xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision e6dec923)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <linux/err.h>
40
41.code64
42.section .entry.text, "ax"
43
44#ifdef CONFIG_PARAVIRT
45ENTRY(native_usergs_sysret64)
46	swapgs
47	sysretq
48ENDPROC(native_usergs_sysret64)
49#endif /* CONFIG_PARAVIRT */
50
51.macro TRACE_IRQS_IRETQ
52#ifdef CONFIG_TRACE_IRQFLAGS
53	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
54	jnc	1f
55	TRACE_IRQS_ON
561:
57#endif
58.endm
59
60/*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73.macro TRACE_IRQS_OFF_DEBUG
74	call	debug_stack_set_zero
75	TRACE_IRQS_OFF
76	call	debug_stack_reset
77.endm
78
79.macro TRACE_IRQS_ON_DEBUG
80	call	debug_stack_set_zero
81	TRACE_IRQS_ON
82	call	debug_stack_reset
83.endm
84
85.macro TRACE_IRQS_IRETQ_DEBUG
86	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
87	jnc	1f
88	TRACE_IRQS_ON_DEBUG
891:
90.endm
91
92#else
93# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
94# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
95# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96#endif
97
98/*
99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
100 *
101 * This is the only entry point used for 64-bit system calls.  The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries.  There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
118 * rax  system call number
119 * rcx  return address
120 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
121 * rdi  arg0
122 * rsi  arg1
123 * rdx  arg2
124 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
125 * r8   arg4
126 * r9   arg5
127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128 *
129 * Only called from user space.
130 *
131 * When user can change pt_regs->foo always force IRET. That is because
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
134 */
135
136ENTRY(entry_SYSCALL_64)
137	/*
138	 * Interrupts are off on entry.
139	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140	 * it is too small to ever cause noticeable irq latency.
141	 */
142	SWAPGS_UNSAFE_STACK
143	/*
144	 * A hypervisor implementation might want to use a label
145	 * after the swapgs, so that it can do the swapgs
146	 * for the guest and jump here on syscall.
147	 */
148GLOBAL(entry_SYSCALL_64_after_swapgs)
149
150	movq	%rsp, PER_CPU_VAR(rsp_scratch)
151	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152
153	TRACE_IRQS_OFF
154
155	/* Construct struct pt_regs on stack */
156	pushq	$__USER_DS			/* pt_regs->ss */
157	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
158	pushq	%r11				/* pt_regs->flags */
159	pushq	$__USER_CS			/* pt_regs->cs */
160	pushq	%rcx				/* pt_regs->ip */
161	pushq	%rax				/* pt_regs->orig_ax */
162	pushq	%rdi				/* pt_regs->di */
163	pushq	%rsi				/* pt_regs->si */
164	pushq	%rdx				/* pt_regs->dx */
165	pushq	%rcx				/* pt_regs->cx */
166	pushq	$-ENOSYS			/* pt_regs->ax */
167	pushq	%r8				/* pt_regs->r8 */
168	pushq	%r9				/* pt_regs->r9 */
169	pushq	%r10				/* pt_regs->r10 */
170	pushq	%r11				/* pt_regs->r11 */
171	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
172
173	/*
174	 * If we need to do entry work or if we guess we'll need to do
175	 * exit work, go straight to the slow path.
176	 */
177	movq	PER_CPU_VAR(current_task), %r11
178	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179	jnz	entry_SYSCALL64_slow_path
180
181entry_SYSCALL_64_fastpath:
182	/*
183	 * Easy case: enable interrupts and issue the syscall.  If the syscall
184	 * needs pt_regs, we'll call a stub that disables interrupts again
185	 * and jumps to the slow path.
186	 */
187	TRACE_IRQS_ON
188	ENABLE_INTERRUPTS(CLBR_NONE)
189#if __SYSCALL_MASK == ~0
190	cmpq	$__NR_syscall_max, %rax
191#else
192	andl	$__SYSCALL_MASK, %eax
193	cmpl	$__NR_syscall_max, %eax
194#endif
195	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
196	movq	%r10, %rcx
197
198	/*
199	 * This call instruction is handled specially in stub_ptregs_64.
200	 * It might end up jumping to the slow path.  If it jumps, RAX
201	 * and all argument registers are clobbered.
202	 */
203	call	*sys_call_table(, %rax, 8)
204.Lentry_SYSCALL_64_after_fastpath_call:
205
206	movq	%rax, RAX(%rsp)
2071:
208
209	/*
210	 * If we get here, then we know that pt_regs is clean for SYSRET64.
211	 * If we see that no exit work is required (which we are required
212	 * to check with IRQs off), then we can go straight to SYSRET64.
213	 */
214	DISABLE_INTERRUPTS(CLBR_ANY)
215	TRACE_IRQS_OFF
216	movq	PER_CPU_VAR(current_task), %r11
217	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218	jnz	1f
219
220	LOCKDEP_SYS_EXIT
221	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222	movq	RIP(%rsp), %rcx
223	movq	EFLAGS(%rsp), %r11
224	RESTORE_C_REGS_EXCEPT_RCX_R11
225	movq	RSP(%rsp), %rsp
226	USERGS_SYSRET64
227
2281:
229	/*
230	 * The fast path looked good when we started, but something changed
231	 * along the way and we need to switch to the slow path.  Calling
232	 * raise(3) will trigger this, for example.  IRQs are off.
233	 */
234	TRACE_IRQS_ON
235	ENABLE_INTERRUPTS(CLBR_ANY)
236	SAVE_EXTRA_REGS
237	movq	%rsp, %rdi
238	call	syscall_return_slowpath	/* returns with IRQs disabled */
239	jmp	return_from_SYSCALL_64
240
241entry_SYSCALL64_slow_path:
242	/* IRQs are off. */
243	SAVE_EXTRA_REGS
244	movq	%rsp, %rdi
245	call	do_syscall_64		/* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
248	RESTORE_EXTRA_REGS
249	TRACE_IRQS_IRETQ		/* we're about to change IF */
250
251	/*
252	 * Try to use SYSRET instead of IRET if we're returning to
253	 * a completely clean 64-bit userspace context.
254	 */
255	movq	RCX(%rsp), %rcx
256	movq	RIP(%rsp), %r11
257	cmpq	%rcx, %r11			/* RCX == RIP */
258	jne	opportunistic_sysret_failed
259
260	/*
261	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262	 * in kernel space.  This essentially lets the user take over
263	 * the kernel, since userspace controls RSP.
264	 *
265	 * If width of "canonical tail" ever becomes variable, this will need
266	 * to be updated to remain correct on both old and new CPUs.
267	 *
268	 * Change top bits to match most significant bit (47th or 56th bit
269	 * depending on paging mode) in the address.
270	 */
271	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273
274	/* If this changed %rcx, it was not canonical */
275	cmpq	%rcx, %r11
276	jne	opportunistic_sysret_failed
277
278	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
279	jne	opportunistic_sysret_failed
280
281	movq	R11(%rsp), %r11
282	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
283	jne	opportunistic_sysret_failed
284
285	/*
286	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287	 * restore RF properly. If the slowpath sets it for whatever reason, we
288	 * need to restore it correctly.
289	 *
290	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291	 * trap from userspace immediately after SYSRET.  This would cause an
292	 * infinite loop whenever #DB happens with register state that satisfies
293	 * the opportunistic SYSRET conditions.  For example, single-stepping
294	 * this user code:
295	 *
296	 *           movq	$stuck_here, %rcx
297	 *           pushfq
298	 *           popq %r11
299	 *   stuck_here:
300	 *
301	 * would never get past 'stuck_here'.
302	 */
303	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304	jnz	opportunistic_sysret_failed
305
306	/* nothing to check for RSP */
307
308	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
309	jne	opportunistic_sysret_failed
310
311	/*
312	 * We win! This label is here just for ease of understanding
313	 * perf profiles. Nothing jumps here.
314	 */
315syscall_return_via_sysret:
316	/* rcx and r11 are already restored (see code above) */
317	RESTORE_C_REGS_EXCEPT_RCX_R11
318	movq	RSP(%rsp), %rsp
319	USERGS_SYSRET64
320
321opportunistic_sysret_failed:
322	SWAPGS
323	jmp	restore_c_regs_and_iret
324END(entry_SYSCALL_64)
325
326ENTRY(stub_ptregs_64)
327	/*
328	 * Syscalls marked as needing ptregs land here.
329	 * If we are on the fast path, we need to save the extra regs,
330	 * which we achieve by trying again on the slow path.  If we are on
331	 * the slow path, the extra regs are already saved.
332	 *
333	 * RAX stores a pointer to the C function implementing the syscall.
334	 * IRQs are on.
335	 */
336	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
337	jne	1f
338
339	/*
340	 * Called from fast path -- disable IRQs again, pop return address
341	 * and jump to slow path
342	 */
343	DISABLE_INTERRUPTS(CLBR_ANY)
344	TRACE_IRQS_OFF
345	popq	%rax
346	jmp	entry_SYSCALL64_slow_path
347
3481:
349	jmp	*%rax				/* Called from C */
350END(stub_ptregs_64)
351
352.macro ptregs_stub func
353ENTRY(ptregs_\func)
354	leaq	\func(%rip), %rax
355	jmp	stub_ptregs_64
356END(ptregs_\func)
357.endm
358
359/* Instantiate ptregs_stub for each ptregs-using syscall */
360#define __SYSCALL_64_QUAL_(sym)
361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
363#include <asm/syscalls_64.h>
364
365/*
366 * %rdi: prev task
367 * %rsi: next task
368 */
369ENTRY(__switch_to_asm)
370	/*
371	 * Save callee-saved registers
372	 * This must match the order in inactive_task_frame
373	 */
374	pushq	%rbp
375	pushq	%rbx
376	pushq	%r12
377	pushq	%r13
378	pushq	%r14
379	pushq	%r15
380
381	/* switch stack */
382	movq	%rsp, TASK_threadsp(%rdi)
383	movq	TASK_threadsp(%rsi), %rsp
384
385#ifdef CONFIG_CC_STACKPROTECTOR
386	movq	TASK_stack_canary(%rsi), %rbx
387	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
388#endif
389
390	/* restore callee-saved registers */
391	popq	%r15
392	popq	%r14
393	popq	%r13
394	popq	%r12
395	popq	%rbx
396	popq	%rbp
397
398	jmp	__switch_to
399END(__switch_to_asm)
400
401/*
402 * A newly forked process directly context switches into this address.
403 *
404 * rax: prev task we switched from
405 * rbx: kernel thread func (NULL for user thread)
406 * r12: kernel thread arg
407 */
408ENTRY(ret_from_fork)
409	movq	%rax, %rdi
410	call	schedule_tail			/* rdi: 'prev' task parameter */
411
412	testq	%rbx, %rbx			/* from kernel_thread? */
413	jnz	1f				/* kernel threads are uncommon */
414
4152:
416	movq	%rsp, %rdi
417	call	syscall_return_slowpath	/* returns with IRQs disabled */
418	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
419	SWAPGS
420	jmp	restore_regs_and_iret
421
4221:
423	/* kernel thread */
424	movq	%r12, %rdi
425	call	*%rbx
426	/*
427	 * A kernel thread is allowed to return here after successfully
428	 * calling do_execve().  Exit to userspace to complete the execve()
429	 * syscall.
430	 */
431	movq	$0, RAX(%rsp)
432	jmp	2b
433END(ret_from_fork)
434
435/*
436 * Build the entry stubs with some assembler magic.
437 * We pack 1 stub into every 8-byte block.
438 */
439	.align 8
440ENTRY(irq_entries_start)
441    vector=FIRST_EXTERNAL_VECTOR
442    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
444    vector=vector+1
445	jmp	common_interrupt
446	.align	8
447    .endr
448END(irq_entries_start)
449
450/*
451 * Interrupt entry/exit.
452 *
453 * Interrupt entry points save only callee clobbered registers in fast path.
454 *
455 * Entry runs with interrupts off.
456 */
457
458/* 0(%rsp): ~(interrupt number) */
459	.macro interrupt func
460	cld
461	ALLOC_PT_GPREGS_ON_STACK
462	SAVE_C_REGS
463	SAVE_EXTRA_REGS
464	ENCODE_FRAME_POINTER
465
466	testb	$3, CS(%rsp)
467	jz	1f
468
469	/*
470	 * IRQ from user mode.  Switch to kernel gsbase and inform context
471	 * tracking that we're in kernel mode.
472	 */
473	SWAPGS
474
475	/*
476	 * We need to tell lockdep that IRQs are off.  We can't do this until
477	 * we fix gsbase, and we should do it before enter_from_user_mode
478	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
479	 * the simplest way to handle it is to just call it twice if
480	 * we enter from user mode.  There's no reason to optimize this since
481	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
482	 */
483	TRACE_IRQS_OFF
484
485	CALL_enter_from_user_mode
486
4871:
488	/*
489	 * Save previous stack pointer, optionally switch to interrupt stack.
490	 * irq_count is used to check if a CPU is already on an interrupt stack
491	 * or not. While this is essentially redundant with preempt_count it is
492	 * a little cheaper to use a separate counter in the PDA (short of
493	 * moving irq_enter into assembly, which would be too much work)
494	 */
495	movq	%rsp, %rdi
496	incl	PER_CPU_VAR(irq_count)
497	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
498	pushq	%rdi
499	/* We entered an interrupt context - irqs are off: */
500	TRACE_IRQS_OFF
501
502	call	\func	/* rdi points to pt_regs */
503	.endm
504
505	/*
506	 * The interrupt stubs push (~vector+0x80) onto the stack and
507	 * then jump to common_interrupt.
508	 */
509	.p2align CONFIG_X86_L1_CACHE_SHIFT
510common_interrupt:
511	ASM_CLAC
512	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
513	interrupt do_IRQ
514	/* 0(%rsp): old RSP */
515ret_from_intr:
516	DISABLE_INTERRUPTS(CLBR_ANY)
517	TRACE_IRQS_OFF
518	decl	PER_CPU_VAR(irq_count)
519
520	/* Restore saved previous stack */
521	popq	%rsp
522
523	testb	$3, CS(%rsp)
524	jz	retint_kernel
525
526	/* Interrupt came from user space */
527GLOBAL(retint_user)
528	mov	%rsp,%rdi
529	call	prepare_exit_to_usermode
530	TRACE_IRQS_IRETQ
531	SWAPGS
532	jmp	restore_regs_and_iret
533
534/* Returning to kernel space */
535retint_kernel:
536#ifdef CONFIG_PREEMPT
537	/* Interrupts are off */
538	/* Check if we need preemption */
539	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
540	jnc	1f
5410:	cmpl	$0, PER_CPU_VAR(__preempt_count)
542	jnz	1f
543	call	preempt_schedule_irq
544	jmp	0b
5451:
546#endif
547	/*
548	 * The iretq could re-enable interrupts:
549	 */
550	TRACE_IRQS_IRETQ
551
552/*
553 * At this label, code paths which return to kernel and to user,
554 * which come from interrupts/exception and from syscalls, merge.
555 */
556GLOBAL(restore_regs_and_iret)
557	RESTORE_EXTRA_REGS
558restore_c_regs_and_iret:
559	RESTORE_C_REGS
560	REMOVE_PT_GPREGS_FROM_STACK 8
561	INTERRUPT_RETURN
562
563ENTRY(native_iret)
564	/*
565	 * Are we returning to a stack segment from the LDT?  Note: in
566	 * 64-bit mode SS:RSP on the exception stack is always valid.
567	 */
568#ifdef CONFIG_X86_ESPFIX64
569	testb	$4, (SS-RIP)(%rsp)
570	jnz	native_irq_return_ldt
571#endif
572
573.global native_irq_return_iret
574native_irq_return_iret:
575	/*
576	 * This may fault.  Non-paranoid faults on return to userspace are
577	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
578	 * Double-faults due to espfix64 are handled in do_double_fault.
579	 * Other faults here are fatal.
580	 */
581	iretq
582
583#ifdef CONFIG_X86_ESPFIX64
584native_irq_return_ldt:
585	/*
586	 * We are running with user GSBASE.  All GPRs contain their user
587	 * values.  We have a percpu ESPFIX stack that is eight slots
588	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
589	 * of the ESPFIX stack.
590	 *
591	 * We clobber RAX and RDI in this code.  We stash RDI on the
592	 * normal stack and RAX on the ESPFIX stack.
593	 *
594	 * The ESPFIX stack layout we set up looks like this:
595	 *
596	 * --- top of ESPFIX stack ---
597	 * SS
598	 * RSP
599	 * RFLAGS
600	 * CS
601	 * RIP  <-- RSP points here when we're done
602	 * RAX  <-- espfix_waddr points here
603	 * --- bottom of ESPFIX stack ---
604	 */
605
606	pushq	%rdi				/* Stash user RDI */
607	SWAPGS
608	movq	PER_CPU_VAR(espfix_waddr), %rdi
609	movq	%rax, (0*8)(%rdi)		/* user RAX */
610	movq	(1*8)(%rsp), %rax		/* user RIP */
611	movq	%rax, (1*8)(%rdi)
612	movq	(2*8)(%rsp), %rax		/* user CS */
613	movq	%rax, (2*8)(%rdi)
614	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
615	movq	%rax, (3*8)(%rdi)
616	movq	(5*8)(%rsp), %rax		/* user SS */
617	movq	%rax, (5*8)(%rdi)
618	movq	(4*8)(%rsp), %rax		/* user RSP */
619	movq	%rax, (4*8)(%rdi)
620	/* Now RAX == RSP. */
621
622	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
623	popq	%rdi				/* Restore user RDI */
624
625	/*
626	 * espfix_stack[31:16] == 0.  The page tables are set up such that
627	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
628	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
629	 * the same page.  Set up RSP so that RSP[31:16] contains the
630	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
631	 * still points to an RO alias of the ESPFIX stack.
632	 */
633	orq	PER_CPU_VAR(espfix_stack), %rax
634	SWAPGS
635	movq	%rax, %rsp
636
637	/*
638	 * At this point, we cannot write to the stack any more, but we can
639	 * still read.
640	 */
641	popq	%rax				/* Restore user RAX */
642
643	/*
644	 * RSP now points to an ordinary IRET frame, except that the page
645	 * is read-only and RSP[31:16] are preloaded with the userspace
646	 * values.  We can now IRET back to userspace.
647	 */
648	jmp	native_irq_return_iret
649#endif
650END(common_interrupt)
651
652/*
653 * APIC interrupts.
654 */
655.macro apicinterrupt3 num sym do_sym
656ENTRY(\sym)
657	ASM_CLAC
658	pushq	$~(\num)
659.Lcommon_\sym:
660	interrupt \do_sym
661	jmp	ret_from_intr
662END(\sym)
663.endm
664
665#ifdef CONFIG_TRACING
666#define trace(sym) trace_##sym
667#define smp_trace(sym) smp_trace_##sym
668
669.macro trace_apicinterrupt num sym
670apicinterrupt3 \num trace(\sym) smp_trace(\sym)
671.endm
672#else
673.macro trace_apicinterrupt num sym do_sym
674.endm
675#endif
676
677/* Make sure APIC interrupt handlers end up in the irqentry section: */
678#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
679# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
680# define POP_SECTION_IRQENTRY	.popsection
681#else
682# define PUSH_SECTION_IRQENTRY
683# define POP_SECTION_IRQENTRY
684#endif
685
686.macro apicinterrupt num sym do_sym
687PUSH_SECTION_IRQENTRY
688apicinterrupt3 \num \sym \do_sym
689trace_apicinterrupt \num \sym
690POP_SECTION_IRQENTRY
691.endm
692
693#ifdef CONFIG_SMP
694apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
695apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
696#endif
697
698#ifdef CONFIG_X86_UV
699apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
700#endif
701
702apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
703apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
704
705#ifdef CONFIG_HAVE_KVM
706apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
707apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
708#endif
709
710#ifdef CONFIG_X86_MCE_THRESHOLD
711apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
712#endif
713
714#ifdef CONFIG_X86_MCE_AMD
715apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
716#endif
717
718#ifdef CONFIG_X86_THERMAL_VECTOR
719apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
720#endif
721
722#ifdef CONFIG_SMP
723apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
724apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
725apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
726#endif
727
728apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
729apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
730
731#ifdef CONFIG_IRQ_WORK
732apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
733#endif
734
735/*
736 * Exception entry points.
737 */
738#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
739
740.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
741ENTRY(\sym)
742	/* Sanity check */
743	.if \shift_ist != -1 && \paranoid == 0
744	.error "using shift_ist requires paranoid=1"
745	.endif
746
747	ASM_CLAC
748	PARAVIRT_ADJUST_EXCEPTION_FRAME
749
750	.ifeq \has_error_code
751	pushq	$-1				/* ORIG_RAX: no syscall to restart */
752	.endif
753
754	ALLOC_PT_GPREGS_ON_STACK
755
756	.if \paranoid
757	.if \paranoid == 1
758	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
759	jnz	1f
760	.endif
761	call	paranoid_entry
762	.else
763	call	error_entry
764	.endif
765	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
766
767	.if \paranoid
768	.if \shift_ist != -1
769	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
770	.else
771	TRACE_IRQS_OFF
772	.endif
773	.endif
774
775	movq	%rsp, %rdi			/* pt_regs pointer */
776
777	.if \has_error_code
778	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
779	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
780	.else
781	xorl	%esi, %esi			/* no error code */
782	.endif
783
784	.if \shift_ist != -1
785	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
786	.endif
787
788	call	\do_sym
789
790	.if \shift_ist != -1
791	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
792	.endif
793
794	/* these procedures expect "no swapgs" flag in ebx */
795	.if \paranoid
796	jmp	paranoid_exit
797	.else
798	jmp	error_exit
799	.endif
800
801	.if \paranoid == 1
802	/*
803	 * Paranoid entry from userspace.  Switch stacks and treat it
804	 * as a normal entry.  This means that paranoid handlers
805	 * run in real process context if user_mode(regs).
806	 */
8071:
808	call	error_entry
809
810
811	movq	%rsp, %rdi			/* pt_regs pointer */
812	call	sync_regs
813	movq	%rax, %rsp			/* switch stack */
814
815	movq	%rsp, %rdi			/* pt_regs pointer */
816
817	.if \has_error_code
818	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
819	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
820	.else
821	xorl	%esi, %esi			/* no error code */
822	.endif
823
824	call	\do_sym
825
826	jmp	error_exit			/* %ebx: no swapgs flag */
827	.endif
828END(\sym)
829.endm
830
831#ifdef CONFIG_TRACING
832.macro trace_idtentry sym do_sym has_error_code:req
833idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
834idtentry \sym \do_sym has_error_code=\has_error_code
835.endm
836#else
837.macro trace_idtentry sym do_sym has_error_code:req
838idtentry \sym \do_sym has_error_code=\has_error_code
839.endm
840#endif
841
842idtentry divide_error			do_divide_error			has_error_code=0
843idtentry overflow			do_overflow			has_error_code=0
844idtentry bounds				do_bounds			has_error_code=0
845idtentry invalid_op			do_invalid_op			has_error_code=0
846idtentry device_not_available		do_device_not_available		has_error_code=0
847idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
848idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
849idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
850idtentry segment_not_present		do_segment_not_present		has_error_code=1
851idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
852idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
853idtentry alignment_check		do_alignment_check		has_error_code=1
854idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
855
856
857	/*
858	 * Reload gs selector with exception handling
859	 * edi:  new selector
860	 */
861ENTRY(native_load_gs_index)
862	pushfq
863	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
864	SWAPGS
865.Lgs_change:
866	movl	%edi, %gs
8672:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
868	SWAPGS
869	popfq
870	ret
871END(native_load_gs_index)
872EXPORT_SYMBOL(native_load_gs_index)
873
874	_ASM_EXTABLE(.Lgs_change, bad_gs)
875	.section .fixup, "ax"
876	/* running with kernelgs */
877bad_gs:
878	SWAPGS					/* switch back to user gs */
879.macro ZAP_GS
880	/* This can't be a string because the preprocessor needs to see it. */
881	movl $__USER_DS, %eax
882	movl %eax, %gs
883.endm
884	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
885	xorl	%eax, %eax
886	movl	%eax, %gs
887	jmp	2b
888	.previous
889
890/* Call softirq on interrupt stack. Interrupts are off. */
891ENTRY(do_softirq_own_stack)
892	pushq	%rbp
893	mov	%rsp, %rbp
894	incl	PER_CPU_VAR(irq_count)
895	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
896	push	%rbp				/* frame pointer backlink */
897	call	__do_softirq
898	leaveq
899	decl	PER_CPU_VAR(irq_count)
900	ret
901END(do_softirq_own_stack)
902
903#ifdef CONFIG_XEN
904idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
905
906/*
907 * A note on the "critical region" in our callback handler.
908 * We want to avoid stacking callback handlers due to events occurring
909 * during handling of the last event. To do this, we keep events disabled
910 * until we've done all processing. HOWEVER, we must enable events before
911 * popping the stack frame (can't be done atomically) and so it would still
912 * be possible to get enough handler activations to overflow the stack.
913 * Although unlikely, bugs of that kind are hard to track down, so we'd
914 * like to avoid the possibility.
915 * So, on entry to the handler we detect whether we interrupted an
916 * existing activation in its critical region -- if so, we pop the current
917 * activation and restart the handler using the previous one.
918 */
919ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
920
921/*
922 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
923 * see the correct pointer to the pt_regs
924 */
925	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
92611:	incl	PER_CPU_VAR(irq_count)
927	movq	%rsp, %rbp
928	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
929	pushq	%rbp				/* frame pointer backlink */
930	call	xen_evtchn_do_upcall
931	popq	%rsp
932	decl	PER_CPU_VAR(irq_count)
933#ifndef CONFIG_PREEMPT
934	call	xen_maybe_preempt_hcall
935#endif
936	jmp	error_exit
937END(xen_do_hypervisor_callback)
938
939/*
940 * Hypervisor uses this for application faults while it executes.
941 * We get here for two reasons:
942 *  1. Fault while reloading DS, ES, FS or GS
943 *  2. Fault while executing IRET
944 * Category 1 we do not need to fix up as Xen has already reloaded all segment
945 * registers that could be reloaded and zeroed the others.
946 * Category 2 we fix up by killing the current process. We cannot use the
947 * normal Linux return path in this case because if we use the IRET hypercall
948 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
949 * We distinguish between categories by comparing each saved segment register
950 * with its current contents: any discrepancy means we in category 1.
951 */
952ENTRY(xen_failsafe_callback)
953	movl	%ds, %ecx
954	cmpw	%cx, 0x10(%rsp)
955	jne	1f
956	movl	%es, %ecx
957	cmpw	%cx, 0x18(%rsp)
958	jne	1f
959	movl	%fs, %ecx
960	cmpw	%cx, 0x20(%rsp)
961	jne	1f
962	movl	%gs, %ecx
963	cmpw	%cx, 0x28(%rsp)
964	jne	1f
965	/* All segments match their saved values => Category 2 (Bad IRET). */
966	movq	(%rsp), %rcx
967	movq	8(%rsp), %r11
968	addq	$0x30, %rsp
969	pushq	$0				/* RIP */
970	pushq	%r11
971	pushq	%rcx
972	jmp	general_protection
9731:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
974	movq	(%rsp), %rcx
975	movq	8(%rsp), %r11
976	addq	$0x30, %rsp
977	pushq	$-1 /* orig_ax = -1 => not a system call */
978	ALLOC_PT_GPREGS_ON_STACK
979	SAVE_C_REGS
980	SAVE_EXTRA_REGS
981	ENCODE_FRAME_POINTER
982	jmp	error_exit
983END(xen_failsafe_callback)
984
985apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
986	xen_hvm_callback_vector xen_evtchn_do_upcall
987
988#endif /* CONFIG_XEN */
989
990#if IS_ENABLED(CONFIG_HYPERV)
991apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
992	hyperv_callback_vector hyperv_vector_handler
993#endif /* CONFIG_HYPERV */
994
995idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
996idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
997idtentry stack_segment		do_stack_segment	has_error_code=1
998
999#ifdef CONFIG_XEN
1000idtentry xen_debug		do_debug		has_error_code=0
1001idtentry xen_int3		do_int3			has_error_code=0
1002idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1003#endif
1004
1005idtentry general_protection	do_general_protection	has_error_code=1
1006trace_idtentry page_fault	do_page_fault		has_error_code=1
1007
1008#ifdef CONFIG_KVM_GUEST
1009idtentry async_page_fault	do_async_page_fault	has_error_code=1
1010#endif
1011
1012#ifdef CONFIG_X86_MCE
1013idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1014#endif
1015
1016/*
1017 * Save all registers in pt_regs, and switch gs if needed.
1018 * Use slow, but surefire "are we in kernel?" check.
1019 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1020 */
1021ENTRY(paranoid_entry)
1022	cld
1023	SAVE_C_REGS 8
1024	SAVE_EXTRA_REGS 8
1025	ENCODE_FRAME_POINTER 8
1026	movl	$1, %ebx
1027	movl	$MSR_GS_BASE, %ecx
1028	rdmsr
1029	testl	%edx, %edx
1030	js	1f				/* negative -> in kernel */
1031	SWAPGS
1032	xorl	%ebx, %ebx
10331:	ret
1034END(paranoid_entry)
1035
1036/*
1037 * "Paranoid" exit path from exception stack.  This is invoked
1038 * only on return from non-NMI IST interrupts that came
1039 * from kernel space.
1040 *
1041 * We may be returning to very strange contexts (e.g. very early
1042 * in syscall entry), so checking for preemption here would
1043 * be complicated.  Fortunately, we there's no good reason
1044 * to try to handle preemption here.
1045 *
1046 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1047 */
1048ENTRY(paranoid_exit)
1049	DISABLE_INTERRUPTS(CLBR_ANY)
1050	TRACE_IRQS_OFF_DEBUG
1051	testl	%ebx, %ebx			/* swapgs needed? */
1052	jnz	paranoid_exit_no_swapgs
1053	TRACE_IRQS_IRETQ
1054	SWAPGS_UNSAFE_STACK
1055	jmp	paranoid_exit_restore
1056paranoid_exit_no_swapgs:
1057	TRACE_IRQS_IRETQ_DEBUG
1058paranoid_exit_restore:
1059	RESTORE_EXTRA_REGS
1060	RESTORE_C_REGS
1061	REMOVE_PT_GPREGS_FROM_STACK 8
1062	INTERRUPT_RETURN
1063END(paranoid_exit)
1064
1065/*
1066 * Save all registers in pt_regs, and switch gs if needed.
1067 * Return: EBX=0: came from user mode; EBX=1: otherwise
1068 */
1069ENTRY(error_entry)
1070	cld
1071	SAVE_C_REGS 8
1072	SAVE_EXTRA_REGS 8
1073	ENCODE_FRAME_POINTER 8
1074	xorl	%ebx, %ebx
1075	testb	$3, CS+8(%rsp)
1076	jz	.Lerror_kernelspace
1077
1078	/*
1079	 * We entered from user mode or we're pretending to have entered
1080	 * from user mode due to an IRET fault.
1081	 */
1082	SWAPGS
1083
1084.Lerror_entry_from_usermode_after_swapgs:
1085	/*
1086	 * We need to tell lockdep that IRQs are off.  We can't do this until
1087	 * we fix gsbase, and we should do it before enter_from_user_mode
1088	 * (which can take locks).
1089	 */
1090	TRACE_IRQS_OFF
1091	CALL_enter_from_user_mode
1092	ret
1093
1094.Lerror_entry_done:
1095	TRACE_IRQS_OFF
1096	ret
1097
1098	/*
1099	 * There are two places in the kernel that can potentially fault with
1100	 * usergs. Handle them here.  B stepping K8s sometimes report a
1101	 * truncated RIP for IRET exceptions returning to compat mode. Check
1102	 * for these here too.
1103	 */
1104.Lerror_kernelspace:
1105	incl	%ebx
1106	leaq	native_irq_return_iret(%rip), %rcx
1107	cmpq	%rcx, RIP+8(%rsp)
1108	je	.Lerror_bad_iret
1109	movl	%ecx, %eax			/* zero extend */
1110	cmpq	%rax, RIP+8(%rsp)
1111	je	.Lbstep_iret
1112	cmpq	$.Lgs_change, RIP+8(%rsp)
1113	jne	.Lerror_entry_done
1114
1115	/*
1116	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1117	 * gsbase and proceed.  We'll fix up the exception and land in
1118	 * .Lgs_change's error handler with kernel gsbase.
1119	 */
1120	SWAPGS
1121	jmp .Lerror_entry_done
1122
1123.Lbstep_iret:
1124	/* Fix truncated RIP */
1125	movq	%rcx, RIP+8(%rsp)
1126	/* fall through */
1127
1128.Lerror_bad_iret:
1129	/*
1130	 * We came from an IRET to user mode, so we have user gsbase.
1131	 * Switch to kernel gsbase:
1132	 */
1133	SWAPGS
1134
1135	/*
1136	 * Pretend that the exception came from user mode: set up pt_regs
1137	 * as if we faulted immediately after IRET and clear EBX so that
1138	 * error_exit knows that we will be returning to user mode.
1139	 */
1140	mov	%rsp, %rdi
1141	call	fixup_bad_iret
1142	mov	%rax, %rsp
1143	decl	%ebx
1144	jmp	.Lerror_entry_from_usermode_after_swapgs
1145END(error_entry)
1146
1147
1148/*
1149 * On entry, EBX is a "return to kernel mode" flag:
1150 *   1: already in kernel mode, don't need SWAPGS
1151 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1152 */
1153ENTRY(error_exit)
1154	DISABLE_INTERRUPTS(CLBR_ANY)
1155	TRACE_IRQS_OFF
1156	testl	%ebx, %ebx
1157	jnz	retint_kernel
1158	jmp	retint_user
1159END(error_exit)
1160
1161/* Runs on exception stack */
1162ENTRY(nmi)
1163	/*
1164	 * Fix up the exception frame if we're on Xen.
1165	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1166	 * one value to the stack on native, so it may clobber the rdx
1167	 * scratch slot, but it won't clobber any of the important
1168	 * slots past it.
1169	 *
1170	 * Xen is a different story, because the Xen frame itself overlaps
1171	 * the "NMI executing" variable.
1172	 */
1173	PARAVIRT_ADJUST_EXCEPTION_FRAME
1174
1175	/*
1176	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1177	 * the iretq it performs will take us out of NMI context.
1178	 * This means that we can have nested NMIs where the next
1179	 * NMI is using the top of the stack of the previous NMI. We
1180	 * can't let it execute because the nested NMI will corrupt the
1181	 * stack of the previous NMI. NMI handlers are not re-entrant
1182	 * anyway.
1183	 *
1184	 * To handle this case we do the following:
1185	 *  Check the a special location on the stack that contains
1186	 *  a variable that is set when NMIs are executing.
1187	 *  The interrupted task's stack is also checked to see if it
1188	 *  is an NMI stack.
1189	 *  If the variable is not set and the stack is not the NMI
1190	 *  stack then:
1191	 *    o Set the special variable on the stack
1192	 *    o Copy the interrupt frame into an "outermost" location on the
1193	 *      stack
1194	 *    o Copy the interrupt frame into an "iret" location on the stack
1195	 *    o Continue processing the NMI
1196	 *  If the variable is set or the previous stack is the NMI stack:
1197	 *    o Modify the "iret" location to jump to the repeat_nmi
1198	 *    o return back to the first NMI
1199	 *
1200	 * Now on exit of the first NMI, we first clear the stack variable
1201	 * The NMI stack will tell any nested NMIs at that point that it is
1202	 * nested. Then we pop the stack normally with iret, and if there was
1203	 * a nested NMI that updated the copy interrupt stack frame, a
1204	 * jump will be made to the repeat_nmi code that will handle the second
1205	 * NMI.
1206	 *
1207	 * However, espfix prevents us from directly returning to userspace
1208	 * with a single IRET instruction.  Similarly, IRET to user mode
1209	 * can fault.  We therefore handle NMIs from user space like
1210	 * other IST entries.
1211	 */
1212
1213	/* Use %rdx as our temp variable throughout */
1214	pushq	%rdx
1215
1216	testb	$3, CS-RIP+8(%rsp)
1217	jz	.Lnmi_from_kernel
1218
1219	/*
1220	 * NMI from user mode.  We need to run on the thread stack, but we
1221	 * can't go through the normal entry paths: NMIs are masked, and
1222	 * we don't want to enable interrupts, because then we'll end
1223	 * up in an awkward situation in which IRQs are on but NMIs
1224	 * are off.
1225	 *
1226	 * We also must not push anything to the stack before switching
1227	 * stacks lest we corrupt the "NMI executing" variable.
1228	 */
1229
1230	SWAPGS_UNSAFE_STACK
1231	cld
1232	movq	%rsp, %rdx
1233	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1234	pushq	5*8(%rdx)	/* pt_regs->ss */
1235	pushq	4*8(%rdx)	/* pt_regs->rsp */
1236	pushq	3*8(%rdx)	/* pt_regs->flags */
1237	pushq	2*8(%rdx)	/* pt_regs->cs */
1238	pushq	1*8(%rdx)	/* pt_regs->rip */
1239	pushq   $-1		/* pt_regs->orig_ax */
1240	pushq   %rdi		/* pt_regs->di */
1241	pushq   %rsi		/* pt_regs->si */
1242	pushq   (%rdx)		/* pt_regs->dx */
1243	pushq   %rcx		/* pt_regs->cx */
1244	pushq   %rax		/* pt_regs->ax */
1245	pushq   %r8		/* pt_regs->r8 */
1246	pushq   %r9		/* pt_regs->r9 */
1247	pushq   %r10		/* pt_regs->r10 */
1248	pushq   %r11		/* pt_regs->r11 */
1249	pushq	%rbx		/* pt_regs->rbx */
1250	pushq	%rbp		/* pt_regs->rbp */
1251	pushq	%r12		/* pt_regs->r12 */
1252	pushq	%r13		/* pt_regs->r13 */
1253	pushq	%r14		/* pt_regs->r14 */
1254	pushq	%r15		/* pt_regs->r15 */
1255	ENCODE_FRAME_POINTER
1256
1257	/*
1258	 * At this point we no longer need to worry about stack damage
1259	 * due to nesting -- we're on the normal thread stack and we're
1260	 * done with the NMI stack.
1261	 */
1262
1263	movq	%rsp, %rdi
1264	movq	$-1, %rsi
1265	call	do_nmi
1266
1267	/*
1268	 * Return back to user mode.  We must *not* do the normal exit
1269	 * work, because we don't want to enable interrupts.
1270	 */
1271	SWAPGS
1272	jmp	restore_regs_and_iret
1273
1274.Lnmi_from_kernel:
1275	/*
1276	 * Here's what our stack frame will look like:
1277	 * +---------------------------------------------------------+
1278	 * | original SS                                             |
1279	 * | original Return RSP                                     |
1280	 * | original RFLAGS                                         |
1281	 * | original CS                                             |
1282	 * | original RIP                                            |
1283	 * +---------------------------------------------------------+
1284	 * | temp storage for rdx                                    |
1285	 * +---------------------------------------------------------+
1286	 * | "NMI executing" variable                                |
1287	 * +---------------------------------------------------------+
1288	 * | iret SS          } Copied from "outermost" frame        |
1289	 * | iret Return RSP  } on each loop iteration; overwritten  |
1290	 * | iret RFLAGS      } by a nested NMI to force another     |
1291	 * | iret CS          } iteration if needed.                 |
1292	 * | iret RIP         }                                      |
1293	 * +---------------------------------------------------------+
1294	 * | outermost SS          } initialized in first_nmi;       |
1295	 * | outermost Return RSP  } will not be changed before      |
1296	 * | outermost RFLAGS      } NMI processing is done.         |
1297	 * | outermost CS          } Copied to "iret" frame on each  |
1298	 * | outermost RIP         } iteration.                      |
1299	 * +---------------------------------------------------------+
1300	 * | pt_regs                                                 |
1301	 * +---------------------------------------------------------+
1302	 *
1303	 * The "original" frame is used by hardware.  Before re-enabling
1304	 * NMIs, we need to be done with it, and we need to leave enough
1305	 * space for the asm code here.
1306	 *
1307	 * We return by executing IRET while RSP points to the "iret" frame.
1308	 * That will either return for real or it will loop back into NMI
1309	 * processing.
1310	 *
1311	 * The "outermost" frame is copied to the "iret" frame on each
1312	 * iteration of the loop, so each iteration starts with the "iret"
1313	 * frame pointing to the final return target.
1314	 */
1315
1316	/*
1317	 * Determine whether we're a nested NMI.
1318	 *
1319	 * If we interrupted kernel code between repeat_nmi and
1320	 * end_repeat_nmi, then we are a nested NMI.  We must not
1321	 * modify the "iret" frame because it's being written by
1322	 * the outer NMI.  That's okay; the outer NMI handler is
1323	 * about to about to call do_nmi anyway, so we can just
1324	 * resume the outer NMI.
1325	 */
1326
1327	movq	$repeat_nmi, %rdx
1328	cmpq	8(%rsp), %rdx
1329	ja	1f
1330	movq	$end_repeat_nmi, %rdx
1331	cmpq	8(%rsp), %rdx
1332	ja	nested_nmi_out
13331:
1334
1335	/*
1336	 * Now check "NMI executing".  If it's set, then we're nested.
1337	 * This will not detect if we interrupted an outer NMI just
1338	 * before IRET.
1339	 */
1340	cmpl	$1, -8(%rsp)
1341	je	nested_nmi
1342
1343	/*
1344	 * Now test if the previous stack was an NMI stack.  This covers
1345	 * the case where we interrupt an outer NMI after it clears
1346	 * "NMI executing" but before IRET.  We need to be careful, though:
1347	 * there is one case in which RSP could point to the NMI stack
1348	 * despite there being no NMI active: naughty userspace controls
1349	 * RSP at the very beginning of the SYSCALL targets.  We can
1350	 * pull a fast one on naughty userspace, though: we program
1351	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1352	 * if it controls the kernel's RSP.  We set DF before we clear
1353	 * "NMI executing".
1354	 */
1355	lea	6*8(%rsp), %rdx
1356	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1357	cmpq	%rdx, 4*8(%rsp)
1358	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1359	ja	first_nmi
1360
1361	subq	$EXCEPTION_STKSZ, %rdx
1362	cmpq	%rdx, 4*8(%rsp)
1363	/* If it is below the NMI stack, it is a normal NMI */
1364	jb	first_nmi
1365
1366	/* Ah, it is within the NMI stack. */
1367
1368	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1369	jz	first_nmi	/* RSP was user controlled. */
1370
1371	/* This is a nested NMI. */
1372
1373nested_nmi:
1374	/*
1375	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1376	 * iteration of NMI handling.
1377	 */
1378	subq	$8, %rsp
1379	leaq	-10*8(%rsp), %rdx
1380	pushq	$__KERNEL_DS
1381	pushq	%rdx
1382	pushfq
1383	pushq	$__KERNEL_CS
1384	pushq	$repeat_nmi
1385
1386	/* Put stack back */
1387	addq	$(6*8), %rsp
1388
1389nested_nmi_out:
1390	popq	%rdx
1391
1392	/* We are returning to kernel mode, so this cannot result in a fault. */
1393	INTERRUPT_RETURN
1394
1395first_nmi:
1396	/* Restore rdx. */
1397	movq	(%rsp), %rdx
1398
1399	/* Make room for "NMI executing". */
1400	pushq	$0
1401
1402	/* Leave room for the "iret" frame */
1403	subq	$(5*8), %rsp
1404
1405	/* Copy the "original" frame to the "outermost" frame */
1406	.rept 5
1407	pushq	11*8(%rsp)
1408	.endr
1409
1410	/* Everything up to here is safe from nested NMIs */
1411
1412#ifdef CONFIG_DEBUG_ENTRY
1413	/*
1414	 * For ease of testing, unmask NMIs right away.  Disabled by
1415	 * default because IRET is very expensive.
1416	 */
1417	pushq	$0		/* SS */
1418	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1419	addq	$8, (%rsp)	/* Fix up RSP */
1420	pushfq			/* RFLAGS */
1421	pushq	$__KERNEL_CS	/* CS */
1422	pushq	$1f		/* RIP */
1423	INTERRUPT_RETURN	/* continues at repeat_nmi below */
14241:
1425#endif
1426
1427repeat_nmi:
1428	/*
1429	 * If there was a nested NMI, the first NMI's iret will return
1430	 * here. But NMIs are still enabled and we can take another
1431	 * nested NMI. The nested NMI checks the interrupted RIP to see
1432	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1433	 * it will just return, as we are about to repeat an NMI anyway.
1434	 * This makes it safe to copy to the stack frame that a nested
1435	 * NMI will update.
1436	 *
1437	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1438	 * we're repeating an NMI, gsbase has the same value that it had on
1439	 * the first iteration.  paranoid_entry will load the kernel
1440	 * gsbase if needed before we call do_nmi.  "NMI executing"
1441	 * is zero.
1442	 */
1443	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1444
1445	/*
1446	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1447	 * here must not modify the "iret" frame while we're writing to
1448	 * it or it will end up containing garbage.
1449	 */
1450	addq	$(10*8), %rsp
1451	.rept 5
1452	pushq	-6*8(%rsp)
1453	.endr
1454	subq	$(5*8), %rsp
1455end_repeat_nmi:
1456
1457	/*
1458	 * Everything below this point can be preempted by a nested NMI.
1459	 * If this happens, then the inner NMI will change the "iret"
1460	 * frame to point back to repeat_nmi.
1461	 */
1462	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1463	ALLOC_PT_GPREGS_ON_STACK
1464
1465	/*
1466	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1467	 * as we should not be calling schedule in NMI context.
1468	 * Even with normal interrupts enabled. An NMI should not be
1469	 * setting NEED_RESCHED or anything that normal interrupts and
1470	 * exceptions might do.
1471	 */
1472	call	paranoid_entry
1473
1474	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1475	movq	%rsp, %rdi
1476	movq	$-1, %rsi
1477	call	do_nmi
1478
1479	testl	%ebx, %ebx			/* swapgs needed? */
1480	jnz	nmi_restore
1481nmi_swapgs:
1482	SWAPGS_UNSAFE_STACK
1483nmi_restore:
1484	RESTORE_EXTRA_REGS
1485	RESTORE_C_REGS
1486
1487	/* Point RSP at the "iret" frame. */
1488	REMOVE_PT_GPREGS_FROM_STACK 6*8
1489
1490	/*
1491	 * Clear "NMI executing".  Set DF first so that we can easily
1492	 * distinguish the remaining code between here and IRET from
1493	 * the SYSCALL entry and exit paths.  On a native kernel, we
1494	 * could just inspect RIP, but, on paravirt kernels,
1495	 * INTERRUPT_RETURN can translate into a jump into a
1496	 * hypercall page.
1497	 */
1498	std
1499	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1500
1501	/*
1502	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1503	 * stack in a single instruction.  We are returning to kernel
1504	 * mode, so this cannot result in a fault.
1505	 */
1506	INTERRUPT_RETURN
1507END(nmi)
1508
1509ENTRY(ignore_sysret)
1510	mov	$-ENOSYS, %eax
1511	sysret
1512END(ignore_sysret)
1513
1514ENTRY(rewind_stack_do_exit)
1515	/* Prevent any naive code from trying to unwind to our caller. */
1516	xorl	%ebp, %ebp
1517
1518	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1519	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1520
1521	call	do_exit
15221:	jmp 1b
1523END(rewind_stack_do_exit)
1524