1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_EMPTY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 99 /* Construct struct pt_regs on stack */ 100 pushq $__USER_DS /* pt_regs->ss */ 101 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 102 pushq %r11 /* pt_regs->flags */ 103 pushq $__USER_CS /* pt_regs->cs */ 104 pushq %rcx /* pt_regs->ip */ 105SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 106 pushq %rax /* pt_regs->orig_ax */ 107 108 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 109 110 /* IRQs are off. */ 111 movq %rsp, %rdi 112 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 113 movslq %eax, %rsi 114 call do_syscall_64 /* returns with IRQs disabled */ 115 116 /* 117 * Try to use SYSRET instead of IRET if we're returning to 118 * a completely clean 64-bit userspace context. If we're not, 119 * go to the slow exit path. 120 * In the Xen PV case we must use iret anyway. 121 */ 122 123 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 124 X86_FEATURE_XENPV 125 126 movq RCX(%rsp), %rcx 127 movq RIP(%rsp), %r11 128 129 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 130 jne swapgs_restore_regs_and_return_to_usermode 131 132 /* 133 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 134 * in kernel space. This essentially lets the user take over 135 * the kernel, since userspace controls RSP. 136 * 137 * If width of "canonical tail" ever becomes variable, this will need 138 * to be updated to remain correct on both old and new CPUs. 139 * 140 * Change top bits to match most significant bit (47th or 56th bit 141 * depending on paging mode) in the address. 142 */ 143#ifdef CONFIG_X86_5LEVEL 144 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 145 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 146#else 147 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 148 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 149#endif 150 151 /* If this changed %rcx, it was not canonical */ 152 cmpq %rcx, %r11 153 jne swapgs_restore_regs_and_return_to_usermode 154 155 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 156 jne swapgs_restore_regs_and_return_to_usermode 157 158 movq R11(%rsp), %r11 159 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 160 jne swapgs_restore_regs_and_return_to_usermode 161 162 /* 163 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 164 * restore RF properly. If the slowpath sets it for whatever reason, we 165 * need to restore it correctly. 166 * 167 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 168 * trap from userspace immediately after SYSRET. This would cause an 169 * infinite loop whenever #DB happens with register state that satisfies 170 * the opportunistic SYSRET conditions. For example, single-stepping 171 * this user code: 172 * 173 * movq $stuck_here, %rcx 174 * pushfq 175 * popq %r11 176 * stuck_here: 177 * 178 * would never get past 'stuck_here'. 179 */ 180 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 181 jnz swapgs_restore_regs_and_return_to_usermode 182 183 /* nothing to check for RSP */ 184 185 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 186 jne swapgs_restore_regs_and_return_to_usermode 187 188 /* 189 * We win! This label is here just for ease of understanding 190 * perf profiles. Nothing jumps here. 191 */ 192syscall_return_via_sysret: 193 /* rcx and r11 are already restored (see code above) */ 194 POP_REGS pop_rdi=0 skip_r11rcx=1 195 196 /* 197 * Now all regs are restored except RSP and RDI. 198 * Save old stack pointer and switch to trampoline stack. 199 */ 200 movq %rsp, %rdi 201 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 202 UNWIND_HINT_EMPTY 203 204 pushq RSP-RDI(%rdi) /* RSP */ 205 pushq (%rdi) /* RDI */ 206 207 /* 208 * We are on the trampoline stack. All regs except RDI are live. 209 * We can do future final exit work right here. 210 */ 211 STACKLEAK_ERASE_NOCLOBBER 212 213 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 214 215 popq %rdi 216 popq %rsp 217 swapgs 218 sysretq 219SYM_CODE_END(entry_SYSCALL_64) 220 221/* 222 * %rdi: prev task 223 * %rsi: next task 224 */ 225.pushsection .text, "ax" 226SYM_FUNC_START(__switch_to_asm) 227 /* 228 * Save callee-saved registers 229 * This must match the order in inactive_task_frame 230 */ 231 pushq %rbp 232 pushq %rbx 233 pushq %r12 234 pushq %r13 235 pushq %r14 236 pushq %r15 237 238 /* switch stack */ 239 movq %rsp, TASK_threadsp(%rdi) 240 movq TASK_threadsp(%rsi), %rsp 241 242#ifdef CONFIG_STACKPROTECTOR 243 movq TASK_stack_canary(%rsi), %rbx 244 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 245#endif 246 247#ifdef CONFIG_RETPOLINE 248 /* 249 * When switching from a shallower to a deeper call stack 250 * the RSB may either underflow or use entries populated 251 * with userspace addresses. On CPUs where those concerns 252 * exist, overwrite the RSB with entries which capture 253 * speculative execution to prevent attack. 254 */ 255 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 256#endif 257 258 /* restore callee-saved registers */ 259 popq %r15 260 popq %r14 261 popq %r13 262 popq %r12 263 popq %rbx 264 popq %rbp 265 266 jmp __switch_to 267SYM_FUNC_END(__switch_to_asm) 268.popsection 269 270/* 271 * A newly forked process directly context switches into this address. 272 * 273 * rax: prev task we switched from 274 * rbx: kernel thread func (NULL for user thread) 275 * r12: kernel thread arg 276 */ 277.pushsection .text, "ax" 278SYM_CODE_START(ret_from_fork) 279 UNWIND_HINT_EMPTY 280 movq %rax, %rdi 281 call schedule_tail /* rdi: 'prev' task parameter */ 282 283 testq %rbx, %rbx /* from kernel_thread? */ 284 jnz 1f /* kernel threads are uncommon */ 285 2862: 287 UNWIND_HINT_REGS 288 movq %rsp, %rdi 289 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 290 jmp swapgs_restore_regs_and_return_to_usermode 291 2921: 293 /* kernel thread */ 294 UNWIND_HINT_EMPTY 295 movq %r12, %rdi 296 CALL_NOSPEC rbx 297 /* 298 * A kernel thread is allowed to return here after successfully 299 * calling kernel_execve(). Exit to userspace to complete the execve() 300 * syscall. 301 */ 302 movq $0, RAX(%rsp) 303 jmp 2b 304SYM_CODE_END(ret_from_fork) 305.popsection 306 307.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 308#ifdef CONFIG_DEBUG_ENTRY 309 pushq %rax 310 SAVE_FLAGS 311 testl $X86_EFLAGS_IF, %eax 312 jz .Lokay_\@ 313 ud2 314.Lokay_\@: 315 popq %rax 316#endif 317.endm 318 319/** 320 * idtentry_body - Macro to emit code calling the C function 321 * @cfunc: C function to be called 322 * @has_error_code: Hardware pushed error code on stack 323 */ 324.macro idtentry_body cfunc has_error_code:req 325 326 call error_entry 327 UNWIND_HINT_REGS 328 329 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 330 331 .if \has_error_code == 1 332 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 333 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 334 .endif 335 336 call \cfunc 337 338 jmp error_return 339.endm 340 341/** 342 * idtentry - Macro to generate entry stubs for simple IDT entries 343 * @vector: Vector number 344 * @asmsym: ASM symbol for the entry point 345 * @cfunc: C function to be called 346 * @has_error_code: Hardware pushed error code on stack 347 * 348 * The macro emits code to set up the kernel context for straight forward 349 * and simple IDT entries. No IST stack, no paranoid entry checks. 350 */ 351.macro idtentry vector asmsym cfunc has_error_code:req 352SYM_CODE_START(\asmsym) 353 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 354 ENDBR 355 ASM_CLAC 356 357 .if \has_error_code == 0 358 pushq $-1 /* ORIG_RAX: no syscall to restart */ 359 .endif 360 361 .if \vector == X86_TRAP_BP 362 /* 363 * If coming from kernel space, create a 6-word gap to allow the 364 * int3 handler to emulate a call instruction. 365 */ 366 testb $3, CS-ORIG_RAX(%rsp) 367 jnz .Lfrom_usermode_no_gap_\@ 368 .rept 6 369 pushq 5*8(%rsp) 370 .endr 371 UNWIND_HINT_IRET_REGS offset=8 372.Lfrom_usermode_no_gap_\@: 373 .endif 374 375 idtentry_body \cfunc \has_error_code 376 377_ASM_NOKPROBE(\asmsym) 378SYM_CODE_END(\asmsym) 379.endm 380 381/* 382 * Interrupt entry/exit. 383 * 384 + The interrupt stubs push (vector) onto the stack, which is the error_code 385 * position of idtentry exceptions, and jump to one of the two idtentry points 386 * (common/spurious). 387 * 388 * common_interrupt is a hotpath, align it to a cache line 389 */ 390.macro idtentry_irq vector cfunc 391 .p2align CONFIG_X86_L1_CACHE_SHIFT 392 idtentry \vector asm_\cfunc \cfunc has_error_code=1 393.endm 394 395/* 396 * System vectors which invoke their handlers directly and are not 397 * going through the regular common device interrupt handling code. 398 */ 399.macro idtentry_sysvec vector cfunc 400 idtentry \vector asm_\cfunc \cfunc has_error_code=0 401.endm 402 403/** 404 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 405 * @vector: Vector number 406 * @asmsym: ASM symbol for the entry point 407 * @cfunc: C function to be called 408 * 409 * The macro emits code to set up the kernel context for #MC and #DB 410 * 411 * If the entry comes from user space it uses the normal entry path 412 * including the return to user space work and preemption checks on 413 * exit. 414 * 415 * If hits in kernel mode then it needs to go through the paranoid 416 * entry as the exception can hit any random state. No preemption 417 * check on exit to keep the paranoid path simple. 418 */ 419.macro idtentry_mce_db vector asmsym cfunc 420SYM_CODE_START(\asmsym) 421 UNWIND_HINT_IRET_REGS 422 ENDBR 423 ASM_CLAC 424 425 pushq $-1 /* ORIG_RAX: no syscall to restart */ 426 427 /* 428 * If the entry is from userspace, switch stacks and treat it as 429 * a normal entry. 430 */ 431 testb $3, CS-ORIG_RAX(%rsp) 432 jnz .Lfrom_usermode_switch_stack_\@ 433 434 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 435 call paranoid_entry 436 437 UNWIND_HINT_REGS 438 439 movq %rsp, %rdi /* pt_regs pointer */ 440 441 call \cfunc 442 443 jmp paranoid_exit 444 445 /* Switch to the regular task stack and use the noist entry point */ 446.Lfrom_usermode_switch_stack_\@: 447 idtentry_body noist_\cfunc, has_error_code=0 448 449_ASM_NOKPROBE(\asmsym) 450SYM_CODE_END(\asmsym) 451.endm 452 453#ifdef CONFIG_AMD_MEM_ENCRYPT 454/** 455 * idtentry_vc - Macro to generate entry stub for #VC 456 * @vector: Vector number 457 * @asmsym: ASM symbol for the entry point 458 * @cfunc: C function to be called 459 * 460 * The macro emits code to set up the kernel context for #VC. The #VC handler 461 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 462 * 463 * To make this work the #VC entry code tries its best to pretend it doesn't use 464 * an IST stack by switching to the task stack if coming from user-space (which 465 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 466 * entered from kernel-mode. 467 * 468 * If entered from kernel-mode the return stack is validated first, and if it is 469 * not safe to use (e.g. because it points to the entry stack) the #VC handler 470 * will switch to a fall-back stack (VC2) and call a special handler function. 471 * 472 * The macro is only used for one vector, but it is planned to be extended in 473 * the future for the #HV exception. 474 */ 475.macro idtentry_vc vector asmsym cfunc 476SYM_CODE_START(\asmsym) 477 UNWIND_HINT_IRET_REGS 478 ENDBR 479 ASM_CLAC 480 481 /* 482 * If the entry is from userspace, switch stacks and treat it as 483 * a normal entry. 484 */ 485 testb $3, CS-ORIG_RAX(%rsp) 486 jnz .Lfrom_usermode_switch_stack_\@ 487 488 /* 489 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 490 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 491 */ 492 call paranoid_entry 493 494 UNWIND_HINT_REGS 495 496 /* 497 * Switch off the IST stack to make it free for nested exceptions. The 498 * vc_switch_off_ist() function will switch back to the interrupted 499 * stack if it is safe to do so. If not it switches to the VC fall-back 500 * stack. 501 */ 502 movq %rsp, %rdi /* pt_regs pointer */ 503 call vc_switch_off_ist 504 movq %rax, %rsp /* Switch to new stack */ 505 506 UNWIND_HINT_REGS 507 508 /* Update pt_regs */ 509 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 510 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 511 512 movq %rsp, %rdi /* pt_regs pointer */ 513 514 call kernel_\cfunc 515 516 /* 517 * No need to switch back to the IST stack. The current stack is either 518 * identical to the stack in the IRET frame or the VC fall-back stack, 519 * so it is definitely mapped even with PTI enabled. 520 */ 521 jmp paranoid_exit 522 523 /* Switch to the regular task stack */ 524.Lfrom_usermode_switch_stack_\@: 525 idtentry_body user_\cfunc, has_error_code=1 526 527_ASM_NOKPROBE(\asmsym) 528SYM_CODE_END(\asmsym) 529.endm 530#endif 531 532/* 533 * Double fault entry. Straight paranoid. No checks from which context 534 * this comes because for the espfix induced #DF this would do the wrong 535 * thing. 536 */ 537.macro idtentry_df vector asmsym cfunc 538SYM_CODE_START(\asmsym) 539 UNWIND_HINT_IRET_REGS offset=8 540 ENDBR 541 ASM_CLAC 542 543 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 544 call paranoid_entry 545 UNWIND_HINT_REGS 546 547 movq %rsp, %rdi /* pt_regs pointer into first argument */ 548 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 549 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 550 call \cfunc 551 552 jmp paranoid_exit 553 554_ASM_NOKPROBE(\asmsym) 555SYM_CODE_END(\asmsym) 556.endm 557 558/* 559 * Include the defines which emit the idt entries which are shared 560 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 561 * so the stacktrace boundary checks work. 562 */ 563 .align 16 564 .globl __irqentry_text_start 565__irqentry_text_start: 566 567#include <asm/idtentry.h> 568 569 .align 16 570 .globl __irqentry_text_end 571__irqentry_text_end: 572 573SYM_CODE_START_LOCAL(common_interrupt_return) 574SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 575#ifdef CONFIG_DEBUG_ENTRY 576 /* Assert that pt_regs indicates user mode. */ 577 testb $3, CS(%rsp) 578 jnz 1f 579 ud2 5801: 581#endif 582#ifdef CONFIG_XEN_PV 583 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 584#endif 585 586 POP_REGS pop_rdi=0 587 588 /* 589 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 590 * Save old stack pointer and switch to trampoline stack. 591 */ 592 movq %rsp, %rdi 593 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 594 UNWIND_HINT_EMPTY 595 596 /* Copy the IRET frame to the trampoline stack. */ 597 pushq 6*8(%rdi) /* SS */ 598 pushq 5*8(%rdi) /* RSP */ 599 pushq 4*8(%rdi) /* EFLAGS */ 600 pushq 3*8(%rdi) /* CS */ 601 pushq 2*8(%rdi) /* RIP */ 602 603 /* Push user RDI on the trampoline stack. */ 604 pushq (%rdi) 605 606 /* 607 * We are on the trampoline stack. All regs except RDI are live. 608 * We can do future final exit work right here. 609 */ 610 STACKLEAK_ERASE_NOCLOBBER 611 612 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 613 614 /* Restore RDI. */ 615 popq %rdi 616 swapgs 617 jmp .Lnative_iret 618 619 620SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 621#ifdef CONFIG_DEBUG_ENTRY 622 /* Assert that pt_regs indicates kernel mode. */ 623 testb $3, CS(%rsp) 624 jz 1f 625 ud2 6261: 627#endif 628 POP_REGS 629 addq $8, %rsp /* skip regs->orig_ax */ 630 /* 631 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 632 * when returning from IPI handler. 633 */ 634#ifdef CONFIG_XEN_PV 635SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 636 ANNOTATE_NOENDBR 637 .byte 0xe9 638 .long .Lnative_iret - (. + 4) 639#endif 640 641.Lnative_iret: 642 UNWIND_HINT_IRET_REGS 643 /* 644 * Are we returning to a stack segment from the LDT? Note: in 645 * 64-bit mode SS:RSP on the exception stack is always valid. 646 */ 647#ifdef CONFIG_X86_ESPFIX64 648 testb $4, (SS-RIP)(%rsp) 649 jnz native_irq_return_ldt 650#endif 651 652SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 653 /* 654 * This may fault. Non-paranoid faults on return to userspace are 655 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 656 * Double-faults due to espfix64 are handled in exc_double_fault. 657 * Other faults here are fatal. 658 */ 659 iretq 660 661#ifdef CONFIG_X86_ESPFIX64 662native_irq_return_ldt: 663 /* 664 * We are running with user GSBASE. All GPRs contain their user 665 * values. We have a percpu ESPFIX stack that is eight slots 666 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 667 * of the ESPFIX stack. 668 * 669 * We clobber RAX and RDI in this code. We stash RDI on the 670 * normal stack and RAX on the ESPFIX stack. 671 * 672 * The ESPFIX stack layout we set up looks like this: 673 * 674 * --- top of ESPFIX stack --- 675 * SS 676 * RSP 677 * RFLAGS 678 * CS 679 * RIP <-- RSP points here when we're done 680 * RAX <-- espfix_waddr points here 681 * --- bottom of ESPFIX stack --- 682 */ 683 684 pushq %rdi /* Stash user RDI */ 685 swapgs /* to kernel GS */ 686 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 687 688 movq PER_CPU_VAR(espfix_waddr), %rdi 689 movq %rax, (0*8)(%rdi) /* user RAX */ 690 movq (1*8)(%rsp), %rax /* user RIP */ 691 movq %rax, (1*8)(%rdi) 692 movq (2*8)(%rsp), %rax /* user CS */ 693 movq %rax, (2*8)(%rdi) 694 movq (3*8)(%rsp), %rax /* user RFLAGS */ 695 movq %rax, (3*8)(%rdi) 696 movq (5*8)(%rsp), %rax /* user SS */ 697 movq %rax, (5*8)(%rdi) 698 movq (4*8)(%rsp), %rax /* user RSP */ 699 movq %rax, (4*8)(%rdi) 700 /* Now RAX == RSP. */ 701 702 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 703 704 /* 705 * espfix_stack[31:16] == 0. The page tables are set up such that 706 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 707 * espfix_waddr for any X. That is, there are 65536 RO aliases of 708 * the same page. Set up RSP so that RSP[31:16] contains the 709 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 710 * still points to an RO alias of the ESPFIX stack. 711 */ 712 orq PER_CPU_VAR(espfix_stack), %rax 713 714 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 715 swapgs /* to user GS */ 716 popq %rdi /* Restore user RDI */ 717 718 movq %rax, %rsp 719 UNWIND_HINT_IRET_REGS offset=8 720 721 /* 722 * At this point, we cannot write to the stack any more, but we can 723 * still read. 724 */ 725 popq %rax /* Restore user RAX */ 726 727 /* 728 * RSP now points to an ordinary IRET frame, except that the page 729 * is read-only and RSP[31:16] are preloaded with the userspace 730 * values. We can now IRET back to userspace. 731 */ 732 jmp native_irq_return_iret 733#endif 734SYM_CODE_END(common_interrupt_return) 735_ASM_NOKPROBE(common_interrupt_return) 736 737/* 738 * Reload gs selector with exception handling 739 * edi: new selector 740 * 741 * Is in entry.text as it shouldn't be instrumented. 742 */ 743SYM_FUNC_START(asm_load_gs_index) 744 FRAME_BEGIN 745 swapgs 746.Lgs_change: 747 movl %edi, %gs 7482: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 749 swapgs 750 FRAME_END 751 RET 752 753 /* running with kernelgs */ 754.Lbad_gs: 755 swapgs /* switch back to user gs */ 756.macro ZAP_GS 757 /* This can't be a string because the preprocessor needs to see it. */ 758 movl $__USER_DS, %eax 759 movl %eax, %gs 760.endm 761 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 762 xorl %eax, %eax 763 movl %eax, %gs 764 jmp 2b 765 766 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 767 768SYM_FUNC_END(asm_load_gs_index) 769EXPORT_SYMBOL(asm_load_gs_index) 770 771#ifdef CONFIG_XEN_PV 772/* 773 * A note on the "critical region" in our callback handler. 774 * We want to avoid stacking callback handlers due to events occurring 775 * during handling of the last event. To do this, we keep events disabled 776 * until we've done all processing. HOWEVER, we must enable events before 777 * popping the stack frame (can't be done atomically) and so it would still 778 * be possible to get enough handler activations to overflow the stack. 779 * Although unlikely, bugs of that kind are hard to track down, so we'd 780 * like to avoid the possibility. 781 * So, on entry to the handler we detect whether we interrupted an 782 * existing activation in its critical region -- if so, we pop the current 783 * activation and restart the handler using the previous one. 784 * 785 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 786 */ 787SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 788 789/* 790 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 791 * see the correct pointer to the pt_regs 792 */ 793 UNWIND_HINT_FUNC 794 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 795 UNWIND_HINT_REGS 796 797 call xen_pv_evtchn_do_upcall 798 799 jmp error_return 800SYM_CODE_END(exc_xen_hypervisor_callback) 801 802/* 803 * Hypervisor uses this for application faults while it executes. 804 * We get here for two reasons: 805 * 1. Fault while reloading DS, ES, FS or GS 806 * 2. Fault while executing IRET 807 * Category 1 we do not need to fix up as Xen has already reloaded all segment 808 * registers that could be reloaded and zeroed the others. 809 * Category 2 we fix up by killing the current process. We cannot use the 810 * normal Linux return path in this case because if we use the IRET hypercall 811 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 812 * We distinguish between categories by comparing each saved segment register 813 * with its current contents: any discrepancy means we in category 1. 814 */ 815SYM_CODE_START(xen_failsafe_callback) 816 UNWIND_HINT_EMPTY 817 ENDBR 818 movl %ds, %ecx 819 cmpw %cx, 0x10(%rsp) 820 jne 1f 821 movl %es, %ecx 822 cmpw %cx, 0x18(%rsp) 823 jne 1f 824 movl %fs, %ecx 825 cmpw %cx, 0x20(%rsp) 826 jne 1f 827 movl %gs, %ecx 828 cmpw %cx, 0x28(%rsp) 829 jne 1f 830 /* All segments match their saved values => Category 2 (Bad IRET). */ 831 movq (%rsp), %rcx 832 movq 8(%rsp), %r11 833 addq $0x30, %rsp 834 pushq $0 /* RIP */ 835 UNWIND_HINT_IRET_REGS offset=8 836 jmp asm_exc_general_protection 8371: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 838 movq (%rsp), %rcx 839 movq 8(%rsp), %r11 840 addq $0x30, %rsp 841 UNWIND_HINT_IRET_REGS 842 pushq $-1 /* orig_ax = -1 => not a system call */ 843 PUSH_AND_CLEAR_REGS 844 ENCODE_FRAME_POINTER 845 jmp error_return 846SYM_CODE_END(xen_failsafe_callback) 847#endif /* CONFIG_XEN_PV */ 848 849/* 850 * Save all registers in pt_regs. Return GSBASE related information 851 * in EBX depending on the availability of the FSGSBASE instructions: 852 * 853 * FSGSBASE R/EBX 854 * N 0 -> SWAPGS on exit 855 * 1 -> no SWAPGS on exit 856 * 857 * Y GSBASE value at entry, must be restored in paranoid_exit 858 */ 859SYM_CODE_START_LOCAL(paranoid_entry) 860 UNWIND_HINT_FUNC 861 cld 862 PUSH_AND_CLEAR_REGS save_ret=1 863 ENCODE_FRAME_POINTER 8 864 865 /* 866 * Always stash CR3 in %r14. This value will be restored, 867 * verbatim, at exit. Needed if paranoid_entry interrupted 868 * another entry that already switched to the user CR3 value 869 * but has not yet returned to userspace. 870 * 871 * This is also why CS (stashed in the "iret frame" by the 872 * hardware at entry) can not be used: this may be a return 873 * to kernel code, but with a user CR3 value. 874 * 875 * Switching CR3 does not depend on kernel GSBASE so it can 876 * be done before switching to the kernel GSBASE. This is 877 * required for FSGSBASE because the kernel GSBASE has to 878 * be retrieved from a kernel internal table. 879 */ 880 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 881 882 /* 883 * Handling GSBASE depends on the availability of FSGSBASE. 884 * 885 * Without FSGSBASE the kernel enforces that negative GSBASE 886 * values indicate kernel GSBASE. With FSGSBASE no assumptions 887 * can be made about the GSBASE value when entering from user 888 * space. 889 */ 890 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 891 892 /* 893 * Read the current GSBASE and store it in %rbx unconditionally, 894 * retrieve and set the current CPUs kernel GSBASE. The stored value 895 * has to be restored in paranoid_exit unconditionally. 896 * 897 * The unconditional write to GS base below ensures that no subsequent 898 * loads based on a mispredicted GS base can happen, therefore no LFENCE 899 * is needed here. 900 */ 901 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 902 RET 903 904.Lparanoid_entry_checkgs: 905 /* EBX = 1 -> kernel GSBASE active, no restore required */ 906 movl $1, %ebx 907 908 /* 909 * The kernel-enforced convention is a negative GSBASE indicates 910 * a kernel value. No SWAPGS needed on entry and exit. 911 */ 912 movl $MSR_GS_BASE, %ecx 913 rdmsr 914 testl %edx, %edx 915 js .Lparanoid_kernel_gsbase 916 917 /* EBX = 0 -> SWAPGS required on exit */ 918 xorl %ebx, %ebx 919 swapgs 920.Lparanoid_kernel_gsbase: 921 922 FENCE_SWAPGS_KERNEL_ENTRY 923 RET 924SYM_CODE_END(paranoid_entry) 925 926/* 927 * "Paranoid" exit path from exception stack. This is invoked 928 * only on return from non-NMI IST interrupts that came 929 * from kernel space. 930 * 931 * We may be returning to very strange contexts (e.g. very early 932 * in syscall entry), so checking for preemption here would 933 * be complicated. Fortunately, there's no good reason to try 934 * to handle preemption here. 935 * 936 * R/EBX contains the GSBASE related information depending on the 937 * availability of the FSGSBASE instructions: 938 * 939 * FSGSBASE R/EBX 940 * N 0 -> SWAPGS on exit 941 * 1 -> no SWAPGS on exit 942 * 943 * Y User space GSBASE, must be restored unconditionally 944 */ 945SYM_CODE_START_LOCAL(paranoid_exit) 946 UNWIND_HINT_REGS 947 /* 948 * The order of operations is important. RESTORE_CR3 requires 949 * kernel GSBASE. 950 * 951 * NB to anyone to try to optimize this code: this code does 952 * not execute at all for exceptions from user mode. Those 953 * exceptions go through error_exit instead. 954 */ 955 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 956 957 /* Handle the three GSBASE cases */ 958 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 959 960 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 961 wrgsbase %rbx 962 jmp restore_regs_and_return_to_kernel 963 964.Lparanoid_exit_checkgs: 965 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 966 testl %ebx, %ebx 967 jnz restore_regs_and_return_to_kernel 968 969 /* We are returning to a context with user GSBASE */ 970 swapgs 971 jmp restore_regs_and_return_to_kernel 972SYM_CODE_END(paranoid_exit) 973 974/* 975 * Save all registers in pt_regs, and switch GS if needed. 976 */ 977SYM_CODE_START_LOCAL(error_entry) 978 UNWIND_HINT_FUNC 979 cld 980 PUSH_AND_CLEAR_REGS save_ret=1 981 ENCODE_FRAME_POINTER 8 982 testb $3, CS+8(%rsp) 983 jz .Lerror_kernelspace 984 985 /* 986 * We entered from user mode or we're pretending to have entered 987 * from user mode due to an IRET fault. 988 */ 989 SWAPGS 990 FENCE_SWAPGS_USER_ENTRY 991 /* We have user CR3. Change to kernel CR3. */ 992 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 993 994.Lerror_entry_from_usermode_after_swapgs: 995 /* Put us onto the real thread stack. */ 996 popq %r12 /* save return addr in %12 */ 997 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 998 call sync_regs 999 movq %rax, %rsp /* switch stack */ 1000 ENCODE_FRAME_POINTER 1001 pushq %r12 1002 RET 1003 1004 /* 1005 * There are two places in the kernel that can potentially fault with 1006 * usergs. Handle them here. B stepping K8s sometimes report a 1007 * truncated RIP for IRET exceptions returning to compat mode. Check 1008 * for these here too. 1009 */ 1010.Lerror_kernelspace: 1011 leaq native_irq_return_iret(%rip), %rcx 1012 cmpq %rcx, RIP+8(%rsp) 1013 je .Lerror_bad_iret 1014 movl %ecx, %eax /* zero extend */ 1015 cmpq %rax, RIP+8(%rsp) 1016 je .Lbstep_iret 1017 cmpq $.Lgs_change, RIP+8(%rsp) 1018 jne .Lerror_entry_done_lfence 1019 1020 /* 1021 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1022 * gsbase and proceed. We'll fix up the exception and land in 1023 * .Lgs_change's error handler with kernel gsbase. 1024 */ 1025 SWAPGS 1026 1027 /* 1028 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1029 * kernel or user gsbase. 1030 */ 1031.Lerror_entry_done_lfence: 1032 FENCE_SWAPGS_KERNEL_ENTRY 1033 RET 1034 1035.Lbstep_iret: 1036 /* Fix truncated RIP */ 1037 movq %rcx, RIP+8(%rsp) 1038 /* fall through */ 1039 1040.Lerror_bad_iret: 1041 /* 1042 * We came from an IRET to user mode, so we have user 1043 * gsbase and CR3. Switch to kernel gsbase and CR3: 1044 */ 1045 SWAPGS 1046 FENCE_SWAPGS_USER_ENTRY 1047 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1048 1049 /* 1050 * Pretend that the exception came from user mode: set up pt_regs 1051 * as if we faulted immediately after IRET. 1052 */ 1053 mov %rsp, %rdi 1054 call fixup_bad_iret 1055 mov %rax, %rsp 1056 jmp .Lerror_entry_from_usermode_after_swapgs 1057SYM_CODE_END(error_entry) 1058 1059SYM_CODE_START_LOCAL(error_return) 1060 UNWIND_HINT_REGS 1061 DEBUG_ENTRY_ASSERT_IRQS_OFF 1062 testb $3, CS(%rsp) 1063 jz restore_regs_and_return_to_kernel 1064 jmp swapgs_restore_regs_and_return_to_usermode 1065SYM_CODE_END(error_return) 1066 1067/* 1068 * Runs on exception stack. Xen PV does not go through this path at all, 1069 * so we can use real assembly here. 1070 * 1071 * Registers: 1072 * %r14: Used to save/restore the CR3 of the interrupted context 1073 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1074 */ 1075SYM_CODE_START(asm_exc_nmi) 1076 UNWIND_HINT_IRET_REGS 1077 ENDBR 1078 1079 /* 1080 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1081 * the iretq it performs will take us out of NMI context. 1082 * This means that we can have nested NMIs where the next 1083 * NMI is using the top of the stack of the previous NMI. We 1084 * can't let it execute because the nested NMI will corrupt the 1085 * stack of the previous NMI. NMI handlers are not re-entrant 1086 * anyway. 1087 * 1088 * To handle this case we do the following: 1089 * Check the a special location on the stack that contains 1090 * a variable that is set when NMIs are executing. 1091 * The interrupted task's stack is also checked to see if it 1092 * is an NMI stack. 1093 * If the variable is not set and the stack is not the NMI 1094 * stack then: 1095 * o Set the special variable on the stack 1096 * o Copy the interrupt frame into an "outermost" location on the 1097 * stack 1098 * o Copy the interrupt frame into an "iret" location on the stack 1099 * o Continue processing the NMI 1100 * If the variable is set or the previous stack is the NMI stack: 1101 * o Modify the "iret" location to jump to the repeat_nmi 1102 * o return back to the first NMI 1103 * 1104 * Now on exit of the first NMI, we first clear the stack variable 1105 * The NMI stack will tell any nested NMIs at that point that it is 1106 * nested. Then we pop the stack normally with iret, and if there was 1107 * a nested NMI that updated the copy interrupt stack frame, a 1108 * jump will be made to the repeat_nmi code that will handle the second 1109 * NMI. 1110 * 1111 * However, espfix prevents us from directly returning to userspace 1112 * with a single IRET instruction. Similarly, IRET to user mode 1113 * can fault. We therefore handle NMIs from user space like 1114 * other IST entries. 1115 */ 1116 1117 ASM_CLAC 1118 1119 /* Use %rdx as our temp variable throughout */ 1120 pushq %rdx 1121 1122 testb $3, CS-RIP+8(%rsp) 1123 jz .Lnmi_from_kernel 1124 1125 /* 1126 * NMI from user mode. We need to run on the thread stack, but we 1127 * can't go through the normal entry paths: NMIs are masked, and 1128 * we don't want to enable interrupts, because then we'll end 1129 * up in an awkward situation in which IRQs are on but NMIs 1130 * are off. 1131 * 1132 * We also must not push anything to the stack before switching 1133 * stacks lest we corrupt the "NMI executing" variable. 1134 */ 1135 1136 swapgs 1137 cld 1138 FENCE_SWAPGS_USER_ENTRY 1139 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1140 movq %rsp, %rdx 1141 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1142 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1143 pushq 5*8(%rdx) /* pt_regs->ss */ 1144 pushq 4*8(%rdx) /* pt_regs->rsp */ 1145 pushq 3*8(%rdx) /* pt_regs->flags */ 1146 pushq 2*8(%rdx) /* pt_regs->cs */ 1147 pushq 1*8(%rdx) /* pt_regs->rip */ 1148 UNWIND_HINT_IRET_REGS 1149 pushq $-1 /* pt_regs->orig_ax */ 1150 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1151 ENCODE_FRAME_POINTER 1152 1153 /* 1154 * At this point we no longer need to worry about stack damage 1155 * due to nesting -- we're on the normal thread stack and we're 1156 * done with the NMI stack. 1157 */ 1158 1159 movq %rsp, %rdi 1160 movq $-1, %rsi 1161 call exc_nmi 1162 1163 /* 1164 * Return back to user mode. We must *not* do the normal exit 1165 * work, because we don't want to enable interrupts. 1166 */ 1167 jmp swapgs_restore_regs_and_return_to_usermode 1168 1169.Lnmi_from_kernel: 1170 /* 1171 * Here's what our stack frame will look like: 1172 * +---------------------------------------------------------+ 1173 * | original SS | 1174 * | original Return RSP | 1175 * | original RFLAGS | 1176 * | original CS | 1177 * | original RIP | 1178 * +---------------------------------------------------------+ 1179 * | temp storage for rdx | 1180 * +---------------------------------------------------------+ 1181 * | "NMI executing" variable | 1182 * +---------------------------------------------------------+ 1183 * | iret SS } Copied from "outermost" frame | 1184 * | iret Return RSP } on each loop iteration; overwritten | 1185 * | iret RFLAGS } by a nested NMI to force another | 1186 * | iret CS } iteration if needed. | 1187 * | iret RIP } | 1188 * +---------------------------------------------------------+ 1189 * | outermost SS } initialized in first_nmi; | 1190 * | outermost Return RSP } will not be changed before | 1191 * | outermost RFLAGS } NMI processing is done. | 1192 * | outermost CS } Copied to "iret" frame on each | 1193 * | outermost RIP } iteration. | 1194 * +---------------------------------------------------------+ 1195 * | pt_regs | 1196 * +---------------------------------------------------------+ 1197 * 1198 * The "original" frame is used by hardware. Before re-enabling 1199 * NMIs, we need to be done with it, and we need to leave enough 1200 * space for the asm code here. 1201 * 1202 * We return by executing IRET while RSP points to the "iret" frame. 1203 * That will either return for real or it will loop back into NMI 1204 * processing. 1205 * 1206 * The "outermost" frame is copied to the "iret" frame on each 1207 * iteration of the loop, so each iteration starts with the "iret" 1208 * frame pointing to the final return target. 1209 */ 1210 1211 /* 1212 * Determine whether we're a nested NMI. 1213 * 1214 * If we interrupted kernel code between repeat_nmi and 1215 * end_repeat_nmi, then we are a nested NMI. We must not 1216 * modify the "iret" frame because it's being written by 1217 * the outer NMI. That's okay; the outer NMI handler is 1218 * about to about to call exc_nmi() anyway, so we can just 1219 * resume the outer NMI. 1220 */ 1221 1222 movq $repeat_nmi, %rdx 1223 cmpq 8(%rsp), %rdx 1224 ja 1f 1225 movq $end_repeat_nmi, %rdx 1226 cmpq 8(%rsp), %rdx 1227 ja nested_nmi_out 12281: 1229 1230 /* 1231 * Now check "NMI executing". If it's set, then we're nested. 1232 * This will not detect if we interrupted an outer NMI just 1233 * before IRET. 1234 */ 1235 cmpl $1, -8(%rsp) 1236 je nested_nmi 1237 1238 /* 1239 * Now test if the previous stack was an NMI stack. This covers 1240 * the case where we interrupt an outer NMI after it clears 1241 * "NMI executing" but before IRET. We need to be careful, though: 1242 * there is one case in which RSP could point to the NMI stack 1243 * despite there being no NMI active: naughty userspace controls 1244 * RSP at the very beginning of the SYSCALL targets. We can 1245 * pull a fast one on naughty userspace, though: we program 1246 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1247 * if it controls the kernel's RSP. We set DF before we clear 1248 * "NMI executing". 1249 */ 1250 lea 6*8(%rsp), %rdx 1251 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1252 cmpq %rdx, 4*8(%rsp) 1253 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1254 ja first_nmi 1255 1256 subq $EXCEPTION_STKSZ, %rdx 1257 cmpq %rdx, 4*8(%rsp) 1258 /* If it is below the NMI stack, it is a normal NMI */ 1259 jb first_nmi 1260 1261 /* Ah, it is within the NMI stack. */ 1262 1263 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1264 jz first_nmi /* RSP was user controlled. */ 1265 1266 /* This is a nested NMI. */ 1267 1268nested_nmi: 1269 /* 1270 * Modify the "iret" frame to point to repeat_nmi, forcing another 1271 * iteration of NMI handling. 1272 */ 1273 subq $8, %rsp 1274 leaq -10*8(%rsp), %rdx 1275 pushq $__KERNEL_DS 1276 pushq %rdx 1277 pushfq 1278 pushq $__KERNEL_CS 1279 pushq $repeat_nmi 1280 1281 /* Put stack back */ 1282 addq $(6*8), %rsp 1283 1284nested_nmi_out: 1285 popq %rdx 1286 1287 /* We are returning to kernel mode, so this cannot result in a fault. */ 1288 iretq 1289 1290first_nmi: 1291 /* Restore rdx. */ 1292 movq (%rsp), %rdx 1293 1294 /* Make room for "NMI executing". */ 1295 pushq $0 1296 1297 /* Leave room for the "iret" frame */ 1298 subq $(5*8), %rsp 1299 1300 /* Copy the "original" frame to the "outermost" frame */ 1301 .rept 5 1302 pushq 11*8(%rsp) 1303 .endr 1304 UNWIND_HINT_IRET_REGS 1305 1306 /* Everything up to here is safe from nested NMIs */ 1307 1308#ifdef CONFIG_DEBUG_ENTRY 1309 /* 1310 * For ease of testing, unmask NMIs right away. Disabled by 1311 * default because IRET is very expensive. 1312 */ 1313 pushq $0 /* SS */ 1314 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1315 addq $8, (%rsp) /* Fix up RSP */ 1316 pushfq /* RFLAGS */ 1317 pushq $__KERNEL_CS /* CS */ 1318 pushq $1f /* RIP */ 1319 iretq /* continues at repeat_nmi below */ 1320 UNWIND_HINT_IRET_REGS 13211: 1322#endif 1323 1324repeat_nmi: 1325 /* 1326 * If there was a nested NMI, the first NMI's iret will return 1327 * here. But NMIs are still enabled and we can take another 1328 * nested NMI. The nested NMI checks the interrupted RIP to see 1329 * if it is between repeat_nmi and end_repeat_nmi, and if so 1330 * it will just return, as we are about to repeat an NMI anyway. 1331 * This makes it safe to copy to the stack frame that a nested 1332 * NMI will update. 1333 * 1334 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1335 * we're repeating an NMI, gsbase has the same value that it had on 1336 * the first iteration. paranoid_entry will load the kernel 1337 * gsbase if needed before we call exc_nmi(). "NMI executing" 1338 * is zero. 1339 */ 1340 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1341 1342 /* 1343 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1344 * here must not modify the "iret" frame while we're writing to 1345 * it or it will end up containing garbage. 1346 */ 1347 addq $(10*8), %rsp 1348 .rept 5 1349 pushq -6*8(%rsp) 1350 .endr 1351 subq $(5*8), %rsp 1352end_repeat_nmi: 1353 1354 /* 1355 * Everything below this point can be preempted by a nested NMI. 1356 * If this happens, then the inner NMI will change the "iret" 1357 * frame to point back to repeat_nmi. 1358 */ 1359 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1360 1361 /* 1362 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1363 * as we should not be calling schedule in NMI context. 1364 * Even with normal interrupts enabled. An NMI should not be 1365 * setting NEED_RESCHED or anything that normal interrupts and 1366 * exceptions might do. 1367 */ 1368 call paranoid_entry 1369 UNWIND_HINT_REGS 1370 1371 movq %rsp, %rdi 1372 movq $-1, %rsi 1373 call exc_nmi 1374 1375 /* Always restore stashed CR3 value (see paranoid_entry) */ 1376 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1377 1378 /* 1379 * The above invocation of paranoid_entry stored the GSBASE 1380 * related information in R/EBX depending on the availability 1381 * of FSGSBASE. 1382 * 1383 * If FSGSBASE is enabled, restore the saved GSBASE value 1384 * unconditionally, otherwise take the conditional SWAPGS path. 1385 */ 1386 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1387 1388 wrgsbase %rbx 1389 jmp nmi_restore 1390 1391nmi_no_fsgsbase: 1392 /* EBX == 0 -> invoke SWAPGS */ 1393 testl %ebx, %ebx 1394 jnz nmi_restore 1395 1396nmi_swapgs: 1397 swapgs 1398 1399nmi_restore: 1400 POP_REGS 1401 1402 /* 1403 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1404 * at the "iret" frame. 1405 */ 1406 addq $6*8, %rsp 1407 1408 /* 1409 * Clear "NMI executing". Set DF first so that we can easily 1410 * distinguish the remaining code between here and IRET from 1411 * the SYSCALL entry and exit paths. 1412 * 1413 * We arguably should just inspect RIP instead, but I (Andy) wrote 1414 * this code when I had the misapprehension that Xen PV supported 1415 * NMIs, and Xen PV would break that approach. 1416 */ 1417 std 1418 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1419 1420 /* 1421 * iretq reads the "iret" frame and exits the NMI stack in a 1422 * single instruction. We are returning to kernel mode, so this 1423 * cannot result in a fault. Similarly, we don't need to worry 1424 * about espfix64 on the way back to kernel mode. 1425 */ 1426 iretq 1427SYM_CODE_END(asm_exc_nmi) 1428 1429#ifndef CONFIG_IA32_EMULATION 1430/* 1431 * This handles SYSCALL from 32-bit code. There is no way to program 1432 * MSRs to fully disable 32-bit SYSCALL. 1433 */ 1434SYM_CODE_START(ignore_sysret) 1435 UNWIND_HINT_EMPTY 1436 ENDBR 1437 mov $-ENOSYS, %eax 1438 sysretl 1439SYM_CODE_END(ignore_sysret) 1440#endif 1441 1442.pushsection .text, "ax" 1443SYM_CODE_START(rewind_stack_and_make_dead) 1444 UNWIND_HINT_FUNC 1445 /* Prevent any naive code from trying to unwind to our caller. */ 1446 xorl %ebp, %ebp 1447 1448 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1449 leaq -PTREGS_SIZE(%rax), %rsp 1450 UNWIND_HINT_REGS 1451 1452 call make_task_dead 1453SYM_CODE_END(rewind_stack_and_make_dead) 1454.popsection 1455