_FORMAT_ATTR(inv,	"config:23"	);
603 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
604 
605 static struct attribute *amd_format_attr[] = {
606 	&format_attr_event.attr,
607 	&format_attr_umask.attr,
608 	&format_attr_edge.attr,
609 	&format_attr_inv.attr,
610 	&format_attr_cmask.attr,
611 	NULL,
612 };
613 
614 /* AMD Family 15h */
615 
616 #define AMD_EVENT_TYPE_MASK	0x000000F0ULL
617 
618 #define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
619 #define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
620 #define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
621 #define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
622 #define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
623 #define AMD_EVENT_EX_LS		0x000000C0ULL
624 #define AMD_EVENT_DE		0x000000D0ULL
625 #define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
626 
627 /*
628  * AMD family 15h event code/PMC mappings:
629  *
630  * type = event_code & 0x0F0:
631  *
632  * 0x000	FP	PERF_CTL[5:3]
633  * 0x010	FP	PERF_CTL[5:3]
634  * 0x020	LS	PERF_CTL[5:0]
635  * 0x030	LS	PERF_CTL[5:0]
636  * 0x040	DC	PERF_CTL[5:0]
637  * 0x050	DC	PERF_CTL[5:0]
638  * 0x060	CU	PERF_CTL[2:0]
639  * 0x070	CU	PERF_CTL[2:0]
640  * 0x080	IC/DE	PERF_CTL[2:0]
641  * 0x090	IC/DE	PERF_CTL[2:0]
642  * 0x0A0	---
643  * 0x0B0	---
644  * 0x0C0	EX/LS	PERF_CTL[5:0]
645  * 0x0D0	DE	PERF_CTL[2:0]
646  * 0x0E0	NB	NB_PERF_CTL[3:0]
647  * 0x0F0	NB	NB_PERF_CTL[3:0]
648  *
649  * Exceptions:
650  *
651  * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
652  * 0x003	FP	PERF_CTL[3]
653  * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
654  * 0x00B	FP	PERF_CTL[3]
655  * 0x00D	FP	PERF_CTL[3]
656  * 0x023	DE	PERF_CTL[2:0]
657  * 0x02D	LS	PERF_CTL[3]
658  * 0x02E	LS	PERF_CTL[3,0]
659  * 0x031	LS	PERF_CTL[2:0] (**)
660  * 0x043	CU	PERF_CTL[2:0]
661  * 0x045	CU	PERF_CTL[2:0]
662  * 0x046	CU	PERF_CTL[2:0]
663  * 0x054	CU	PERF_CTL[2:0]
664  * 0x055	CU	PERF_CTL[2:0]
665  * 0x08F	IC	PERF_CTL[0]
666  * 0x187	DE	PERF_CTL[0]
667  * 0x188	DE	PERF_CTL[0]
668  * 0x0DB	EX	PERF_CTL[5:0]
669  * 0x0DC	LS	PERF_CTL[5:0]
670  * 0x0DD	LS	PERF_CTL[5:0]
671  * 0x0DE	LS	PERF_CTL[5:0]
672  * 0x0DF	LS	PERF_CTL[5:0]
673  * 0x1C0	EX	PERF_CTL[5:3]
674  * 0x1D6	EX	PERF_CTL[5:0]
675  * 0x1D8	EX	PERF_CTL[5:0]
676  *
677  * (*)  depending on the umask all FPU counters may be used
678  * (**) only one unitmask enabled at a time
679  */
680 
681 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
682 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
683 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
684 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
685 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
686 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
687 
688 static struct event_constraint *
689 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
690 			       struct perf_event *event)
691 {
692 	struct hw_perf_event *hwc = &event->hw;
693 	unsigned int event_code = amd_get_event_code(hwc);
694 
695 	switch (event_code & AMD_EVENT_TYPE_MASK) {
696 	case AMD_EVENT_FP:
697 		switch (event_code) {
698 		case 0x000:
699 			if (!(hwc->config & 0x0000F000ULL))
700 				break;
701 			if (!(hwc->config & 0x00000F00ULL))
702 				break;
703 			return &amd_f15_PMC3;
704 		case 0x004:
705 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
706 				break;
707 			return &amd_f15_PMC3;
708 		case 0x003:
709 		case 0x00B:
710 		case 0x00D:
711 			return &amd_f15_PMC3;
712 		}
713 		return &amd_f15_PMC53;
714 	case AMD_EVENT_LS:
715 	case AMD_EVENT_DC:
716 	case AMD_EVENT_EX_LS:
717 		switch (event_code) {
718 		case 0x023:
719 		case 0x043:
720 		case 0x045:
721 		case 0x046:
722 		case 0x054:
723 		case 0x055:
724 			return &amd_f15_PMC20;
725 		case 0x02D:
726 			return &amd_f15_PMC3;
727 		case 0x02E:
728 			return &amd_f15_PMC30;
729 		case 0x031:
730 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
731 				return &amd_f15_PMC20;
732 			return &emptyconstraint;
733 		case 0x1C0:
734 			return &amd_f15_PMC53;
735 		default:
736 			return &amd_f15_PMC50;
737 		}
738 	case AMD_EVENT_CU:
739 	case AMD_EVENT_IC_DE:
740 	case AMD_EVENT_DE:
741 		switch (event_code) {
742 		case 0x08F:
743 		case 0x187:
744 		case 0x188:
745 			return &amd_f15_PMC0;
746 		case 0x0DB ... 0x0DF:
747 		case 0x1D6:
748 		case 0x1D8:
749 			return &amd_f15_PMC50;
750 		default:
751 			return &amd_f15_PMC20;
752 		}
753 	case AMD_EVENT_NB:
754 		/* moved to uncore.c */
755 		return &emptyconstraint;
756 	default:
757 		return &emptyconstraint;
758 	}
759 }
760 
761 static ssize_t amd_event_sysfs_show(char *page, u64 config)
762 {
763 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
764 		    (config & AMD64_EVENTSEL_EVENT) >> 24;
765 
766 	return x86_event_sysfs_show(page, config, event);
767 }
768 
769 static __initconst const struct x86_pmu amd_pmu = {
770 	.name			= "AMD",
771 	.handle_irq		= amd_pmu_handle_irq,
772 	.disable_all		= amd_pmu_disable_all,
773 	.enable_all		= x86_pmu_enable_all,
774 	.enable			= x86_pmu_enable_event,
775 	.disable		= amd_pmu_disable_event,
776 	.hw_config		= amd_pmu_hw_config,
777 	.schedule_events	= x86_schedule_events,
778 	.eventsel		= MSR_K7_EVNTSEL0,
779 	.perfctr		= MSR_K7_PERFCTR0,
780 	.addr_offset            = amd_pmu_addr_offset,
781 	.event_map		= amd_pmu_event_map,
782 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
783 	.num_counters		= AMD64_NUM_COUNTERS,
784 	.cntval_bits		= 48,
785 	.cntval_mask		= (1ULL << 48) - 1,
786 	.apic			= 1,
787 	/* use highest bit to detect overflow */
788 	.max_period		= (1ULL << 47) - 1,
789 	.get_event_constraints	= amd_get_event_constraints,
790 	.put_event_constraints	= amd_put_event_constraints,
791 
792 	.format_attrs		= amd_format_attr,
793 	.events_sysfs_show	= amd_event_sysfs_show,
794 
795 	.cpu_prepare		= amd_pmu_cpu_prepare,
796 	.cpu_starting		= amd_pmu_cpu_starting,
797 	.cpu_dead		= amd_pmu_cpu_dead,
798 
799 	.amd_nb_constraints	= 1,
800 };
801 
802 static int __init amd_core_pmu_init(void)
803 {
804 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
805 		return 0;
806 
807 	switch (boot_cpu_data.x86) {
808 	case 0x15:
809 		pr_cont("Fam15h ");
810 		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
811 		break;
812 	case 0x17:
813 		pr_cont("Fam17h ");
814 		/*
815 		 * In family 17h, there are no event constraints in the PMC hardware.
816 		 * We fallback to using default amd_get_event_constraints.
817 		 */
818 		break;
819 	case 0x18:
820 		pr_cont("Fam18h ");
821 		/* Using default amd_get_event_constraints. */
822 		break;
823 	default:
824 		pr_err("core perfctr but no constraints; unknown hardware!\n");
825 		return -ENODEV;
826 	}
827 
828 	/*
829 	 * If core performance counter extensions exists, we must use
830 	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
831 	 * amd_pmu_addr_offset().
832 	 */
833 	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
834 	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
835 	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
836 	/*
837 	 * AMD Core perfctr has separate MSRs for the NB events, see
838 	 * the amd/uncore.c driver.
839 	 */
840 	x86_pmu.amd_nb_constraints = 0;
841 
842 	pr_cont("core perfctr, ");
843 	return 0;
844 }
845 
846 __init int amd_pmu_init(void)
847 {
848 	int ret;
849 
850 	/* Performance-monitoring supported from K7 and later: */
851 	if (boot_cpu_data.x86 < 6)
852 		return -ENODEV;
853 
854 	x86_pmu = amd_pmu;
855 
856 	ret = amd_core_pmu_init();
857 	if (ret)
858 		return ret;
859 
860 	if (num_possible_cpus() == 1) {
861 		/*
862 		 * No point in allocating data structures to serialize
863 		 * against other CPUs, when there is only the one CPU.
864 		 */
865 		x86_pmu.amd_nb_constraints = 0;
866 	}
867 
868 	/* Events are common for all AMDs */
869 	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
870 	       sizeof(hw_cache_event_ids));
871 
872 	return 0;
873 }
874 
875 void amd_pmu_enable_virt(void)
876 {
877 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
878 
879 	cpuc->perf_ctr_virt_mask = 0;
880 
881 	/* Reload all events */
882 	amd_pmu_disable_all();
883 	x86_pmu_enable_all(0);
884 }
885 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
886 
887 void amd_pmu_disable_virt(void)
888 {
889 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
890 
891 	/*
892 	 * We only mask out the Host-only bit so that host-only counting works
893 	 * when SVM is disabled. If someone sets up a guest-only counter when
894 	 * SVM is disabled the Guest-only bits still gets set and the counter
895 	 * will not count anything.
896 	 */
897 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
898 
899 	/* Reload all events */
900 	amd_pmu_disable_all();
901 	x86_pmu_enable_all(0);
902 }
903 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
904