xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision fbb6b31a)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_EMPTY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115	call	do_syscall_64		/* returns with IRQs disabled */
116
117	/*
118	 * Try to use SYSRET instead of IRET if we're returning to
119	 * a completely clean 64-bit userspace context.  If we're not,
120	 * go to the slow exit path.
121	 * In the Xen PV case we must use iret anyway.
122	 */
123
124	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
125		X86_FEATURE_XENPV
126
127	movq	RCX(%rsp), %rcx
128	movq	RIP(%rsp), %r11
129
130	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
131	jne	swapgs_restore_regs_and_return_to_usermode
132
133	/*
134	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
135	 * in kernel space.  This essentially lets the user take over
136	 * the kernel, since userspace controls RSP.
137	 *
138	 * If width of "canonical tail" ever becomes variable, this will need
139	 * to be updated to remain correct on both old and new CPUs.
140	 *
141	 * Change top bits to match most significant bit (47th or 56th bit
142	 * depending on paging mode) in the address.
143	 */
144#ifdef CONFIG_X86_5LEVEL
145	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
146		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
147#else
148	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
149	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
150#endif
151
152	/* If this changed %rcx, it was not canonical */
153	cmpq	%rcx, %r11
154	jne	swapgs_restore_regs_and_return_to_usermode
155
156	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
157	jne	swapgs_restore_regs_and_return_to_usermode
158
159	movq	R11(%rsp), %r11
160	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
161	jne	swapgs_restore_regs_and_return_to_usermode
162
163	/*
164	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
165	 * restore RF properly. If the slowpath sets it for whatever reason, we
166	 * need to restore it correctly.
167	 *
168	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
169	 * trap from userspace immediately after SYSRET.  This would cause an
170	 * infinite loop whenever #DB happens with register state that satisfies
171	 * the opportunistic SYSRET conditions.  For example, single-stepping
172	 * this user code:
173	 *
174	 *           movq	$stuck_here, %rcx
175	 *           pushfq
176	 *           popq %r11
177	 *   stuck_here:
178	 *
179	 * would never get past 'stuck_here'.
180	 */
181	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
182	jnz	swapgs_restore_regs_and_return_to_usermode
183
184	/* nothing to check for RSP */
185
186	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
187	jne	swapgs_restore_regs_and_return_to_usermode
188
189	/*
190	 * We win! This label is here just for ease of understanding
191	 * perf profiles. Nothing jumps here.
192	 */
193syscall_return_via_sysret:
194	/* rcx and r11 are already restored (see code above) */
195	POP_REGS pop_rdi=0 skip_r11rcx=1
196
197	/*
198	 * Now all regs are restored except RSP and RDI.
199	 * Save old stack pointer and switch to trampoline stack.
200	 */
201	movq	%rsp, %rdi
202	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
203	UNWIND_HINT_EMPTY
204
205	pushq	RSP-RDI(%rdi)	/* RSP */
206	pushq	(%rdi)		/* RDI */
207
208	/*
209	 * We are on the trampoline stack.  All regs except RDI are live.
210	 * We can do future final exit work right here.
211	 */
212	STACKLEAK_ERASE_NOCLOBBER
213
214	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
215
216	popq	%rdi
217	popq	%rsp
218	swapgs
219	sysretq
220SYM_CODE_END(entry_SYSCALL_64)
221
222/*
223 * %rdi: prev task
224 * %rsi: next task
225 */
226.pushsection .text, "ax"
227SYM_FUNC_START(__switch_to_asm)
228	/*
229	 * Save callee-saved registers
230	 * This must match the order in inactive_task_frame
231	 */
232	pushq	%rbp
233	pushq	%rbx
234	pushq	%r12
235	pushq	%r13
236	pushq	%r14
237	pushq	%r15
238
239	/* switch stack */
240	movq	%rsp, TASK_threadsp(%rdi)
241	movq	TASK_threadsp(%rsi), %rsp
242
243#ifdef CONFIG_STACKPROTECTOR
244	movq	TASK_stack_canary(%rsi), %rbx
245	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
246#endif
247
248#ifdef CONFIG_RETPOLINE
249	/*
250	 * When switching from a shallower to a deeper call stack
251	 * the RSB may either underflow or use entries populated
252	 * with userspace addresses. On CPUs where those concerns
253	 * exist, overwrite the RSB with entries which capture
254	 * speculative execution to prevent attack.
255	 */
256	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
257#endif
258
259	/* restore callee-saved registers */
260	popq	%r15
261	popq	%r14
262	popq	%r13
263	popq	%r12
264	popq	%rbx
265	popq	%rbp
266
267	jmp	__switch_to
268SYM_FUNC_END(__switch_to_asm)
269.popsection
270
271/*
272 * A newly forked process directly context switches into this address.
273 *
274 * rax: prev task we switched from
275 * rbx: kernel thread func (NULL for user thread)
276 * r12: kernel thread arg
277 */
278.pushsection .text, "ax"
279SYM_CODE_START(ret_from_fork)
280	UNWIND_HINT_EMPTY
281	ANNOTATE_NOENDBR // copy_thread
282	movq	%rax, %rdi
283	call	schedule_tail			/* rdi: 'prev' task parameter */
284
285	testq	%rbx, %rbx			/* from kernel_thread? */
286	jnz	1f				/* kernel threads are uncommon */
287
2882:
289	UNWIND_HINT_REGS
290	movq	%rsp, %rdi
291	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
292	jmp	swapgs_restore_regs_and_return_to_usermode
293
2941:
295	/* kernel thread */
296	UNWIND_HINT_EMPTY
297	movq	%r12, %rdi
298	CALL_NOSPEC rbx
299	/*
300	 * A kernel thread is allowed to return here after successfully
301	 * calling kernel_execve().  Exit to userspace to complete the execve()
302	 * syscall.
303	 */
304	movq	$0, RAX(%rsp)
305	jmp	2b
306SYM_CODE_END(ret_from_fork)
307.popsection
308
309.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
310#ifdef CONFIG_DEBUG_ENTRY
311	pushq %rax
312	SAVE_FLAGS
313	testl $X86_EFLAGS_IF, %eax
314	jz .Lokay_\@
315	ud2
316.Lokay_\@:
317	popq %rax
318#endif
319.endm
320
321/**
322 * idtentry_body - Macro to emit code calling the C function
323 * @cfunc:		C function to be called
324 * @has_error_code:	Hardware pushed error code on stack
325 */
326.macro idtentry_body cfunc has_error_code:req
327
328	call	error_entry
329	UNWIND_HINT_REGS
330
331	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
332
333	.if \has_error_code == 1
334		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
335		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
336	.endif
337
338	call	\cfunc
339
340	/* For some configurations \cfunc ends up being a noreturn. */
341	REACHABLE
342
343	jmp	error_return
344.endm
345
346/**
347 * idtentry - Macro to generate entry stubs for simple IDT entries
348 * @vector:		Vector number
349 * @asmsym:		ASM symbol for the entry point
350 * @cfunc:		C function to be called
351 * @has_error_code:	Hardware pushed error code on stack
352 *
353 * The macro emits code to set up the kernel context for straight forward
354 * and simple IDT entries. No IST stack, no paranoid entry checks.
355 */
356.macro idtentry vector asmsym cfunc has_error_code:req
357SYM_CODE_START(\asmsym)
358	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
359	ENDBR
360	ASM_CLAC
361
362	.if \has_error_code == 0
363		pushq	$-1			/* ORIG_RAX: no syscall to restart */
364	.endif
365
366	.if \vector == X86_TRAP_BP
367		/*
368		 * If coming from kernel space, create a 6-word gap to allow the
369		 * int3 handler to emulate a call instruction.
370		 */
371		testb	$3, CS-ORIG_RAX(%rsp)
372		jnz	.Lfrom_usermode_no_gap_\@
373		.rept	6
374		pushq	5*8(%rsp)
375		.endr
376		UNWIND_HINT_IRET_REGS offset=8
377.Lfrom_usermode_no_gap_\@:
378	.endif
379
380	idtentry_body \cfunc \has_error_code
381
382_ASM_NOKPROBE(\asmsym)
383SYM_CODE_END(\asmsym)
384.endm
385
386/*
387 * Interrupt entry/exit.
388 *
389 + The interrupt stubs push (vector) onto the stack, which is the error_code
390 * position of idtentry exceptions, and jump to one of the two idtentry points
391 * (common/spurious).
392 *
393 * common_interrupt is a hotpath, align it to a cache line
394 */
395.macro idtentry_irq vector cfunc
396	.p2align CONFIG_X86_L1_CACHE_SHIFT
397	idtentry \vector asm_\cfunc \cfunc has_error_code=1
398.endm
399
400/*
401 * System vectors which invoke their handlers directly and are not
402 * going through the regular common device interrupt handling code.
403 */
404.macro idtentry_sysvec vector cfunc
405	idtentry \vector asm_\cfunc \cfunc has_error_code=0
406.endm
407
408/**
409 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
410 * @vector:		Vector number
411 * @asmsym:		ASM symbol for the entry point
412 * @cfunc:		C function to be called
413 *
414 * The macro emits code to set up the kernel context for #MC and #DB
415 *
416 * If the entry comes from user space it uses the normal entry path
417 * including the return to user space work and preemption checks on
418 * exit.
419 *
420 * If hits in kernel mode then it needs to go through the paranoid
421 * entry as the exception can hit any random state. No preemption
422 * check on exit to keep the paranoid path simple.
423 */
424.macro idtentry_mce_db vector asmsym cfunc
425SYM_CODE_START(\asmsym)
426	UNWIND_HINT_IRET_REGS
427	ENDBR
428	ASM_CLAC
429
430	pushq	$-1			/* ORIG_RAX: no syscall to restart */
431
432	/*
433	 * If the entry is from userspace, switch stacks and treat it as
434	 * a normal entry.
435	 */
436	testb	$3, CS-ORIG_RAX(%rsp)
437	jnz	.Lfrom_usermode_switch_stack_\@
438
439	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
440	call	paranoid_entry
441
442	UNWIND_HINT_REGS
443
444	movq	%rsp, %rdi		/* pt_regs pointer */
445
446	call	\cfunc
447
448	jmp	paranoid_exit
449
450	/* Switch to the regular task stack and use the noist entry point */
451.Lfrom_usermode_switch_stack_\@:
452	idtentry_body noist_\cfunc, has_error_code=0
453
454_ASM_NOKPROBE(\asmsym)
455SYM_CODE_END(\asmsym)
456.endm
457
458#ifdef CONFIG_AMD_MEM_ENCRYPT
459/**
460 * idtentry_vc - Macro to generate entry stub for #VC
461 * @vector:		Vector number
462 * @asmsym:		ASM symbol for the entry point
463 * @cfunc:		C function to be called
464 *
465 * The macro emits code to set up the kernel context for #VC. The #VC handler
466 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
467 *
468 * To make this work the #VC entry code tries its best to pretend it doesn't use
469 * an IST stack by switching to the task stack if coming from user-space (which
470 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
471 * entered from kernel-mode.
472 *
473 * If entered from kernel-mode the return stack is validated first, and if it is
474 * not safe to use (e.g. because it points to the entry stack) the #VC handler
475 * will switch to a fall-back stack (VC2) and call a special handler function.
476 *
477 * The macro is only used for one vector, but it is planned to be extended in
478 * the future for the #HV exception.
479 */
480.macro idtentry_vc vector asmsym cfunc
481SYM_CODE_START(\asmsym)
482	UNWIND_HINT_IRET_REGS
483	ENDBR
484	ASM_CLAC
485
486	/*
487	 * If the entry is from userspace, switch stacks and treat it as
488	 * a normal entry.
489	 */
490	testb	$3, CS-ORIG_RAX(%rsp)
491	jnz	.Lfrom_usermode_switch_stack_\@
492
493	/*
494	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
495	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
496	 */
497	call	paranoid_entry
498
499	UNWIND_HINT_REGS
500
501	/*
502	 * Switch off the IST stack to make it free for nested exceptions. The
503	 * vc_switch_off_ist() function will switch back to the interrupted
504	 * stack if it is safe to do so. If not it switches to the VC fall-back
505	 * stack.
506	 */
507	movq	%rsp, %rdi		/* pt_regs pointer */
508	call	vc_switch_off_ist
509	movq	%rax, %rsp		/* Switch to new stack */
510
511	UNWIND_HINT_REGS
512
513	/* Update pt_regs */
514	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
515	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
516
517	movq	%rsp, %rdi		/* pt_regs pointer */
518
519	call	kernel_\cfunc
520
521	/*
522	 * No need to switch back to the IST stack. The current stack is either
523	 * identical to the stack in the IRET frame or the VC fall-back stack,
524	 * so it is definitely mapped even with PTI enabled.
525	 */
526	jmp	paranoid_exit
527
528	/* Switch to the regular task stack */
529.Lfrom_usermode_switch_stack_\@:
530	idtentry_body user_\cfunc, has_error_code=1
531
532_ASM_NOKPROBE(\asmsym)
533SYM_CODE_END(\asmsym)
534.endm
535#endif
536
537/*
538 * Double fault entry. Straight paranoid. No checks from which context
539 * this comes because for the espfix induced #DF this would do the wrong
540 * thing.
541 */
542.macro idtentry_df vector asmsym cfunc
543SYM_CODE_START(\asmsym)
544	UNWIND_HINT_IRET_REGS offset=8
545	ENDBR
546	ASM_CLAC
547
548	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
549	call	paranoid_entry
550	UNWIND_HINT_REGS
551
552	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
553	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
554	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
555	call	\cfunc
556
557	/* For some configurations \cfunc ends up being a noreturn. */
558	REACHABLE
559
560	jmp	paranoid_exit
561
562_ASM_NOKPROBE(\asmsym)
563SYM_CODE_END(\asmsym)
564.endm
565
566/*
567 * Include the defines which emit the idt entries which are shared
568 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
569 * so the stacktrace boundary checks work.
570 */
571	.align 16
572	.globl __irqentry_text_start
573__irqentry_text_start:
574
575#include <asm/idtentry.h>
576
577	.align 16
578	.globl __irqentry_text_end
579__irqentry_text_end:
580	ANNOTATE_NOENDBR
581
582SYM_CODE_START_LOCAL(common_interrupt_return)
583SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
584#ifdef CONFIG_DEBUG_ENTRY
585	/* Assert that pt_regs indicates user mode. */
586	testb	$3, CS(%rsp)
587	jnz	1f
588	ud2
5891:
590#endif
591#ifdef CONFIG_XEN_PV
592	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
593#endif
594
595	POP_REGS pop_rdi=0
596
597	/*
598	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
599	 * Save old stack pointer and switch to trampoline stack.
600	 */
601	movq	%rsp, %rdi
602	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
603	UNWIND_HINT_EMPTY
604
605	/* Copy the IRET frame to the trampoline stack. */
606	pushq	6*8(%rdi)	/* SS */
607	pushq	5*8(%rdi)	/* RSP */
608	pushq	4*8(%rdi)	/* EFLAGS */
609	pushq	3*8(%rdi)	/* CS */
610	pushq	2*8(%rdi)	/* RIP */
611
612	/* Push user RDI on the trampoline stack. */
613	pushq	(%rdi)
614
615	/*
616	 * We are on the trampoline stack.  All regs except RDI are live.
617	 * We can do future final exit work right here.
618	 */
619	STACKLEAK_ERASE_NOCLOBBER
620
621	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
622
623	/* Restore RDI. */
624	popq	%rdi
625	swapgs
626	jmp	.Lnative_iret
627
628
629SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
630#ifdef CONFIG_DEBUG_ENTRY
631	/* Assert that pt_regs indicates kernel mode. */
632	testb	$3, CS(%rsp)
633	jz	1f
634	ud2
6351:
636#endif
637	POP_REGS
638	addq	$8, %rsp	/* skip regs->orig_ax */
639	/*
640	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
641	 * when returning from IPI handler.
642	 */
643#ifdef CONFIG_XEN_PV
644SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
645	ANNOTATE_NOENDBR
646	.byte 0xe9
647	.long .Lnative_iret - (. + 4)
648#endif
649
650.Lnative_iret:
651	UNWIND_HINT_IRET_REGS
652	/*
653	 * Are we returning to a stack segment from the LDT?  Note: in
654	 * 64-bit mode SS:RSP on the exception stack is always valid.
655	 */
656#ifdef CONFIG_X86_ESPFIX64
657	testb	$4, (SS-RIP)(%rsp)
658	jnz	native_irq_return_ldt
659#endif
660
661SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
662	ANNOTATE_NOENDBR // exc_double_fault
663	/*
664	 * This may fault.  Non-paranoid faults on return to userspace are
665	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
666	 * Double-faults due to espfix64 are handled in exc_double_fault.
667	 * Other faults here are fatal.
668	 */
669	iretq
670
671#ifdef CONFIG_X86_ESPFIX64
672native_irq_return_ldt:
673	/*
674	 * We are running with user GSBASE.  All GPRs contain their user
675	 * values.  We have a percpu ESPFIX stack that is eight slots
676	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
677	 * of the ESPFIX stack.
678	 *
679	 * We clobber RAX and RDI in this code.  We stash RDI on the
680	 * normal stack and RAX on the ESPFIX stack.
681	 *
682	 * The ESPFIX stack layout we set up looks like this:
683	 *
684	 * --- top of ESPFIX stack ---
685	 * SS
686	 * RSP
687	 * RFLAGS
688	 * CS
689	 * RIP  <-- RSP points here when we're done
690	 * RAX  <-- espfix_waddr points here
691	 * --- bottom of ESPFIX stack ---
692	 */
693
694	pushq	%rdi				/* Stash user RDI */
695	swapgs					/* to kernel GS */
696	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
697
698	movq	PER_CPU_VAR(espfix_waddr), %rdi
699	movq	%rax, (0*8)(%rdi)		/* user RAX */
700	movq	(1*8)(%rsp), %rax		/* user RIP */
701	movq	%rax, (1*8)(%rdi)
702	movq	(2*8)(%rsp), %rax		/* user CS */
703	movq	%rax, (2*8)(%rdi)
704	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
705	movq	%rax, (3*8)(%rdi)
706	movq	(5*8)(%rsp), %rax		/* user SS */
707	movq	%rax, (5*8)(%rdi)
708	movq	(4*8)(%rsp), %rax		/* user RSP */
709	movq	%rax, (4*8)(%rdi)
710	/* Now RAX == RSP. */
711
712	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
713
714	/*
715	 * espfix_stack[31:16] == 0.  The page tables are set up such that
716	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
717	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
718	 * the same page.  Set up RSP so that RSP[31:16] contains the
719	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
720	 * still points to an RO alias of the ESPFIX stack.
721	 */
722	orq	PER_CPU_VAR(espfix_stack), %rax
723
724	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
725	swapgs					/* to user GS */
726	popq	%rdi				/* Restore user RDI */
727
728	movq	%rax, %rsp
729	UNWIND_HINT_IRET_REGS offset=8
730
731	/*
732	 * At this point, we cannot write to the stack any more, but we can
733	 * still read.
734	 */
735	popq	%rax				/* Restore user RAX */
736
737	/*
738	 * RSP now points to an ordinary IRET frame, except that the page
739	 * is read-only and RSP[31:16] are preloaded with the userspace
740	 * values.  We can now IRET back to userspace.
741	 */
742	jmp	native_irq_return_iret
743#endif
744SYM_CODE_END(common_interrupt_return)
745_ASM_NOKPROBE(common_interrupt_return)
746
747/*
748 * Reload gs selector with exception handling
749 * edi:  new selector
750 *
751 * Is in entry.text as it shouldn't be instrumented.
752 */
753SYM_FUNC_START(asm_load_gs_index)
754	FRAME_BEGIN
755	swapgs
756.Lgs_change:
757	ANNOTATE_NOENDBR // error_entry
758	movl	%edi, %gs
7592:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
760	swapgs
761	FRAME_END
762	RET
763
764	/* running with kernelgs */
765.Lbad_gs:
766	swapgs					/* switch back to user gs */
767.macro ZAP_GS
768	/* This can't be a string because the preprocessor needs to see it. */
769	movl $__USER_DS, %eax
770	movl %eax, %gs
771.endm
772	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
773	xorl	%eax, %eax
774	movl	%eax, %gs
775	jmp	2b
776
777	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
778
779SYM_FUNC_END(asm_load_gs_index)
780EXPORT_SYMBOL(asm_load_gs_index)
781
782#ifdef CONFIG_XEN_PV
783/*
784 * A note on the "critical region" in our callback handler.
785 * We want to avoid stacking callback handlers due to events occurring
786 * during handling of the last event. To do this, we keep events disabled
787 * until we've done all processing. HOWEVER, we must enable events before
788 * popping the stack frame (can't be done atomically) and so it would still
789 * be possible to get enough handler activations to overflow the stack.
790 * Although unlikely, bugs of that kind are hard to track down, so we'd
791 * like to avoid the possibility.
792 * So, on entry to the handler we detect whether we interrupted an
793 * existing activation in its critical region -- if so, we pop the current
794 * activation and restart the handler using the previous one.
795 *
796 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
797 */
798SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
799
800/*
801 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
802 * see the correct pointer to the pt_regs
803 */
804	UNWIND_HINT_FUNC
805	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
806	UNWIND_HINT_REGS
807
808	call	xen_pv_evtchn_do_upcall
809
810	jmp	error_return
811SYM_CODE_END(exc_xen_hypervisor_callback)
812
813/*
814 * Hypervisor uses this for application faults while it executes.
815 * We get here for two reasons:
816 *  1. Fault while reloading DS, ES, FS or GS
817 *  2. Fault while executing IRET
818 * Category 1 we do not need to fix up as Xen has already reloaded all segment
819 * registers that could be reloaded and zeroed the others.
820 * Category 2 we fix up by killing the current process. We cannot use the
821 * normal Linux return path in this case because if we use the IRET hypercall
822 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
823 * We distinguish between categories by comparing each saved segment register
824 * with its current contents: any discrepancy means we in category 1.
825 */
826SYM_CODE_START(xen_failsafe_callback)
827	UNWIND_HINT_EMPTY
828	ENDBR
829	movl	%ds, %ecx
830	cmpw	%cx, 0x10(%rsp)
831	jne	1f
832	movl	%es, %ecx
833	cmpw	%cx, 0x18(%rsp)
834	jne	1f
835	movl	%fs, %ecx
836	cmpw	%cx, 0x20(%rsp)
837	jne	1f
838	movl	%gs, %ecx
839	cmpw	%cx, 0x28(%rsp)
840	jne	1f
841	/* All segments match their saved values => Category 2 (Bad IRET). */
842	movq	(%rsp), %rcx
843	movq	8(%rsp), %r11
844	addq	$0x30, %rsp
845	pushq	$0				/* RIP */
846	UNWIND_HINT_IRET_REGS offset=8
847	jmp	asm_exc_general_protection
8481:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
849	movq	(%rsp), %rcx
850	movq	8(%rsp), %r11
851	addq	$0x30, %rsp
852	UNWIND_HINT_IRET_REGS
853	pushq	$-1 /* orig_ax = -1 => not a system call */
854	PUSH_AND_CLEAR_REGS
855	ENCODE_FRAME_POINTER
856	jmp	error_return
857SYM_CODE_END(xen_failsafe_callback)
858#endif /* CONFIG_XEN_PV */
859
860/*
861 * Save all registers in pt_regs. Return GSBASE related information
862 * in EBX depending on the availability of the FSGSBASE instructions:
863 *
864 * FSGSBASE	R/EBX
865 *     N        0 -> SWAPGS on exit
866 *              1 -> no SWAPGS on exit
867 *
868 *     Y        GSBASE value at entry, must be restored in paranoid_exit
869 */
870SYM_CODE_START_LOCAL(paranoid_entry)
871	UNWIND_HINT_FUNC
872	cld
873	PUSH_AND_CLEAR_REGS save_ret=1
874	ENCODE_FRAME_POINTER 8
875
876	/*
877	 * Always stash CR3 in %r14.  This value will be restored,
878	 * verbatim, at exit.  Needed if paranoid_entry interrupted
879	 * another entry that already switched to the user CR3 value
880	 * but has not yet returned to userspace.
881	 *
882	 * This is also why CS (stashed in the "iret frame" by the
883	 * hardware at entry) can not be used: this may be a return
884	 * to kernel code, but with a user CR3 value.
885	 *
886	 * Switching CR3 does not depend on kernel GSBASE so it can
887	 * be done before switching to the kernel GSBASE. This is
888	 * required for FSGSBASE because the kernel GSBASE has to
889	 * be retrieved from a kernel internal table.
890	 */
891	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
892
893	/*
894	 * Handling GSBASE depends on the availability of FSGSBASE.
895	 *
896	 * Without FSGSBASE the kernel enforces that negative GSBASE
897	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
898	 * can be made about the GSBASE value when entering from user
899	 * space.
900	 */
901	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
902
903	/*
904	 * Read the current GSBASE and store it in %rbx unconditionally,
905	 * retrieve and set the current CPUs kernel GSBASE. The stored value
906	 * has to be restored in paranoid_exit unconditionally.
907	 *
908	 * The unconditional write to GS base below ensures that no subsequent
909	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
910	 * is needed here.
911	 */
912	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
913	RET
914
915.Lparanoid_entry_checkgs:
916	/* EBX = 1 -> kernel GSBASE active, no restore required */
917	movl	$1, %ebx
918
919	/*
920	 * The kernel-enforced convention is a negative GSBASE indicates
921	 * a kernel value. No SWAPGS needed on entry and exit.
922	 */
923	movl	$MSR_GS_BASE, %ecx
924	rdmsr
925	testl	%edx, %edx
926	js	.Lparanoid_kernel_gsbase
927
928	/* EBX = 0 -> SWAPGS required on exit */
929	xorl	%ebx, %ebx
930	swapgs
931.Lparanoid_kernel_gsbase:
932
933	FENCE_SWAPGS_KERNEL_ENTRY
934	RET
935SYM_CODE_END(paranoid_entry)
936
937/*
938 * "Paranoid" exit path from exception stack.  This is invoked
939 * only on return from non-NMI IST interrupts that came
940 * from kernel space.
941 *
942 * We may be returning to very strange contexts (e.g. very early
943 * in syscall entry), so checking for preemption here would
944 * be complicated.  Fortunately, there's no good reason to try
945 * to handle preemption here.
946 *
947 * R/EBX contains the GSBASE related information depending on the
948 * availability of the FSGSBASE instructions:
949 *
950 * FSGSBASE	R/EBX
951 *     N        0 -> SWAPGS on exit
952 *              1 -> no SWAPGS on exit
953 *
954 *     Y        User space GSBASE, must be restored unconditionally
955 */
956SYM_CODE_START_LOCAL(paranoid_exit)
957	UNWIND_HINT_REGS
958	/*
959	 * The order of operations is important. RESTORE_CR3 requires
960	 * kernel GSBASE.
961	 *
962	 * NB to anyone to try to optimize this code: this code does
963	 * not execute at all for exceptions from user mode. Those
964	 * exceptions go through error_exit instead.
965	 */
966	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
967
968	/* Handle the three GSBASE cases */
969	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
970
971	/* With FSGSBASE enabled, unconditionally restore GSBASE */
972	wrgsbase	%rbx
973	jmp		restore_regs_and_return_to_kernel
974
975.Lparanoid_exit_checkgs:
976	/* On non-FSGSBASE systems, conditionally do SWAPGS */
977	testl		%ebx, %ebx
978	jnz		restore_regs_and_return_to_kernel
979
980	/* We are returning to a context with user GSBASE */
981	swapgs
982	jmp		restore_regs_and_return_to_kernel
983SYM_CODE_END(paranoid_exit)
984
985/*
986 * Save all registers in pt_regs, and switch GS if needed.
987 */
988SYM_CODE_START_LOCAL(error_entry)
989	UNWIND_HINT_FUNC
990	cld
991	PUSH_AND_CLEAR_REGS save_ret=1
992	ENCODE_FRAME_POINTER 8
993	testb	$3, CS+8(%rsp)
994	jz	.Lerror_kernelspace
995
996	/*
997	 * We entered from user mode or we're pretending to have entered
998	 * from user mode due to an IRET fault.
999	 */
1000	SWAPGS
1001	FENCE_SWAPGS_USER_ENTRY
1002	/* We have user CR3.  Change to kernel CR3. */
1003	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1004
1005.Lerror_entry_from_usermode_after_swapgs:
1006	/* Put us onto the real thread stack. */
1007	popq	%r12				/* save return addr in %12 */
1008	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1009	call	sync_regs
1010	movq	%rax, %rsp			/* switch stack */
1011	ENCODE_FRAME_POINTER
1012	pushq	%r12
1013	RET
1014
1015	/*
1016	 * There are two places in the kernel that can potentially fault with
1017	 * usergs. Handle them here.  B stepping K8s sometimes report a
1018	 * truncated RIP for IRET exceptions returning to compat mode. Check
1019	 * for these here too.
1020	 */
1021.Lerror_kernelspace:
1022	leaq	native_irq_return_iret(%rip), %rcx
1023	cmpq	%rcx, RIP+8(%rsp)
1024	je	.Lerror_bad_iret
1025	movl	%ecx, %eax			/* zero extend */
1026	cmpq	%rax, RIP+8(%rsp)
1027	je	.Lbstep_iret
1028	cmpq	$.Lgs_change, RIP+8(%rsp)
1029	jne	.Lerror_entry_done_lfence
1030
1031	/*
1032	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1033	 * gsbase and proceed.  We'll fix up the exception and land in
1034	 * .Lgs_change's error handler with kernel gsbase.
1035	 */
1036	SWAPGS
1037
1038	/*
1039	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1040	 * kernel or user gsbase.
1041	 */
1042.Lerror_entry_done_lfence:
1043	FENCE_SWAPGS_KERNEL_ENTRY
1044	RET
1045
1046.Lbstep_iret:
1047	/* Fix truncated RIP */
1048	movq	%rcx, RIP+8(%rsp)
1049	/* fall through */
1050
1051.Lerror_bad_iret:
1052	/*
1053	 * We came from an IRET to user mode, so we have user
1054	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1055	 */
1056	SWAPGS
1057	FENCE_SWAPGS_USER_ENTRY
1058	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1059
1060	/*
1061	 * Pretend that the exception came from user mode: set up pt_regs
1062	 * as if we faulted immediately after IRET.
1063	 */
1064	mov	%rsp, %rdi
1065	call	fixup_bad_iret
1066	mov	%rax, %rsp
1067	jmp	.Lerror_entry_from_usermode_after_swapgs
1068SYM_CODE_END(error_entry)
1069
1070SYM_CODE_START_LOCAL(error_return)
1071	UNWIND_HINT_REGS
1072	DEBUG_ENTRY_ASSERT_IRQS_OFF
1073	testb	$3, CS(%rsp)
1074	jz	restore_regs_and_return_to_kernel
1075	jmp	swapgs_restore_regs_and_return_to_usermode
1076SYM_CODE_END(error_return)
1077
1078/*
1079 * Runs on exception stack.  Xen PV does not go through this path at all,
1080 * so we can use real assembly here.
1081 *
1082 * Registers:
1083 *	%r14: Used to save/restore the CR3 of the interrupted context
1084 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1085 */
1086SYM_CODE_START(asm_exc_nmi)
1087	UNWIND_HINT_IRET_REGS
1088	ENDBR
1089
1090	/*
1091	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1092	 * the iretq it performs will take us out of NMI context.
1093	 * This means that we can have nested NMIs where the next
1094	 * NMI is using the top of the stack of the previous NMI. We
1095	 * can't let it execute because the nested NMI will corrupt the
1096	 * stack of the previous NMI. NMI handlers are not re-entrant
1097	 * anyway.
1098	 *
1099	 * To handle this case we do the following:
1100	 *  Check the a special location on the stack that contains
1101	 *  a variable that is set when NMIs are executing.
1102	 *  The interrupted task's stack is also checked to see if it
1103	 *  is an NMI stack.
1104	 *  If the variable is not set and the stack is not the NMI
1105	 *  stack then:
1106	 *    o Set the special variable on the stack
1107	 *    o Copy the interrupt frame into an "outermost" location on the
1108	 *      stack
1109	 *    o Copy the interrupt frame into an "iret" location on the stack
1110	 *    o Continue processing the NMI
1111	 *  If the variable is set or the previous stack is the NMI stack:
1112	 *    o Modify the "iret" location to jump to the repeat_nmi
1113	 *    o return back to the first NMI
1114	 *
1115	 * Now on exit of the first NMI, we first clear the stack variable
1116	 * The NMI stack will tell any nested NMIs at that point that it is
1117	 * nested. Then we pop the stack normally with iret, and if there was
1118	 * a nested NMI that updated the copy interrupt stack frame, a
1119	 * jump will be made to the repeat_nmi code that will handle the second
1120	 * NMI.
1121	 *
1122	 * However, espfix prevents us from directly returning to userspace
1123	 * with a single IRET instruction.  Similarly, IRET to user mode
1124	 * can fault.  We therefore handle NMIs from user space like
1125	 * other IST entries.
1126	 */
1127
1128	ASM_CLAC
1129
1130	/* Use %rdx as our temp variable throughout */
1131	pushq	%rdx
1132
1133	testb	$3, CS-RIP+8(%rsp)
1134	jz	.Lnmi_from_kernel
1135
1136	/*
1137	 * NMI from user mode.  We need to run on the thread stack, but we
1138	 * can't go through the normal entry paths: NMIs are masked, and
1139	 * we don't want to enable interrupts, because then we'll end
1140	 * up in an awkward situation in which IRQs are on but NMIs
1141	 * are off.
1142	 *
1143	 * We also must not push anything to the stack before switching
1144	 * stacks lest we corrupt the "NMI executing" variable.
1145	 */
1146
1147	swapgs
1148	cld
1149	FENCE_SWAPGS_USER_ENTRY
1150	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1151	movq	%rsp, %rdx
1152	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1153	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1154	pushq	5*8(%rdx)	/* pt_regs->ss */
1155	pushq	4*8(%rdx)	/* pt_regs->rsp */
1156	pushq	3*8(%rdx)	/* pt_regs->flags */
1157	pushq	2*8(%rdx)	/* pt_regs->cs */
1158	pushq	1*8(%rdx)	/* pt_regs->rip */
1159	UNWIND_HINT_IRET_REGS
1160	pushq   $-1		/* pt_regs->orig_ax */
1161	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1162	ENCODE_FRAME_POINTER
1163
1164	/*
1165	 * At this point we no longer need to worry about stack damage
1166	 * due to nesting -- we're on the normal thread stack and we're
1167	 * done with the NMI stack.
1168	 */
1169
1170	movq	%rsp, %rdi
1171	movq	$-1, %rsi
1172	call	exc_nmi
1173
1174	/*
1175	 * Return back to user mode.  We must *not* do the normal exit
1176	 * work, because we don't want to enable interrupts.
1177	 */
1178	jmp	swapgs_restore_regs_and_return_to_usermode
1179
1180.Lnmi_from_kernel:
1181	/*
1182	 * Here's what our stack frame will look like:
1183	 * +---------------------------------------------------------+
1184	 * | original SS                                             |
1185	 * | original Return RSP                                     |
1186	 * | original RFLAGS                                         |
1187	 * | original CS                                             |
1188	 * | original RIP                                            |
1189	 * +---------------------------------------------------------+
1190	 * | temp storage for rdx                                    |
1191	 * +---------------------------------------------------------+
1192	 * | "NMI executing" variable                                |
1193	 * +---------------------------------------------------------+
1194	 * | iret SS          } Copied from "outermost" frame        |
1195	 * | iret Return RSP  } on each loop iteration; overwritten  |
1196	 * | iret RFLAGS      } by a nested NMI to force another     |
1197	 * | iret CS          } iteration if needed.                 |
1198	 * | iret RIP         }                                      |
1199	 * +---------------------------------------------------------+
1200	 * | outermost SS          } initialized in first_nmi;       |
1201	 * | outermost Return RSP  } will not be changed before      |
1202	 * | outermost RFLAGS      } NMI processing is done.         |
1203	 * | outermost CS          } Copied to "iret" frame on each  |
1204	 * | outermost RIP         } iteration.                      |
1205	 * +---------------------------------------------------------+
1206	 * | pt_regs                                                 |
1207	 * +---------------------------------------------------------+
1208	 *
1209	 * The "original" frame is used by hardware.  Before re-enabling
1210	 * NMIs, we need to be done with it, and we need to leave enough
1211	 * space for the asm code here.
1212	 *
1213	 * We return by executing IRET while RSP points to the "iret" frame.
1214	 * That will either return for real or it will loop back into NMI
1215	 * processing.
1216	 *
1217	 * The "outermost" frame is copied to the "iret" frame on each
1218	 * iteration of the loop, so each iteration starts with the "iret"
1219	 * frame pointing to the final return target.
1220	 */
1221
1222	/*
1223	 * Determine whether we're a nested NMI.
1224	 *
1225	 * If we interrupted kernel code between repeat_nmi and
1226	 * end_repeat_nmi, then we are a nested NMI.  We must not
1227	 * modify the "iret" frame because it's being written by
1228	 * the outer NMI.  That's okay; the outer NMI handler is
1229	 * about to about to call exc_nmi() anyway, so we can just
1230	 * resume the outer NMI.
1231	 */
1232
1233	movq	$repeat_nmi, %rdx
1234	cmpq	8(%rsp), %rdx
1235	ja	1f
1236	movq	$end_repeat_nmi, %rdx
1237	cmpq	8(%rsp), %rdx
1238	ja	nested_nmi_out
12391:
1240
1241	/*
1242	 * Now check "NMI executing".  If it's set, then we're nested.
1243	 * This will not detect if we interrupted an outer NMI just
1244	 * before IRET.
1245	 */
1246	cmpl	$1, -8(%rsp)
1247	je	nested_nmi
1248
1249	/*
1250	 * Now test if the previous stack was an NMI stack.  This covers
1251	 * the case where we interrupt an outer NMI after it clears
1252	 * "NMI executing" but before IRET.  We need to be careful, though:
1253	 * there is one case in which RSP could point to the NMI stack
1254	 * despite there being no NMI active: naughty userspace controls
1255	 * RSP at the very beginning of the SYSCALL targets.  We can
1256	 * pull a fast one on naughty userspace, though: we program
1257	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1258	 * if it controls the kernel's RSP.  We set DF before we clear
1259	 * "NMI executing".
1260	 */
1261	lea	6*8(%rsp), %rdx
1262	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1263	cmpq	%rdx, 4*8(%rsp)
1264	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1265	ja	first_nmi
1266
1267	subq	$EXCEPTION_STKSZ, %rdx
1268	cmpq	%rdx, 4*8(%rsp)
1269	/* If it is below the NMI stack, it is a normal NMI */
1270	jb	first_nmi
1271
1272	/* Ah, it is within the NMI stack. */
1273
1274	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1275	jz	first_nmi	/* RSP was user controlled. */
1276
1277	/* This is a nested NMI. */
1278
1279nested_nmi:
1280	/*
1281	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1282	 * iteration of NMI handling.
1283	 */
1284	subq	$8, %rsp
1285	leaq	-10*8(%rsp), %rdx
1286	pushq	$__KERNEL_DS
1287	pushq	%rdx
1288	pushfq
1289	pushq	$__KERNEL_CS
1290	pushq	$repeat_nmi
1291
1292	/* Put stack back */
1293	addq	$(6*8), %rsp
1294
1295nested_nmi_out:
1296	popq	%rdx
1297
1298	/* We are returning to kernel mode, so this cannot result in a fault. */
1299	iretq
1300
1301first_nmi:
1302	/* Restore rdx. */
1303	movq	(%rsp), %rdx
1304
1305	/* Make room for "NMI executing". */
1306	pushq	$0
1307
1308	/* Leave room for the "iret" frame */
1309	subq	$(5*8), %rsp
1310
1311	/* Copy the "original" frame to the "outermost" frame */
1312	.rept 5
1313	pushq	11*8(%rsp)
1314	.endr
1315	UNWIND_HINT_IRET_REGS
1316
1317	/* Everything up to here is safe from nested NMIs */
1318
1319#ifdef CONFIG_DEBUG_ENTRY
1320	/*
1321	 * For ease of testing, unmask NMIs right away.  Disabled by
1322	 * default because IRET is very expensive.
1323	 */
1324	pushq	$0		/* SS */
1325	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1326	addq	$8, (%rsp)	/* Fix up RSP */
1327	pushfq			/* RFLAGS */
1328	pushq	$__KERNEL_CS	/* CS */
1329	pushq	$1f		/* RIP */
1330	iretq			/* continues at repeat_nmi below */
1331	UNWIND_HINT_IRET_REGS
13321:
1333#endif
1334
1335repeat_nmi:
1336	ANNOTATE_NOENDBR // this code
1337	/*
1338	 * If there was a nested NMI, the first NMI's iret will return
1339	 * here. But NMIs are still enabled and we can take another
1340	 * nested NMI. The nested NMI checks the interrupted RIP to see
1341	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1342	 * it will just return, as we are about to repeat an NMI anyway.
1343	 * This makes it safe to copy to the stack frame that a nested
1344	 * NMI will update.
1345	 *
1346	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1347	 * we're repeating an NMI, gsbase has the same value that it had on
1348	 * the first iteration.  paranoid_entry will load the kernel
1349	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1350	 * is zero.
1351	 */
1352	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1353
1354	/*
1355	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1356	 * here must not modify the "iret" frame while we're writing to
1357	 * it or it will end up containing garbage.
1358	 */
1359	addq	$(10*8), %rsp
1360	.rept 5
1361	pushq	-6*8(%rsp)
1362	.endr
1363	subq	$(5*8), %rsp
1364end_repeat_nmi:
1365	ANNOTATE_NOENDBR // this code
1366
1367	/*
1368	 * Everything below this point can be preempted by a nested NMI.
1369	 * If this happens, then the inner NMI will change the "iret"
1370	 * frame to point back to repeat_nmi.
1371	 */
1372	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1373
1374	/*
1375	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1376	 * as we should not be calling schedule in NMI context.
1377	 * Even with normal interrupts enabled. An NMI should not be
1378	 * setting NEED_RESCHED or anything that normal interrupts and
1379	 * exceptions might do.
1380	 */
1381	call	paranoid_entry
1382	UNWIND_HINT_REGS
1383
1384	movq	%rsp, %rdi
1385	movq	$-1, %rsi
1386	call	exc_nmi
1387
1388	/* Always restore stashed CR3 value (see paranoid_entry) */
1389	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1390
1391	/*
1392	 * The above invocation of paranoid_entry stored the GSBASE
1393	 * related information in R/EBX depending on the availability
1394	 * of FSGSBASE.
1395	 *
1396	 * If FSGSBASE is enabled, restore the saved GSBASE value
1397	 * unconditionally, otherwise take the conditional SWAPGS path.
1398	 */
1399	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1400
1401	wrgsbase	%rbx
1402	jmp	nmi_restore
1403
1404nmi_no_fsgsbase:
1405	/* EBX == 0 -> invoke SWAPGS */
1406	testl	%ebx, %ebx
1407	jnz	nmi_restore
1408
1409nmi_swapgs:
1410	swapgs
1411
1412nmi_restore:
1413	POP_REGS
1414
1415	/*
1416	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1417	 * at the "iret" frame.
1418	 */
1419	addq	$6*8, %rsp
1420
1421	/*
1422	 * Clear "NMI executing".  Set DF first so that we can easily
1423	 * distinguish the remaining code between here and IRET from
1424	 * the SYSCALL entry and exit paths.
1425	 *
1426	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1427	 * this code when I had the misapprehension that Xen PV supported
1428	 * NMIs, and Xen PV would break that approach.
1429	 */
1430	std
1431	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1432
1433	/*
1434	 * iretq reads the "iret" frame and exits the NMI stack in a
1435	 * single instruction.  We are returning to kernel mode, so this
1436	 * cannot result in a fault.  Similarly, we don't need to worry
1437	 * about espfix64 on the way back to kernel mode.
1438	 */
1439	iretq
1440SYM_CODE_END(asm_exc_nmi)
1441
1442#ifndef CONFIG_IA32_EMULATION
1443/*
1444 * This handles SYSCALL from 32-bit code.  There is no way to program
1445 * MSRs to fully disable 32-bit SYSCALL.
1446 */
1447SYM_CODE_START(ignore_sysret)
1448	UNWIND_HINT_EMPTY
1449	ENDBR
1450	mov	$-ENOSYS, %eax
1451	sysretl
1452SYM_CODE_END(ignore_sysret)
1453#endif
1454
1455.pushsection .text, "ax"
1456SYM_CODE_START(rewind_stack_and_make_dead)
1457	UNWIND_HINT_FUNC
1458	/* Prevent any naive code from trying to unwind to our caller. */
1459	xorl	%ebp, %ebp
1460
1461	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1462	leaq	-PTREGS_SIZE(%rax), %rsp
1463	UNWIND_HINT_REGS
1464
1465	call	make_task_dead
1466SYM_CODE_END(rewind_stack_and_make_dead)
1467.popsection
1468