xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <asm/nospec-branch.h>
41#include <linux/err.h>
42
43#include "calling.h"
44
45.code64
46.section .entry.text, "ax"
47
48#ifdef CONFIG_PARAVIRT
49ENTRY(native_usergs_sysret64)
50	UNWIND_HINT_EMPTY
51	swapgs
52	sysretq
53END(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_FLAGS flags:req
57#ifdef CONFIG_TRACE_IRQFLAGS
58	btl	$9, \flags		/* interrupts off? */
59	jnc	1f
60	TRACE_IRQS_ON
611:
62#endif
63.endm
64
65.macro TRACE_IRQS_IRETQ
66	TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
83	call	debug_stack_set_zero
84	TRACE_IRQS_OFF
85	call	debug_stack_reset
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
89	call	debug_stack_set_zero
90	TRACE_IRQS_ON
91	call	debug_stack_reset
92.endm
93
94.macro TRACE_IRQS_IRETQ_DEBUG
95	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
96	jnc	1f
97	TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
102# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105#endif
106
107/*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls.  The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries.  There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax  system call number
128 * rcx  return address
129 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi  arg0
131 * rsi  arg1
132 * rdx  arg2
133 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8   arg4
135 * r9   arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145	.pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address).  So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline.  We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
164			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165
166ENTRY(entry_SYSCALL_64_trampoline)
167	UNWIND_HINT_EMPTY
168	swapgs
169
170	/* Stash the user RSP. */
171	movq	%rsp, RSP_SCRATCH
172
173	/* Note: using %rsp as a scratch reg. */
174	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
176	/* Load the top of the task stack into RSP */
177	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179	/* Start building the simulated IRET frame. */
180	pushq	$__USER_DS			/* pt_regs->ss */
181	pushq	RSP_SCRATCH			/* pt_regs->sp */
182	pushq	%r11				/* pt_regs->flags */
183	pushq	$__USER_CS			/* pt_regs->cs */
184	pushq	%rcx				/* pt_regs->ip */
185
186	/*
187	 * x86 lacks a near absolute jump, and we can't jump to the real
188	 * entry text with a relative jump.  We could push the target
189	 * address and then use retq, but this destroys the pipeline on
190	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
191	 * spill RDI and restore it in a second-stage trampoline.
192	 */
193	pushq	%rdi
194	movq	$entry_SYSCALL_64_stage2, %rdi
195	JMP_NOSPEC %rdi
196END(entry_SYSCALL_64_trampoline)
197
198	.popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201	UNWIND_HINT_EMPTY
202	popq	%rdi
203	jmp	entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
206ENTRY(entry_SYSCALL_64)
207	UNWIND_HINT_EMPTY
208	/*
209	 * Interrupts are off on entry.
210	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211	 * it is too small to ever cause noticeable irq latency.
212	 */
213
214	swapgs
215	/*
216	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217	 * is not required to switch CR3.
218	 */
219	movq	%rsp, PER_CPU_VAR(rsp_scratch)
220	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221
222	/* Construct struct pt_regs on stack */
223	pushq	$__USER_DS			/* pt_regs->ss */
224	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
225	pushq	%r11				/* pt_regs->flags */
226	pushq	$__USER_CS			/* pt_regs->cs */
227	pushq	%rcx				/* pt_regs->ip */
228GLOBAL(entry_SYSCALL_64_after_hwframe)
229	pushq	%rax				/* pt_regs->orig_ax */
230
231	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232
233	TRACE_IRQS_OFF
234
235	/* IRQs are off. */
236	movq	%rax, %rdi
237	movq	%rsp, %rsi
238	call	do_syscall_64		/* returns with IRQs disabled */
239
240	TRACE_IRQS_IRETQ		/* we're about to change IF */
241
242	/*
243	 * Try to use SYSRET instead of IRET if we're returning to
244	 * a completely clean 64-bit userspace context.  If we're not,
245	 * go to the slow exit path.
246	 */
247	movq	RCX(%rsp), %rcx
248	movq	RIP(%rsp), %r11
249
250	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
251	jne	swapgs_restore_regs_and_return_to_usermode
252
253	/*
254	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
255	 * in kernel space.  This essentially lets the user take over
256	 * the kernel, since userspace controls RSP.
257	 *
258	 * If width of "canonical tail" ever becomes variable, this will need
259	 * to be updated to remain correct on both old and new CPUs.
260	 *
261	 * Change top bits to match most significant bit (47th or 56th bit
262	 * depending on paging mode) in the address.
263	 */
264#ifdef CONFIG_X86_5LEVEL
265	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
266		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
267#else
268	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
269	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
270#endif
271
272	/* If this changed %rcx, it was not canonical */
273	cmpq	%rcx, %r11
274	jne	swapgs_restore_regs_and_return_to_usermode
275
276	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
277	jne	swapgs_restore_regs_and_return_to_usermode
278
279	movq	R11(%rsp), %r11
280	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
281	jne	swapgs_restore_regs_and_return_to_usermode
282
283	/*
284	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
285	 * restore RF properly. If the slowpath sets it for whatever reason, we
286	 * need to restore it correctly.
287	 *
288	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
289	 * trap from userspace immediately after SYSRET.  This would cause an
290	 * infinite loop whenever #DB happens with register state that satisfies
291	 * the opportunistic SYSRET conditions.  For example, single-stepping
292	 * this user code:
293	 *
294	 *           movq	$stuck_here, %rcx
295	 *           pushfq
296	 *           popq %r11
297	 *   stuck_here:
298	 *
299	 * would never get past 'stuck_here'.
300	 */
301	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
302	jnz	swapgs_restore_regs_and_return_to_usermode
303
304	/* nothing to check for RSP */
305
306	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
307	jne	swapgs_restore_regs_and_return_to_usermode
308
309	/*
310	 * We win! This label is here just for ease of understanding
311	 * perf profiles. Nothing jumps here.
312	 */
313syscall_return_via_sysret:
314	/* rcx and r11 are already restored (see code above) */
315	UNWIND_HINT_EMPTY
316	POP_REGS pop_rdi=0 skip_r11rcx=1
317
318	/*
319	 * Now all regs are restored except RSP and RDI.
320	 * Save old stack pointer and switch to trampoline stack.
321	 */
322	movq	%rsp, %rdi
323	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
324
325	pushq	RSP-RDI(%rdi)	/* RSP */
326	pushq	(%rdi)		/* RDI */
327
328	/*
329	 * We are on the trampoline stack.  All regs except RDI are live.
330	 * We can do future final exit work right here.
331	 */
332	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
333
334	popq	%rdi
335	popq	%rsp
336	USERGS_SYSRET64
337END(entry_SYSCALL_64)
338
339/*
340 * %rdi: prev task
341 * %rsi: next task
342 */
343ENTRY(__switch_to_asm)
344	UNWIND_HINT_FUNC
345	/*
346	 * Save callee-saved registers
347	 * This must match the order in inactive_task_frame
348	 */
349	pushq	%rbp
350	pushq	%rbx
351	pushq	%r12
352	pushq	%r13
353	pushq	%r14
354	pushq	%r15
355
356	/* switch stack */
357	movq	%rsp, TASK_threadsp(%rdi)
358	movq	TASK_threadsp(%rsi), %rsp
359
360#ifdef CONFIG_STACKPROTECTOR
361	movq	TASK_stack_canary(%rsi), %rbx
362	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
363#endif
364
365#ifdef CONFIG_RETPOLINE
366	/*
367	 * When switching from a shallower to a deeper call stack
368	 * the RSB may either underflow or use entries populated
369	 * with userspace addresses. On CPUs where those concerns
370	 * exist, overwrite the RSB with entries which capture
371	 * speculative execution to prevent attack.
372	 */
373	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
374#endif
375
376	/* restore callee-saved registers */
377	popq	%r15
378	popq	%r14
379	popq	%r13
380	popq	%r12
381	popq	%rbx
382	popq	%rbp
383
384	jmp	__switch_to
385END(__switch_to_asm)
386
387/*
388 * A newly forked process directly context switches into this address.
389 *
390 * rax: prev task we switched from
391 * rbx: kernel thread func (NULL for user thread)
392 * r12: kernel thread arg
393 */
394ENTRY(ret_from_fork)
395	UNWIND_HINT_EMPTY
396	movq	%rax, %rdi
397	call	schedule_tail			/* rdi: 'prev' task parameter */
398
399	testq	%rbx, %rbx			/* from kernel_thread? */
400	jnz	1f				/* kernel threads are uncommon */
401
4022:
403	UNWIND_HINT_REGS
404	movq	%rsp, %rdi
405	call	syscall_return_slowpath	/* returns with IRQs disabled */
406	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
407	jmp	swapgs_restore_regs_and_return_to_usermode
408
4091:
410	/* kernel thread */
411	movq	%r12, %rdi
412	CALL_NOSPEC %rbx
413	/*
414	 * A kernel thread is allowed to return here after successfully
415	 * calling do_execve().  Exit to userspace to complete the execve()
416	 * syscall.
417	 */
418	movq	$0, RAX(%rsp)
419	jmp	2b
420END(ret_from_fork)
421
422/*
423 * Build the entry stubs with some assembler magic.
424 * We pack 1 stub into every 8-byte block.
425 */
426	.align 8
427ENTRY(irq_entries_start)
428    vector=FIRST_EXTERNAL_VECTOR
429    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
430	UNWIND_HINT_IRET_REGS
431	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
432	jmp	common_interrupt
433	.align	8
434	vector=vector+1
435    .endr
436END(irq_entries_start)
437
438.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
439#ifdef CONFIG_DEBUG_ENTRY
440	pushq %rax
441	SAVE_FLAGS(CLBR_RAX)
442	testl $X86_EFLAGS_IF, %eax
443	jz .Lokay_\@
444	ud2
445.Lokay_\@:
446	popq %rax
447#endif
448.endm
449
450/*
451 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
452 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
453 * Requires kernel GSBASE.
454 *
455 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
456 */
457.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
458	DEBUG_ENTRY_ASSERT_IRQS_OFF
459
460	.if \save_ret
461	/*
462	 * If save_ret is set, the original stack contains one additional
463	 * entry -- the return address. Therefore, move the address one
464	 * entry below %rsp to \old_rsp.
465	 */
466	leaq	8(%rsp), \old_rsp
467	.else
468	movq	%rsp, \old_rsp
469	.endif
470
471	.if \regs
472	UNWIND_HINT_REGS base=\old_rsp
473	.endif
474
475	incl	PER_CPU_VAR(irq_count)
476	jnz	.Lirq_stack_push_old_rsp_\@
477
478	/*
479	 * Right now, if we just incremented irq_count to zero, we've
480	 * claimed the IRQ stack but we haven't switched to it yet.
481	 *
482	 * If anything is added that can interrupt us here without using IST,
483	 * it must be *extremely* careful to limit its stack usage.  This
484	 * could include kprobes and a hypothetical future IST-less #DB
485	 * handler.
486	 *
487	 * The OOPS unwinder relies on the word at the top of the IRQ
488	 * stack linking back to the previous RSP for the entire time we're
489	 * on the IRQ stack.  For this to work reliably, we need to write
490	 * it before we actually move ourselves to the IRQ stack.
491	 */
492
493	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
494	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
495
496#ifdef CONFIG_DEBUG_ENTRY
497	/*
498	 * If the first movq above becomes wrong due to IRQ stack layout
499	 * changes, the only way we'll notice is if we try to unwind right
500	 * here.  Assert that we set up the stack right to catch this type
501	 * of bug quickly.
502	 */
503	cmpq	-8(%rsp), \old_rsp
504	je	.Lirq_stack_okay\@
505	ud2
506	.Lirq_stack_okay\@:
507#endif
508
509.Lirq_stack_push_old_rsp_\@:
510	pushq	\old_rsp
511
512	.if \regs
513	UNWIND_HINT_REGS indirect=1
514	.endif
515
516	.if \save_ret
517	/*
518	 * Push the return address to the stack. This return address can
519	 * be found at the "real" original RSP, which was offset by 8 at
520	 * the beginning of this macro.
521	 */
522	pushq	-8(\old_rsp)
523	.endif
524.endm
525
526/*
527 * Undoes ENTER_IRQ_STACK.
528 */
529.macro LEAVE_IRQ_STACK regs=1
530	DEBUG_ENTRY_ASSERT_IRQS_OFF
531	/* We need to be off the IRQ stack before decrementing irq_count. */
532	popq	%rsp
533
534	.if \regs
535	UNWIND_HINT_REGS
536	.endif
537
538	/*
539	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
540	 * the irq stack but we're not on it.
541	 */
542
543	decl	PER_CPU_VAR(irq_count)
544.endm
545
546/*
547 * Interrupt entry helper function.
548 *
549 * Entry runs with interrupts off. Stack layout at entry:
550 * +----------------------------------------------------+
551 * | regs->ss						|
552 * | regs->rsp						|
553 * | regs->eflags					|
554 * | regs->cs						|
555 * | regs->ip						|
556 * +----------------------------------------------------+
557 * | regs->orig_ax = ~(interrupt number)		|
558 * +----------------------------------------------------+
559 * | return address					|
560 * +----------------------------------------------------+
561 */
562ENTRY(interrupt_entry)
563	UNWIND_HINT_FUNC
564	ASM_CLAC
565	cld
566
567	testb	$3, CS-ORIG_RAX+8(%rsp)
568	jz	1f
569	SWAPGS
570
571	/*
572	 * Switch to the thread stack. The IRET frame and orig_ax are
573	 * on the stack, as well as the return address. RDI..R12 are
574	 * not (yet) on the stack and space has not (yet) been
575	 * allocated for them.
576	 */
577	pushq	%rdi
578
579	/* Need to switch before accessing the thread stack. */
580	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
581	movq	%rsp, %rdi
582	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
583
584	 /*
585	  * We have RDI, return address, and orig_ax on the stack on
586	  * top of the IRET frame. That means offset=24
587	  */
588	UNWIND_HINT_IRET_REGS base=%rdi offset=24
589
590	pushq	7*8(%rdi)		/* regs->ss */
591	pushq	6*8(%rdi)		/* regs->rsp */
592	pushq	5*8(%rdi)		/* regs->eflags */
593	pushq	4*8(%rdi)		/* regs->cs */
594	pushq	3*8(%rdi)		/* regs->ip */
595	pushq	2*8(%rdi)		/* regs->orig_ax */
596	pushq	8(%rdi)			/* return address */
597	UNWIND_HINT_FUNC
598
599	movq	(%rdi), %rdi
6001:
601
602	PUSH_AND_CLEAR_REGS save_ret=1
603	ENCODE_FRAME_POINTER 8
604
605	testb	$3, CS+8(%rsp)
606	jz	1f
607
608	/*
609	 * IRQ from user mode.
610	 *
611	 * We need to tell lockdep that IRQs are off.  We can't do this until
612	 * we fix gsbase, and we should do it before enter_from_user_mode
613	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
614	 * the simplest way to handle it is to just call it twice if
615	 * we enter from user mode.  There's no reason to optimize this since
616	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
617	 */
618	TRACE_IRQS_OFF
619
620	CALL_enter_from_user_mode
621
6221:
623	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
624	/* We entered an interrupt context - irqs are off: */
625	TRACE_IRQS_OFF
626
627	ret
628END(interrupt_entry)
629
630
631/* Interrupt entry/exit. */
632
633	/*
634	 * The interrupt stubs push (~vector+0x80) onto the stack and
635	 * then jump to common_interrupt.
636	 */
637	.p2align CONFIG_X86_L1_CACHE_SHIFT
638common_interrupt:
639	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
640	call	interrupt_entry
641	UNWIND_HINT_REGS indirect=1
642	call	do_IRQ	/* rdi points to pt_regs */
643	/* 0(%rsp): old RSP */
644ret_from_intr:
645	DISABLE_INTERRUPTS(CLBR_ANY)
646	TRACE_IRQS_OFF
647
648	LEAVE_IRQ_STACK
649
650	testb	$3, CS(%rsp)
651	jz	retint_kernel
652
653	/* Interrupt came from user space */
654GLOBAL(retint_user)
655	mov	%rsp,%rdi
656	call	prepare_exit_to_usermode
657	TRACE_IRQS_IRETQ
658
659GLOBAL(swapgs_restore_regs_and_return_to_usermode)
660#ifdef CONFIG_DEBUG_ENTRY
661	/* Assert that pt_regs indicates user mode. */
662	testb	$3, CS(%rsp)
663	jnz	1f
664	ud2
6651:
666#endif
667	POP_REGS pop_rdi=0
668
669	/*
670	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
671	 * Save old stack pointer and switch to trampoline stack.
672	 */
673	movq	%rsp, %rdi
674	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
675
676	/* Copy the IRET frame to the trampoline stack. */
677	pushq	6*8(%rdi)	/* SS */
678	pushq	5*8(%rdi)	/* RSP */
679	pushq	4*8(%rdi)	/* EFLAGS */
680	pushq	3*8(%rdi)	/* CS */
681	pushq	2*8(%rdi)	/* RIP */
682
683	/* Push user RDI on the trampoline stack. */
684	pushq	(%rdi)
685
686	/*
687	 * We are on the trampoline stack.  All regs except RDI are live.
688	 * We can do future final exit work right here.
689	 */
690
691	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
692
693	/* Restore RDI. */
694	popq	%rdi
695	SWAPGS
696	INTERRUPT_RETURN
697
698
699/* Returning to kernel space */
700retint_kernel:
701#ifdef CONFIG_PREEMPT
702	/* Interrupts are off */
703	/* Check if we need preemption */
704	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
705	jnc	1f
7060:	cmpl	$0, PER_CPU_VAR(__preempt_count)
707	jnz	1f
708	call	preempt_schedule_irq
709	jmp	0b
7101:
711#endif
712	/*
713	 * The iretq could re-enable interrupts:
714	 */
715	TRACE_IRQS_IRETQ
716
717GLOBAL(restore_regs_and_return_to_kernel)
718#ifdef CONFIG_DEBUG_ENTRY
719	/* Assert that pt_regs indicates kernel mode. */
720	testb	$3, CS(%rsp)
721	jz	1f
722	ud2
7231:
724#endif
725	POP_REGS
726	addq	$8, %rsp	/* skip regs->orig_ax */
727	/*
728	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
729	 * when returning from IPI handler.
730	 */
731	INTERRUPT_RETURN
732
733ENTRY(native_iret)
734	UNWIND_HINT_IRET_REGS
735	/*
736	 * Are we returning to a stack segment from the LDT?  Note: in
737	 * 64-bit mode SS:RSP on the exception stack is always valid.
738	 */
739#ifdef CONFIG_X86_ESPFIX64
740	testb	$4, (SS-RIP)(%rsp)
741	jnz	native_irq_return_ldt
742#endif
743
744.global native_irq_return_iret
745native_irq_return_iret:
746	/*
747	 * This may fault.  Non-paranoid faults on return to userspace are
748	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
749	 * Double-faults due to espfix64 are handled in do_double_fault.
750	 * Other faults here are fatal.
751	 */
752	iretq
753
754#ifdef CONFIG_X86_ESPFIX64
755native_irq_return_ldt:
756	/*
757	 * We are running with user GSBASE.  All GPRs contain their user
758	 * values.  We have a percpu ESPFIX stack that is eight slots
759	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
760	 * of the ESPFIX stack.
761	 *
762	 * We clobber RAX and RDI in this code.  We stash RDI on the
763	 * normal stack and RAX on the ESPFIX stack.
764	 *
765	 * The ESPFIX stack layout we set up looks like this:
766	 *
767	 * --- top of ESPFIX stack ---
768	 * SS
769	 * RSP
770	 * RFLAGS
771	 * CS
772	 * RIP  <-- RSP points here when we're done
773	 * RAX  <-- espfix_waddr points here
774	 * --- bottom of ESPFIX stack ---
775	 */
776
777	pushq	%rdi				/* Stash user RDI */
778	SWAPGS					/* to kernel GS */
779	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
780
781	movq	PER_CPU_VAR(espfix_waddr), %rdi
782	movq	%rax, (0*8)(%rdi)		/* user RAX */
783	movq	(1*8)(%rsp), %rax		/* user RIP */
784	movq	%rax, (1*8)(%rdi)
785	movq	(2*8)(%rsp), %rax		/* user CS */
786	movq	%rax, (2*8)(%rdi)
787	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
788	movq	%rax, (3*8)(%rdi)
789	movq	(5*8)(%rsp), %rax		/* user SS */
790	movq	%rax, (5*8)(%rdi)
791	movq	(4*8)(%rsp), %rax		/* user RSP */
792	movq	%rax, (4*8)(%rdi)
793	/* Now RAX == RSP. */
794
795	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
796
797	/*
798	 * espfix_stack[31:16] == 0.  The page tables are set up such that
799	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
800	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
801	 * the same page.  Set up RSP so that RSP[31:16] contains the
802	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
803	 * still points to an RO alias of the ESPFIX stack.
804	 */
805	orq	PER_CPU_VAR(espfix_stack), %rax
806
807	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
808	SWAPGS					/* to user GS */
809	popq	%rdi				/* Restore user RDI */
810
811	movq	%rax, %rsp
812	UNWIND_HINT_IRET_REGS offset=8
813
814	/*
815	 * At this point, we cannot write to the stack any more, but we can
816	 * still read.
817	 */
818	popq	%rax				/* Restore user RAX */
819
820	/*
821	 * RSP now points to an ordinary IRET frame, except that the page
822	 * is read-only and RSP[31:16] are preloaded with the userspace
823	 * values.  We can now IRET back to userspace.
824	 */
825	jmp	native_irq_return_iret
826#endif
827END(common_interrupt)
828
829/*
830 * APIC interrupts.
831 */
832.macro apicinterrupt3 num sym do_sym
833ENTRY(\sym)
834	UNWIND_HINT_IRET_REGS
835	pushq	$~(\num)
836.Lcommon_\sym:
837	call	interrupt_entry
838	UNWIND_HINT_REGS indirect=1
839	call	\do_sym	/* rdi points to pt_regs */
840	jmp	ret_from_intr
841END(\sym)
842.endm
843
844/* Make sure APIC interrupt handlers end up in the irqentry section: */
845#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
846#define POP_SECTION_IRQENTRY	.popsection
847
848.macro apicinterrupt num sym do_sym
849PUSH_SECTION_IRQENTRY
850apicinterrupt3 \num \sym \do_sym
851POP_SECTION_IRQENTRY
852.endm
853
854#ifdef CONFIG_SMP
855apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
856apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
857#endif
858
859#ifdef CONFIG_X86_UV
860apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
861#endif
862
863apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
864apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
865
866#ifdef CONFIG_HAVE_KVM
867apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
868apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
869apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
870#endif
871
872#ifdef CONFIG_X86_MCE_THRESHOLD
873apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
874#endif
875
876#ifdef CONFIG_X86_MCE_AMD
877apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
878#endif
879
880#ifdef CONFIG_X86_THERMAL_VECTOR
881apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
882#endif
883
884#ifdef CONFIG_SMP
885apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
886apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
887apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
888#endif
889
890apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
891apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
892
893#ifdef CONFIG_IRQ_WORK
894apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
895#endif
896
897/*
898 * Exception entry points.
899 */
900#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
901
902.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
903ENTRY(\sym)
904	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
905
906	/* Sanity check */
907	.if \shift_ist != -1 && \paranoid == 0
908	.error "using shift_ist requires paranoid=1"
909	.endif
910
911	ASM_CLAC
912
913	.if \has_error_code == 0
914	pushq	$-1				/* ORIG_RAX: no syscall to restart */
915	.endif
916
917	.if \paranoid == 1
918	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
919	jnz	.Lfrom_usermode_switch_stack_\@
920	.endif
921
922	.if \paranoid
923	call	paranoid_entry
924	.else
925	call	error_entry
926	.endif
927	UNWIND_HINT_REGS
928	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
929
930	.if \paranoid
931	.if \shift_ist != -1
932	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
933	.else
934	TRACE_IRQS_OFF
935	.endif
936	.endif
937
938	movq	%rsp, %rdi			/* pt_regs pointer */
939
940	.if \has_error_code
941	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
942	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
943	.else
944	xorl	%esi, %esi			/* no error code */
945	.endif
946
947	.if \shift_ist != -1
948	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
949	.endif
950
951	call	\do_sym
952
953	.if \shift_ist != -1
954	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
955	.endif
956
957	/* these procedures expect "no swapgs" flag in ebx */
958	.if \paranoid
959	jmp	paranoid_exit
960	.else
961	jmp	error_exit
962	.endif
963
964	.if \paranoid == 1
965	/*
966	 * Entry from userspace.  Switch stacks and treat it
967	 * as a normal entry.  This means that paranoid handlers
968	 * run in real process context if user_mode(regs).
969	 */
970.Lfrom_usermode_switch_stack_\@:
971	call	error_entry
972
973	movq	%rsp, %rdi			/* pt_regs pointer */
974
975	.if \has_error_code
976	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
977	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
978	.else
979	xorl	%esi, %esi			/* no error code */
980	.endif
981
982	call	\do_sym
983
984	jmp	error_exit
985	.endif
986END(\sym)
987.endm
988
989idtentry divide_error			do_divide_error			has_error_code=0
990idtentry overflow			do_overflow			has_error_code=0
991idtentry bounds				do_bounds			has_error_code=0
992idtentry invalid_op			do_invalid_op			has_error_code=0
993idtentry device_not_available		do_device_not_available		has_error_code=0
994idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
995idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
996idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
997idtentry segment_not_present		do_segment_not_present		has_error_code=1
998idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
999idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
1000idtentry alignment_check		do_alignment_check		has_error_code=1
1001idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
1002
1003
1004	/*
1005	 * Reload gs selector with exception handling
1006	 * edi:  new selector
1007	 */
1008ENTRY(native_load_gs_index)
1009	FRAME_BEGIN
1010	pushfq
1011	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1012	TRACE_IRQS_OFF
1013	SWAPGS
1014.Lgs_change:
1015	movl	%edi, %gs
10162:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1017	SWAPGS
1018	TRACE_IRQS_FLAGS (%rsp)
1019	popfq
1020	FRAME_END
1021	ret
1022ENDPROC(native_load_gs_index)
1023EXPORT_SYMBOL(native_load_gs_index)
1024
1025	_ASM_EXTABLE(.Lgs_change, bad_gs)
1026	.section .fixup, "ax"
1027	/* running with kernelgs */
1028bad_gs:
1029	SWAPGS					/* switch back to user gs */
1030.macro ZAP_GS
1031	/* This can't be a string because the preprocessor needs to see it. */
1032	movl $__USER_DS, %eax
1033	movl %eax, %gs
1034.endm
1035	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1036	xorl	%eax, %eax
1037	movl	%eax, %gs
1038	jmp	2b
1039	.previous
1040
1041/* Call softirq on interrupt stack. Interrupts are off. */
1042ENTRY(do_softirq_own_stack)
1043	pushq	%rbp
1044	mov	%rsp, %rbp
1045	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1046	call	__do_softirq
1047	LEAVE_IRQ_STACK regs=0
1048	leaveq
1049	ret
1050ENDPROC(do_softirq_own_stack)
1051
1052#ifdef CONFIG_XEN
1053idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1054
1055/*
1056 * A note on the "critical region" in our callback handler.
1057 * We want to avoid stacking callback handlers due to events occurring
1058 * during handling of the last event. To do this, we keep events disabled
1059 * until we've done all processing. HOWEVER, we must enable events before
1060 * popping the stack frame (can't be done atomically) and so it would still
1061 * be possible to get enough handler activations to overflow the stack.
1062 * Although unlikely, bugs of that kind are hard to track down, so we'd
1063 * like to avoid the possibility.
1064 * So, on entry to the handler we detect whether we interrupted an
1065 * existing activation in its critical region -- if so, we pop the current
1066 * activation and restart the handler using the previous one.
1067 */
1068ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1069
1070/*
1071 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1072 * see the correct pointer to the pt_regs
1073 */
1074	UNWIND_HINT_FUNC
1075	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1076	UNWIND_HINT_REGS
1077
1078	ENTER_IRQ_STACK old_rsp=%r10
1079	call	xen_evtchn_do_upcall
1080	LEAVE_IRQ_STACK
1081
1082#ifndef CONFIG_PREEMPT
1083	call	xen_maybe_preempt_hcall
1084#endif
1085	jmp	error_exit
1086END(xen_do_hypervisor_callback)
1087
1088/*
1089 * Hypervisor uses this for application faults while it executes.
1090 * We get here for two reasons:
1091 *  1. Fault while reloading DS, ES, FS or GS
1092 *  2. Fault while executing IRET
1093 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1094 * registers that could be reloaded and zeroed the others.
1095 * Category 2 we fix up by killing the current process. We cannot use the
1096 * normal Linux return path in this case because if we use the IRET hypercall
1097 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1098 * We distinguish between categories by comparing each saved segment register
1099 * with its current contents: any discrepancy means we in category 1.
1100 */
1101ENTRY(xen_failsafe_callback)
1102	UNWIND_HINT_EMPTY
1103	movl	%ds, %ecx
1104	cmpw	%cx, 0x10(%rsp)
1105	jne	1f
1106	movl	%es, %ecx
1107	cmpw	%cx, 0x18(%rsp)
1108	jne	1f
1109	movl	%fs, %ecx
1110	cmpw	%cx, 0x20(%rsp)
1111	jne	1f
1112	movl	%gs, %ecx
1113	cmpw	%cx, 0x28(%rsp)
1114	jne	1f
1115	/* All segments match their saved values => Category 2 (Bad IRET). */
1116	movq	(%rsp), %rcx
1117	movq	8(%rsp), %r11
1118	addq	$0x30, %rsp
1119	pushq	$0				/* RIP */
1120	UNWIND_HINT_IRET_REGS offset=8
1121	jmp	general_protection
11221:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1123	movq	(%rsp), %rcx
1124	movq	8(%rsp), %r11
1125	addq	$0x30, %rsp
1126	UNWIND_HINT_IRET_REGS
1127	pushq	$-1 /* orig_ax = -1 => not a system call */
1128	PUSH_AND_CLEAR_REGS
1129	ENCODE_FRAME_POINTER
1130	jmp	error_exit
1131END(xen_failsafe_callback)
1132
1133apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134	xen_hvm_callback_vector xen_evtchn_do_upcall
1135
1136#endif /* CONFIG_XEN */
1137
1138#if IS_ENABLED(CONFIG_HYPERV)
1139apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1140	hyperv_callback_vector hyperv_vector_handler
1141
1142apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1143	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1144
1145apicinterrupt3 HYPERV_STIMER0_VECTOR \
1146	hv_stimer0_callback_vector hv_stimer0_vector_handler
1147#endif /* CONFIG_HYPERV */
1148
1149idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1150idtentry int3			do_int3			has_error_code=0
1151idtentry stack_segment		do_stack_segment	has_error_code=1
1152
1153#ifdef CONFIG_XEN
1154idtentry xennmi			do_nmi			has_error_code=0
1155idtentry xendebug		do_debug		has_error_code=0
1156idtentry xenint3		do_int3			has_error_code=0
1157#endif
1158
1159idtentry general_protection	do_general_protection	has_error_code=1
1160idtentry page_fault		do_page_fault		has_error_code=1
1161
1162#ifdef CONFIG_KVM_GUEST
1163idtentry async_page_fault	do_async_page_fault	has_error_code=1
1164#endif
1165
1166#ifdef CONFIG_X86_MCE
1167idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1168#endif
1169
1170/*
1171 * Save all registers in pt_regs, and switch gs if needed.
1172 * Use slow, but surefire "are we in kernel?" check.
1173 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1174 */
1175ENTRY(paranoid_entry)
1176	UNWIND_HINT_FUNC
1177	cld
1178	PUSH_AND_CLEAR_REGS save_ret=1
1179	ENCODE_FRAME_POINTER 8
1180	movl	$1, %ebx
1181	movl	$MSR_GS_BASE, %ecx
1182	rdmsr
1183	testl	%edx, %edx
1184	js	1f				/* negative -> in kernel */
1185	SWAPGS
1186	xorl	%ebx, %ebx
1187
11881:
1189	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1190
1191	ret
1192END(paranoid_entry)
1193
1194/*
1195 * "Paranoid" exit path from exception stack.  This is invoked
1196 * only on return from non-NMI IST interrupts that came
1197 * from kernel space.
1198 *
1199 * We may be returning to very strange contexts (e.g. very early
1200 * in syscall entry), so checking for preemption here would
1201 * be complicated.  Fortunately, we there's no good reason
1202 * to try to handle preemption here.
1203 *
1204 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1205 */
1206ENTRY(paranoid_exit)
1207	UNWIND_HINT_REGS
1208	DISABLE_INTERRUPTS(CLBR_ANY)
1209	TRACE_IRQS_OFF_DEBUG
1210	testl	%ebx, %ebx			/* swapgs needed? */
1211	jnz	.Lparanoid_exit_no_swapgs
1212	TRACE_IRQS_IRETQ
1213	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1214	SWAPGS_UNSAFE_STACK
1215	jmp	.Lparanoid_exit_restore
1216.Lparanoid_exit_no_swapgs:
1217	TRACE_IRQS_IRETQ_DEBUG
1218	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1219.Lparanoid_exit_restore:
1220	jmp restore_regs_and_return_to_kernel
1221END(paranoid_exit)
1222
1223/*
1224 * Save all registers in pt_regs, and switch GS if needed.
1225 */
1226ENTRY(error_entry)
1227	UNWIND_HINT_FUNC
1228	cld
1229	PUSH_AND_CLEAR_REGS save_ret=1
1230	ENCODE_FRAME_POINTER 8
1231	testb	$3, CS+8(%rsp)
1232	jz	.Lerror_kernelspace
1233
1234	/*
1235	 * We entered from user mode or we're pretending to have entered
1236	 * from user mode due to an IRET fault.
1237	 */
1238	SWAPGS
1239	/* We have user CR3.  Change to kernel CR3. */
1240	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1241
1242.Lerror_entry_from_usermode_after_swapgs:
1243	/* Put us onto the real thread stack. */
1244	popq	%r12				/* save return addr in %12 */
1245	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1246	call	sync_regs
1247	movq	%rax, %rsp			/* switch stack */
1248	ENCODE_FRAME_POINTER
1249	pushq	%r12
1250
1251	/*
1252	 * We need to tell lockdep that IRQs are off.  We can't do this until
1253	 * we fix gsbase, and we should do it before enter_from_user_mode
1254	 * (which can take locks).
1255	 */
1256	TRACE_IRQS_OFF
1257	CALL_enter_from_user_mode
1258	ret
1259
1260.Lerror_entry_done:
1261	TRACE_IRQS_OFF
1262	ret
1263
1264	/*
1265	 * There are two places in the kernel that can potentially fault with
1266	 * usergs. Handle them here.  B stepping K8s sometimes report a
1267	 * truncated RIP for IRET exceptions returning to compat mode. Check
1268	 * for these here too.
1269	 */
1270.Lerror_kernelspace:
1271	leaq	native_irq_return_iret(%rip), %rcx
1272	cmpq	%rcx, RIP+8(%rsp)
1273	je	.Lerror_bad_iret
1274	movl	%ecx, %eax			/* zero extend */
1275	cmpq	%rax, RIP+8(%rsp)
1276	je	.Lbstep_iret
1277	cmpq	$.Lgs_change, RIP+8(%rsp)
1278	jne	.Lerror_entry_done
1279
1280	/*
1281	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1282	 * gsbase and proceed.  We'll fix up the exception and land in
1283	 * .Lgs_change's error handler with kernel gsbase.
1284	 */
1285	SWAPGS
1286	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1287	jmp .Lerror_entry_done
1288
1289.Lbstep_iret:
1290	/* Fix truncated RIP */
1291	movq	%rcx, RIP+8(%rsp)
1292	/* fall through */
1293
1294.Lerror_bad_iret:
1295	/*
1296	 * We came from an IRET to user mode, so we have user
1297	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1298	 */
1299	SWAPGS
1300	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1301
1302	/*
1303	 * Pretend that the exception came from user mode: set up pt_regs
1304	 * as if we faulted immediately after IRET.
1305	 */
1306	mov	%rsp, %rdi
1307	call	fixup_bad_iret
1308	mov	%rax, %rsp
1309	jmp	.Lerror_entry_from_usermode_after_swapgs
1310END(error_entry)
1311
1312ENTRY(error_exit)
1313	UNWIND_HINT_REGS
1314	DISABLE_INTERRUPTS(CLBR_ANY)
1315	TRACE_IRQS_OFF
1316	testb	$3, CS(%rsp)
1317	jz	retint_kernel
1318	jmp	retint_user
1319END(error_exit)
1320
1321/*
1322 * Runs on exception stack.  Xen PV does not go through this path at all,
1323 * so we can use real assembly here.
1324 *
1325 * Registers:
1326 *	%r14: Used to save/restore the CR3 of the interrupted context
1327 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1328 */
1329ENTRY(nmi)
1330	UNWIND_HINT_IRET_REGS
1331
1332	/*
1333	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1334	 * the iretq it performs will take us out of NMI context.
1335	 * This means that we can have nested NMIs where the next
1336	 * NMI is using the top of the stack of the previous NMI. We
1337	 * can't let it execute because the nested NMI will corrupt the
1338	 * stack of the previous NMI. NMI handlers are not re-entrant
1339	 * anyway.
1340	 *
1341	 * To handle this case we do the following:
1342	 *  Check the a special location on the stack that contains
1343	 *  a variable that is set when NMIs are executing.
1344	 *  The interrupted task's stack is also checked to see if it
1345	 *  is an NMI stack.
1346	 *  If the variable is not set and the stack is not the NMI
1347	 *  stack then:
1348	 *    o Set the special variable on the stack
1349	 *    o Copy the interrupt frame into an "outermost" location on the
1350	 *      stack
1351	 *    o Copy the interrupt frame into an "iret" location on the stack
1352	 *    o Continue processing the NMI
1353	 *  If the variable is set or the previous stack is the NMI stack:
1354	 *    o Modify the "iret" location to jump to the repeat_nmi
1355	 *    o return back to the first NMI
1356	 *
1357	 * Now on exit of the first NMI, we first clear the stack variable
1358	 * The NMI stack will tell any nested NMIs at that point that it is
1359	 * nested. Then we pop the stack normally with iret, and if there was
1360	 * a nested NMI that updated the copy interrupt stack frame, a
1361	 * jump will be made to the repeat_nmi code that will handle the second
1362	 * NMI.
1363	 *
1364	 * However, espfix prevents us from directly returning to userspace
1365	 * with a single IRET instruction.  Similarly, IRET to user mode
1366	 * can fault.  We therefore handle NMIs from user space like
1367	 * other IST entries.
1368	 */
1369
1370	ASM_CLAC
1371
1372	/* Use %rdx as our temp variable throughout */
1373	pushq	%rdx
1374
1375	testb	$3, CS-RIP+8(%rsp)
1376	jz	.Lnmi_from_kernel
1377
1378	/*
1379	 * NMI from user mode.  We need to run on the thread stack, but we
1380	 * can't go through the normal entry paths: NMIs are masked, and
1381	 * we don't want to enable interrupts, because then we'll end
1382	 * up in an awkward situation in which IRQs are on but NMIs
1383	 * are off.
1384	 *
1385	 * We also must not push anything to the stack before switching
1386	 * stacks lest we corrupt the "NMI executing" variable.
1387	 */
1388
1389	swapgs
1390	cld
1391	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1392	movq	%rsp, %rdx
1393	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1394	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1395	pushq	5*8(%rdx)	/* pt_regs->ss */
1396	pushq	4*8(%rdx)	/* pt_regs->rsp */
1397	pushq	3*8(%rdx)	/* pt_regs->flags */
1398	pushq	2*8(%rdx)	/* pt_regs->cs */
1399	pushq	1*8(%rdx)	/* pt_regs->rip */
1400	UNWIND_HINT_IRET_REGS
1401	pushq   $-1		/* pt_regs->orig_ax */
1402	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1403	ENCODE_FRAME_POINTER
1404
1405	/*
1406	 * At this point we no longer need to worry about stack damage
1407	 * due to nesting -- we're on the normal thread stack and we're
1408	 * done with the NMI stack.
1409	 */
1410
1411	movq	%rsp, %rdi
1412	movq	$-1, %rsi
1413	call	do_nmi
1414
1415	/*
1416	 * Return back to user mode.  We must *not* do the normal exit
1417	 * work, because we don't want to enable interrupts.
1418	 */
1419	jmp	swapgs_restore_regs_and_return_to_usermode
1420
1421.Lnmi_from_kernel:
1422	/*
1423	 * Here's what our stack frame will look like:
1424	 * +---------------------------------------------------------+
1425	 * | original SS                                             |
1426	 * | original Return RSP                                     |
1427	 * | original RFLAGS                                         |
1428	 * | original CS                                             |
1429	 * | original RIP                                            |
1430	 * +---------------------------------------------------------+
1431	 * | temp storage for rdx                                    |
1432	 * +---------------------------------------------------------+
1433	 * | "NMI executing" variable                                |
1434	 * +---------------------------------------------------------+
1435	 * | iret SS          } Copied from "outermost" frame        |
1436	 * | iret Return RSP  } on each loop iteration; overwritten  |
1437	 * | iret RFLAGS      } by a nested NMI to force another     |
1438	 * | iret CS          } iteration if needed.                 |
1439	 * | iret RIP         }                                      |
1440	 * +---------------------------------------------------------+
1441	 * | outermost SS          } initialized in first_nmi;       |
1442	 * | outermost Return RSP  } will not be changed before      |
1443	 * | outermost RFLAGS      } NMI processing is done.         |
1444	 * | outermost CS          } Copied to "iret" frame on each  |
1445	 * | outermost RIP         } iteration.                      |
1446	 * +---------------------------------------------------------+
1447	 * | pt_regs                                                 |
1448	 * +---------------------------------------------------------+
1449	 *
1450	 * The "original" frame is used by hardware.  Before re-enabling
1451	 * NMIs, we need to be done with it, and we need to leave enough
1452	 * space for the asm code here.
1453	 *
1454	 * We return by executing IRET while RSP points to the "iret" frame.
1455	 * That will either return for real or it will loop back into NMI
1456	 * processing.
1457	 *
1458	 * The "outermost" frame is copied to the "iret" frame on each
1459	 * iteration of the loop, so each iteration starts with the "iret"
1460	 * frame pointing to the final return target.
1461	 */
1462
1463	/*
1464	 * Determine whether we're a nested NMI.
1465	 *
1466	 * If we interrupted kernel code between repeat_nmi and
1467	 * end_repeat_nmi, then we are a nested NMI.  We must not
1468	 * modify the "iret" frame because it's being written by
1469	 * the outer NMI.  That's okay; the outer NMI handler is
1470	 * about to about to call do_nmi anyway, so we can just
1471	 * resume the outer NMI.
1472	 */
1473
1474	movq	$repeat_nmi, %rdx
1475	cmpq	8(%rsp), %rdx
1476	ja	1f
1477	movq	$end_repeat_nmi, %rdx
1478	cmpq	8(%rsp), %rdx
1479	ja	nested_nmi_out
14801:
1481
1482	/*
1483	 * Now check "NMI executing".  If it's set, then we're nested.
1484	 * This will not detect if we interrupted an outer NMI just
1485	 * before IRET.
1486	 */
1487	cmpl	$1, -8(%rsp)
1488	je	nested_nmi
1489
1490	/*
1491	 * Now test if the previous stack was an NMI stack.  This covers
1492	 * the case where we interrupt an outer NMI after it clears
1493	 * "NMI executing" but before IRET.  We need to be careful, though:
1494	 * there is one case in which RSP could point to the NMI stack
1495	 * despite there being no NMI active: naughty userspace controls
1496	 * RSP at the very beginning of the SYSCALL targets.  We can
1497	 * pull a fast one on naughty userspace, though: we program
1498	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1499	 * if it controls the kernel's RSP.  We set DF before we clear
1500	 * "NMI executing".
1501	 */
1502	lea	6*8(%rsp), %rdx
1503	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1504	cmpq	%rdx, 4*8(%rsp)
1505	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1506	ja	first_nmi
1507
1508	subq	$EXCEPTION_STKSZ, %rdx
1509	cmpq	%rdx, 4*8(%rsp)
1510	/* If it is below the NMI stack, it is a normal NMI */
1511	jb	first_nmi
1512
1513	/* Ah, it is within the NMI stack. */
1514
1515	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1516	jz	first_nmi	/* RSP was user controlled. */
1517
1518	/* This is a nested NMI. */
1519
1520nested_nmi:
1521	/*
1522	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1523	 * iteration of NMI handling.
1524	 */
1525	subq	$8, %rsp
1526	leaq	-10*8(%rsp), %rdx
1527	pushq	$__KERNEL_DS
1528	pushq	%rdx
1529	pushfq
1530	pushq	$__KERNEL_CS
1531	pushq	$repeat_nmi
1532
1533	/* Put stack back */
1534	addq	$(6*8), %rsp
1535
1536nested_nmi_out:
1537	popq	%rdx
1538
1539	/* We are returning to kernel mode, so this cannot result in a fault. */
1540	iretq
1541
1542first_nmi:
1543	/* Restore rdx. */
1544	movq	(%rsp), %rdx
1545
1546	/* Make room for "NMI executing". */
1547	pushq	$0
1548
1549	/* Leave room for the "iret" frame */
1550	subq	$(5*8), %rsp
1551
1552	/* Copy the "original" frame to the "outermost" frame */
1553	.rept 5
1554	pushq	11*8(%rsp)
1555	.endr
1556	UNWIND_HINT_IRET_REGS
1557
1558	/* Everything up to here is safe from nested NMIs */
1559
1560#ifdef CONFIG_DEBUG_ENTRY
1561	/*
1562	 * For ease of testing, unmask NMIs right away.  Disabled by
1563	 * default because IRET is very expensive.
1564	 */
1565	pushq	$0		/* SS */
1566	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1567	addq	$8, (%rsp)	/* Fix up RSP */
1568	pushfq			/* RFLAGS */
1569	pushq	$__KERNEL_CS	/* CS */
1570	pushq	$1f		/* RIP */
1571	iretq			/* continues at repeat_nmi below */
1572	UNWIND_HINT_IRET_REGS
15731:
1574#endif
1575
1576repeat_nmi:
1577	/*
1578	 * If there was a nested NMI, the first NMI's iret will return
1579	 * here. But NMIs are still enabled and we can take another
1580	 * nested NMI. The nested NMI checks the interrupted RIP to see
1581	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1582	 * it will just return, as we are about to repeat an NMI anyway.
1583	 * This makes it safe to copy to the stack frame that a nested
1584	 * NMI will update.
1585	 *
1586	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1587	 * we're repeating an NMI, gsbase has the same value that it had on
1588	 * the first iteration.  paranoid_entry will load the kernel
1589	 * gsbase if needed before we call do_nmi.  "NMI executing"
1590	 * is zero.
1591	 */
1592	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1593
1594	/*
1595	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1596	 * here must not modify the "iret" frame while we're writing to
1597	 * it or it will end up containing garbage.
1598	 */
1599	addq	$(10*8), %rsp
1600	.rept 5
1601	pushq	-6*8(%rsp)
1602	.endr
1603	subq	$(5*8), %rsp
1604end_repeat_nmi:
1605
1606	/*
1607	 * Everything below this point can be preempted by a nested NMI.
1608	 * If this happens, then the inner NMI will change the "iret"
1609	 * frame to point back to repeat_nmi.
1610	 */
1611	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1612
1613	/*
1614	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1615	 * as we should not be calling schedule in NMI context.
1616	 * Even with normal interrupts enabled. An NMI should not be
1617	 * setting NEED_RESCHED or anything that normal interrupts and
1618	 * exceptions might do.
1619	 */
1620	call	paranoid_entry
1621	UNWIND_HINT_REGS
1622
1623	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1624	movq	%rsp, %rdi
1625	movq	$-1, %rsi
1626	call	do_nmi
1627
1628	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1629
1630	testl	%ebx, %ebx			/* swapgs needed? */
1631	jnz	nmi_restore
1632nmi_swapgs:
1633	SWAPGS_UNSAFE_STACK
1634nmi_restore:
1635	POP_REGS
1636
1637	/*
1638	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1639	 * at the "iret" frame.
1640	 */
1641	addq	$6*8, %rsp
1642
1643	/*
1644	 * Clear "NMI executing".  Set DF first so that we can easily
1645	 * distinguish the remaining code between here and IRET from
1646	 * the SYSCALL entry and exit paths.
1647	 *
1648	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1649	 * this code when I had the misapprehension that Xen PV supported
1650	 * NMIs, and Xen PV would break that approach.
1651	 */
1652	std
1653	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1654
1655	/*
1656	 * iretq reads the "iret" frame and exits the NMI stack in a
1657	 * single instruction.  We are returning to kernel mode, so this
1658	 * cannot result in a fault.  Similarly, we don't need to worry
1659	 * about espfix64 on the way back to kernel mode.
1660	 */
1661	iretq
1662END(nmi)
1663
1664ENTRY(ignore_sysret)
1665	UNWIND_HINT_EMPTY
1666	mov	$-ENOSYS, %eax
1667	sysret
1668END(ignore_sysret)
1669
1670ENTRY(rewind_stack_do_exit)
1671	UNWIND_HINT_FUNC
1672	/* Prevent any naive code from trying to unwind to our caller. */
1673	xorl	%ebp, %ebp
1674
1675	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1676	leaq	-PTREGS_SIZE(%rax), %rsp
1677	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1678
1679	call	do_exit
1680END(rewind_stack_do_exit)
1681