xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision d3964221)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include "calling.h"
27#include <asm/asm-offsets.h>
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
32#include <asm/page_types.h>
33#include <asm/irqflags.h>
34#include <asm/paravirt.h>
35#include <asm/percpu.h>
36#include <asm/asm.h>
37#include <asm/smap.h>
38#include <asm/pgtable_types.h>
39#include <asm/export.h>
40#include <asm/frame.h>
41#include <linux/err.h>
42
43.code64
44.section .entry.text, "ax"
45
46#ifdef CONFIG_PARAVIRT
47ENTRY(native_usergs_sysret64)
48	UNWIND_HINT_EMPTY
49	swapgs
50	sysretq
51END(native_usergs_sysret64)
52#endif /* CONFIG_PARAVIRT */
53
54.macro TRACE_IRQS_IRETQ
55#ifdef CONFIG_TRACE_IRQFLAGS
56	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
57	jnc	1f
58	TRACE_IRQS_ON
591:
60#endif
61.endm
62
63/*
64 * When dynamic function tracer is enabled it will add a breakpoint
65 * to all locations that it is about to modify, sync CPUs, update
66 * all the code, sync CPUs, then remove the breakpoints. In this time
67 * if lockdep is enabled, it might jump back into the debug handler
68 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
69 *
70 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
71 * make sure the stack pointer does not get reset back to the top
72 * of the debug stack, and instead just reuses the current stack.
73 */
74#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
75
76.macro TRACE_IRQS_OFF_DEBUG
77	call	debug_stack_set_zero
78	TRACE_IRQS_OFF
79	call	debug_stack_reset
80.endm
81
82.macro TRACE_IRQS_ON_DEBUG
83	call	debug_stack_set_zero
84	TRACE_IRQS_ON
85	call	debug_stack_reset
86.endm
87
88.macro TRACE_IRQS_IRETQ_DEBUG
89	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
90	jnc	1f
91	TRACE_IRQS_ON_DEBUG
921:
93.endm
94
95#else
96# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
97# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
98# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
99#endif
100
101/*
102 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
103 *
104 * This is the only entry point used for 64-bit system calls.  The
105 * hardware interface is reasonably well designed and the register to
106 * argument mapping Linux uses fits well with the registers that are
107 * available when SYSCALL is used.
108 *
109 * SYSCALL instructions can be found inlined in libc implementations as
110 * well as some other programs and libraries.  There are also a handful
111 * of SYSCALL instructions in the vDSO used, for example, as a
112 * clock_gettimeofday fallback.
113 *
114 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
115 * then loads new ss, cs, and rip from previously programmed MSRs.
116 * rflags gets masked by a value from another MSR (so CLD and CLAC
117 * are not needed). SYSCALL does not save anything on the stack
118 * and does not change rsp.
119 *
120 * Registers on entry:
121 * rax  system call number
122 * rcx  return address
123 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
124 * rdi  arg0
125 * rsi  arg1
126 * rdx  arg2
127 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
128 * r8   arg4
129 * r9   arg5
130 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
131 *
132 * Only called from user space.
133 *
134 * When user can change pt_regs->foo always force IRET. That is because
135 * it deals with uncanonical addresses better. SYSRET has trouble
136 * with them due to bugs in both AMD and Intel CPUs.
137 */
138
139ENTRY(entry_SYSCALL_64)
140	UNWIND_HINT_EMPTY
141	/*
142	 * Interrupts are off on entry.
143	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
144	 * it is too small to ever cause noticeable irq latency.
145	 */
146
147	swapgs
148	movq	%rsp, PER_CPU_VAR(rsp_scratch)
149	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
150
151	TRACE_IRQS_OFF
152
153	/* Construct struct pt_regs on stack */
154	pushq	$__USER_DS			/* pt_regs->ss */
155	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
156	pushq	%r11				/* pt_regs->flags */
157	pushq	$__USER_CS			/* pt_regs->cs */
158	pushq	%rcx				/* pt_regs->ip */
159GLOBAL(entry_SYSCALL_64_after_hwframe)
160	pushq	%rax				/* pt_regs->orig_ax */
161	pushq	%rdi				/* pt_regs->di */
162	pushq	%rsi				/* pt_regs->si */
163	pushq	%rdx				/* pt_regs->dx */
164	pushq	%rcx				/* pt_regs->cx */
165	pushq	$-ENOSYS			/* pt_regs->ax */
166	pushq	%r8				/* pt_regs->r8 */
167	pushq	%r9				/* pt_regs->r9 */
168	pushq	%r10				/* pt_regs->r10 */
169	pushq	%r11				/* pt_regs->r11 */
170	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
171	UNWIND_HINT_REGS extra=0
172
173	/*
174	 * If we need to do entry work or if we guess we'll need to do
175	 * exit work, go straight to the slow path.
176	 */
177	movq	PER_CPU_VAR(current_task), %r11
178	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179	jnz	entry_SYSCALL64_slow_path
180
181entry_SYSCALL_64_fastpath:
182	/*
183	 * Easy case: enable interrupts and issue the syscall.  If the syscall
184	 * needs pt_regs, we'll call a stub that disables interrupts again
185	 * and jumps to the slow path.
186	 */
187	TRACE_IRQS_ON
188	ENABLE_INTERRUPTS(CLBR_NONE)
189#if __SYSCALL_MASK == ~0
190	cmpq	$__NR_syscall_max, %rax
191#else
192	andl	$__SYSCALL_MASK, %eax
193	cmpl	$__NR_syscall_max, %eax
194#endif
195	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
196	movq	%r10, %rcx
197
198	/*
199	 * This call instruction is handled specially in stub_ptregs_64.
200	 * It might end up jumping to the slow path.  If it jumps, RAX
201	 * and all argument registers are clobbered.
202	 */
203	call	*sys_call_table(, %rax, 8)
204.Lentry_SYSCALL_64_after_fastpath_call:
205
206	movq	%rax, RAX(%rsp)
2071:
208
209	/*
210	 * If we get here, then we know that pt_regs is clean for SYSRET64.
211	 * If we see that no exit work is required (which we are required
212	 * to check with IRQs off), then we can go straight to SYSRET64.
213	 */
214	DISABLE_INTERRUPTS(CLBR_ANY)
215	TRACE_IRQS_OFF
216	movq	PER_CPU_VAR(current_task), %r11
217	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218	jnz	1f
219
220	LOCKDEP_SYS_EXIT
221	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222	movq	RIP(%rsp), %rcx
223	movq	EFLAGS(%rsp), %r11
224	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
225	UNWIND_HINT_EMPTY
226	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
227
2281:
229	/*
230	 * The fast path looked good when we started, but something changed
231	 * along the way and we need to switch to the slow path.  Calling
232	 * raise(3) will trigger this, for example.  IRQs are off.
233	 */
234	TRACE_IRQS_ON
235	ENABLE_INTERRUPTS(CLBR_ANY)
236	SAVE_EXTRA_REGS
237	movq	%rsp, %rdi
238	call	syscall_return_slowpath	/* returns with IRQs disabled */
239	jmp	return_from_SYSCALL_64
240
241entry_SYSCALL64_slow_path:
242	/* IRQs are off. */
243	SAVE_EXTRA_REGS
244	movq	%rsp, %rdi
245	call	do_syscall_64		/* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
248	TRACE_IRQS_IRETQ		/* we're about to change IF */
249
250	/*
251	 * Try to use SYSRET instead of IRET if we're returning to
252	 * a completely clean 64-bit userspace context.  If we're not,
253	 * go to the slow exit path.
254	 */
255	movq	RCX(%rsp), %rcx
256	movq	RIP(%rsp), %r11
257
258	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
259	jne	swapgs_restore_regs_and_return_to_usermode
260
261	/*
262	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263	 * in kernel space.  This essentially lets the user take over
264	 * the kernel, since userspace controls RSP.
265	 *
266	 * If width of "canonical tail" ever becomes variable, this will need
267	 * to be updated to remain correct on both old and new CPUs.
268	 *
269	 * Change top bits to match most significant bit (47th or 56th bit
270	 * depending on paging mode) in the address.
271	 */
272	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
274
275	/* If this changed %rcx, it was not canonical */
276	cmpq	%rcx, %r11
277	jne	swapgs_restore_regs_and_return_to_usermode
278
279	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
280	jne	swapgs_restore_regs_and_return_to_usermode
281
282	movq	R11(%rsp), %r11
283	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
284	jne	swapgs_restore_regs_and_return_to_usermode
285
286	/*
287	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
288	 * restore RF properly. If the slowpath sets it for whatever reason, we
289	 * need to restore it correctly.
290	 *
291	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
292	 * trap from userspace immediately after SYSRET.  This would cause an
293	 * infinite loop whenever #DB happens with register state that satisfies
294	 * the opportunistic SYSRET conditions.  For example, single-stepping
295	 * this user code:
296	 *
297	 *           movq	$stuck_here, %rcx
298	 *           pushfq
299	 *           popq %r11
300	 *   stuck_here:
301	 *
302	 * would never get past 'stuck_here'.
303	 */
304	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305	jnz	swapgs_restore_regs_and_return_to_usermode
306
307	/* nothing to check for RSP */
308
309	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
310	jne	swapgs_restore_regs_and_return_to_usermode
311
312	/*
313	 * We win! This label is here just for ease of understanding
314	 * perf profiles. Nothing jumps here.
315	 */
316syscall_return_via_sysret:
317	/* rcx and r11 are already restored (see code above) */
318	UNWIND_HINT_EMPTY
319	POP_EXTRA_REGS
320.Lpop_c_regs_except_rcx_r11_and_sysret:
321	popq	%rsi	/* skip r11 */
322	popq	%r10
323	popq	%r9
324	popq	%r8
325	popq	%rax
326	popq	%rsi	/* skip rcx */
327	popq	%rdx
328	popq	%rsi
329	popq	%rdi
330	movq	RSP-ORIG_RAX(%rsp), %rsp
331	USERGS_SYSRET64
332END(entry_SYSCALL_64)
333
334ENTRY(stub_ptregs_64)
335	/*
336	 * Syscalls marked as needing ptregs land here.
337	 * If we are on the fast path, we need to save the extra regs,
338	 * which we achieve by trying again on the slow path.  If we are on
339	 * the slow path, the extra regs are already saved.
340	 *
341	 * RAX stores a pointer to the C function implementing the syscall.
342	 * IRQs are on.
343	 */
344	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
345	jne	1f
346
347	/*
348	 * Called from fast path -- disable IRQs again, pop return address
349	 * and jump to slow path
350	 */
351	DISABLE_INTERRUPTS(CLBR_ANY)
352	TRACE_IRQS_OFF
353	popq	%rax
354	UNWIND_HINT_REGS extra=0
355	jmp	entry_SYSCALL64_slow_path
356
3571:
358	jmp	*%rax				/* Called from C */
359END(stub_ptregs_64)
360
361.macro ptregs_stub func
362ENTRY(ptregs_\func)
363	UNWIND_HINT_FUNC
364	leaq	\func(%rip), %rax
365	jmp	stub_ptregs_64
366END(ptregs_\func)
367.endm
368
369/* Instantiate ptregs_stub for each ptregs-using syscall */
370#define __SYSCALL_64_QUAL_(sym)
371#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
372#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
373#include <asm/syscalls_64.h>
374
375/*
376 * %rdi: prev task
377 * %rsi: next task
378 */
379ENTRY(__switch_to_asm)
380	UNWIND_HINT_FUNC
381	/*
382	 * Save callee-saved registers
383	 * This must match the order in inactive_task_frame
384	 */
385	pushq	%rbp
386	pushq	%rbx
387	pushq	%r12
388	pushq	%r13
389	pushq	%r14
390	pushq	%r15
391
392	/* switch stack */
393	movq	%rsp, TASK_threadsp(%rdi)
394	movq	TASK_threadsp(%rsi), %rsp
395
396#ifdef CONFIG_CC_STACKPROTECTOR
397	movq	TASK_stack_canary(%rsi), %rbx
398	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
399#endif
400
401	/* restore callee-saved registers */
402	popq	%r15
403	popq	%r14
404	popq	%r13
405	popq	%r12
406	popq	%rbx
407	popq	%rbp
408
409	jmp	__switch_to
410END(__switch_to_asm)
411
412/*
413 * A newly forked process directly context switches into this address.
414 *
415 * rax: prev task we switched from
416 * rbx: kernel thread func (NULL for user thread)
417 * r12: kernel thread arg
418 */
419ENTRY(ret_from_fork)
420	UNWIND_HINT_EMPTY
421	movq	%rax, %rdi
422	call	schedule_tail			/* rdi: 'prev' task parameter */
423
424	testq	%rbx, %rbx			/* from kernel_thread? */
425	jnz	1f				/* kernel threads are uncommon */
426
4272:
428	UNWIND_HINT_REGS
429	movq	%rsp, %rdi
430	call	syscall_return_slowpath	/* returns with IRQs disabled */
431	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
432	jmp	swapgs_restore_regs_and_return_to_usermode
433
4341:
435	/* kernel thread */
436	movq	%r12, %rdi
437	call	*%rbx
438	/*
439	 * A kernel thread is allowed to return here after successfully
440	 * calling do_execve().  Exit to userspace to complete the execve()
441	 * syscall.
442	 */
443	movq	$0, RAX(%rsp)
444	jmp	2b
445END(ret_from_fork)
446
447/*
448 * Build the entry stubs with some assembler magic.
449 * We pack 1 stub into every 8-byte block.
450 */
451	.align 8
452ENTRY(irq_entries_start)
453    vector=FIRST_EXTERNAL_VECTOR
454    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
455	UNWIND_HINT_IRET_REGS
456	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
457	jmp	common_interrupt
458	.align	8
459	vector=vector+1
460    .endr
461END(irq_entries_start)
462
463.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
464#ifdef CONFIG_DEBUG_ENTRY
465	pushfq
466	testl $X86_EFLAGS_IF, (%rsp)
467	jz .Lokay_\@
468	ud2
469.Lokay_\@:
470	addq $8, %rsp
471#endif
472.endm
473
474/*
475 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
476 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
477 * Requires kernel GSBASE.
478 *
479 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
480 */
481.macro ENTER_IRQ_STACK regs=1 old_rsp
482	DEBUG_ENTRY_ASSERT_IRQS_OFF
483	movq	%rsp, \old_rsp
484
485	.if \regs
486	UNWIND_HINT_REGS base=\old_rsp
487	.endif
488
489	incl	PER_CPU_VAR(irq_count)
490	jnz	.Lirq_stack_push_old_rsp_\@
491
492	/*
493	 * Right now, if we just incremented irq_count to zero, we've
494	 * claimed the IRQ stack but we haven't switched to it yet.
495	 *
496	 * If anything is added that can interrupt us here without using IST,
497	 * it must be *extremely* careful to limit its stack usage.  This
498	 * could include kprobes and a hypothetical future IST-less #DB
499	 * handler.
500	 *
501	 * The OOPS unwinder relies on the word at the top of the IRQ
502	 * stack linking back to the previous RSP for the entire time we're
503	 * on the IRQ stack.  For this to work reliably, we need to write
504	 * it before we actually move ourselves to the IRQ stack.
505	 */
506
507	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
508	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
509
510#ifdef CONFIG_DEBUG_ENTRY
511	/*
512	 * If the first movq above becomes wrong due to IRQ stack layout
513	 * changes, the only way we'll notice is if we try to unwind right
514	 * here.  Assert that we set up the stack right to catch this type
515	 * of bug quickly.
516	 */
517	cmpq	-8(%rsp), \old_rsp
518	je	.Lirq_stack_okay\@
519	ud2
520	.Lirq_stack_okay\@:
521#endif
522
523.Lirq_stack_push_old_rsp_\@:
524	pushq	\old_rsp
525
526	.if \regs
527	UNWIND_HINT_REGS indirect=1
528	.endif
529.endm
530
531/*
532 * Undoes ENTER_IRQ_STACK.
533 */
534.macro LEAVE_IRQ_STACK regs=1
535	DEBUG_ENTRY_ASSERT_IRQS_OFF
536	/* We need to be off the IRQ stack before decrementing irq_count. */
537	popq	%rsp
538
539	.if \regs
540	UNWIND_HINT_REGS
541	.endif
542
543	/*
544	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
545	 * the irq stack but we're not on it.
546	 */
547
548	decl	PER_CPU_VAR(irq_count)
549.endm
550
551/*
552 * Interrupt entry/exit.
553 *
554 * Interrupt entry points save only callee clobbered registers in fast path.
555 *
556 * Entry runs with interrupts off.
557 */
558
559/* 0(%rsp): ~(interrupt number) */
560	.macro interrupt func
561	cld
562	ALLOC_PT_GPREGS_ON_STACK
563	SAVE_C_REGS
564	SAVE_EXTRA_REGS
565	ENCODE_FRAME_POINTER
566
567	testb	$3, CS(%rsp)
568	jz	1f
569
570	/*
571	 * IRQ from user mode.  Switch to kernel gsbase and inform context
572	 * tracking that we're in kernel mode.
573	 */
574	SWAPGS
575
576	/*
577	 * We need to tell lockdep that IRQs are off.  We can't do this until
578	 * we fix gsbase, and we should do it before enter_from_user_mode
579	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
580	 * the simplest way to handle it is to just call it twice if
581	 * we enter from user mode.  There's no reason to optimize this since
582	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
583	 */
584	TRACE_IRQS_OFF
585
586	CALL_enter_from_user_mode
587
5881:
589	ENTER_IRQ_STACK old_rsp=%rdi
590	/* We entered an interrupt context - irqs are off: */
591	TRACE_IRQS_OFF
592
593	call	\func	/* rdi points to pt_regs */
594	.endm
595
596	/*
597	 * The interrupt stubs push (~vector+0x80) onto the stack and
598	 * then jump to common_interrupt.
599	 */
600	.p2align CONFIG_X86_L1_CACHE_SHIFT
601common_interrupt:
602	ASM_CLAC
603	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
604	interrupt do_IRQ
605	/* 0(%rsp): old RSP */
606ret_from_intr:
607	DISABLE_INTERRUPTS(CLBR_ANY)
608	TRACE_IRQS_OFF
609
610	LEAVE_IRQ_STACK
611
612	testb	$3, CS(%rsp)
613	jz	retint_kernel
614
615	/* Interrupt came from user space */
616GLOBAL(retint_user)
617	mov	%rsp,%rdi
618	call	prepare_exit_to_usermode
619	TRACE_IRQS_IRETQ
620
621GLOBAL(swapgs_restore_regs_and_return_to_usermode)
622#ifdef CONFIG_DEBUG_ENTRY
623	/* Assert that pt_regs indicates user mode. */
624	testb	$3, CS(%rsp)
625	jnz	1f
626	ud2
6271:
628#endif
629	SWAPGS
630	POP_EXTRA_REGS
631	POP_C_REGS
632	addq	$8, %rsp	/* skip regs->orig_ax */
633	INTERRUPT_RETURN
634
635
636/* Returning to kernel space */
637retint_kernel:
638#ifdef CONFIG_PREEMPT
639	/* Interrupts are off */
640	/* Check if we need preemption */
641	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
642	jnc	1f
6430:	cmpl	$0, PER_CPU_VAR(__preempt_count)
644	jnz	1f
645	call	preempt_schedule_irq
646	jmp	0b
6471:
648#endif
649	/*
650	 * The iretq could re-enable interrupts:
651	 */
652	TRACE_IRQS_IRETQ
653
654GLOBAL(restore_regs_and_return_to_kernel)
655#ifdef CONFIG_DEBUG_ENTRY
656	/* Assert that pt_regs indicates kernel mode. */
657	testb	$3, CS(%rsp)
658	jz	1f
659	ud2
6601:
661#endif
662	POP_EXTRA_REGS
663	POP_C_REGS
664	addq	$8, %rsp	/* skip regs->orig_ax */
665	INTERRUPT_RETURN
666
667ENTRY(native_iret)
668	UNWIND_HINT_IRET_REGS
669	/*
670	 * Are we returning to a stack segment from the LDT?  Note: in
671	 * 64-bit mode SS:RSP on the exception stack is always valid.
672	 */
673#ifdef CONFIG_X86_ESPFIX64
674	testb	$4, (SS-RIP)(%rsp)
675	jnz	native_irq_return_ldt
676#endif
677
678.global native_irq_return_iret
679native_irq_return_iret:
680	/*
681	 * This may fault.  Non-paranoid faults on return to userspace are
682	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
683	 * Double-faults due to espfix64 are handled in do_double_fault.
684	 * Other faults here are fatal.
685	 */
686	iretq
687
688#ifdef CONFIG_X86_ESPFIX64
689native_irq_return_ldt:
690	/*
691	 * We are running with user GSBASE.  All GPRs contain their user
692	 * values.  We have a percpu ESPFIX stack that is eight slots
693	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
694	 * of the ESPFIX stack.
695	 *
696	 * We clobber RAX and RDI in this code.  We stash RDI on the
697	 * normal stack and RAX on the ESPFIX stack.
698	 *
699	 * The ESPFIX stack layout we set up looks like this:
700	 *
701	 * --- top of ESPFIX stack ---
702	 * SS
703	 * RSP
704	 * RFLAGS
705	 * CS
706	 * RIP  <-- RSP points here when we're done
707	 * RAX  <-- espfix_waddr points here
708	 * --- bottom of ESPFIX stack ---
709	 */
710
711	pushq	%rdi				/* Stash user RDI */
712	SWAPGS
713	movq	PER_CPU_VAR(espfix_waddr), %rdi
714	movq	%rax, (0*8)(%rdi)		/* user RAX */
715	movq	(1*8)(%rsp), %rax		/* user RIP */
716	movq	%rax, (1*8)(%rdi)
717	movq	(2*8)(%rsp), %rax		/* user CS */
718	movq	%rax, (2*8)(%rdi)
719	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
720	movq	%rax, (3*8)(%rdi)
721	movq	(5*8)(%rsp), %rax		/* user SS */
722	movq	%rax, (5*8)(%rdi)
723	movq	(4*8)(%rsp), %rax		/* user RSP */
724	movq	%rax, (4*8)(%rdi)
725	/* Now RAX == RSP. */
726
727	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
728	popq	%rdi				/* Restore user RDI */
729
730	/*
731	 * espfix_stack[31:16] == 0.  The page tables are set up such that
732	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
733	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
734	 * the same page.  Set up RSP so that RSP[31:16] contains the
735	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
736	 * still points to an RO alias of the ESPFIX stack.
737	 */
738	orq	PER_CPU_VAR(espfix_stack), %rax
739	SWAPGS
740	movq	%rax, %rsp
741	UNWIND_HINT_IRET_REGS offset=8
742
743	/*
744	 * At this point, we cannot write to the stack any more, but we can
745	 * still read.
746	 */
747	popq	%rax				/* Restore user RAX */
748
749	/*
750	 * RSP now points to an ordinary IRET frame, except that the page
751	 * is read-only and RSP[31:16] are preloaded with the userspace
752	 * values.  We can now IRET back to userspace.
753	 */
754	jmp	native_irq_return_iret
755#endif
756END(common_interrupt)
757
758/*
759 * APIC interrupts.
760 */
761.macro apicinterrupt3 num sym do_sym
762ENTRY(\sym)
763	UNWIND_HINT_IRET_REGS
764	ASM_CLAC
765	pushq	$~(\num)
766.Lcommon_\sym:
767	interrupt \do_sym
768	jmp	ret_from_intr
769END(\sym)
770.endm
771
772/* Make sure APIC interrupt handlers end up in the irqentry section: */
773#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
774#define POP_SECTION_IRQENTRY	.popsection
775
776.macro apicinterrupt num sym do_sym
777PUSH_SECTION_IRQENTRY
778apicinterrupt3 \num \sym \do_sym
779POP_SECTION_IRQENTRY
780.endm
781
782#ifdef CONFIG_SMP
783apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
784apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
785#endif
786
787#ifdef CONFIG_X86_UV
788apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
789#endif
790
791apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
792apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
793
794#ifdef CONFIG_HAVE_KVM
795apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
796apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
797apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
798#endif
799
800#ifdef CONFIG_X86_MCE_THRESHOLD
801apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
802#endif
803
804#ifdef CONFIG_X86_MCE_AMD
805apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
806#endif
807
808#ifdef CONFIG_X86_THERMAL_VECTOR
809apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
810#endif
811
812#ifdef CONFIG_SMP
813apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
814apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
815apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
816#endif
817
818apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
819apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
820
821#ifdef CONFIG_IRQ_WORK
822apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
823#endif
824
825/*
826 * Exception entry points.
827 */
828#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
829
830.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
831ENTRY(\sym)
832	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
833
834	/* Sanity check */
835	.if \shift_ist != -1 && \paranoid == 0
836	.error "using shift_ist requires paranoid=1"
837	.endif
838
839	ASM_CLAC
840
841	.if \has_error_code == 0
842	pushq	$-1				/* ORIG_RAX: no syscall to restart */
843	.endif
844
845	ALLOC_PT_GPREGS_ON_STACK
846
847	.if \paranoid
848	.if \paranoid == 1
849	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
850	jnz	1f
851	.endif
852	call	paranoid_entry
853	.else
854	call	error_entry
855	.endif
856	UNWIND_HINT_REGS
857	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
858
859	.if \paranoid
860	.if \shift_ist != -1
861	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
862	.else
863	TRACE_IRQS_OFF
864	.endif
865	.endif
866
867	movq	%rsp, %rdi			/* pt_regs pointer */
868
869	.if \has_error_code
870	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
871	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
872	.else
873	xorl	%esi, %esi			/* no error code */
874	.endif
875
876	.if \shift_ist != -1
877	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
878	.endif
879
880	call	\do_sym
881
882	.if \shift_ist != -1
883	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
884	.endif
885
886	/* these procedures expect "no swapgs" flag in ebx */
887	.if \paranoid
888	jmp	paranoid_exit
889	.else
890	jmp	error_exit
891	.endif
892
893	.if \paranoid == 1
894	/*
895	 * Paranoid entry from userspace.  Switch stacks and treat it
896	 * as a normal entry.  This means that paranoid handlers
897	 * run in real process context if user_mode(regs).
898	 */
8991:
900	call	error_entry
901
902
903	movq	%rsp, %rdi			/* pt_regs pointer */
904	call	sync_regs
905	movq	%rax, %rsp			/* switch stack */
906
907	movq	%rsp, %rdi			/* pt_regs pointer */
908
909	.if \has_error_code
910	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
911	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
912	.else
913	xorl	%esi, %esi			/* no error code */
914	.endif
915
916	call	\do_sym
917
918	jmp	error_exit			/* %ebx: no swapgs flag */
919	.endif
920END(\sym)
921.endm
922
923idtentry divide_error			do_divide_error			has_error_code=0
924idtentry overflow			do_overflow			has_error_code=0
925idtentry bounds				do_bounds			has_error_code=0
926idtentry invalid_op			do_invalid_op			has_error_code=0
927idtentry device_not_available		do_device_not_available		has_error_code=0
928idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
929idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
930idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
931idtentry segment_not_present		do_segment_not_present		has_error_code=1
932idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
933idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
934idtentry alignment_check		do_alignment_check		has_error_code=1
935idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
936
937
938	/*
939	 * Reload gs selector with exception handling
940	 * edi:  new selector
941	 */
942ENTRY(native_load_gs_index)
943	FRAME_BEGIN
944	pushfq
945	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
946	SWAPGS
947.Lgs_change:
948	movl	%edi, %gs
9492:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
950	SWAPGS
951	popfq
952	FRAME_END
953	ret
954ENDPROC(native_load_gs_index)
955EXPORT_SYMBOL(native_load_gs_index)
956
957	_ASM_EXTABLE(.Lgs_change, bad_gs)
958	.section .fixup, "ax"
959	/* running with kernelgs */
960bad_gs:
961	SWAPGS					/* switch back to user gs */
962.macro ZAP_GS
963	/* This can't be a string because the preprocessor needs to see it. */
964	movl $__USER_DS, %eax
965	movl %eax, %gs
966.endm
967	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
968	xorl	%eax, %eax
969	movl	%eax, %gs
970	jmp	2b
971	.previous
972
973/* Call softirq on interrupt stack. Interrupts are off. */
974ENTRY(do_softirq_own_stack)
975	pushq	%rbp
976	mov	%rsp, %rbp
977	ENTER_IRQ_STACK regs=0 old_rsp=%r11
978	call	__do_softirq
979	LEAVE_IRQ_STACK regs=0
980	leaveq
981	ret
982ENDPROC(do_softirq_own_stack)
983
984#ifdef CONFIG_XEN
985idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
986
987/*
988 * A note on the "critical region" in our callback handler.
989 * We want to avoid stacking callback handlers due to events occurring
990 * during handling of the last event. To do this, we keep events disabled
991 * until we've done all processing. HOWEVER, we must enable events before
992 * popping the stack frame (can't be done atomically) and so it would still
993 * be possible to get enough handler activations to overflow the stack.
994 * Although unlikely, bugs of that kind are hard to track down, so we'd
995 * like to avoid the possibility.
996 * So, on entry to the handler we detect whether we interrupted an
997 * existing activation in its critical region -- if so, we pop the current
998 * activation and restart the handler using the previous one.
999 */
1000ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1001
1002/*
1003 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1004 * see the correct pointer to the pt_regs
1005 */
1006	UNWIND_HINT_FUNC
1007	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1008	UNWIND_HINT_REGS
1009
1010	ENTER_IRQ_STACK old_rsp=%r10
1011	call	xen_evtchn_do_upcall
1012	LEAVE_IRQ_STACK
1013
1014#ifndef CONFIG_PREEMPT
1015	call	xen_maybe_preempt_hcall
1016#endif
1017	jmp	error_exit
1018END(xen_do_hypervisor_callback)
1019
1020/*
1021 * Hypervisor uses this for application faults while it executes.
1022 * We get here for two reasons:
1023 *  1. Fault while reloading DS, ES, FS or GS
1024 *  2. Fault while executing IRET
1025 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1026 * registers that could be reloaded and zeroed the others.
1027 * Category 2 we fix up by killing the current process. We cannot use the
1028 * normal Linux return path in this case because if we use the IRET hypercall
1029 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1030 * We distinguish between categories by comparing each saved segment register
1031 * with its current contents: any discrepancy means we in category 1.
1032 */
1033ENTRY(xen_failsafe_callback)
1034	UNWIND_HINT_EMPTY
1035	movl	%ds, %ecx
1036	cmpw	%cx, 0x10(%rsp)
1037	jne	1f
1038	movl	%es, %ecx
1039	cmpw	%cx, 0x18(%rsp)
1040	jne	1f
1041	movl	%fs, %ecx
1042	cmpw	%cx, 0x20(%rsp)
1043	jne	1f
1044	movl	%gs, %ecx
1045	cmpw	%cx, 0x28(%rsp)
1046	jne	1f
1047	/* All segments match their saved values => Category 2 (Bad IRET). */
1048	movq	(%rsp), %rcx
1049	movq	8(%rsp), %r11
1050	addq	$0x30, %rsp
1051	pushq	$0				/* RIP */
1052	UNWIND_HINT_IRET_REGS offset=8
1053	jmp	general_protection
10541:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1055	movq	(%rsp), %rcx
1056	movq	8(%rsp), %r11
1057	addq	$0x30, %rsp
1058	UNWIND_HINT_IRET_REGS
1059	pushq	$-1 /* orig_ax = -1 => not a system call */
1060	ALLOC_PT_GPREGS_ON_STACK
1061	SAVE_C_REGS
1062	SAVE_EXTRA_REGS
1063	ENCODE_FRAME_POINTER
1064	jmp	error_exit
1065END(xen_failsafe_callback)
1066
1067apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1068	xen_hvm_callback_vector xen_evtchn_do_upcall
1069
1070#endif /* CONFIG_XEN */
1071
1072#if IS_ENABLED(CONFIG_HYPERV)
1073apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1074	hyperv_callback_vector hyperv_vector_handler
1075#endif /* CONFIG_HYPERV */
1076
1077idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1078idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1079idtentry stack_segment		do_stack_segment	has_error_code=1
1080
1081#ifdef CONFIG_XEN
1082idtentry xennmi			do_nmi			has_error_code=0
1083idtentry xendebug		do_debug		has_error_code=0
1084idtentry xenint3		do_int3			has_error_code=0
1085#endif
1086
1087idtentry general_protection	do_general_protection	has_error_code=1
1088idtentry page_fault		do_page_fault		has_error_code=1
1089
1090#ifdef CONFIG_KVM_GUEST
1091idtentry async_page_fault	do_async_page_fault	has_error_code=1
1092#endif
1093
1094#ifdef CONFIG_X86_MCE
1095idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1096#endif
1097
1098/*
1099 * Save all registers in pt_regs, and switch gs if needed.
1100 * Use slow, but surefire "are we in kernel?" check.
1101 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1102 */
1103ENTRY(paranoid_entry)
1104	UNWIND_HINT_FUNC
1105	cld
1106	SAVE_C_REGS 8
1107	SAVE_EXTRA_REGS 8
1108	ENCODE_FRAME_POINTER 8
1109	movl	$1, %ebx
1110	movl	$MSR_GS_BASE, %ecx
1111	rdmsr
1112	testl	%edx, %edx
1113	js	1f				/* negative -> in kernel */
1114	SWAPGS
1115	xorl	%ebx, %ebx
11161:	ret
1117END(paranoid_entry)
1118
1119/*
1120 * "Paranoid" exit path from exception stack.  This is invoked
1121 * only on return from non-NMI IST interrupts that came
1122 * from kernel space.
1123 *
1124 * We may be returning to very strange contexts (e.g. very early
1125 * in syscall entry), so checking for preemption here would
1126 * be complicated.  Fortunately, we there's no good reason
1127 * to try to handle preemption here.
1128 *
1129 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1130 */
1131ENTRY(paranoid_exit)
1132	UNWIND_HINT_REGS
1133	DISABLE_INTERRUPTS(CLBR_ANY)
1134	TRACE_IRQS_OFF_DEBUG
1135	testl	%ebx, %ebx			/* swapgs needed? */
1136	jnz	.Lparanoid_exit_no_swapgs
1137	TRACE_IRQS_IRETQ
1138	SWAPGS_UNSAFE_STACK
1139	jmp	.Lparanoid_exit_restore
1140.Lparanoid_exit_no_swapgs:
1141	TRACE_IRQS_IRETQ_DEBUG
1142.Lparanoid_exit_restore:
1143	jmp restore_regs_and_return_to_kernel
1144END(paranoid_exit)
1145
1146/*
1147 * Save all registers in pt_regs, and switch gs if needed.
1148 * Return: EBX=0: came from user mode; EBX=1: otherwise
1149 */
1150ENTRY(error_entry)
1151	UNWIND_HINT_FUNC
1152	cld
1153	SAVE_C_REGS 8
1154	SAVE_EXTRA_REGS 8
1155	ENCODE_FRAME_POINTER 8
1156	xorl	%ebx, %ebx
1157	testb	$3, CS+8(%rsp)
1158	jz	.Lerror_kernelspace
1159
1160	/*
1161	 * We entered from user mode or we're pretending to have entered
1162	 * from user mode due to an IRET fault.
1163	 */
1164	SWAPGS
1165
1166.Lerror_entry_from_usermode_after_swapgs:
1167	/*
1168	 * We need to tell lockdep that IRQs are off.  We can't do this until
1169	 * we fix gsbase, and we should do it before enter_from_user_mode
1170	 * (which can take locks).
1171	 */
1172	TRACE_IRQS_OFF
1173	CALL_enter_from_user_mode
1174	ret
1175
1176.Lerror_entry_done:
1177	TRACE_IRQS_OFF
1178	ret
1179
1180	/*
1181	 * There are two places in the kernel that can potentially fault with
1182	 * usergs. Handle them here.  B stepping K8s sometimes report a
1183	 * truncated RIP for IRET exceptions returning to compat mode. Check
1184	 * for these here too.
1185	 */
1186.Lerror_kernelspace:
1187	incl	%ebx
1188	leaq	native_irq_return_iret(%rip), %rcx
1189	cmpq	%rcx, RIP+8(%rsp)
1190	je	.Lerror_bad_iret
1191	movl	%ecx, %eax			/* zero extend */
1192	cmpq	%rax, RIP+8(%rsp)
1193	je	.Lbstep_iret
1194	cmpq	$.Lgs_change, RIP+8(%rsp)
1195	jne	.Lerror_entry_done
1196
1197	/*
1198	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1199	 * gsbase and proceed.  We'll fix up the exception and land in
1200	 * .Lgs_change's error handler with kernel gsbase.
1201	 */
1202	SWAPGS
1203	jmp .Lerror_entry_done
1204
1205.Lbstep_iret:
1206	/* Fix truncated RIP */
1207	movq	%rcx, RIP+8(%rsp)
1208	/* fall through */
1209
1210.Lerror_bad_iret:
1211	/*
1212	 * We came from an IRET to user mode, so we have user gsbase.
1213	 * Switch to kernel gsbase:
1214	 */
1215	SWAPGS
1216
1217	/*
1218	 * Pretend that the exception came from user mode: set up pt_regs
1219	 * as if we faulted immediately after IRET and clear EBX so that
1220	 * error_exit knows that we will be returning to user mode.
1221	 */
1222	mov	%rsp, %rdi
1223	call	fixup_bad_iret
1224	mov	%rax, %rsp
1225	decl	%ebx
1226	jmp	.Lerror_entry_from_usermode_after_swapgs
1227END(error_entry)
1228
1229
1230/*
1231 * On entry, EBX is a "return to kernel mode" flag:
1232 *   1: already in kernel mode, don't need SWAPGS
1233 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1234 */
1235ENTRY(error_exit)
1236	UNWIND_HINT_REGS
1237	DISABLE_INTERRUPTS(CLBR_ANY)
1238	TRACE_IRQS_OFF
1239	testl	%ebx, %ebx
1240	jnz	retint_kernel
1241	jmp	retint_user
1242END(error_exit)
1243
1244/*
1245 * Runs on exception stack.  Xen PV does not go through this path at all,
1246 * so we can use real assembly here.
1247 */
1248ENTRY(nmi)
1249	UNWIND_HINT_IRET_REGS
1250
1251	/*
1252	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1253	 * the iretq it performs will take us out of NMI context.
1254	 * This means that we can have nested NMIs where the next
1255	 * NMI is using the top of the stack of the previous NMI. We
1256	 * can't let it execute because the nested NMI will corrupt the
1257	 * stack of the previous NMI. NMI handlers are not re-entrant
1258	 * anyway.
1259	 *
1260	 * To handle this case we do the following:
1261	 *  Check the a special location on the stack that contains
1262	 *  a variable that is set when NMIs are executing.
1263	 *  The interrupted task's stack is also checked to see if it
1264	 *  is an NMI stack.
1265	 *  If the variable is not set and the stack is not the NMI
1266	 *  stack then:
1267	 *    o Set the special variable on the stack
1268	 *    o Copy the interrupt frame into an "outermost" location on the
1269	 *      stack
1270	 *    o Copy the interrupt frame into an "iret" location on the stack
1271	 *    o Continue processing the NMI
1272	 *  If the variable is set or the previous stack is the NMI stack:
1273	 *    o Modify the "iret" location to jump to the repeat_nmi
1274	 *    o return back to the first NMI
1275	 *
1276	 * Now on exit of the first NMI, we first clear the stack variable
1277	 * The NMI stack will tell any nested NMIs at that point that it is
1278	 * nested. Then we pop the stack normally with iret, and if there was
1279	 * a nested NMI that updated the copy interrupt stack frame, a
1280	 * jump will be made to the repeat_nmi code that will handle the second
1281	 * NMI.
1282	 *
1283	 * However, espfix prevents us from directly returning to userspace
1284	 * with a single IRET instruction.  Similarly, IRET to user mode
1285	 * can fault.  We therefore handle NMIs from user space like
1286	 * other IST entries.
1287	 */
1288
1289	ASM_CLAC
1290
1291	/* Use %rdx as our temp variable throughout */
1292	pushq	%rdx
1293
1294	testb	$3, CS-RIP+8(%rsp)
1295	jz	.Lnmi_from_kernel
1296
1297	/*
1298	 * NMI from user mode.  We need to run on the thread stack, but we
1299	 * can't go through the normal entry paths: NMIs are masked, and
1300	 * we don't want to enable interrupts, because then we'll end
1301	 * up in an awkward situation in which IRQs are on but NMIs
1302	 * are off.
1303	 *
1304	 * We also must not push anything to the stack before switching
1305	 * stacks lest we corrupt the "NMI executing" variable.
1306	 */
1307
1308	swapgs
1309	cld
1310	movq	%rsp, %rdx
1311	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1312	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1313	pushq	5*8(%rdx)	/* pt_regs->ss */
1314	pushq	4*8(%rdx)	/* pt_regs->rsp */
1315	pushq	3*8(%rdx)	/* pt_regs->flags */
1316	pushq	2*8(%rdx)	/* pt_regs->cs */
1317	pushq	1*8(%rdx)	/* pt_regs->rip */
1318	UNWIND_HINT_IRET_REGS
1319	pushq   $-1		/* pt_regs->orig_ax */
1320	pushq   %rdi		/* pt_regs->di */
1321	pushq   %rsi		/* pt_regs->si */
1322	pushq   (%rdx)		/* pt_regs->dx */
1323	pushq   %rcx		/* pt_regs->cx */
1324	pushq   %rax		/* pt_regs->ax */
1325	pushq   %r8		/* pt_regs->r8 */
1326	pushq   %r9		/* pt_regs->r9 */
1327	pushq   %r10		/* pt_regs->r10 */
1328	pushq   %r11		/* pt_regs->r11 */
1329	pushq	%rbx		/* pt_regs->rbx */
1330	pushq	%rbp		/* pt_regs->rbp */
1331	pushq	%r12		/* pt_regs->r12 */
1332	pushq	%r13		/* pt_regs->r13 */
1333	pushq	%r14		/* pt_regs->r14 */
1334	pushq	%r15		/* pt_regs->r15 */
1335	UNWIND_HINT_REGS
1336	ENCODE_FRAME_POINTER
1337
1338	/*
1339	 * At this point we no longer need to worry about stack damage
1340	 * due to nesting -- we're on the normal thread stack and we're
1341	 * done with the NMI stack.
1342	 */
1343
1344	movq	%rsp, %rdi
1345	movq	$-1, %rsi
1346	call	do_nmi
1347
1348	/*
1349	 * Return back to user mode.  We must *not* do the normal exit
1350	 * work, because we don't want to enable interrupts.
1351	 */
1352	jmp	swapgs_restore_regs_and_return_to_usermode
1353
1354.Lnmi_from_kernel:
1355	/*
1356	 * Here's what our stack frame will look like:
1357	 * +---------------------------------------------------------+
1358	 * | original SS                                             |
1359	 * | original Return RSP                                     |
1360	 * | original RFLAGS                                         |
1361	 * | original CS                                             |
1362	 * | original RIP                                            |
1363	 * +---------------------------------------------------------+
1364	 * | temp storage for rdx                                    |
1365	 * +---------------------------------------------------------+
1366	 * | "NMI executing" variable                                |
1367	 * +---------------------------------------------------------+
1368	 * | iret SS          } Copied from "outermost" frame        |
1369	 * | iret Return RSP  } on each loop iteration; overwritten  |
1370	 * | iret RFLAGS      } by a nested NMI to force another     |
1371	 * | iret CS          } iteration if needed.                 |
1372	 * | iret RIP         }                                      |
1373	 * +---------------------------------------------------------+
1374	 * | outermost SS          } initialized in first_nmi;       |
1375	 * | outermost Return RSP  } will not be changed before      |
1376	 * | outermost RFLAGS      } NMI processing is done.         |
1377	 * | outermost CS          } Copied to "iret" frame on each  |
1378	 * | outermost RIP         } iteration.                      |
1379	 * +---------------------------------------------------------+
1380	 * | pt_regs                                                 |
1381	 * +---------------------------------------------------------+
1382	 *
1383	 * The "original" frame is used by hardware.  Before re-enabling
1384	 * NMIs, we need to be done with it, and we need to leave enough
1385	 * space for the asm code here.
1386	 *
1387	 * We return by executing IRET while RSP points to the "iret" frame.
1388	 * That will either return for real or it will loop back into NMI
1389	 * processing.
1390	 *
1391	 * The "outermost" frame is copied to the "iret" frame on each
1392	 * iteration of the loop, so each iteration starts with the "iret"
1393	 * frame pointing to the final return target.
1394	 */
1395
1396	/*
1397	 * Determine whether we're a nested NMI.
1398	 *
1399	 * If we interrupted kernel code between repeat_nmi and
1400	 * end_repeat_nmi, then we are a nested NMI.  We must not
1401	 * modify the "iret" frame because it's being written by
1402	 * the outer NMI.  That's okay; the outer NMI handler is
1403	 * about to about to call do_nmi anyway, so we can just
1404	 * resume the outer NMI.
1405	 */
1406
1407	movq	$repeat_nmi, %rdx
1408	cmpq	8(%rsp), %rdx
1409	ja	1f
1410	movq	$end_repeat_nmi, %rdx
1411	cmpq	8(%rsp), %rdx
1412	ja	nested_nmi_out
14131:
1414
1415	/*
1416	 * Now check "NMI executing".  If it's set, then we're nested.
1417	 * This will not detect if we interrupted an outer NMI just
1418	 * before IRET.
1419	 */
1420	cmpl	$1, -8(%rsp)
1421	je	nested_nmi
1422
1423	/*
1424	 * Now test if the previous stack was an NMI stack.  This covers
1425	 * the case where we interrupt an outer NMI after it clears
1426	 * "NMI executing" but before IRET.  We need to be careful, though:
1427	 * there is one case in which RSP could point to the NMI stack
1428	 * despite there being no NMI active: naughty userspace controls
1429	 * RSP at the very beginning of the SYSCALL targets.  We can
1430	 * pull a fast one on naughty userspace, though: we program
1431	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1432	 * if it controls the kernel's RSP.  We set DF before we clear
1433	 * "NMI executing".
1434	 */
1435	lea	6*8(%rsp), %rdx
1436	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1437	cmpq	%rdx, 4*8(%rsp)
1438	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1439	ja	first_nmi
1440
1441	subq	$EXCEPTION_STKSZ, %rdx
1442	cmpq	%rdx, 4*8(%rsp)
1443	/* If it is below the NMI stack, it is a normal NMI */
1444	jb	first_nmi
1445
1446	/* Ah, it is within the NMI stack. */
1447
1448	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1449	jz	first_nmi	/* RSP was user controlled. */
1450
1451	/* This is a nested NMI. */
1452
1453nested_nmi:
1454	/*
1455	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1456	 * iteration of NMI handling.
1457	 */
1458	subq	$8, %rsp
1459	leaq	-10*8(%rsp), %rdx
1460	pushq	$__KERNEL_DS
1461	pushq	%rdx
1462	pushfq
1463	pushq	$__KERNEL_CS
1464	pushq	$repeat_nmi
1465
1466	/* Put stack back */
1467	addq	$(6*8), %rsp
1468
1469nested_nmi_out:
1470	popq	%rdx
1471
1472	/* We are returning to kernel mode, so this cannot result in a fault. */
1473	iretq
1474
1475first_nmi:
1476	/* Restore rdx. */
1477	movq	(%rsp), %rdx
1478
1479	/* Make room for "NMI executing". */
1480	pushq	$0
1481
1482	/* Leave room for the "iret" frame */
1483	subq	$(5*8), %rsp
1484
1485	/* Copy the "original" frame to the "outermost" frame */
1486	.rept 5
1487	pushq	11*8(%rsp)
1488	.endr
1489	UNWIND_HINT_IRET_REGS
1490
1491	/* Everything up to here is safe from nested NMIs */
1492
1493#ifdef CONFIG_DEBUG_ENTRY
1494	/*
1495	 * For ease of testing, unmask NMIs right away.  Disabled by
1496	 * default because IRET is very expensive.
1497	 */
1498	pushq	$0		/* SS */
1499	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1500	addq	$8, (%rsp)	/* Fix up RSP */
1501	pushfq			/* RFLAGS */
1502	pushq	$__KERNEL_CS	/* CS */
1503	pushq	$1f		/* RIP */
1504	iretq			/* continues at repeat_nmi below */
1505	UNWIND_HINT_IRET_REGS
15061:
1507#endif
1508
1509repeat_nmi:
1510	/*
1511	 * If there was a nested NMI, the first NMI's iret will return
1512	 * here. But NMIs are still enabled and we can take another
1513	 * nested NMI. The nested NMI checks the interrupted RIP to see
1514	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1515	 * it will just return, as we are about to repeat an NMI anyway.
1516	 * This makes it safe to copy to the stack frame that a nested
1517	 * NMI will update.
1518	 *
1519	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1520	 * we're repeating an NMI, gsbase has the same value that it had on
1521	 * the first iteration.  paranoid_entry will load the kernel
1522	 * gsbase if needed before we call do_nmi.  "NMI executing"
1523	 * is zero.
1524	 */
1525	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1526
1527	/*
1528	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1529	 * here must not modify the "iret" frame while we're writing to
1530	 * it or it will end up containing garbage.
1531	 */
1532	addq	$(10*8), %rsp
1533	.rept 5
1534	pushq	-6*8(%rsp)
1535	.endr
1536	subq	$(5*8), %rsp
1537end_repeat_nmi:
1538
1539	/*
1540	 * Everything below this point can be preempted by a nested NMI.
1541	 * If this happens, then the inner NMI will change the "iret"
1542	 * frame to point back to repeat_nmi.
1543	 */
1544	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1545	ALLOC_PT_GPREGS_ON_STACK
1546
1547	/*
1548	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1549	 * as we should not be calling schedule in NMI context.
1550	 * Even with normal interrupts enabled. An NMI should not be
1551	 * setting NEED_RESCHED or anything that normal interrupts and
1552	 * exceptions might do.
1553	 */
1554	call	paranoid_entry
1555	UNWIND_HINT_REGS
1556
1557	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1558	movq	%rsp, %rdi
1559	movq	$-1, %rsi
1560	call	do_nmi
1561
1562	testl	%ebx, %ebx			/* swapgs needed? */
1563	jnz	nmi_restore
1564nmi_swapgs:
1565	SWAPGS_UNSAFE_STACK
1566nmi_restore:
1567	POP_EXTRA_REGS
1568	POP_C_REGS
1569
1570	/*
1571	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1572	 * at the "iret" frame.
1573	 */
1574	addq	$6*8, %rsp
1575
1576	/*
1577	 * Clear "NMI executing".  Set DF first so that we can easily
1578	 * distinguish the remaining code between here and IRET from
1579	 * the SYSCALL entry and exit paths.
1580	 *
1581	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1582	 * this code when I had the misapprehension that Xen PV supported
1583	 * NMIs, and Xen PV would break that approach.
1584	 */
1585	std
1586	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1587
1588	/*
1589	 * iretq reads the "iret" frame and exits the NMI stack in a
1590	 * single instruction.  We are returning to kernel mode, so this
1591	 * cannot result in a fault.  Similarly, we don't need to worry
1592	 * about espfix64 on the way back to kernel mode.
1593	 */
1594	iretq
1595END(nmi)
1596
1597ENTRY(ignore_sysret)
1598	UNWIND_HINT_EMPTY
1599	mov	$-ENOSYS, %eax
1600	sysret
1601END(ignore_sysret)
1602
1603ENTRY(rewind_stack_do_exit)
1604	UNWIND_HINT_FUNC
1605	/* Prevent any naive code from trying to unwind to our caller. */
1606	xorl	%ebp, %ebp
1607
1608	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1609	leaq	-PTREGS_SIZE(%rax), %rsp
1610	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1611
1612	call	do_exit
1613END(rewind_stack_do_exit)
1614