1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 CLEAR_BRANCH_HISTORY 120 121 call do_syscall_64 /* returns with IRQs disabled */ 122 123 /* 124 * Try to use SYSRET instead of IRET if we're returning to 125 * a completely clean 64-bit userspace context. If we're not, 126 * go to the slow exit path. 127 * In the Xen PV case we must use iret anyway. 128 */ 129 130 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 131 X86_FEATURE_XENPV 132 133 movq RCX(%rsp), %rcx 134 movq RIP(%rsp), %r11 135 136 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 137 jne swapgs_restore_regs_and_return_to_usermode 138 139 /* 140 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 141 * in kernel space. This essentially lets the user take over 142 * the kernel, since userspace controls RSP. 143 * 144 * If width of "canonical tail" ever becomes variable, this will need 145 * to be updated to remain correct on both old and new CPUs. 146 * 147 * Change top bits to match most significant bit (47th or 56th bit 148 * depending on paging mode) in the address. 149 */ 150#ifdef CONFIG_X86_5LEVEL 151 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 152 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 153#else 154 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 156#endif 157 158 /* If this changed %rcx, it was not canonical */ 159 cmpq %rcx, %r11 160 jne swapgs_restore_regs_and_return_to_usermode 161 162 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 163 jne swapgs_restore_regs_and_return_to_usermode 164 165 movq R11(%rsp), %r11 166 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 167 jne swapgs_restore_regs_and_return_to_usermode 168 169 /* 170 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 171 * restore RF properly. If the slowpath sets it for whatever reason, we 172 * need to restore it correctly. 173 * 174 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 175 * trap from userspace immediately after SYSRET. This would cause an 176 * infinite loop whenever #DB happens with register state that satisfies 177 * the opportunistic SYSRET conditions. For example, single-stepping 178 * this user code: 179 * 180 * movq $stuck_here, %rcx 181 * pushfq 182 * popq %r11 183 * stuck_here: 184 * 185 * would never get past 'stuck_here'. 186 */ 187 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 188 jnz swapgs_restore_regs_and_return_to_usermode 189 190 /* nothing to check for RSP */ 191 192 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 193 jne swapgs_restore_regs_and_return_to_usermode 194 195 /* 196 * We win! This label is here just for ease of understanding 197 * perf profiles. Nothing jumps here. 198 */ 199syscall_return_via_sysret: 200 IBRS_EXIT 201 POP_REGS pop_rdi=0 202 203 /* 204 * Now all regs are restored except RSP and RDI. 205 * Save old stack pointer and switch to trampoline stack. 206 */ 207 movq %rsp, %rdi 208 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 209 UNWIND_HINT_END_OF_STACK 210 211 pushq RSP-RDI(%rdi) /* RSP */ 212 pushq (%rdi) /* RDI */ 213 214 /* 215 * We are on the trampoline stack. All regs except RDI are live. 216 * We can do future final exit work right here. 217 */ 218 STACKLEAK_ERASE_NOCLOBBER 219 220 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 221 222 popq %rdi 223 popq %rsp 224SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 225 ANNOTATE_NOENDBR 226 swapgs 227 CLEAR_CPU_BUFFERS 228 sysretq 229SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 230 ANNOTATE_NOENDBR 231 int3 232SYM_CODE_END(entry_SYSCALL_64) 233 234/* 235 * %rdi: prev task 236 * %rsi: next task 237 */ 238.pushsection .text, "ax" 239SYM_FUNC_START(__switch_to_asm) 240 /* 241 * Save callee-saved registers 242 * This must match the order in inactive_task_frame 243 */ 244 pushq %rbp 245 pushq %rbx 246 pushq %r12 247 pushq %r13 248 pushq %r14 249 pushq %r15 250 251 /* switch stack */ 252 movq %rsp, TASK_threadsp(%rdi) 253 movq TASK_threadsp(%rsi), %rsp 254 255#ifdef CONFIG_STACKPROTECTOR 256 movq TASK_stack_canary(%rsi), %rbx 257 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary 258#endif 259 260 /* 261 * When switching from a shallower to a deeper call stack 262 * the RSB may either underflow or use entries populated 263 * with userspace addresses. On CPUs where those concerns 264 * exist, overwrite the RSB with entries which capture 265 * speculative execution to prevent attack. 266 */ 267 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 268 269 /* restore callee-saved registers */ 270 popq %r15 271 popq %r14 272 popq %r13 273 popq %r12 274 popq %rbx 275 popq %rbp 276 277 jmp __switch_to 278SYM_FUNC_END(__switch_to_asm) 279.popsection 280 281/* 282 * A newly forked process directly context switches into this address. 283 * 284 * rax: prev task we switched from 285 * rbx: kernel thread func (NULL for user thread) 286 * r12: kernel thread arg 287 */ 288.pushsection .text, "ax" 289SYM_CODE_START(ret_from_fork_asm) 290 /* 291 * This is the start of the kernel stack; even through there's a 292 * register set at the top, the regset isn't necessarily coherent 293 * (consider kthreads) and one cannot unwind further. 294 * 295 * This ensures stack unwinds of kernel threads terminate in a known 296 * good state. 297 */ 298 UNWIND_HINT_END_OF_STACK 299 ANNOTATE_NOENDBR // copy_thread 300 CALL_DEPTH_ACCOUNT 301 302 movq %rax, %rdi /* prev */ 303 movq %rsp, %rsi /* regs */ 304 movq %rbx, %rdx /* fn */ 305 movq %r12, %rcx /* fn_arg */ 306 call ret_from_fork 307 308 /* 309 * Set the stack state to what is expected for the target function 310 * -- at this point the register set should be a valid user set 311 * and unwind should work normally. 312 */ 313 UNWIND_HINT_REGS 314 jmp swapgs_restore_regs_and_return_to_usermode 315SYM_CODE_END(ret_from_fork_asm) 316.popsection 317 318.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 319#ifdef CONFIG_DEBUG_ENTRY 320 pushq %rax 321 SAVE_FLAGS 322 testl $X86_EFLAGS_IF, %eax 323 jz .Lokay_\@ 324 ud2 325.Lokay_\@: 326 popq %rax 327#endif 328.endm 329 330SYM_CODE_START(xen_error_entry) 331 ANNOTATE_NOENDBR 332 UNWIND_HINT_FUNC 333 PUSH_AND_CLEAR_REGS save_ret=1 334 ENCODE_FRAME_POINTER 8 335 UNTRAIN_RET_FROM_CALL 336 RET 337SYM_CODE_END(xen_error_entry) 338 339/** 340 * idtentry_body - Macro to emit code calling the C function 341 * @cfunc: C function to be called 342 * @has_error_code: Hardware pushed error code on stack 343 */ 344.macro idtentry_body cfunc has_error_code:req 345 346 /* 347 * Call error_entry() and switch to the task stack if from userspace. 348 * 349 * When in XENPV, it is already in the task stack, and it can't fault 350 * for native_iret() nor native_load_gs_index() since XENPV uses its 351 * own pvops for IRET and load_gs_index(). And it doesn't need to 352 * switch the CR3. So it can skip invoking error_entry(). 353 */ 354 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 355 "call xen_error_entry", X86_FEATURE_XENPV 356 357 ENCODE_FRAME_POINTER 358 UNWIND_HINT_REGS 359 360 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 361 362 .if \has_error_code == 1 363 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 364 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 365 .endif 366 367 call \cfunc 368 369 /* For some configurations \cfunc ends up being a noreturn. */ 370 REACHABLE 371 372 jmp error_return 373.endm 374 375/** 376 * idtentry - Macro to generate entry stubs for simple IDT entries 377 * @vector: Vector number 378 * @asmsym: ASM symbol for the entry point 379 * @cfunc: C function to be called 380 * @has_error_code: Hardware pushed error code on stack 381 * 382 * The macro emits code to set up the kernel context for straight forward 383 * and simple IDT entries. No IST stack, no paranoid entry checks. 384 */ 385.macro idtentry vector asmsym cfunc has_error_code:req 386SYM_CODE_START(\asmsym) 387 388 .if \vector == X86_TRAP_BP 389 /* #BP advances %rip to the next instruction */ 390 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 391 .else 392 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 393 .endif 394 395 ENDBR 396 ASM_CLAC 397 cld 398 399 .if \has_error_code == 0 400 pushq $-1 /* ORIG_RAX: no syscall to restart */ 401 .endif 402 403 .if \vector == X86_TRAP_BP 404 /* 405 * If coming from kernel space, create a 6-word gap to allow the 406 * int3 handler to emulate a call instruction. 407 */ 408 testb $3, CS-ORIG_RAX(%rsp) 409 jnz .Lfrom_usermode_no_gap_\@ 410 .rept 6 411 pushq 5*8(%rsp) 412 .endr 413 UNWIND_HINT_IRET_REGS offset=8 414.Lfrom_usermode_no_gap_\@: 415 .endif 416 417 idtentry_body \cfunc \has_error_code 418 419_ASM_NOKPROBE(\asmsym) 420SYM_CODE_END(\asmsym) 421.endm 422 423/* 424 * Interrupt entry/exit. 425 * 426 + The interrupt stubs push (vector) onto the stack, which is the error_code 427 * position of idtentry exceptions, and jump to one of the two idtentry points 428 * (common/spurious). 429 * 430 * common_interrupt is a hotpath, align it to a cache line 431 */ 432.macro idtentry_irq vector cfunc 433 .p2align CONFIG_X86_L1_CACHE_SHIFT 434 idtentry \vector asm_\cfunc \cfunc has_error_code=1 435.endm 436 437/* 438 * System vectors which invoke their handlers directly and are not 439 * going through the regular common device interrupt handling code. 440 */ 441.macro idtentry_sysvec vector cfunc 442 idtentry \vector asm_\cfunc \cfunc has_error_code=0 443.endm 444 445/** 446 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 447 * @vector: Vector number 448 * @asmsym: ASM symbol for the entry point 449 * @cfunc: C function to be called 450 * 451 * The macro emits code to set up the kernel context for #MC and #DB 452 * 453 * If the entry comes from user space it uses the normal entry path 454 * including the return to user space work and preemption checks on 455 * exit. 456 * 457 * If hits in kernel mode then it needs to go through the paranoid 458 * entry as the exception can hit any random state. No preemption 459 * check on exit to keep the paranoid path simple. 460 */ 461.macro idtentry_mce_db vector asmsym cfunc 462SYM_CODE_START(\asmsym) 463 UNWIND_HINT_IRET_ENTRY 464 ENDBR 465 ASM_CLAC 466 cld 467 468 pushq $-1 /* ORIG_RAX: no syscall to restart */ 469 470 /* 471 * If the entry is from userspace, switch stacks and treat it as 472 * a normal entry. 473 */ 474 testb $3, CS-ORIG_RAX(%rsp) 475 jnz .Lfrom_usermode_switch_stack_\@ 476 477 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 478 call paranoid_entry 479 480 UNWIND_HINT_REGS 481 482 movq %rsp, %rdi /* pt_regs pointer */ 483 484 call \cfunc 485 486 jmp paranoid_exit 487 488 /* Switch to the regular task stack and use the noist entry point */ 489.Lfrom_usermode_switch_stack_\@: 490 idtentry_body noist_\cfunc, has_error_code=0 491 492_ASM_NOKPROBE(\asmsym) 493SYM_CODE_END(\asmsym) 494.endm 495 496#ifdef CONFIG_AMD_MEM_ENCRYPT 497/** 498 * idtentry_vc - Macro to generate entry stub for #VC 499 * @vector: Vector number 500 * @asmsym: ASM symbol for the entry point 501 * @cfunc: C function to be called 502 * 503 * The macro emits code to set up the kernel context for #VC. The #VC handler 504 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 505 * 506 * To make this work the #VC entry code tries its best to pretend it doesn't use 507 * an IST stack by switching to the task stack if coming from user-space (which 508 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 509 * entered from kernel-mode. 510 * 511 * If entered from kernel-mode the return stack is validated first, and if it is 512 * not safe to use (e.g. because it points to the entry stack) the #VC handler 513 * will switch to a fall-back stack (VC2) and call a special handler function. 514 * 515 * The macro is only used for one vector, but it is planned to be extended in 516 * the future for the #HV exception. 517 */ 518.macro idtentry_vc vector asmsym cfunc 519SYM_CODE_START(\asmsym) 520 UNWIND_HINT_IRET_ENTRY 521 ENDBR 522 ASM_CLAC 523 cld 524 525 /* 526 * If the entry is from userspace, switch stacks and treat it as 527 * a normal entry. 528 */ 529 testb $3, CS-ORIG_RAX(%rsp) 530 jnz .Lfrom_usermode_switch_stack_\@ 531 532 /* 533 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 534 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 535 */ 536 call paranoid_entry 537 538 UNWIND_HINT_REGS 539 540 /* 541 * Switch off the IST stack to make it free for nested exceptions. The 542 * vc_switch_off_ist() function will switch back to the interrupted 543 * stack if it is safe to do so. If not it switches to the VC fall-back 544 * stack. 545 */ 546 movq %rsp, %rdi /* pt_regs pointer */ 547 call vc_switch_off_ist 548 movq %rax, %rsp /* Switch to new stack */ 549 550 ENCODE_FRAME_POINTER 551 UNWIND_HINT_REGS 552 553 /* Update pt_regs */ 554 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 555 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 556 557 movq %rsp, %rdi /* pt_regs pointer */ 558 559 call kernel_\cfunc 560 561 /* 562 * No need to switch back to the IST stack. The current stack is either 563 * identical to the stack in the IRET frame or the VC fall-back stack, 564 * so it is definitely mapped even with PTI enabled. 565 */ 566 jmp paranoid_exit 567 568 /* Switch to the regular task stack */ 569.Lfrom_usermode_switch_stack_\@: 570 idtentry_body user_\cfunc, has_error_code=1 571 572_ASM_NOKPROBE(\asmsym) 573SYM_CODE_END(\asmsym) 574.endm 575#endif 576 577/* 578 * Double fault entry. Straight paranoid. No checks from which context 579 * this comes because for the espfix induced #DF this would do the wrong 580 * thing. 581 */ 582.macro idtentry_df vector asmsym cfunc 583SYM_CODE_START(\asmsym) 584 UNWIND_HINT_IRET_ENTRY offset=8 585 ENDBR 586 ASM_CLAC 587 cld 588 589 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 590 call paranoid_entry 591 UNWIND_HINT_REGS 592 593 movq %rsp, %rdi /* pt_regs pointer into first argument */ 594 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 595 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 596 call \cfunc 597 598 /* For some configurations \cfunc ends up being a noreturn. */ 599 REACHABLE 600 601 jmp paranoid_exit 602 603_ASM_NOKPROBE(\asmsym) 604SYM_CODE_END(\asmsym) 605.endm 606 607/* 608 * Include the defines which emit the idt entries which are shared 609 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 610 * so the stacktrace boundary checks work. 611 */ 612 __ALIGN 613 .globl __irqentry_text_start 614__irqentry_text_start: 615 616#include <asm/idtentry.h> 617 618 __ALIGN 619 .globl __irqentry_text_end 620__irqentry_text_end: 621 ANNOTATE_NOENDBR 622 623SYM_CODE_START_LOCAL(common_interrupt_return) 624SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 625 IBRS_EXIT 626#ifdef CONFIG_DEBUG_ENTRY 627 /* Assert that pt_regs indicates user mode. */ 628 testb $3, CS(%rsp) 629 jnz 1f 630 ud2 6311: 632#endif 633#ifdef CONFIG_XEN_PV 634 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 635#endif 636 637 POP_REGS pop_rdi=0 638 639 /* 640 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 641 * Save old stack pointer and switch to trampoline stack. 642 */ 643 movq %rsp, %rdi 644 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 645 UNWIND_HINT_END_OF_STACK 646 647 /* Copy the IRET frame to the trampoline stack. */ 648 pushq 6*8(%rdi) /* SS */ 649 pushq 5*8(%rdi) /* RSP */ 650 pushq 4*8(%rdi) /* EFLAGS */ 651 pushq 3*8(%rdi) /* CS */ 652 pushq 2*8(%rdi) /* RIP */ 653 654 /* Push user RDI on the trampoline stack. */ 655 pushq (%rdi) 656 657 /* 658 * We are on the trampoline stack. All regs except RDI are live. 659 * We can do future final exit work right here. 660 */ 661 STACKLEAK_ERASE_NOCLOBBER 662 663 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 664 665 /* Restore RDI. */ 666 popq %rdi 667 swapgs 668 CLEAR_CPU_BUFFERS 669 jmp .Lnative_iret 670 671 672SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 673#ifdef CONFIG_DEBUG_ENTRY 674 /* Assert that pt_regs indicates kernel mode. */ 675 testb $3, CS(%rsp) 676 jz 1f 677 ud2 6781: 679#endif 680 POP_REGS 681 addq $8, %rsp /* skip regs->orig_ax */ 682 /* 683 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 684 * when returning from IPI handler. 685 */ 686#ifdef CONFIG_XEN_PV 687SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 688 ANNOTATE_NOENDBR 689 .byte 0xe9 690 .long .Lnative_iret - (. + 4) 691#endif 692 693.Lnative_iret: 694 UNWIND_HINT_IRET_REGS 695 /* 696 * Are we returning to a stack segment from the LDT? Note: in 697 * 64-bit mode SS:RSP on the exception stack is always valid. 698 */ 699#ifdef CONFIG_X86_ESPFIX64 700 testb $4, (SS-RIP)(%rsp) 701 jnz native_irq_return_ldt 702#endif 703 704SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 705 ANNOTATE_NOENDBR // exc_double_fault 706 /* 707 * This may fault. Non-paranoid faults on return to userspace are 708 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 709 * Double-faults due to espfix64 are handled in exc_double_fault. 710 * Other faults here are fatal. 711 */ 712 iretq 713 714#ifdef CONFIG_X86_ESPFIX64 715native_irq_return_ldt: 716 /* 717 * We are running with user GSBASE. All GPRs contain their user 718 * values. We have a percpu ESPFIX stack that is eight slots 719 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 720 * of the ESPFIX stack. 721 * 722 * We clobber RAX and RDI in this code. We stash RDI on the 723 * normal stack and RAX on the ESPFIX stack. 724 * 725 * The ESPFIX stack layout we set up looks like this: 726 * 727 * --- top of ESPFIX stack --- 728 * SS 729 * RSP 730 * RFLAGS 731 * CS 732 * RIP <-- RSP points here when we're done 733 * RAX <-- espfix_waddr points here 734 * --- bottom of ESPFIX stack --- 735 */ 736 737 pushq %rdi /* Stash user RDI */ 738 swapgs /* to kernel GS */ 739 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 740 741 movq PER_CPU_VAR(espfix_waddr), %rdi 742 movq %rax, (0*8)(%rdi) /* user RAX */ 743 movq (1*8)(%rsp), %rax /* user RIP */ 744 movq %rax, (1*8)(%rdi) 745 movq (2*8)(%rsp), %rax /* user CS */ 746 movq %rax, (2*8)(%rdi) 747 movq (3*8)(%rsp), %rax /* user RFLAGS */ 748 movq %rax, (3*8)(%rdi) 749 movq (5*8)(%rsp), %rax /* user SS */ 750 movq %rax, (5*8)(%rdi) 751 movq (4*8)(%rsp), %rax /* user RSP */ 752 movq %rax, (4*8)(%rdi) 753 /* Now RAX == RSP. */ 754 755 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 756 757 /* 758 * espfix_stack[31:16] == 0. The page tables are set up such that 759 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 760 * espfix_waddr for any X. That is, there are 65536 RO aliases of 761 * the same page. Set up RSP so that RSP[31:16] contains the 762 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 763 * still points to an RO alias of the ESPFIX stack. 764 */ 765 orq PER_CPU_VAR(espfix_stack), %rax 766 767 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 768 swapgs /* to user GS */ 769 popq %rdi /* Restore user RDI */ 770 771 movq %rax, %rsp 772 UNWIND_HINT_IRET_REGS offset=8 773 774 /* 775 * At this point, we cannot write to the stack any more, but we can 776 * still read. 777 */ 778 popq %rax /* Restore user RAX */ 779 780 CLEAR_CPU_BUFFERS 781 782 /* 783 * RSP now points to an ordinary IRET frame, except that the page 784 * is read-only and RSP[31:16] are preloaded with the userspace 785 * values. We can now IRET back to userspace. 786 */ 787 jmp native_irq_return_iret 788#endif 789SYM_CODE_END(common_interrupt_return) 790_ASM_NOKPROBE(common_interrupt_return) 791 792/* 793 * Reload gs selector with exception handling 794 * di: new selector 795 * 796 * Is in entry.text as it shouldn't be instrumented. 797 */ 798SYM_FUNC_START(asm_load_gs_index) 799 FRAME_BEGIN 800 swapgs 801.Lgs_change: 802 ANNOTATE_NOENDBR // error_entry 803 movl %edi, %gs 8042: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 805 swapgs 806 FRAME_END 807 RET 808 809 /* running with kernelgs */ 810.Lbad_gs: 811 swapgs /* switch back to user gs */ 812.macro ZAP_GS 813 /* This can't be a string because the preprocessor needs to see it. */ 814 movl $__USER_DS, %eax 815 movl %eax, %gs 816.endm 817 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 818 xorl %eax, %eax 819 movl %eax, %gs 820 jmp 2b 821 822 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 823 824SYM_FUNC_END(asm_load_gs_index) 825EXPORT_SYMBOL(asm_load_gs_index) 826 827#ifdef CONFIG_XEN_PV 828/* 829 * A note on the "critical region" in our callback handler. 830 * We want to avoid stacking callback handlers due to events occurring 831 * during handling of the last event. To do this, we keep events disabled 832 * until we've done all processing. HOWEVER, we must enable events before 833 * popping the stack frame (can't be done atomically) and so it would still 834 * be possible to get enough handler activations to overflow the stack. 835 * Although unlikely, bugs of that kind are hard to track down, so we'd 836 * like to avoid the possibility. 837 * So, on entry to the handler we detect whether we interrupted an 838 * existing activation in its critical region -- if so, we pop the current 839 * activation and restart the handler using the previous one. 840 * 841 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 842 */ 843 __FUNC_ALIGN 844SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 845 846/* 847 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 848 * see the correct pointer to the pt_regs 849 */ 850 UNWIND_HINT_FUNC 851 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 852 UNWIND_HINT_REGS 853 854 call xen_pv_evtchn_do_upcall 855 856 jmp error_return 857SYM_CODE_END(exc_xen_hypervisor_callback) 858 859/* 860 * Hypervisor uses this for application faults while it executes. 861 * We get here for two reasons: 862 * 1. Fault while reloading DS, ES, FS or GS 863 * 2. Fault while executing IRET 864 * Category 1 we do not need to fix up as Xen has already reloaded all segment 865 * registers that could be reloaded and zeroed the others. 866 * Category 2 we fix up by killing the current process. We cannot use the 867 * normal Linux return path in this case because if we use the IRET hypercall 868 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 869 * We distinguish between categories by comparing each saved segment register 870 * with its current contents: any discrepancy means we in category 1. 871 */ 872 __FUNC_ALIGN 873SYM_CODE_START_NOALIGN(xen_failsafe_callback) 874 UNWIND_HINT_UNDEFINED 875 ENDBR 876 movl %ds, %ecx 877 cmpw %cx, 0x10(%rsp) 878 jne 1f 879 movl %es, %ecx 880 cmpw %cx, 0x18(%rsp) 881 jne 1f 882 movl %fs, %ecx 883 cmpw %cx, 0x20(%rsp) 884 jne 1f 885 movl %gs, %ecx 886 cmpw %cx, 0x28(%rsp) 887 jne 1f 888 /* All segments match their saved values => Category 2 (Bad IRET). */ 889 movq (%rsp), %rcx 890 movq 8(%rsp), %r11 891 addq $0x30, %rsp 892 pushq $0 /* RIP */ 893 UNWIND_HINT_IRET_REGS offset=8 894 jmp asm_exc_general_protection 8951: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 896 movq (%rsp), %rcx 897 movq 8(%rsp), %r11 898 addq $0x30, %rsp 899 UNWIND_HINT_IRET_REGS 900 pushq $-1 /* orig_ax = -1 => not a system call */ 901 PUSH_AND_CLEAR_REGS 902 ENCODE_FRAME_POINTER 903 jmp error_return 904SYM_CODE_END(xen_failsafe_callback) 905#endif /* CONFIG_XEN_PV */ 906 907/* 908 * Save all registers in pt_regs. Return GSBASE related information 909 * in EBX depending on the availability of the FSGSBASE instructions: 910 * 911 * FSGSBASE R/EBX 912 * N 0 -> SWAPGS on exit 913 * 1 -> no SWAPGS on exit 914 * 915 * Y GSBASE value at entry, must be restored in paranoid_exit 916 * 917 * R14 - old CR3 918 * R15 - old SPEC_CTRL 919 */ 920SYM_CODE_START(paranoid_entry) 921 ANNOTATE_NOENDBR 922 UNWIND_HINT_FUNC 923 PUSH_AND_CLEAR_REGS save_ret=1 924 ENCODE_FRAME_POINTER 8 925 926 /* 927 * Always stash CR3 in %r14. This value will be restored, 928 * verbatim, at exit. Needed if paranoid_entry interrupted 929 * another entry that already switched to the user CR3 value 930 * but has not yet returned to userspace. 931 * 932 * This is also why CS (stashed in the "iret frame" by the 933 * hardware at entry) can not be used: this may be a return 934 * to kernel code, but with a user CR3 value. 935 * 936 * Switching CR3 does not depend on kernel GSBASE so it can 937 * be done before switching to the kernel GSBASE. This is 938 * required for FSGSBASE because the kernel GSBASE has to 939 * be retrieved from a kernel internal table. 940 */ 941 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 942 943 /* 944 * Handling GSBASE depends on the availability of FSGSBASE. 945 * 946 * Without FSGSBASE the kernel enforces that negative GSBASE 947 * values indicate kernel GSBASE. With FSGSBASE no assumptions 948 * can be made about the GSBASE value when entering from user 949 * space. 950 */ 951 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 952 953 /* 954 * Read the current GSBASE and store it in %rbx unconditionally, 955 * retrieve and set the current CPUs kernel GSBASE. The stored value 956 * has to be restored in paranoid_exit unconditionally. 957 * 958 * The unconditional write to GS base below ensures that no subsequent 959 * loads based on a mispredicted GS base can happen, therefore no LFENCE 960 * is needed here. 961 */ 962 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 963 jmp .Lparanoid_gsbase_done 964 965.Lparanoid_entry_checkgs: 966 /* EBX = 1 -> kernel GSBASE active, no restore required */ 967 movl $1, %ebx 968 969 /* 970 * The kernel-enforced convention is a negative GSBASE indicates 971 * a kernel value. No SWAPGS needed on entry and exit. 972 */ 973 movl $MSR_GS_BASE, %ecx 974 rdmsr 975 testl %edx, %edx 976 js .Lparanoid_kernel_gsbase 977 978 /* EBX = 0 -> SWAPGS required on exit */ 979 xorl %ebx, %ebx 980 swapgs 981.Lparanoid_kernel_gsbase: 982 FENCE_SWAPGS_KERNEL_ENTRY 983.Lparanoid_gsbase_done: 984 985 /* 986 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 987 * CR3 above, keep the old value in a callee saved register. 988 */ 989 IBRS_ENTER save_reg=%r15 990 UNTRAIN_RET_FROM_CALL 991 992 RET 993SYM_CODE_END(paranoid_entry) 994 995/* 996 * "Paranoid" exit path from exception stack. This is invoked 997 * only on return from non-NMI IST interrupts that came 998 * from kernel space. 999 * 1000 * We may be returning to very strange contexts (e.g. very early 1001 * in syscall entry), so checking for preemption here would 1002 * be complicated. Fortunately, there's no good reason to try 1003 * to handle preemption here. 1004 * 1005 * R/EBX contains the GSBASE related information depending on the 1006 * availability of the FSGSBASE instructions: 1007 * 1008 * FSGSBASE R/EBX 1009 * N 0 -> SWAPGS on exit 1010 * 1 -> no SWAPGS on exit 1011 * 1012 * Y User space GSBASE, must be restored unconditionally 1013 * 1014 * R14 - old CR3 1015 * R15 - old SPEC_CTRL 1016 */ 1017SYM_CODE_START_LOCAL(paranoid_exit) 1018 UNWIND_HINT_REGS 1019 1020 /* 1021 * Must restore IBRS state before both CR3 and %GS since we need access 1022 * to the per-CPU x86_spec_ctrl_shadow variable. 1023 */ 1024 IBRS_EXIT save_reg=%r15 1025 1026 /* 1027 * The order of operations is important. RESTORE_CR3 requires 1028 * kernel GSBASE. 1029 * 1030 * NB to anyone to try to optimize this code: this code does 1031 * not execute at all for exceptions from user mode. Those 1032 * exceptions go through error_return instead. 1033 */ 1034 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1035 1036 /* Handle the three GSBASE cases */ 1037 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1038 1039 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1040 wrgsbase %rbx 1041 jmp restore_regs_and_return_to_kernel 1042 1043.Lparanoid_exit_checkgs: 1044 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1045 testl %ebx, %ebx 1046 jnz restore_regs_and_return_to_kernel 1047 1048 /* We are returning to a context with user GSBASE */ 1049 swapgs 1050 jmp restore_regs_and_return_to_kernel 1051SYM_CODE_END(paranoid_exit) 1052 1053/* 1054 * Switch GS and CR3 if needed. 1055 */ 1056SYM_CODE_START(error_entry) 1057 ANNOTATE_NOENDBR 1058 UNWIND_HINT_FUNC 1059 1060 PUSH_AND_CLEAR_REGS save_ret=1 1061 ENCODE_FRAME_POINTER 8 1062 1063 testb $3, CS+8(%rsp) 1064 jz .Lerror_kernelspace 1065 1066 /* 1067 * We entered from user mode or we're pretending to have entered 1068 * from user mode due to an IRET fault. 1069 */ 1070 swapgs 1071 FENCE_SWAPGS_USER_ENTRY 1072 /* We have user CR3. Change to kernel CR3. */ 1073 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1074 IBRS_ENTER 1075 UNTRAIN_RET_FROM_CALL 1076 1077 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1078 /* Put us onto the real thread stack. */ 1079 jmp sync_regs 1080 1081 /* 1082 * There are two places in the kernel that can potentially fault with 1083 * usergs. Handle them here. B stepping K8s sometimes report a 1084 * truncated RIP for IRET exceptions returning to compat mode. Check 1085 * for these here too. 1086 */ 1087.Lerror_kernelspace: 1088 leaq native_irq_return_iret(%rip), %rcx 1089 cmpq %rcx, RIP+8(%rsp) 1090 je .Lerror_bad_iret 1091 movl %ecx, %eax /* zero extend */ 1092 cmpq %rax, RIP+8(%rsp) 1093 je .Lbstep_iret 1094 cmpq $.Lgs_change, RIP+8(%rsp) 1095 jne .Lerror_entry_done_lfence 1096 1097 /* 1098 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1099 * gsbase and proceed. We'll fix up the exception and land in 1100 * .Lgs_change's error handler with kernel gsbase. 1101 */ 1102 swapgs 1103 1104 /* 1105 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1106 * kernel or user gsbase. 1107 */ 1108.Lerror_entry_done_lfence: 1109 FENCE_SWAPGS_KERNEL_ENTRY 1110 CALL_DEPTH_ACCOUNT 1111 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1112 VALIDATE_UNRET_END 1113 RET 1114 1115.Lbstep_iret: 1116 /* Fix truncated RIP */ 1117 movq %rcx, RIP+8(%rsp) 1118 /* fall through */ 1119 1120.Lerror_bad_iret: 1121 /* 1122 * We came from an IRET to user mode, so we have user 1123 * gsbase and CR3. Switch to kernel gsbase and CR3: 1124 */ 1125 swapgs 1126 FENCE_SWAPGS_USER_ENTRY 1127 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1128 IBRS_ENTER 1129 UNTRAIN_RET_FROM_CALL 1130 1131 /* 1132 * Pretend that the exception came from user mode: set up pt_regs 1133 * as if we faulted immediately after IRET. 1134 */ 1135 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1136 call fixup_bad_iret 1137 mov %rax, %rdi 1138 jmp sync_regs 1139SYM_CODE_END(error_entry) 1140 1141SYM_CODE_START_LOCAL(error_return) 1142 UNWIND_HINT_REGS 1143 DEBUG_ENTRY_ASSERT_IRQS_OFF 1144 testb $3, CS(%rsp) 1145 jz restore_regs_and_return_to_kernel 1146 jmp swapgs_restore_regs_and_return_to_usermode 1147SYM_CODE_END(error_return) 1148 1149/* 1150 * Runs on exception stack. Xen PV does not go through this path at all, 1151 * so we can use real assembly here. 1152 * 1153 * Registers: 1154 * %r14: Used to save/restore the CR3 of the interrupted context 1155 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1156 */ 1157SYM_CODE_START(asm_exc_nmi) 1158 UNWIND_HINT_IRET_ENTRY 1159 ENDBR 1160 1161 /* 1162 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1163 * the iretq it performs will take us out of NMI context. 1164 * This means that we can have nested NMIs where the next 1165 * NMI is using the top of the stack of the previous NMI. We 1166 * can't let it execute because the nested NMI will corrupt the 1167 * stack of the previous NMI. NMI handlers are not re-entrant 1168 * anyway. 1169 * 1170 * To handle this case we do the following: 1171 * Check the a special location on the stack that contains 1172 * a variable that is set when NMIs are executing. 1173 * The interrupted task's stack is also checked to see if it 1174 * is an NMI stack. 1175 * If the variable is not set and the stack is not the NMI 1176 * stack then: 1177 * o Set the special variable on the stack 1178 * o Copy the interrupt frame into an "outermost" location on the 1179 * stack 1180 * o Copy the interrupt frame into an "iret" location on the stack 1181 * o Continue processing the NMI 1182 * If the variable is set or the previous stack is the NMI stack: 1183 * o Modify the "iret" location to jump to the repeat_nmi 1184 * o return back to the first NMI 1185 * 1186 * Now on exit of the first NMI, we first clear the stack variable 1187 * The NMI stack will tell any nested NMIs at that point that it is 1188 * nested. Then we pop the stack normally with iret, and if there was 1189 * a nested NMI that updated the copy interrupt stack frame, a 1190 * jump will be made to the repeat_nmi code that will handle the second 1191 * NMI. 1192 * 1193 * However, espfix prevents us from directly returning to userspace 1194 * with a single IRET instruction. Similarly, IRET to user mode 1195 * can fault. We therefore handle NMIs from user space like 1196 * other IST entries. 1197 */ 1198 1199 ASM_CLAC 1200 cld 1201 1202 /* Use %rdx as our temp variable throughout */ 1203 pushq %rdx 1204 1205 testb $3, CS-RIP+8(%rsp) 1206 jz .Lnmi_from_kernel 1207 1208 /* 1209 * NMI from user mode. We need to run on the thread stack, but we 1210 * can't go through the normal entry paths: NMIs are masked, and 1211 * we don't want to enable interrupts, because then we'll end 1212 * up in an awkward situation in which IRQs are on but NMIs 1213 * are off. 1214 * 1215 * We also must not push anything to the stack before switching 1216 * stacks lest we corrupt the "NMI executing" variable. 1217 */ 1218 1219 swapgs 1220 FENCE_SWAPGS_USER_ENTRY 1221 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1222 movq %rsp, %rdx 1223 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1224 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1225 pushq 5*8(%rdx) /* pt_regs->ss */ 1226 pushq 4*8(%rdx) /* pt_regs->rsp */ 1227 pushq 3*8(%rdx) /* pt_regs->flags */ 1228 pushq 2*8(%rdx) /* pt_regs->cs */ 1229 pushq 1*8(%rdx) /* pt_regs->rip */ 1230 UNWIND_HINT_IRET_REGS 1231 pushq $-1 /* pt_regs->orig_ax */ 1232 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1233 ENCODE_FRAME_POINTER 1234 1235 IBRS_ENTER 1236 UNTRAIN_RET 1237 1238 /* 1239 * At this point we no longer need to worry about stack damage 1240 * due to nesting -- we're on the normal thread stack and we're 1241 * done with the NMI stack. 1242 */ 1243 1244 movq %rsp, %rdi 1245 movq $-1, %rsi 1246 call exc_nmi 1247 1248 /* 1249 * Return back to user mode. We must *not* do the normal exit 1250 * work, because we don't want to enable interrupts. 1251 */ 1252 jmp swapgs_restore_regs_and_return_to_usermode 1253 1254.Lnmi_from_kernel: 1255 /* 1256 * Here's what our stack frame will look like: 1257 * +---------------------------------------------------------+ 1258 * | original SS | 1259 * | original Return RSP | 1260 * | original RFLAGS | 1261 * | original CS | 1262 * | original RIP | 1263 * +---------------------------------------------------------+ 1264 * | temp storage for rdx | 1265 * +---------------------------------------------------------+ 1266 * | "NMI executing" variable | 1267 * +---------------------------------------------------------+ 1268 * | iret SS } Copied from "outermost" frame | 1269 * | iret Return RSP } on each loop iteration; overwritten | 1270 * | iret RFLAGS } by a nested NMI to force another | 1271 * | iret CS } iteration if needed. | 1272 * | iret RIP } | 1273 * +---------------------------------------------------------+ 1274 * | outermost SS } initialized in first_nmi; | 1275 * | outermost Return RSP } will not be changed before | 1276 * | outermost RFLAGS } NMI processing is done. | 1277 * | outermost CS } Copied to "iret" frame on each | 1278 * | outermost RIP } iteration. | 1279 * +---------------------------------------------------------+ 1280 * | pt_regs | 1281 * +---------------------------------------------------------+ 1282 * 1283 * The "original" frame is used by hardware. Before re-enabling 1284 * NMIs, we need to be done with it, and we need to leave enough 1285 * space for the asm code here. 1286 * 1287 * We return by executing IRET while RSP points to the "iret" frame. 1288 * That will either return for real or it will loop back into NMI 1289 * processing. 1290 * 1291 * The "outermost" frame is copied to the "iret" frame on each 1292 * iteration of the loop, so each iteration starts with the "iret" 1293 * frame pointing to the final return target. 1294 */ 1295 1296 /* 1297 * Determine whether we're a nested NMI. 1298 * 1299 * If we interrupted kernel code between repeat_nmi and 1300 * end_repeat_nmi, then we are a nested NMI. We must not 1301 * modify the "iret" frame because it's being written by 1302 * the outer NMI. That's okay; the outer NMI handler is 1303 * about to about to call exc_nmi() anyway, so we can just 1304 * resume the outer NMI. 1305 */ 1306 1307 movq $repeat_nmi, %rdx 1308 cmpq 8(%rsp), %rdx 1309 ja 1f 1310 movq $end_repeat_nmi, %rdx 1311 cmpq 8(%rsp), %rdx 1312 ja nested_nmi_out 13131: 1314 1315 /* 1316 * Now check "NMI executing". If it's set, then we're nested. 1317 * This will not detect if we interrupted an outer NMI just 1318 * before IRET. 1319 */ 1320 cmpl $1, -8(%rsp) 1321 je nested_nmi 1322 1323 /* 1324 * Now test if the previous stack was an NMI stack. This covers 1325 * the case where we interrupt an outer NMI after it clears 1326 * "NMI executing" but before IRET. We need to be careful, though: 1327 * there is one case in which RSP could point to the NMI stack 1328 * despite there being no NMI active: naughty userspace controls 1329 * RSP at the very beginning of the SYSCALL targets. We can 1330 * pull a fast one on naughty userspace, though: we program 1331 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1332 * if it controls the kernel's RSP. We set DF before we clear 1333 * "NMI executing". 1334 */ 1335 lea 6*8(%rsp), %rdx 1336 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1337 cmpq %rdx, 4*8(%rsp) 1338 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1339 ja first_nmi 1340 1341 subq $EXCEPTION_STKSZ, %rdx 1342 cmpq %rdx, 4*8(%rsp) 1343 /* If it is below the NMI stack, it is a normal NMI */ 1344 jb first_nmi 1345 1346 /* Ah, it is within the NMI stack. */ 1347 1348 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1349 jz first_nmi /* RSP was user controlled. */ 1350 1351 /* This is a nested NMI. */ 1352 1353nested_nmi: 1354 /* 1355 * Modify the "iret" frame to point to repeat_nmi, forcing another 1356 * iteration of NMI handling. 1357 */ 1358 subq $8, %rsp 1359 leaq -10*8(%rsp), %rdx 1360 pushq $__KERNEL_DS 1361 pushq %rdx 1362 pushfq 1363 pushq $__KERNEL_CS 1364 pushq $repeat_nmi 1365 1366 /* Put stack back */ 1367 addq $(6*8), %rsp 1368 1369nested_nmi_out: 1370 popq %rdx 1371 1372 /* We are returning to kernel mode, so this cannot result in a fault. */ 1373 iretq 1374 1375first_nmi: 1376 /* Restore rdx. */ 1377 movq (%rsp), %rdx 1378 1379 /* Make room for "NMI executing". */ 1380 pushq $0 1381 1382 /* Leave room for the "iret" frame */ 1383 subq $(5*8), %rsp 1384 1385 /* Copy the "original" frame to the "outermost" frame */ 1386 .rept 5 1387 pushq 11*8(%rsp) 1388 .endr 1389 UNWIND_HINT_IRET_REGS 1390 1391 /* Everything up to here is safe from nested NMIs */ 1392 1393#ifdef CONFIG_DEBUG_ENTRY 1394 /* 1395 * For ease of testing, unmask NMIs right away. Disabled by 1396 * default because IRET is very expensive. 1397 */ 1398 pushq $0 /* SS */ 1399 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1400 addq $8, (%rsp) /* Fix up RSP */ 1401 pushfq /* RFLAGS */ 1402 pushq $__KERNEL_CS /* CS */ 1403 pushq $1f /* RIP */ 1404 iretq /* continues at repeat_nmi below */ 1405 UNWIND_HINT_IRET_REGS 14061: 1407#endif 1408 1409repeat_nmi: 1410 ANNOTATE_NOENDBR // this code 1411 /* 1412 * If there was a nested NMI, the first NMI's iret will return 1413 * here. But NMIs are still enabled and we can take another 1414 * nested NMI. The nested NMI checks the interrupted RIP to see 1415 * if it is between repeat_nmi and end_repeat_nmi, and if so 1416 * it will just return, as we are about to repeat an NMI anyway. 1417 * This makes it safe to copy to the stack frame that a nested 1418 * NMI will update. 1419 * 1420 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1421 * we're repeating an NMI, gsbase has the same value that it had on 1422 * the first iteration. paranoid_entry will load the kernel 1423 * gsbase if needed before we call exc_nmi(). "NMI executing" 1424 * is zero. 1425 */ 1426 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1427 1428 /* 1429 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1430 * here must not modify the "iret" frame while we're writing to 1431 * it or it will end up containing garbage. 1432 */ 1433 addq $(10*8), %rsp 1434 .rept 5 1435 pushq -6*8(%rsp) 1436 .endr 1437 subq $(5*8), %rsp 1438end_repeat_nmi: 1439 ANNOTATE_NOENDBR // this code 1440 1441 /* 1442 * Everything below this point can be preempted by a nested NMI. 1443 * If this happens, then the inner NMI will change the "iret" 1444 * frame to point back to repeat_nmi. 1445 */ 1446 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1447 1448 /* 1449 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1450 * as we should not be calling schedule in NMI context. 1451 * Even with normal interrupts enabled. An NMI should not be 1452 * setting NEED_RESCHED or anything that normal interrupts and 1453 * exceptions might do. 1454 */ 1455 call paranoid_entry 1456 UNWIND_HINT_REGS 1457 1458 movq %rsp, %rdi 1459 movq $-1, %rsi 1460 call exc_nmi 1461 1462 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1463 IBRS_EXIT save_reg=%r15 1464 1465 /* Always restore stashed CR3 value (see paranoid_entry) */ 1466 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1467 1468 /* 1469 * The above invocation of paranoid_entry stored the GSBASE 1470 * related information in R/EBX depending on the availability 1471 * of FSGSBASE. 1472 * 1473 * If FSGSBASE is enabled, restore the saved GSBASE value 1474 * unconditionally, otherwise take the conditional SWAPGS path. 1475 */ 1476 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1477 1478 wrgsbase %rbx 1479 jmp nmi_restore 1480 1481nmi_no_fsgsbase: 1482 /* EBX == 0 -> invoke SWAPGS */ 1483 testl %ebx, %ebx 1484 jnz nmi_restore 1485 1486nmi_swapgs: 1487 swapgs 1488 1489nmi_restore: 1490 POP_REGS 1491 1492 /* 1493 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1494 * at the "iret" frame. 1495 */ 1496 addq $6*8, %rsp 1497 1498 /* 1499 * Clear "NMI executing". Set DF first so that we can easily 1500 * distinguish the remaining code between here and IRET from 1501 * the SYSCALL entry and exit paths. 1502 * 1503 * We arguably should just inspect RIP instead, but I (Andy) wrote 1504 * this code when I had the misapprehension that Xen PV supported 1505 * NMIs, and Xen PV would break that approach. 1506 */ 1507 std 1508 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1509 1510 /* 1511 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like 1512 * NMI in kernel after user state is restored. For an unprivileged user 1513 * these conditions are hard to meet. 1514 */ 1515 1516 /* 1517 * iretq reads the "iret" frame and exits the NMI stack in a 1518 * single instruction. We are returning to kernel mode, so this 1519 * cannot result in a fault. Similarly, we don't need to worry 1520 * about espfix64 on the way back to kernel mode. 1521 */ 1522 iretq 1523SYM_CODE_END(asm_exc_nmi) 1524 1525#ifndef CONFIG_IA32_EMULATION 1526/* 1527 * This handles SYSCALL from 32-bit code. There is no way to program 1528 * MSRs to fully disable 32-bit SYSCALL. 1529 */ 1530SYM_CODE_START(ignore_sysret) 1531 UNWIND_HINT_END_OF_STACK 1532 ENDBR 1533 mov $-ENOSYS, %eax 1534 CLEAR_CPU_BUFFERS 1535 sysretl 1536SYM_CODE_END(ignore_sysret) 1537#endif 1538 1539.pushsection .text, "ax" 1540 __FUNC_ALIGN 1541SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1542 UNWIND_HINT_FUNC 1543 /* Prevent any naive code from trying to unwind to our caller. */ 1544 xorl %ebp, %ebp 1545 1546 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1547 leaq -PTREGS_SIZE(%rax), %rsp 1548 UNWIND_HINT_REGS 1549 1550 call make_task_dead 1551SYM_CODE_END(rewind_stack_and_make_dead) 1552.popsection 1553 1554/* 1555 * This sequence executes branches in order to remove user branch information 1556 * from the branch history tracker in the Branch Predictor, therefore removing 1557 * user influence on subsequent BTB lookups. 1558 * 1559 * It should be used on parts prior to Alder Lake. Newer parts should use the 1560 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being 1561 * virtualized on newer hardware the VMM should protect against BHI attacks by 1562 * setting BHI_DIS_S for the guests. 1563 * 1564 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging 1565 * and not clearing the branch history. The call tree looks like: 1566 * 1567 * call 1 1568 * call 2 1569 * call 2 1570 * call 2 1571 * call 2 1572 * call 2 1573 * ret 1574 * ret 1575 * ret 1576 * ret 1577 * ret 1578 * ret 1579 * 1580 * This means that the stack is non-constant and ORC can't unwind it with %rsp 1581 * alone. Therefore we unconditionally set up the frame pointer, which allows 1582 * ORC to unwind properly. 1583 * 1584 * The alignment is for performance and not for safety, and may be safely 1585 * refactored in the future if needed. 1586 */ 1587SYM_FUNC_START(clear_bhb_loop) 1588 push %rbp 1589 mov %rsp, %rbp 1590 movl $5, %ecx 1591 ANNOTATE_INTRA_FUNCTION_CALL 1592 call 1f 1593 jmp 5f 1594 .align 64, 0xcc 1595 ANNOTATE_INTRA_FUNCTION_CALL 15961: call 2f 1597 RET 1598 .align 64, 0xcc 15992: movl $5, %eax 16003: jmp 4f 1601 nop 16024: sub $1, %eax 1603 jnz 3b 1604 sub $1, %ecx 1605 jnz 1b 1606 RET 16075: lfence 1608 pop %rbp 1609 RET 1610SYM_FUNC_END(clear_bhb_loop) 1611EXPORT_SYMBOL_GPL(clear_bhb_loop) 1612STACK_FRAME_NON_STANDARD(clear_bhb_loop) 1613