1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_EMPTY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 call do_syscall_64 /* returns with IRQs disabled */ 116 117 /* 118 * Try to use SYSRET instead of IRET if we're returning to 119 * a completely clean 64-bit userspace context. If we're not, 120 * go to the slow exit path. 121 * In the Xen PV case we must use iret anyway. 122 */ 123 124 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 125 X86_FEATURE_XENPV 126 127 movq RCX(%rsp), %rcx 128 movq RIP(%rsp), %r11 129 130 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 131 jne swapgs_restore_regs_and_return_to_usermode 132 133 /* 134 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 135 * in kernel space. This essentially lets the user take over 136 * the kernel, since userspace controls RSP. 137 * 138 * If width of "canonical tail" ever becomes variable, this will need 139 * to be updated to remain correct on both old and new CPUs. 140 * 141 * Change top bits to match most significant bit (47th or 56th bit 142 * depending on paging mode) in the address. 143 */ 144#ifdef CONFIG_X86_5LEVEL 145 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 146 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 147#else 148 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 149 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 150#endif 151 152 /* If this changed %rcx, it was not canonical */ 153 cmpq %rcx, %r11 154 jne swapgs_restore_regs_and_return_to_usermode 155 156 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 157 jne swapgs_restore_regs_and_return_to_usermode 158 159 movq R11(%rsp), %r11 160 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 161 jne swapgs_restore_regs_and_return_to_usermode 162 163 /* 164 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 165 * restore RF properly. If the slowpath sets it for whatever reason, we 166 * need to restore it correctly. 167 * 168 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 169 * trap from userspace immediately after SYSRET. This would cause an 170 * infinite loop whenever #DB happens with register state that satisfies 171 * the opportunistic SYSRET conditions. For example, single-stepping 172 * this user code: 173 * 174 * movq $stuck_here, %rcx 175 * pushfq 176 * popq %r11 177 * stuck_here: 178 * 179 * would never get past 'stuck_here'. 180 */ 181 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 182 jnz swapgs_restore_regs_and_return_to_usermode 183 184 /* nothing to check for RSP */ 185 186 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 187 jne swapgs_restore_regs_and_return_to_usermode 188 189 /* 190 * We win! This label is here just for ease of understanding 191 * perf profiles. Nothing jumps here. 192 */ 193syscall_return_via_sysret: 194 /* rcx and r11 are already restored (see code above) */ 195 POP_REGS pop_rdi=0 skip_r11rcx=1 196 197 /* 198 * Now all regs are restored except RSP and RDI. 199 * Save old stack pointer and switch to trampoline stack. 200 */ 201 movq %rsp, %rdi 202 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 203 UNWIND_HINT_EMPTY 204 205 pushq RSP-RDI(%rdi) /* RSP */ 206 pushq (%rdi) /* RDI */ 207 208 /* 209 * We are on the trampoline stack. All regs except RDI are live. 210 * We can do future final exit work right here. 211 */ 212 STACKLEAK_ERASE_NOCLOBBER 213 214 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 215 216 popq %rdi 217 popq %rsp 218 swapgs 219 sysretq 220SYM_CODE_END(entry_SYSCALL_64) 221 222/* 223 * %rdi: prev task 224 * %rsi: next task 225 */ 226.pushsection .text, "ax" 227SYM_FUNC_START(__switch_to_asm) 228 /* 229 * Save callee-saved registers 230 * This must match the order in inactive_task_frame 231 */ 232 pushq %rbp 233 pushq %rbx 234 pushq %r12 235 pushq %r13 236 pushq %r14 237 pushq %r15 238 239 /* switch stack */ 240 movq %rsp, TASK_threadsp(%rdi) 241 movq TASK_threadsp(%rsi), %rsp 242 243#ifdef CONFIG_STACKPROTECTOR 244 movq TASK_stack_canary(%rsi), %rbx 245 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 246#endif 247 248#ifdef CONFIG_RETPOLINE 249 /* 250 * When switching from a shallower to a deeper call stack 251 * the RSB may either underflow or use entries populated 252 * with userspace addresses. On CPUs where those concerns 253 * exist, overwrite the RSB with entries which capture 254 * speculative execution to prevent attack. 255 */ 256 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 257#endif 258 259 /* restore callee-saved registers */ 260 popq %r15 261 popq %r14 262 popq %r13 263 popq %r12 264 popq %rbx 265 popq %rbp 266 267 jmp __switch_to 268SYM_FUNC_END(__switch_to_asm) 269.popsection 270 271/* 272 * A newly forked process directly context switches into this address. 273 * 274 * rax: prev task we switched from 275 * rbx: kernel thread func (NULL for user thread) 276 * r12: kernel thread arg 277 */ 278.pushsection .text, "ax" 279SYM_CODE_START(ret_from_fork) 280 UNWIND_HINT_EMPTY 281 ANNOTATE_NOENDBR // copy_thread 282 movq %rax, %rdi 283 call schedule_tail /* rdi: 'prev' task parameter */ 284 285 testq %rbx, %rbx /* from kernel_thread? */ 286 jnz 1f /* kernel threads are uncommon */ 287 2882: 289 UNWIND_HINT_REGS 290 movq %rsp, %rdi 291 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 292 jmp swapgs_restore_regs_and_return_to_usermode 293 2941: 295 /* kernel thread */ 296 UNWIND_HINT_EMPTY 297 movq %r12, %rdi 298 CALL_NOSPEC rbx 299 /* 300 * A kernel thread is allowed to return here after successfully 301 * calling kernel_execve(). Exit to userspace to complete the execve() 302 * syscall. 303 */ 304 movq $0, RAX(%rsp) 305 jmp 2b 306SYM_CODE_END(ret_from_fork) 307.popsection 308 309.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 310#ifdef CONFIG_DEBUG_ENTRY 311 pushq %rax 312 SAVE_FLAGS 313 testl $X86_EFLAGS_IF, %eax 314 jz .Lokay_\@ 315 ud2 316.Lokay_\@: 317 popq %rax 318#endif 319.endm 320 321/** 322 * idtentry_body - Macro to emit code calling the C function 323 * @cfunc: C function to be called 324 * @has_error_code: Hardware pushed error code on stack 325 */ 326.macro idtentry_body cfunc has_error_code:req 327 328 call error_entry 329 UNWIND_HINT_REGS 330 331 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 332 333 .if \has_error_code == 1 334 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 335 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 336 .endif 337 338 call \cfunc 339 340 /* For some configurations \cfunc ends up being a noreturn. */ 341 REACHABLE 342 343 jmp error_return 344.endm 345 346/** 347 * idtentry - Macro to generate entry stubs for simple IDT entries 348 * @vector: Vector number 349 * @asmsym: ASM symbol for the entry point 350 * @cfunc: C function to be called 351 * @has_error_code: Hardware pushed error code on stack 352 * 353 * The macro emits code to set up the kernel context for straight forward 354 * and simple IDT entries. No IST stack, no paranoid entry checks. 355 */ 356.macro idtentry vector asmsym cfunc has_error_code:req 357SYM_CODE_START(\asmsym) 358 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 359 ENDBR 360 ASM_CLAC 361 362 .if \has_error_code == 0 363 pushq $-1 /* ORIG_RAX: no syscall to restart */ 364 .endif 365 366 .if \vector == X86_TRAP_BP 367 /* 368 * If coming from kernel space, create a 6-word gap to allow the 369 * int3 handler to emulate a call instruction. 370 */ 371 testb $3, CS-ORIG_RAX(%rsp) 372 jnz .Lfrom_usermode_no_gap_\@ 373 .rept 6 374 pushq 5*8(%rsp) 375 .endr 376 UNWIND_HINT_IRET_REGS offset=8 377.Lfrom_usermode_no_gap_\@: 378 .endif 379 380 idtentry_body \cfunc \has_error_code 381 382_ASM_NOKPROBE(\asmsym) 383SYM_CODE_END(\asmsym) 384.endm 385 386/* 387 * Interrupt entry/exit. 388 * 389 + The interrupt stubs push (vector) onto the stack, which is the error_code 390 * position of idtentry exceptions, and jump to one of the two idtentry points 391 * (common/spurious). 392 * 393 * common_interrupt is a hotpath, align it to a cache line 394 */ 395.macro idtentry_irq vector cfunc 396 .p2align CONFIG_X86_L1_CACHE_SHIFT 397 idtentry \vector asm_\cfunc \cfunc has_error_code=1 398.endm 399 400/* 401 * System vectors which invoke their handlers directly and are not 402 * going through the regular common device interrupt handling code. 403 */ 404.macro idtentry_sysvec vector cfunc 405 idtentry \vector asm_\cfunc \cfunc has_error_code=0 406.endm 407 408/** 409 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 410 * @vector: Vector number 411 * @asmsym: ASM symbol for the entry point 412 * @cfunc: C function to be called 413 * 414 * The macro emits code to set up the kernel context for #MC and #DB 415 * 416 * If the entry comes from user space it uses the normal entry path 417 * including the return to user space work and preemption checks on 418 * exit. 419 * 420 * If hits in kernel mode then it needs to go through the paranoid 421 * entry as the exception can hit any random state. No preemption 422 * check on exit to keep the paranoid path simple. 423 */ 424.macro idtentry_mce_db vector asmsym cfunc 425SYM_CODE_START(\asmsym) 426 UNWIND_HINT_IRET_REGS 427 ENDBR 428 ASM_CLAC 429 430 pushq $-1 /* ORIG_RAX: no syscall to restart */ 431 432 /* 433 * If the entry is from userspace, switch stacks and treat it as 434 * a normal entry. 435 */ 436 testb $3, CS-ORIG_RAX(%rsp) 437 jnz .Lfrom_usermode_switch_stack_\@ 438 439 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 440 call paranoid_entry 441 442 UNWIND_HINT_REGS 443 444 movq %rsp, %rdi /* pt_regs pointer */ 445 446 call \cfunc 447 448 jmp paranoid_exit 449 450 /* Switch to the regular task stack and use the noist entry point */ 451.Lfrom_usermode_switch_stack_\@: 452 idtentry_body noist_\cfunc, has_error_code=0 453 454_ASM_NOKPROBE(\asmsym) 455SYM_CODE_END(\asmsym) 456.endm 457 458#ifdef CONFIG_AMD_MEM_ENCRYPT 459/** 460 * idtentry_vc - Macro to generate entry stub for #VC 461 * @vector: Vector number 462 * @asmsym: ASM symbol for the entry point 463 * @cfunc: C function to be called 464 * 465 * The macro emits code to set up the kernel context for #VC. The #VC handler 466 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 467 * 468 * To make this work the #VC entry code tries its best to pretend it doesn't use 469 * an IST stack by switching to the task stack if coming from user-space (which 470 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 471 * entered from kernel-mode. 472 * 473 * If entered from kernel-mode the return stack is validated first, and if it is 474 * not safe to use (e.g. because it points to the entry stack) the #VC handler 475 * will switch to a fall-back stack (VC2) and call a special handler function. 476 * 477 * The macro is only used for one vector, but it is planned to be extended in 478 * the future for the #HV exception. 479 */ 480.macro idtentry_vc vector asmsym cfunc 481SYM_CODE_START(\asmsym) 482 UNWIND_HINT_IRET_REGS 483 ENDBR 484 ASM_CLAC 485 486 /* 487 * If the entry is from userspace, switch stacks and treat it as 488 * a normal entry. 489 */ 490 testb $3, CS-ORIG_RAX(%rsp) 491 jnz .Lfrom_usermode_switch_stack_\@ 492 493 /* 494 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 495 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 496 */ 497 call paranoid_entry 498 499 UNWIND_HINT_REGS 500 501 /* 502 * Switch off the IST stack to make it free for nested exceptions. The 503 * vc_switch_off_ist() function will switch back to the interrupted 504 * stack if it is safe to do so. If not it switches to the VC fall-back 505 * stack. 506 */ 507 movq %rsp, %rdi /* pt_regs pointer */ 508 call vc_switch_off_ist 509 movq %rax, %rsp /* Switch to new stack */ 510 511 UNWIND_HINT_REGS 512 513 /* Update pt_regs */ 514 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 515 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 516 517 movq %rsp, %rdi /* pt_regs pointer */ 518 519 call kernel_\cfunc 520 521 /* 522 * No need to switch back to the IST stack. The current stack is either 523 * identical to the stack in the IRET frame or the VC fall-back stack, 524 * so it is definitely mapped even with PTI enabled. 525 */ 526 jmp paranoid_exit 527 528 /* Switch to the regular task stack */ 529.Lfrom_usermode_switch_stack_\@: 530 idtentry_body user_\cfunc, has_error_code=1 531 532_ASM_NOKPROBE(\asmsym) 533SYM_CODE_END(\asmsym) 534.endm 535#endif 536 537/* 538 * Double fault entry. Straight paranoid. No checks from which context 539 * this comes because for the espfix induced #DF this would do the wrong 540 * thing. 541 */ 542.macro idtentry_df vector asmsym cfunc 543SYM_CODE_START(\asmsym) 544 UNWIND_HINT_IRET_REGS offset=8 545 ENDBR 546 ASM_CLAC 547 548 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 549 call paranoid_entry 550 UNWIND_HINT_REGS 551 552 movq %rsp, %rdi /* pt_regs pointer into first argument */ 553 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 554 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 555 call \cfunc 556 557 /* For some configurations \cfunc ends up being a noreturn. */ 558 REACHABLE 559 560 jmp paranoid_exit 561 562_ASM_NOKPROBE(\asmsym) 563SYM_CODE_END(\asmsym) 564.endm 565 566/* 567 * Include the defines which emit the idt entries which are shared 568 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 569 * so the stacktrace boundary checks work. 570 */ 571 .align 16 572 .globl __irqentry_text_start 573__irqentry_text_start: 574 575#include <asm/idtentry.h> 576 577 .align 16 578 .globl __irqentry_text_end 579__irqentry_text_end: 580 ANNOTATE_NOENDBR 581 582SYM_CODE_START_LOCAL(common_interrupt_return) 583SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 584#ifdef CONFIG_DEBUG_ENTRY 585 /* Assert that pt_regs indicates user mode. */ 586 testb $3, CS(%rsp) 587 jnz 1f 588 ud2 5891: 590#endif 591#ifdef CONFIG_XEN_PV 592 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 593#endif 594 595 POP_REGS pop_rdi=0 596 597 /* 598 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 599 * Save old stack pointer and switch to trampoline stack. 600 */ 601 movq %rsp, %rdi 602 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 603 UNWIND_HINT_EMPTY 604 605 /* Copy the IRET frame to the trampoline stack. */ 606 pushq 6*8(%rdi) /* SS */ 607 pushq 5*8(%rdi) /* RSP */ 608 pushq 4*8(%rdi) /* EFLAGS */ 609 pushq 3*8(%rdi) /* CS */ 610 pushq 2*8(%rdi) /* RIP */ 611 612 /* Push user RDI on the trampoline stack. */ 613 pushq (%rdi) 614 615 /* 616 * We are on the trampoline stack. All regs except RDI are live. 617 * We can do future final exit work right here. 618 */ 619 STACKLEAK_ERASE_NOCLOBBER 620 621 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 622 623 /* Restore RDI. */ 624 popq %rdi 625 swapgs 626 jmp .Lnative_iret 627 628 629SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 630#ifdef CONFIG_DEBUG_ENTRY 631 /* Assert that pt_regs indicates kernel mode. */ 632 testb $3, CS(%rsp) 633 jz 1f 634 ud2 6351: 636#endif 637 POP_REGS 638 addq $8, %rsp /* skip regs->orig_ax */ 639 /* 640 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 641 * when returning from IPI handler. 642 */ 643#ifdef CONFIG_XEN_PV 644SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 645 ANNOTATE_NOENDBR 646 .byte 0xe9 647 .long .Lnative_iret - (. + 4) 648#endif 649 650.Lnative_iret: 651 UNWIND_HINT_IRET_REGS 652 /* 653 * Are we returning to a stack segment from the LDT? Note: in 654 * 64-bit mode SS:RSP on the exception stack is always valid. 655 */ 656#ifdef CONFIG_X86_ESPFIX64 657 testb $4, (SS-RIP)(%rsp) 658 jnz native_irq_return_ldt 659#endif 660 661SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 662 ANNOTATE_NOENDBR // exc_double_fault 663 /* 664 * This may fault. Non-paranoid faults on return to userspace are 665 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 666 * Double-faults due to espfix64 are handled in exc_double_fault. 667 * Other faults here are fatal. 668 */ 669 iretq 670 671#ifdef CONFIG_X86_ESPFIX64 672native_irq_return_ldt: 673 /* 674 * We are running with user GSBASE. All GPRs contain their user 675 * values. We have a percpu ESPFIX stack that is eight slots 676 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 677 * of the ESPFIX stack. 678 * 679 * We clobber RAX and RDI in this code. We stash RDI on the 680 * normal stack and RAX on the ESPFIX stack. 681 * 682 * The ESPFIX stack layout we set up looks like this: 683 * 684 * --- top of ESPFIX stack --- 685 * SS 686 * RSP 687 * RFLAGS 688 * CS 689 * RIP <-- RSP points here when we're done 690 * RAX <-- espfix_waddr points here 691 * --- bottom of ESPFIX stack --- 692 */ 693 694 pushq %rdi /* Stash user RDI */ 695 swapgs /* to kernel GS */ 696 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 697 698 movq PER_CPU_VAR(espfix_waddr), %rdi 699 movq %rax, (0*8)(%rdi) /* user RAX */ 700 movq (1*8)(%rsp), %rax /* user RIP */ 701 movq %rax, (1*8)(%rdi) 702 movq (2*8)(%rsp), %rax /* user CS */ 703 movq %rax, (2*8)(%rdi) 704 movq (3*8)(%rsp), %rax /* user RFLAGS */ 705 movq %rax, (3*8)(%rdi) 706 movq (5*8)(%rsp), %rax /* user SS */ 707 movq %rax, (5*8)(%rdi) 708 movq (4*8)(%rsp), %rax /* user RSP */ 709 movq %rax, (4*8)(%rdi) 710 /* Now RAX == RSP. */ 711 712 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 713 714 /* 715 * espfix_stack[31:16] == 0. The page tables are set up such that 716 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 717 * espfix_waddr for any X. That is, there are 65536 RO aliases of 718 * the same page. Set up RSP so that RSP[31:16] contains the 719 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 720 * still points to an RO alias of the ESPFIX stack. 721 */ 722 orq PER_CPU_VAR(espfix_stack), %rax 723 724 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 725 swapgs /* to user GS */ 726 popq %rdi /* Restore user RDI */ 727 728 movq %rax, %rsp 729 UNWIND_HINT_IRET_REGS offset=8 730 731 /* 732 * At this point, we cannot write to the stack any more, but we can 733 * still read. 734 */ 735 popq %rax /* Restore user RAX */ 736 737 /* 738 * RSP now points to an ordinary IRET frame, except that the page 739 * is read-only and RSP[31:16] are preloaded with the userspace 740 * values. We can now IRET back to userspace. 741 */ 742 jmp native_irq_return_iret 743#endif 744SYM_CODE_END(common_interrupt_return) 745_ASM_NOKPROBE(common_interrupt_return) 746 747/* 748 * Reload gs selector with exception handling 749 * edi: new selector 750 * 751 * Is in entry.text as it shouldn't be instrumented. 752 */ 753SYM_FUNC_START(asm_load_gs_index) 754 FRAME_BEGIN 755 swapgs 756.Lgs_change: 757 ANNOTATE_NOENDBR // error_entry 758 movl %edi, %gs 7592: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 760 swapgs 761 FRAME_END 762 RET 763 764 /* running with kernelgs */ 765.Lbad_gs: 766 swapgs /* switch back to user gs */ 767.macro ZAP_GS 768 /* This can't be a string because the preprocessor needs to see it. */ 769 movl $__USER_DS, %eax 770 movl %eax, %gs 771.endm 772 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 773 xorl %eax, %eax 774 movl %eax, %gs 775 jmp 2b 776 777 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 778 779SYM_FUNC_END(asm_load_gs_index) 780EXPORT_SYMBOL(asm_load_gs_index) 781 782#ifdef CONFIG_XEN_PV 783/* 784 * A note on the "critical region" in our callback handler. 785 * We want to avoid stacking callback handlers due to events occurring 786 * during handling of the last event. To do this, we keep events disabled 787 * until we've done all processing. HOWEVER, we must enable events before 788 * popping the stack frame (can't be done atomically) and so it would still 789 * be possible to get enough handler activations to overflow the stack. 790 * Although unlikely, bugs of that kind are hard to track down, so we'd 791 * like to avoid the possibility. 792 * So, on entry to the handler we detect whether we interrupted an 793 * existing activation in its critical region -- if so, we pop the current 794 * activation and restart the handler using the previous one. 795 * 796 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 797 */ 798SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 799 800/* 801 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 802 * see the correct pointer to the pt_regs 803 */ 804 UNWIND_HINT_FUNC 805 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 806 UNWIND_HINT_REGS 807 808 call xen_pv_evtchn_do_upcall 809 810 jmp error_return 811SYM_CODE_END(exc_xen_hypervisor_callback) 812 813/* 814 * Hypervisor uses this for application faults while it executes. 815 * We get here for two reasons: 816 * 1. Fault while reloading DS, ES, FS or GS 817 * 2. Fault while executing IRET 818 * Category 1 we do not need to fix up as Xen has already reloaded all segment 819 * registers that could be reloaded and zeroed the others. 820 * Category 2 we fix up by killing the current process. We cannot use the 821 * normal Linux return path in this case because if we use the IRET hypercall 822 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 823 * We distinguish between categories by comparing each saved segment register 824 * with its current contents: any discrepancy means we in category 1. 825 */ 826SYM_CODE_START(xen_failsafe_callback) 827 UNWIND_HINT_EMPTY 828 ENDBR 829 movl %ds, %ecx 830 cmpw %cx, 0x10(%rsp) 831 jne 1f 832 movl %es, %ecx 833 cmpw %cx, 0x18(%rsp) 834 jne 1f 835 movl %fs, %ecx 836 cmpw %cx, 0x20(%rsp) 837 jne 1f 838 movl %gs, %ecx 839 cmpw %cx, 0x28(%rsp) 840 jne 1f 841 /* All segments match their saved values => Category 2 (Bad IRET). */ 842 movq (%rsp), %rcx 843 movq 8(%rsp), %r11 844 addq $0x30, %rsp 845 pushq $0 /* RIP */ 846 UNWIND_HINT_IRET_REGS offset=8 847 jmp asm_exc_general_protection 8481: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 849 movq (%rsp), %rcx 850 movq 8(%rsp), %r11 851 addq $0x30, %rsp 852 UNWIND_HINT_IRET_REGS 853 pushq $-1 /* orig_ax = -1 => not a system call */ 854 PUSH_AND_CLEAR_REGS 855 ENCODE_FRAME_POINTER 856 jmp error_return 857SYM_CODE_END(xen_failsafe_callback) 858#endif /* CONFIG_XEN_PV */ 859 860/* 861 * Save all registers in pt_regs. Return GSBASE related information 862 * in EBX depending on the availability of the FSGSBASE instructions: 863 * 864 * FSGSBASE R/EBX 865 * N 0 -> SWAPGS on exit 866 * 1 -> no SWAPGS on exit 867 * 868 * Y GSBASE value at entry, must be restored in paranoid_exit 869 */ 870SYM_CODE_START_LOCAL(paranoid_entry) 871 UNWIND_HINT_FUNC 872 cld 873 PUSH_AND_CLEAR_REGS save_ret=1 874 ENCODE_FRAME_POINTER 8 875 876 /* 877 * Always stash CR3 in %r14. This value will be restored, 878 * verbatim, at exit. Needed if paranoid_entry interrupted 879 * another entry that already switched to the user CR3 value 880 * but has not yet returned to userspace. 881 * 882 * This is also why CS (stashed in the "iret frame" by the 883 * hardware at entry) can not be used: this may be a return 884 * to kernel code, but with a user CR3 value. 885 * 886 * Switching CR3 does not depend on kernel GSBASE so it can 887 * be done before switching to the kernel GSBASE. This is 888 * required for FSGSBASE because the kernel GSBASE has to 889 * be retrieved from a kernel internal table. 890 */ 891 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 892 893 /* 894 * Handling GSBASE depends on the availability of FSGSBASE. 895 * 896 * Without FSGSBASE the kernel enforces that negative GSBASE 897 * values indicate kernel GSBASE. With FSGSBASE no assumptions 898 * can be made about the GSBASE value when entering from user 899 * space. 900 */ 901 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 902 903 /* 904 * Read the current GSBASE and store it in %rbx unconditionally, 905 * retrieve and set the current CPUs kernel GSBASE. The stored value 906 * has to be restored in paranoid_exit unconditionally. 907 * 908 * The unconditional write to GS base below ensures that no subsequent 909 * loads based on a mispredicted GS base can happen, therefore no LFENCE 910 * is needed here. 911 */ 912 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 913 RET 914 915.Lparanoid_entry_checkgs: 916 /* EBX = 1 -> kernel GSBASE active, no restore required */ 917 movl $1, %ebx 918 919 /* 920 * The kernel-enforced convention is a negative GSBASE indicates 921 * a kernel value. No SWAPGS needed on entry and exit. 922 */ 923 movl $MSR_GS_BASE, %ecx 924 rdmsr 925 testl %edx, %edx 926 js .Lparanoid_kernel_gsbase 927 928 /* EBX = 0 -> SWAPGS required on exit */ 929 xorl %ebx, %ebx 930 swapgs 931.Lparanoid_kernel_gsbase: 932 933 FENCE_SWAPGS_KERNEL_ENTRY 934 RET 935SYM_CODE_END(paranoid_entry) 936 937/* 938 * "Paranoid" exit path from exception stack. This is invoked 939 * only on return from non-NMI IST interrupts that came 940 * from kernel space. 941 * 942 * We may be returning to very strange contexts (e.g. very early 943 * in syscall entry), so checking for preemption here would 944 * be complicated. Fortunately, there's no good reason to try 945 * to handle preemption here. 946 * 947 * R/EBX contains the GSBASE related information depending on the 948 * availability of the FSGSBASE instructions: 949 * 950 * FSGSBASE R/EBX 951 * N 0 -> SWAPGS on exit 952 * 1 -> no SWAPGS on exit 953 * 954 * Y User space GSBASE, must be restored unconditionally 955 */ 956SYM_CODE_START_LOCAL(paranoid_exit) 957 UNWIND_HINT_REGS 958 /* 959 * The order of operations is important. RESTORE_CR3 requires 960 * kernel GSBASE. 961 * 962 * NB to anyone to try to optimize this code: this code does 963 * not execute at all for exceptions from user mode. Those 964 * exceptions go through error_exit instead. 965 */ 966 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 967 968 /* Handle the three GSBASE cases */ 969 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 970 971 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 972 wrgsbase %rbx 973 jmp restore_regs_and_return_to_kernel 974 975.Lparanoid_exit_checkgs: 976 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 977 testl %ebx, %ebx 978 jnz restore_regs_and_return_to_kernel 979 980 /* We are returning to a context with user GSBASE */ 981 swapgs 982 jmp restore_regs_and_return_to_kernel 983SYM_CODE_END(paranoid_exit) 984 985/* 986 * Save all registers in pt_regs, and switch GS if needed. 987 */ 988SYM_CODE_START_LOCAL(error_entry) 989 UNWIND_HINT_FUNC 990 cld 991 PUSH_AND_CLEAR_REGS save_ret=1 992 ENCODE_FRAME_POINTER 8 993 testb $3, CS+8(%rsp) 994 jz .Lerror_kernelspace 995 996 /* 997 * We entered from user mode or we're pretending to have entered 998 * from user mode due to an IRET fault. 999 */ 1000 SWAPGS 1001 FENCE_SWAPGS_USER_ENTRY 1002 /* We have user CR3. Change to kernel CR3. */ 1003 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1004 1005.Lerror_entry_from_usermode_after_swapgs: 1006 /* Put us onto the real thread stack. */ 1007 popq %r12 /* save return addr in %12 */ 1008 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1009 call sync_regs 1010 movq %rax, %rsp /* switch stack */ 1011 ENCODE_FRAME_POINTER 1012 pushq %r12 1013 RET 1014 1015 /* 1016 * There are two places in the kernel that can potentially fault with 1017 * usergs. Handle them here. B stepping K8s sometimes report a 1018 * truncated RIP for IRET exceptions returning to compat mode. Check 1019 * for these here too. 1020 */ 1021.Lerror_kernelspace: 1022 leaq native_irq_return_iret(%rip), %rcx 1023 cmpq %rcx, RIP+8(%rsp) 1024 je .Lerror_bad_iret 1025 movl %ecx, %eax /* zero extend */ 1026 cmpq %rax, RIP+8(%rsp) 1027 je .Lbstep_iret 1028 cmpq $.Lgs_change, RIP+8(%rsp) 1029 jne .Lerror_entry_done_lfence 1030 1031 /* 1032 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1033 * gsbase and proceed. We'll fix up the exception and land in 1034 * .Lgs_change's error handler with kernel gsbase. 1035 */ 1036 SWAPGS 1037 1038 /* 1039 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1040 * kernel or user gsbase. 1041 */ 1042.Lerror_entry_done_lfence: 1043 FENCE_SWAPGS_KERNEL_ENTRY 1044 RET 1045 1046.Lbstep_iret: 1047 /* Fix truncated RIP */ 1048 movq %rcx, RIP+8(%rsp) 1049 /* fall through */ 1050 1051.Lerror_bad_iret: 1052 /* 1053 * We came from an IRET to user mode, so we have user 1054 * gsbase and CR3. Switch to kernel gsbase and CR3: 1055 */ 1056 SWAPGS 1057 FENCE_SWAPGS_USER_ENTRY 1058 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1059 1060 /* 1061 * Pretend that the exception came from user mode: set up pt_regs 1062 * as if we faulted immediately after IRET. 1063 */ 1064 mov %rsp, %rdi 1065 call fixup_bad_iret 1066 mov %rax, %rsp 1067 jmp .Lerror_entry_from_usermode_after_swapgs 1068SYM_CODE_END(error_entry) 1069 1070SYM_CODE_START_LOCAL(error_return) 1071 UNWIND_HINT_REGS 1072 DEBUG_ENTRY_ASSERT_IRQS_OFF 1073 testb $3, CS(%rsp) 1074 jz restore_regs_and_return_to_kernel 1075 jmp swapgs_restore_regs_and_return_to_usermode 1076SYM_CODE_END(error_return) 1077 1078/* 1079 * Runs on exception stack. Xen PV does not go through this path at all, 1080 * so we can use real assembly here. 1081 * 1082 * Registers: 1083 * %r14: Used to save/restore the CR3 of the interrupted context 1084 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1085 */ 1086SYM_CODE_START(asm_exc_nmi) 1087 UNWIND_HINT_IRET_REGS 1088 ENDBR 1089 1090 /* 1091 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1092 * the iretq it performs will take us out of NMI context. 1093 * This means that we can have nested NMIs where the next 1094 * NMI is using the top of the stack of the previous NMI. We 1095 * can't let it execute because the nested NMI will corrupt the 1096 * stack of the previous NMI. NMI handlers are not re-entrant 1097 * anyway. 1098 * 1099 * To handle this case we do the following: 1100 * Check the a special location on the stack that contains 1101 * a variable that is set when NMIs are executing. 1102 * The interrupted task's stack is also checked to see if it 1103 * is an NMI stack. 1104 * If the variable is not set and the stack is not the NMI 1105 * stack then: 1106 * o Set the special variable on the stack 1107 * o Copy the interrupt frame into an "outermost" location on the 1108 * stack 1109 * o Copy the interrupt frame into an "iret" location on the stack 1110 * o Continue processing the NMI 1111 * If the variable is set or the previous stack is the NMI stack: 1112 * o Modify the "iret" location to jump to the repeat_nmi 1113 * o return back to the first NMI 1114 * 1115 * Now on exit of the first NMI, we first clear the stack variable 1116 * The NMI stack will tell any nested NMIs at that point that it is 1117 * nested. Then we pop the stack normally with iret, and if there was 1118 * a nested NMI that updated the copy interrupt stack frame, a 1119 * jump will be made to the repeat_nmi code that will handle the second 1120 * NMI. 1121 * 1122 * However, espfix prevents us from directly returning to userspace 1123 * with a single IRET instruction. Similarly, IRET to user mode 1124 * can fault. We therefore handle NMIs from user space like 1125 * other IST entries. 1126 */ 1127 1128 ASM_CLAC 1129 1130 /* Use %rdx as our temp variable throughout */ 1131 pushq %rdx 1132 1133 testb $3, CS-RIP+8(%rsp) 1134 jz .Lnmi_from_kernel 1135 1136 /* 1137 * NMI from user mode. We need to run on the thread stack, but we 1138 * can't go through the normal entry paths: NMIs are masked, and 1139 * we don't want to enable interrupts, because then we'll end 1140 * up in an awkward situation in which IRQs are on but NMIs 1141 * are off. 1142 * 1143 * We also must not push anything to the stack before switching 1144 * stacks lest we corrupt the "NMI executing" variable. 1145 */ 1146 1147 swapgs 1148 cld 1149 FENCE_SWAPGS_USER_ENTRY 1150 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1151 movq %rsp, %rdx 1152 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1153 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1154 pushq 5*8(%rdx) /* pt_regs->ss */ 1155 pushq 4*8(%rdx) /* pt_regs->rsp */ 1156 pushq 3*8(%rdx) /* pt_regs->flags */ 1157 pushq 2*8(%rdx) /* pt_regs->cs */ 1158 pushq 1*8(%rdx) /* pt_regs->rip */ 1159 UNWIND_HINT_IRET_REGS 1160 pushq $-1 /* pt_regs->orig_ax */ 1161 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1162 ENCODE_FRAME_POINTER 1163 1164 /* 1165 * At this point we no longer need to worry about stack damage 1166 * due to nesting -- we're on the normal thread stack and we're 1167 * done with the NMI stack. 1168 */ 1169 1170 movq %rsp, %rdi 1171 movq $-1, %rsi 1172 call exc_nmi 1173 1174 /* 1175 * Return back to user mode. We must *not* do the normal exit 1176 * work, because we don't want to enable interrupts. 1177 */ 1178 jmp swapgs_restore_regs_and_return_to_usermode 1179 1180.Lnmi_from_kernel: 1181 /* 1182 * Here's what our stack frame will look like: 1183 * +---------------------------------------------------------+ 1184 * | original SS | 1185 * | original Return RSP | 1186 * | original RFLAGS | 1187 * | original CS | 1188 * | original RIP | 1189 * +---------------------------------------------------------+ 1190 * | temp storage for rdx | 1191 * +---------------------------------------------------------+ 1192 * | "NMI executing" variable | 1193 * +---------------------------------------------------------+ 1194 * | iret SS } Copied from "outermost" frame | 1195 * | iret Return RSP } on each loop iteration; overwritten | 1196 * | iret RFLAGS } by a nested NMI to force another | 1197 * | iret CS } iteration if needed. | 1198 * | iret RIP } | 1199 * +---------------------------------------------------------+ 1200 * | outermost SS } initialized in first_nmi; | 1201 * | outermost Return RSP } will not be changed before | 1202 * | outermost RFLAGS } NMI processing is done. | 1203 * | outermost CS } Copied to "iret" frame on each | 1204 * | outermost RIP } iteration. | 1205 * +---------------------------------------------------------+ 1206 * | pt_regs | 1207 * +---------------------------------------------------------+ 1208 * 1209 * The "original" frame is used by hardware. Before re-enabling 1210 * NMIs, we need to be done with it, and we need to leave enough 1211 * space for the asm code here. 1212 * 1213 * We return by executing IRET while RSP points to the "iret" frame. 1214 * That will either return for real or it will loop back into NMI 1215 * processing. 1216 * 1217 * The "outermost" frame is copied to the "iret" frame on each 1218 * iteration of the loop, so each iteration starts with the "iret" 1219 * frame pointing to the final return target. 1220 */ 1221 1222 /* 1223 * Determine whether we're a nested NMI. 1224 * 1225 * If we interrupted kernel code between repeat_nmi and 1226 * end_repeat_nmi, then we are a nested NMI. We must not 1227 * modify the "iret" frame because it's being written by 1228 * the outer NMI. That's okay; the outer NMI handler is 1229 * about to about to call exc_nmi() anyway, so we can just 1230 * resume the outer NMI. 1231 */ 1232 1233 movq $repeat_nmi, %rdx 1234 cmpq 8(%rsp), %rdx 1235 ja 1f 1236 movq $end_repeat_nmi, %rdx 1237 cmpq 8(%rsp), %rdx 1238 ja nested_nmi_out 12391: 1240 1241 /* 1242 * Now check "NMI executing". If it's set, then we're nested. 1243 * This will not detect if we interrupted an outer NMI just 1244 * before IRET. 1245 */ 1246 cmpl $1, -8(%rsp) 1247 je nested_nmi 1248 1249 /* 1250 * Now test if the previous stack was an NMI stack. This covers 1251 * the case where we interrupt an outer NMI after it clears 1252 * "NMI executing" but before IRET. We need to be careful, though: 1253 * there is one case in which RSP could point to the NMI stack 1254 * despite there being no NMI active: naughty userspace controls 1255 * RSP at the very beginning of the SYSCALL targets. We can 1256 * pull a fast one on naughty userspace, though: we program 1257 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1258 * if it controls the kernel's RSP. We set DF before we clear 1259 * "NMI executing". 1260 */ 1261 lea 6*8(%rsp), %rdx 1262 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1263 cmpq %rdx, 4*8(%rsp) 1264 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1265 ja first_nmi 1266 1267 subq $EXCEPTION_STKSZ, %rdx 1268 cmpq %rdx, 4*8(%rsp) 1269 /* If it is below the NMI stack, it is a normal NMI */ 1270 jb first_nmi 1271 1272 /* Ah, it is within the NMI stack. */ 1273 1274 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1275 jz first_nmi /* RSP was user controlled. */ 1276 1277 /* This is a nested NMI. */ 1278 1279nested_nmi: 1280 /* 1281 * Modify the "iret" frame to point to repeat_nmi, forcing another 1282 * iteration of NMI handling. 1283 */ 1284 subq $8, %rsp 1285 leaq -10*8(%rsp), %rdx 1286 pushq $__KERNEL_DS 1287 pushq %rdx 1288 pushfq 1289 pushq $__KERNEL_CS 1290 pushq $repeat_nmi 1291 1292 /* Put stack back */ 1293 addq $(6*8), %rsp 1294 1295nested_nmi_out: 1296 popq %rdx 1297 1298 /* We are returning to kernel mode, so this cannot result in a fault. */ 1299 iretq 1300 1301first_nmi: 1302 /* Restore rdx. */ 1303 movq (%rsp), %rdx 1304 1305 /* Make room for "NMI executing". */ 1306 pushq $0 1307 1308 /* Leave room for the "iret" frame */ 1309 subq $(5*8), %rsp 1310 1311 /* Copy the "original" frame to the "outermost" frame */ 1312 .rept 5 1313 pushq 11*8(%rsp) 1314 .endr 1315 UNWIND_HINT_IRET_REGS 1316 1317 /* Everything up to here is safe from nested NMIs */ 1318 1319#ifdef CONFIG_DEBUG_ENTRY 1320 /* 1321 * For ease of testing, unmask NMIs right away. Disabled by 1322 * default because IRET is very expensive. 1323 */ 1324 pushq $0 /* SS */ 1325 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1326 addq $8, (%rsp) /* Fix up RSP */ 1327 pushfq /* RFLAGS */ 1328 pushq $__KERNEL_CS /* CS */ 1329 pushq $1f /* RIP */ 1330 iretq /* continues at repeat_nmi below */ 1331 UNWIND_HINT_IRET_REGS 13321: 1333#endif 1334 1335repeat_nmi: 1336 ANNOTATE_NOENDBR // this code 1337 /* 1338 * If there was a nested NMI, the first NMI's iret will return 1339 * here. But NMIs are still enabled and we can take another 1340 * nested NMI. The nested NMI checks the interrupted RIP to see 1341 * if it is between repeat_nmi and end_repeat_nmi, and if so 1342 * it will just return, as we are about to repeat an NMI anyway. 1343 * This makes it safe to copy to the stack frame that a nested 1344 * NMI will update. 1345 * 1346 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1347 * we're repeating an NMI, gsbase has the same value that it had on 1348 * the first iteration. paranoid_entry will load the kernel 1349 * gsbase if needed before we call exc_nmi(). "NMI executing" 1350 * is zero. 1351 */ 1352 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1353 1354 /* 1355 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1356 * here must not modify the "iret" frame while we're writing to 1357 * it or it will end up containing garbage. 1358 */ 1359 addq $(10*8), %rsp 1360 .rept 5 1361 pushq -6*8(%rsp) 1362 .endr 1363 subq $(5*8), %rsp 1364end_repeat_nmi: 1365 ANNOTATE_NOENDBR // this code 1366 1367 /* 1368 * Everything below this point can be preempted by a nested NMI. 1369 * If this happens, then the inner NMI will change the "iret" 1370 * frame to point back to repeat_nmi. 1371 */ 1372 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1373 1374 /* 1375 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1376 * as we should not be calling schedule in NMI context. 1377 * Even with normal interrupts enabled. An NMI should not be 1378 * setting NEED_RESCHED or anything that normal interrupts and 1379 * exceptions might do. 1380 */ 1381 call paranoid_entry 1382 UNWIND_HINT_REGS 1383 1384 movq %rsp, %rdi 1385 movq $-1, %rsi 1386 call exc_nmi 1387 1388 /* Always restore stashed CR3 value (see paranoid_entry) */ 1389 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1390 1391 /* 1392 * The above invocation of paranoid_entry stored the GSBASE 1393 * related information in R/EBX depending on the availability 1394 * of FSGSBASE. 1395 * 1396 * If FSGSBASE is enabled, restore the saved GSBASE value 1397 * unconditionally, otherwise take the conditional SWAPGS path. 1398 */ 1399 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1400 1401 wrgsbase %rbx 1402 jmp nmi_restore 1403 1404nmi_no_fsgsbase: 1405 /* EBX == 0 -> invoke SWAPGS */ 1406 testl %ebx, %ebx 1407 jnz nmi_restore 1408 1409nmi_swapgs: 1410 swapgs 1411 1412nmi_restore: 1413 POP_REGS 1414 1415 /* 1416 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1417 * at the "iret" frame. 1418 */ 1419 addq $6*8, %rsp 1420 1421 /* 1422 * Clear "NMI executing". Set DF first so that we can easily 1423 * distinguish the remaining code between here and IRET from 1424 * the SYSCALL entry and exit paths. 1425 * 1426 * We arguably should just inspect RIP instead, but I (Andy) wrote 1427 * this code when I had the misapprehension that Xen PV supported 1428 * NMIs, and Xen PV would break that approach. 1429 */ 1430 std 1431 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1432 1433 /* 1434 * iretq reads the "iret" frame and exits the NMI stack in a 1435 * single instruction. We are returning to kernel mode, so this 1436 * cannot result in a fault. Similarly, we don't need to worry 1437 * about espfix64 on the way back to kernel mode. 1438 */ 1439 iretq 1440SYM_CODE_END(asm_exc_nmi) 1441 1442#ifndef CONFIG_IA32_EMULATION 1443/* 1444 * This handles SYSCALL from 32-bit code. There is no way to program 1445 * MSRs to fully disable 32-bit SYSCALL. 1446 */ 1447SYM_CODE_START(ignore_sysret) 1448 UNWIND_HINT_EMPTY 1449 ENDBR 1450 mov $-ENOSYS, %eax 1451 sysretl 1452SYM_CODE_END(ignore_sysret) 1453#endif 1454 1455.pushsection .text, "ax" 1456SYM_CODE_START(rewind_stack_and_make_dead) 1457 UNWIND_HINT_FUNC 1458 /* Prevent any naive code from trying to unwind to our caller. */ 1459 xorl %ebp, %ebp 1460 1461 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1462 leaq -PTREGS_SIZE(%rax), %rsp 1463 UNWIND_HINT_REGS 1464 1465 call make_task_dead 1466SYM_CODE_END(rewind_stack_and_make_dead) 1467.popsection 1468