xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision c8dbaa22)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <linux/err.h>
40
41.code64
42.section .entry.text, "ax"
43
44#ifdef CONFIG_PARAVIRT
45ENTRY(native_usergs_sysret64)
46	swapgs
47	sysretq
48ENDPROC(native_usergs_sysret64)
49#endif /* CONFIG_PARAVIRT */
50
51.macro TRACE_IRQS_IRETQ
52#ifdef CONFIG_TRACE_IRQFLAGS
53	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
54	jnc	1f
55	TRACE_IRQS_ON
561:
57#endif
58.endm
59
60/*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73.macro TRACE_IRQS_OFF_DEBUG
74	call	debug_stack_set_zero
75	TRACE_IRQS_OFF
76	call	debug_stack_reset
77.endm
78
79.macro TRACE_IRQS_ON_DEBUG
80	call	debug_stack_set_zero
81	TRACE_IRQS_ON
82	call	debug_stack_reset
83.endm
84
85.macro TRACE_IRQS_IRETQ_DEBUG
86	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
87	jnc	1f
88	TRACE_IRQS_ON_DEBUG
891:
90.endm
91
92#else
93# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
94# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
95# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96#endif
97
98/*
99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
100 *
101 * This is the only entry point used for 64-bit system calls.  The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries.  There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
118 * rax  system call number
119 * rcx  return address
120 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
121 * rdi  arg0
122 * rsi  arg1
123 * rdx  arg2
124 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
125 * r8   arg4
126 * r9   arg5
127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128 *
129 * Only called from user space.
130 *
131 * When user can change pt_regs->foo always force IRET. That is because
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
134 */
135
136ENTRY(entry_SYSCALL_64)
137	/*
138	 * Interrupts are off on entry.
139	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140	 * it is too small to ever cause noticeable irq latency.
141	 */
142	SWAPGS_UNSAFE_STACK
143	/*
144	 * A hypervisor implementation might want to use a label
145	 * after the swapgs, so that it can do the swapgs
146	 * for the guest and jump here on syscall.
147	 */
148GLOBAL(entry_SYSCALL_64_after_swapgs)
149
150	movq	%rsp, PER_CPU_VAR(rsp_scratch)
151	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152
153	TRACE_IRQS_OFF
154
155	/* Construct struct pt_regs on stack */
156	pushq	$__USER_DS			/* pt_regs->ss */
157	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
158	pushq	%r11				/* pt_regs->flags */
159	pushq	$__USER_CS			/* pt_regs->cs */
160	pushq	%rcx				/* pt_regs->ip */
161	pushq	%rax				/* pt_regs->orig_ax */
162	pushq	%rdi				/* pt_regs->di */
163	pushq	%rsi				/* pt_regs->si */
164	pushq	%rdx				/* pt_regs->dx */
165	pushq	%rcx				/* pt_regs->cx */
166	pushq	$-ENOSYS			/* pt_regs->ax */
167	pushq	%r8				/* pt_regs->r8 */
168	pushq	%r9				/* pt_regs->r9 */
169	pushq	%r10				/* pt_regs->r10 */
170	pushq	%r11				/* pt_regs->r11 */
171	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
172
173	/*
174	 * If we need to do entry work or if we guess we'll need to do
175	 * exit work, go straight to the slow path.
176	 */
177	movq	PER_CPU_VAR(current_task), %r11
178	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179	jnz	entry_SYSCALL64_slow_path
180
181entry_SYSCALL_64_fastpath:
182	/*
183	 * Easy case: enable interrupts and issue the syscall.  If the syscall
184	 * needs pt_regs, we'll call a stub that disables interrupts again
185	 * and jumps to the slow path.
186	 */
187	TRACE_IRQS_ON
188	ENABLE_INTERRUPTS(CLBR_NONE)
189#if __SYSCALL_MASK == ~0
190	cmpq	$__NR_syscall_max, %rax
191#else
192	andl	$__SYSCALL_MASK, %eax
193	cmpl	$__NR_syscall_max, %eax
194#endif
195	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
196	movq	%r10, %rcx
197
198	/*
199	 * This call instruction is handled specially in stub_ptregs_64.
200	 * It might end up jumping to the slow path.  If it jumps, RAX
201	 * and all argument registers are clobbered.
202	 */
203	call	*sys_call_table(, %rax, 8)
204.Lentry_SYSCALL_64_after_fastpath_call:
205
206	movq	%rax, RAX(%rsp)
2071:
208
209	/*
210	 * If we get here, then we know that pt_regs is clean for SYSRET64.
211	 * If we see that no exit work is required (which we are required
212	 * to check with IRQs off), then we can go straight to SYSRET64.
213	 */
214	DISABLE_INTERRUPTS(CLBR_ANY)
215	TRACE_IRQS_OFF
216	movq	PER_CPU_VAR(current_task), %r11
217	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218	jnz	1f
219
220	LOCKDEP_SYS_EXIT
221	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222	movq	RIP(%rsp), %rcx
223	movq	EFLAGS(%rsp), %r11
224	RESTORE_C_REGS_EXCEPT_RCX_R11
225	movq	RSP(%rsp), %rsp
226	USERGS_SYSRET64
227
2281:
229	/*
230	 * The fast path looked good when we started, but something changed
231	 * along the way and we need to switch to the slow path.  Calling
232	 * raise(3) will trigger this, for example.  IRQs are off.
233	 */
234	TRACE_IRQS_ON
235	ENABLE_INTERRUPTS(CLBR_ANY)
236	SAVE_EXTRA_REGS
237	movq	%rsp, %rdi
238	call	syscall_return_slowpath	/* returns with IRQs disabled */
239	jmp	return_from_SYSCALL_64
240
241entry_SYSCALL64_slow_path:
242	/* IRQs are off. */
243	SAVE_EXTRA_REGS
244	movq	%rsp, %rdi
245	call	do_syscall_64		/* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
248	RESTORE_EXTRA_REGS
249	TRACE_IRQS_IRETQ		/* we're about to change IF */
250
251	/*
252	 * Try to use SYSRET instead of IRET if we're returning to
253	 * a completely clean 64-bit userspace context.
254	 */
255	movq	RCX(%rsp), %rcx
256	movq	RIP(%rsp), %r11
257	cmpq	%rcx, %r11			/* RCX == RIP */
258	jne	opportunistic_sysret_failed
259
260	/*
261	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262	 * in kernel space.  This essentially lets the user take over
263	 * the kernel, since userspace controls RSP.
264	 *
265	 * If width of "canonical tail" ever becomes variable, this will need
266	 * to be updated to remain correct on both old and new CPUs.
267	 *
268	 * Change top bits to match most significant bit (47th or 56th bit
269	 * depending on paging mode) in the address.
270	 */
271	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273
274	/* If this changed %rcx, it was not canonical */
275	cmpq	%rcx, %r11
276	jne	opportunistic_sysret_failed
277
278	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
279	jne	opportunistic_sysret_failed
280
281	movq	R11(%rsp), %r11
282	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
283	jne	opportunistic_sysret_failed
284
285	/*
286	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287	 * restore RF properly. If the slowpath sets it for whatever reason, we
288	 * need to restore it correctly.
289	 *
290	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291	 * trap from userspace immediately after SYSRET.  This would cause an
292	 * infinite loop whenever #DB happens with register state that satisfies
293	 * the opportunistic SYSRET conditions.  For example, single-stepping
294	 * this user code:
295	 *
296	 *           movq	$stuck_here, %rcx
297	 *           pushfq
298	 *           popq %r11
299	 *   stuck_here:
300	 *
301	 * would never get past 'stuck_here'.
302	 */
303	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304	jnz	opportunistic_sysret_failed
305
306	/* nothing to check for RSP */
307
308	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
309	jne	opportunistic_sysret_failed
310
311	/*
312	 * We win! This label is here just for ease of understanding
313	 * perf profiles. Nothing jumps here.
314	 */
315syscall_return_via_sysret:
316	/* rcx and r11 are already restored (see code above) */
317	RESTORE_C_REGS_EXCEPT_RCX_R11
318	movq	RSP(%rsp), %rsp
319	USERGS_SYSRET64
320
321opportunistic_sysret_failed:
322	SWAPGS
323	jmp	restore_c_regs_and_iret
324END(entry_SYSCALL_64)
325
326ENTRY(stub_ptregs_64)
327	/*
328	 * Syscalls marked as needing ptregs land here.
329	 * If we are on the fast path, we need to save the extra regs,
330	 * which we achieve by trying again on the slow path.  If we are on
331	 * the slow path, the extra regs are already saved.
332	 *
333	 * RAX stores a pointer to the C function implementing the syscall.
334	 * IRQs are on.
335	 */
336	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
337	jne	1f
338
339	/*
340	 * Called from fast path -- disable IRQs again, pop return address
341	 * and jump to slow path
342	 */
343	DISABLE_INTERRUPTS(CLBR_ANY)
344	TRACE_IRQS_OFF
345	popq	%rax
346	jmp	entry_SYSCALL64_slow_path
347
3481:
349	jmp	*%rax				/* Called from C */
350END(stub_ptregs_64)
351
352.macro ptregs_stub func
353ENTRY(ptregs_\func)
354	leaq	\func(%rip), %rax
355	jmp	stub_ptregs_64
356END(ptregs_\func)
357.endm
358
359/* Instantiate ptregs_stub for each ptregs-using syscall */
360#define __SYSCALL_64_QUAL_(sym)
361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
363#include <asm/syscalls_64.h>
364
365/*
366 * %rdi: prev task
367 * %rsi: next task
368 */
369ENTRY(__switch_to_asm)
370	/*
371	 * Save callee-saved registers
372	 * This must match the order in inactive_task_frame
373	 */
374	pushq	%rbp
375	pushq	%rbx
376	pushq	%r12
377	pushq	%r13
378	pushq	%r14
379	pushq	%r15
380
381	/* switch stack */
382	movq	%rsp, TASK_threadsp(%rdi)
383	movq	TASK_threadsp(%rsi), %rsp
384
385#ifdef CONFIG_CC_STACKPROTECTOR
386	movq	TASK_stack_canary(%rsi), %rbx
387	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
388#endif
389
390	/* restore callee-saved registers */
391	popq	%r15
392	popq	%r14
393	popq	%r13
394	popq	%r12
395	popq	%rbx
396	popq	%rbp
397
398	jmp	__switch_to
399END(__switch_to_asm)
400
401/*
402 * A newly forked process directly context switches into this address.
403 *
404 * rax: prev task we switched from
405 * rbx: kernel thread func (NULL for user thread)
406 * r12: kernel thread arg
407 */
408ENTRY(ret_from_fork)
409	movq	%rax, %rdi
410	call	schedule_tail			/* rdi: 'prev' task parameter */
411
412	testq	%rbx, %rbx			/* from kernel_thread? */
413	jnz	1f				/* kernel threads are uncommon */
414
4152:
416	movq	%rsp, %rdi
417	call	syscall_return_slowpath	/* returns with IRQs disabled */
418	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
419	SWAPGS
420	jmp	restore_regs_and_iret
421
4221:
423	/* kernel thread */
424	movq	%r12, %rdi
425	call	*%rbx
426	/*
427	 * A kernel thread is allowed to return here after successfully
428	 * calling do_execve().  Exit to userspace to complete the execve()
429	 * syscall.
430	 */
431	movq	$0, RAX(%rsp)
432	jmp	2b
433END(ret_from_fork)
434
435/*
436 * Build the entry stubs with some assembler magic.
437 * We pack 1 stub into every 8-byte block.
438 */
439	.align 8
440ENTRY(irq_entries_start)
441    vector=FIRST_EXTERNAL_VECTOR
442    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
444    vector=vector+1
445	jmp	common_interrupt
446	.align	8
447    .endr
448END(irq_entries_start)
449
450/*
451 * Interrupt entry/exit.
452 *
453 * Interrupt entry points save only callee clobbered registers in fast path.
454 *
455 * Entry runs with interrupts off.
456 */
457
458/* 0(%rsp): ~(interrupt number) */
459	.macro interrupt func
460	cld
461	ALLOC_PT_GPREGS_ON_STACK
462	SAVE_C_REGS
463	SAVE_EXTRA_REGS
464	ENCODE_FRAME_POINTER
465
466	testb	$3, CS(%rsp)
467	jz	1f
468
469	/*
470	 * IRQ from user mode.  Switch to kernel gsbase and inform context
471	 * tracking that we're in kernel mode.
472	 */
473	SWAPGS
474
475	/*
476	 * We need to tell lockdep that IRQs are off.  We can't do this until
477	 * we fix gsbase, and we should do it before enter_from_user_mode
478	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
479	 * the simplest way to handle it is to just call it twice if
480	 * we enter from user mode.  There's no reason to optimize this since
481	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
482	 */
483	TRACE_IRQS_OFF
484
485	CALL_enter_from_user_mode
486
4871:
488	/*
489	 * Save previous stack pointer, optionally switch to interrupt stack.
490	 * irq_count is used to check if a CPU is already on an interrupt stack
491	 * or not. While this is essentially redundant with preempt_count it is
492	 * a little cheaper to use a separate counter in the PDA (short of
493	 * moving irq_enter into assembly, which would be too much work)
494	 */
495	movq	%rsp, %rdi
496	incl	PER_CPU_VAR(irq_count)
497	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
498	pushq	%rdi
499	/* We entered an interrupt context - irqs are off: */
500	TRACE_IRQS_OFF
501
502	call	\func	/* rdi points to pt_regs */
503	.endm
504
505	/*
506	 * The interrupt stubs push (~vector+0x80) onto the stack and
507	 * then jump to common_interrupt.
508	 */
509	.p2align CONFIG_X86_L1_CACHE_SHIFT
510common_interrupt:
511	ASM_CLAC
512	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
513	interrupt do_IRQ
514	/* 0(%rsp): old RSP */
515ret_from_intr:
516	DISABLE_INTERRUPTS(CLBR_ANY)
517	TRACE_IRQS_OFF
518	decl	PER_CPU_VAR(irq_count)
519
520	/* Restore saved previous stack */
521	popq	%rsp
522
523	testb	$3, CS(%rsp)
524	jz	retint_kernel
525
526	/* Interrupt came from user space */
527GLOBAL(retint_user)
528	mov	%rsp,%rdi
529	call	prepare_exit_to_usermode
530	TRACE_IRQS_IRETQ
531	SWAPGS
532	jmp	restore_regs_and_iret
533
534/* Returning to kernel space */
535retint_kernel:
536#ifdef CONFIG_PREEMPT
537	/* Interrupts are off */
538	/* Check if we need preemption */
539	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
540	jnc	1f
5410:	cmpl	$0, PER_CPU_VAR(__preempt_count)
542	jnz	1f
543	call	preempt_schedule_irq
544	jmp	0b
5451:
546#endif
547	/*
548	 * The iretq could re-enable interrupts:
549	 */
550	TRACE_IRQS_IRETQ
551
552/*
553 * At this label, code paths which return to kernel and to user,
554 * which come from interrupts/exception and from syscalls, merge.
555 */
556GLOBAL(restore_regs_and_iret)
557	RESTORE_EXTRA_REGS
558restore_c_regs_and_iret:
559	RESTORE_C_REGS
560	REMOVE_PT_GPREGS_FROM_STACK 8
561	INTERRUPT_RETURN
562
563ENTRY(native_iret)
564	/*
565	 * Are we returning to a stack segment from the LDT?  Note: in
566	 * 64-bit mode SS:RSP on the exception stack is always valid.
567	 */
568#ifdef CONFIG_X86_ESPFIX64
569	testb	$4, (SS-RIP)(%rsp)
570	jnz	native_irq_return_ldt
571#endif
572
573.global native_irq_return_iret
574native_irq_return_iret:
575	/*
576	 * This may fault.  Non-paranoid faults on return to userspace are
577	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
578	 * Double-faults due to espfix64 are handled in do_double_fault.
579	 * Other faults here are fatal.
580	 */
581	iretq
582
583#ifdef CONFIG_X86_ESPFIX64
584native_irq_return_ldt:
585	/*
586	 * We are running with user GSBASE.  All GPRs contain their user
587	 * values.  We have a percpu ESPFIX stack that is eight slots
588	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
589	 * of the ESPFIX stack.
590	 *
591	 * We clobber RAX and RDI in this code.  We stash RDI on the
592	 * normal stack and RAX on the ESPFIX stack.
593	 *
594	 * The ESPFIX stack layout we set up looks like this:
595	 *
596	 * --- top of ESPFIX stack ---
597	 * SS
598	 * RSP
599	 * RFLAGS
600	 * CS
601	 * RIP  <-- RSP points here when we're done
602	 * RAX  <-- espfix_waddr points here
603	 * --- bottom of ESPFIX stack ---
604	 */
605
606	pushq	%rdi				/* Stash user RDI */
607	SWAPGS
608	movq	PER_CPU_VAR(espfix_waddr), %rdi
609	movq	%rax, (0*8)(%rdi)		/* user RAX */
610	movq	(1*8)(%rsp), %rax		/* user RIP */
611	movq	%rax, (1*8)(%rdi)
612	movq	(2*8)(%rsp), %rax		/* user CS */
613	movq	%rax, (2*8)(%rdi)
614	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
615	movq	%rax, (3*8)(%rdi)
616	movq	(5*8)(%rsp), %rax		/* user SS */
617	movq	%rax, (5*8)(%rdi)
618	movq	(4*8)(%rsp), %rax		/* user RSP */
619	movq	%rax, (4*8)(%rdi)
620	/* Now RAX == RSP. */
621
622	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
623	popq	%rdi				/* Restore user RDI */
624
625	/*
626	 * espfix_stack[31:16] == 0.  The page tables are set up such that
627	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
628	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
629	 * the same page.  Set up RSP so that RSP[31:16] contains the
630	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
631	 * still points to an RO alias of the ESPFIX stack.
632	 */
633	orq	PER_CPU_VAR(espfix_stack), %rax
634	SWAPGS
635	movq	%rax, %rsp
636
637	/*
638	 * At this point, we cannot write to the stack any more, but we can
639	 * still read.
640	 */
641	popq	%rax				/* Restore user RAX */
642
643	/*
644	 * RSP now points to an ordinary IRET frame, except that the page
645	 * is read-only and RSP[31:16] are preloaded with the userspace
646	 * values.  We can now IRET back to userspace.
647	 */
648	jmp	native_irq_return_iret
649#endif
650END(common_interrupt)
651
652/*
653 * APIC interrupts.
654 */
655.macro apicinterrupt3 num sym do_sym
656ENTRY(\sym)
657	ASM_CLAC
658	pushq	$~(\num)
659.Lcommon_\sym:
660	interrupt \do_sym
661	jmp	ret_from_intr
662END(\sym)
663.endm
664
665#ifdef CONFIG_TRACING
666#define trace(sym) trace_##sym
667#define smp_trace(sym) smp_trace_##sym
668
669.macro trace_apicinterrupt num sym
670apicinterrupt3 \num trace(\sym) smp_trace(\sym)
671.endm
672#else
673.macro trace_apicinterrupt num sym do_sym
674.endm
675#endif
676
677/* Make sure APIC interrupt handlers end up in the irqentry section: */
678#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
679# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
680# define POP_SECTION_IRQENTRY	.popsection
681#else
682# define PUSH_SECTION_IRQENTRY
683# define POP_SECTION_IRQENTRY
684#endif
685
686.macro apicinterrupt num sym do_sym
687PUSH_SECTION_IRQENTRY
688apicinterrupt3 \num \sym \do_sym
689trace_apicinterrupt \num \sym
690POP_SECTION_IRQENTRY
691.endm
692
693#ifdef CONFIG_SMP
694apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
695apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
696#endif
697
698#ifdef CONFIG_X86_UV
699apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
700#endif
701
702apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
703apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
704
705#ifdef CONFIG_HAVE_KVM
706apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
707apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
708apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
709#endif
710
711#ifdef CONFIG_X86_MCE_THRESHOLD
712apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
713#endif
714
715#ifdef CONFIG_X86_MCE_AMD
716apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
717#endif
718
719#ifdef CONFIG_X86_THERMAL_VECTOR
720apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
721#endif
722
723#ifdef CONFIG_SMP
724apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
725apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
726apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
727#endif
728
729apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
730apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
731
732#ifdef CONFIG_IRQ_WORK
733apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
734#endif
735
736/*
737 * Exception entry points.
738 */
739#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
740
741.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
742ENTRY(\sym)
743	/* Sanity check */
744	.if \shift_ist != -1 && \paranoid == 0
745	.error "using shift_ist requires paranoid=1"
746	.endif
747
748	ASM_CLAC
749	PARAVIRT_ADJUST_EXCEPTION_FRAME
750
751	.ifeq \has_error_code
752	pushq	$-1				/* ORIG_RAX: no syscall to restart */
753	.endif
754
755	ALLOC_PT_GPREGS_ON_STACK
756
757	.if \paranoid
758	.if \paranoid == 1
759	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
760	jnz	1f
761	.endif
762	call	paranoid_entry
763	.else
764	call	error_entry
765	.endif
766	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
767
768	.if \paranoid
769	.if \shift_ist != -1
770	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
771	.else
772	TRACE_IRQS_OFF
773	.endif
774	.endif
775
776	movq	%rsp, %rdi			/* pt_regs pointer */
777
778	.if \has_error_code
779	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
780	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
781	.else
782	xorl	%esi, %esi			/* no error code */
783	.endif
784
785	.if \shift_ist != -1
786	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
787	.endif
788
789	call	\do_sym
790
791	.if \shift_ist != -1
792	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
793	.endif
794
795	/* these procedures expect "no swapgs" flag in ebx */
796	.if \paranoid
797	jmp	paranoid_exit
798	.else
799	jmp	error_exit
800	.endif
801
802	.if \paranoid == 1
803	/*
804	 * Paranoid entry from userspace.  Switch stacks and treat it
805	 * as a normal entry.  This means that paranoid handlers
806	 * run in real process context if user_mode(regs).
807	 */
8081:
809	call	error_entry
810
811
812	movq	%rsp, %rdi			/* pt_regs pointer */
813	call	sync_regs
814	movq	%rax, %rsp			/* switch stack */
815
816	movq	%rsp, %rdi			/* pt_regs pointer */
817
818	.if \has_error_code
819	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
820	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
821	.else
822	xorl	%esi, %esi			/* no error code */
823	.endif
824
825	call	\do_sym
826
827	jmp	error_exit			/* %ebx: no swapgs flag */
828	.endif
829END(\sym)
830.endm
831
832#ifdef CONFIG_TRACING
833.macro trace_idtentry sym do_sym has_error_code:req
834idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
835idtentry \sym \do_sym has_error_code=\has_error_code
836.endm
837#else
838.macro trace_idtentry sym do_sym has_error_code:req
839idtentry \sym \do_sym has_error_code=\has_error_code
840.endm
841#endif
842
843idtentry divide_error			do_divide_error			has_error_code=0
844idtentry overflow			do_overflow			has_error_code=0
845idtentry bounds				do_bounds			has_error_code=0
846idtentry invalid_op			do_invalid_op			has_error_code=0
847idtentry device_not_available		do_device_not_available		has_error_code=0
848idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
849idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
850idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
851idtentry segment_not_present		do_segment_not_present		has_error_code=1
852idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
853idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
854idtentry alignment_check		do_alignment_check		has_error_code=1
855idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
856
857
858	/*
859	 * Reload gs selector with exception handling
860	 * edi:  new selector
861	 */
862ENTRY(native_load_gs_index)
863	pushfq
864	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
865	SWAPGS
866.Lgs_change:
867	movl	%edi, %gs
8682:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
869	SWAPGS
870	popfq
871	ret
872END(native_load_gs_index)
873EXPORT_SYMBOL(native_load_gs_index)
874
875	_ASM_EXTABLE(.Lgs_change, bad_gs)
876	.section .fixup, "ax"
877	/* running with kernelgs */
878bad_gs:
879	SWAPGS					/* switch back to user gs */
880.macro ZAP_GS
881	/* This can't be a string because the preprocessor needs to see it. */
882	movl $__USER_DS, %eax
883	movl %eax, %gs
884.endm
885	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
886	xorl	%eax, %eax
887	movl	%eax, %gs
888	jmp	2b
889	.previous
890
891/* Call softirq on interrupt stack. Interrupts are off. */
892ENTRY(do_softirq_own_stack)
893	pushq	%rbp
894	mov	%rsp, %rbp
895	incl	PER_CPU_VAR(irq_count)
896	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
897	push	%rbp				/* frame pointer backlink */
898	call	__do_softirq
899	leaveq
900	decl	PER_CPU_VAR(irq_count)
901	ret
902END(do_softirq_own_stack)
903
904#ifdef CONFIG_XEN
905idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
906
907/*
908 * A note on the "critical region" in our callback handler.
909 * We want to avoid stacking callback handlers due to events occurring
910 * during handling of the last event. To do this, we keep events disabled
911 * until we've done all processing. HOWEVER, we must enable events before
912 * popping the stack frame (can't be done atomically) and so it would still
913 * be possible to get enough handler activations to overflow the stack.
914 * Although unlikely, bugs of that kind are hard to track down, so we'd
915 * like to avoid the possibility.
916 * So, on entry to the handler we detect whether we interrupted an
917 * existing activation in its critical region -- if so, we pop the current
918 * activation and restart the handler using the previous one.
919 */
920ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
921
922/*
923 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
924 * see the correct pointer to the pt_regs
925 */
926	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
92711:	incl	PER_CPU_VAR(irq_count)
928	movq	%rsp, %rbp
929	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
930	pushq	%rbp				/* frame pointer backlink */
931	call	xen_evtchn_do_upcall
932	popq	%rsp
933	decl	PER_CPU_VAR(irq_count)
934#ifndef CONFIG_PREEMPT
935	call	xen_maybe_preempt_hcall
936#endif
937	jmp	error_exit
938END(xen_do_hypervisor_callback)
939
940/*
941 * Hypervisor uses this for application faults while it executes.
942 * We get here for two reasons:
943 *  1. Fault while reloading DS, ES, FS or GS
944 *  2. Fault while executing IRET
945 * Category 1 we do not need to fix up as Xen has already reloaded all segment
946 * registers that could be reloaded and zeroed the others.
947 * Category 2 we fix up by killing the current process. We cannot use the
948 * normal Linux return path in this case because if we use the IRET hypercall
949 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
950 * We distinguish between categories by comparing each saved segment register
951 * with its current contents: any discrepancy means we in category 1.
952 */
953ENTRY(xen_failsafe_callback)
954	movl	%ds, %ecx
955	cmpw	%cx, 0x10(%rsp)
956	jne	1f
957	movl	%es, %ecx
958	cmpw	%cx, 0x18(%rsp)
959	jne	1f
960	movl	%fs, %ecx
961	cmpw	%cx, 0x20(%rsp)
962	jne	1f
963	movl	%gs, %ecx
964	cmpw	%cx, 0x28(%rsp)
965	jne	1f
966	/* All segments match their saved values => Category 2 (Bad IRET). */
967	movq	(%rsp), %rcx
968	movq	8(%rsp), %r11
969	addq	$0x30, %rsp
970	pushq	$0				/* RIP */
971	pushq	%r11
972	pushq	%rcx
973	jmp	general_protection
9741:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
975	movq	(%rsp), %rcx
976	movq	8(%rsp), %r11
977	addq	$0x30, %rsp
978	pushq	$-1 /* orig_ax = -1 => not a system call */
979	ALLOC_PT_GPREGS_ON_STACK
980	SAVE_C_REGS
981	SAVE_EXTRA_REGS
982	ENCODE_FRAME_POINTER
983	jmp	error_exit
984END(xen_failsafe_callback)
985
986apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
987	xen_hvm_callback_vector xen_evtchn_do_upcall
988
989#endif /* CONFIG_XEN */
990
991#if IS_ENABLED(CONFIG_HYPERV)
992apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
993	hyperv_callback_vector hyperv_vector_handler
994#endif /* CONFIG_HYPERV */
995
996idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
997idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
998idtentry stack_segment		do_stack_segment	has_error_code=1
999
1000#ifdef CONFIG_XEN
1001idtentry xen_debug		do_debug		has_error_code=0
1002idtentry xen_int3		do_int3			has_error_code=0
1003idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1004#endif
1005
1006idtentry general_protection	do_general_protection	has_error_code=1
1007trace_idtentry page_fault	do_page_fault		has_error_code=1
1008
1009#ifdef CONFIG_KVM_GUEST
1010idtentry async_page_fault	do_async_page_fault	has_error_code=1
1011#endif
1012
1013#ifdef CONFIG_X86_MCE
1014idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1015#endif
1016
1017/*
1018 * Save all registers in pt_regs, and switch gs if needed.
1019 * Use slow, but surefire "are we in kernel?" check.
1020 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1021 */
1022ENTRY(paranoid_entry)
1023	cld
1024	SAVE_C_REGS 8
1025	SAVE_EXTRA_REGS 8
1026	ENCODE_FRAME_POINTER 8
1027	movl	$1, %ebx
1028	movl	$MSR_GS_BASE, %ecx
1029	rdmsr
1030	testl	%edx, %edx
1031	js	1f				/* negative -> in kernel */
1032	SWAPGS
1033	xorl	%ebx, %ebx
10341:	ret
1035END(paranoid_entry)
1036
1037/*
1038 * "Paranoid" exit path from exception stack.  This is invoked
1039 * only on return from non-NMI IST interrupts that came
1040 * from kernel space.
1041 *
1042 * We may be returning to very strange contexts (e.g. very early
1043 * in syscall entry), so checking for preemption here would
1044 * be complicated.  Fortunately, we there's no good reason
1045 * to try to handle preemption here.
1046 *
1047 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1048 */
1049ENTRY(paranoid_exit)
1050	DISABLE_INTERRUPTS(CLBR_ANY)
1051	TRACE_IRQS_OFF_DEBUG
1052	testl	%ebx, %ebx			/* swapgs needed? */
1053	jnz	paranoid_exit_no_swapgs
1054	TRACE_IRQS_IRETQ
1055	SWAPGS_UNSAFE_STACK
1056	jmp	paranoid_exit_restore
1057paranoid_exit_no_swapgs:
1058	TRACE_IRQS_IRETQ_DEBUG
1059paranoid_exit_restore:
1060	RESTORE_EXTRA_REGS
1061	RESTORE_C_REGS
1062	REMOVE_PT_GPREGS_FROM_STACK 8
1063	INTERRUPT_RETURN
1064END(paranoid_exit)
1065
1066/*
1067 * Save all registers in pt_regs, and switch gs if needed.
1068 * Return: EBX=0: came from user mode; EBX=1: otherwise
1069 */
1070ENTRY(error_entry)
1071	cld
1072	SAVE_C_REGS 8
1073	SAVE_EXTRA_REGS 8
1074	ENCODE_FRAME_POINTER 8
1075	xorl	%ebx, %ebx
1076	testb	$3, CS+8(%rsp)
1077	jz	.Lerror_kernelspace
1078
1079	/*
1080	 * We entered from user mode or we're pretending to have entered
1081	 * from user mode due to an IRET fault.
1082	 */
1083	SWAPGS
1084
1085.Lerror_entry_from_usermode_after_swapgs:
1086	/*
1087	 * We need to tell lockdep that IRQs are off.  We can't do this until
1088	 * we fix gsbase, and we should do it before enter_from_user_mode
1089	 * (which can take locks).
1090	 */
1091	TRACE_IRQS_OFF
1092	CALL_enter_from_user_mode
1093	ret
1094
1095.Lerror_entry_done:
1096	TRACE_IRQS_OFF
1097	ret
1098
1099	/*
1100	 * There are two places in the kernel that can potentially fault with
1101	 * usergs. Handle them here.  B stepping K8s sometimes report a
1102	 * truncated RIP for IRET exceptions returning to compat mode. Check
1103	 * for these here too.
1104	 */
1105.Lerror_kernelspace:
1106	incl	%ebx
1107	leaq	native_irq_return_iret(%rip), %rcx
1108	cmpq	%rcx, RIP+8(%rsp)
1109	je	.Lerror_bad_iret
1110	movl	%ecx, %eax			/* zero extend */
1111	cmpq	%rax, RIP+8(%rsp)
1112	je	.Lbstep_iret
1113	cmpq	$.Lgs_change, RIP+8(%rsp)
1114	jne	.Lerror_entry_done
1115
1116	/*
1117	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1118	 * gsbase and proceed.  We'll fix up the exception and land in
1119	 * .Lgs_change's error handler with kernel gsbase.
1120	 */
1121	SWAPGS
1122	jmp .Lerror_entry_done
1123
1124.Lbstep_iret:
1125	/* Fix truncated RIP */
1126	movq	%rcx, RIP+8(%rsp)
1127	/* fall through */
1128
1129.Lerror_bad_iret:
1130	/*
1131	 * We came from an IRET to user mode, so we have user gsbase.
1132	 * Switch to kernel gsbase:
1133	 */
1134	SWAPGS
1135
1136	/*
1137	 * Pretend that the exception came from user mode: set up pt_regs
1138	 * as if we faulted immediately after IRET and clear EBX so that
1139	 * error_exit knows that we will be returning to user mode.
1140	 */
1141	mov	%rsp, %rdi
1142	call	fixup_bad_iret
1143	mov	%rax, %rsp
1144	decl	%ebx
1145	jmp	.Lerror_entry_from_usermode_after_swapgs
1146END(error_entry)
1147
1148
1149/*
1150 * On entry, EBX is a "return to kernel mode" flag:
1151 *   1: already in kernel mode, don't need SWAPGS
1152 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1153 */
1154ENTRY(error_exit)
1155	DISABLE_INTERRUPTS(CLBR_ANY)
1156	TRACE_IRQS_OFF
1157	testl	%ebx, %ebx
1158	jnz	retint_kernel
1159	jmp	retint_user
1160END(error_exit)
1161
1162/* Runs on exception stack */
1163ENTRY(nmi)
1164	/*
1165	 * Fix up the exception frame if we're on Xen.
1166	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1167	 * one value to the stack on native, so it may clobber the rdx
1168	 * scratch slot, but it won't clobber any of the important
1169	 * slots past it.
1170	 *
1171	 * Xen is a different story, because the Xen frame itself overlaps
1172	 * the "NMI executing" variable.
1173	 */
1174	PARAVIRT_ADJUST_EXCEPTION_FRAME
1175
1176	/*
1177	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1178	 * the iretq it performs will take us out of NMI context.
1179	 * This means that we can have nested NMIs where the next
1180	 * NMI is using the top of the stack of the previous NMI. We
1181	 * can't let it execute because the nested NMI will corrupt the
1182	 * stack of the previous NMI. NMI handlers are not re-entrant
1183	 * anyway.
1184	 *
1185	 * To handle this case we do the following:
1186	 *  Check the a special location on the stack that contains
1187	 *  a variable that is set when NMIs are executing.
1188	 *  The interrupted task's stack is also checked to see if it
1189	 *  is an NMI stack.
1190	 *  If the variable is not set and the stack is not the NMI
1191	 *  stack then:
1192	 *    o Set the special variable on the stack
1193	 *    o Copy the interrupt frame into an "outermost" location on the
1194	 *      stack
1195	 *    o Copy the interrupt frame into an "iret" location on the stack
1196	 *    o Continue processing the NMI
1197	 *  If the variable is set or the previous stack is the NMI stack:
1198	 *    o Modify the "iret" location to jump to the repeat_nmi
1199	 *    o return back to the first NMI
1200	 *
1201	 * Now on exit of the first NMI, we first clear the stack variable
1202	 * The NMI stack will tell any nested NMIs at that point that it is
1203	 * nested. Then we pop the stack normally with iret, and if there was
1204	 * a nested NMI that updated the copy interrupt stack frame, a
1205	 * jump will be made to the repeat_nmi code that will handle the second
1206	 * NMI.
1207	 *
1208	 * However, espfix prevents us from directly returning to userspace
1209	 * with a single IRET instruction.  Similarly, IRET to user mode
1210	 * can fault.  We therefore handle NMIs from user space like
1211	 * other IST entries.
1212	 */
1213
1214	ASM_CLAC
1215
1216	/* Use %rdx as our temp variable throughout */
1217	pushq	%rdx
1218
1219	testb	$3, CS-RIP+8(%rsp)
1220	jz	.Lnmi_from_kernel
1221
1222	/*
1223	 * NMI from user mode.  We need to run on the thread stack, but we
1224	 * can't go through the normal entry paths: NMIs are masked, and
1225	 * we don't want to enable interrupts, because then we'll end
1226	 * up in an awkward situation in which IRQs are on but NMIs
1227	 * are off.
1228	 *
1229	 * We also must not push anything to the stack before switching
1230	 * stacks lest we corrupt the "NMI executing" variable.
1231	 */
1232
1233	SWAPGS_UNSAFE_STACK
1234	cld
1235	movq	%rsp, %rdx
1236	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1237	pushq	5*8(%rdx)	/* pt_regs->ss */
1238	pushq	4*8(%rdx)	/* pt_regs->rsp */
1239	pushq	3*8(%rdx)	/* pt_regs->flags */
1240	pushq	2*8(%rdx)	/* pt_regs->cs */
1241	pushq	1*8(%rdx)	/* pt_regs->rip */
1242	pushq   $-1		/* pt_regs->orig_ax */
1243	pushq   %rdi		/* pt_regs->di */
1244	pushq   %rsi		/* pt_regs->si */
1245	pushq   (%rdx)		/* pt_regs->dx */
1246	pushq   %rcx		/* pt_regs->cx */
1247	pushq   %rax		/* pt_regs->ax */
1248	pushq   %r8		/* pt_regs->r8 */
1249	pushq   %r9		/* pt_regs->r9 */
1250	pushq   %r10		/* pt_regs->r10 */
1251	pushq   %r11		/* pt_regs->r11 */
1252	pushq	%rbx		/* pt_regs->rbx */
1253	pushq	%rbp		/* pt_regs->rbp */
1254	pushq	%r12		/* pt_regs->r12 */
1255	pushq	%r13		/* pt_regs->r13 */
1256	pushq	%r14		/* pt_regs->r14 */
1257	pushq	%r15		/* pt_regs->r15 */
1258	ENCODE_FRAME_POINTER
1259
1260	/*
1261	 * At this point we no longer need to worry about stack damage
1262	 * due to nesting -- we're on the normal thread stack and we're
1263	 * done with the NMI stack.
1264	 */
1265
1266	movq	%rsp, %rdi
1267	movq	$-1, %rsi
1268	call	do_nmi
1269
1270	/*
1271	 * Return back to user mode.  We must *not* do the normal exit
1272	 * work, because we don't want to enable interrupts.
1273	 */
1274	SWAPGS
1275	jmp	restore_regs_and_iret
1276
1277.Lnmi_from_kernel:
1278	/*
1279	 * Here's what our stack frame will look like:
1280	 * +---------------------------------------------------------+
1281	 * | original SS                                             |
1282	 * | original Return RSP                                     |
1283	 * | original RFLAGS                                         |
1284	 * | original CS                                             |
1285	 * | original RIP                                            |
1286	 * +---------------------------------------------------------+
1287	 * | temp storage for rdx                                    |
1288	 * +---------------------------------------------------------+
1289	 * | "NMI executing" variable                                |
1290	 * +---------------------------------------------------------+
1291	 * | iret SS          } Copied from "outermost" frame        |
1292	 * | iret Return RSP  } on each loop iteration; overwritten  |
1293	 * | iret RFLAGS      } by a nested NMI to force another     |
1294	 * | iret CS          } iteration if needed.                 |
1295	 * | iret RIP         }                                      |
1296	 * +---------------------------------------------------------+
1297	 * | outermost SS          } initialized in first_nmi;       |
1298	 * | outermost Return RSP  } will not be changed before      |
1299	 * | outermost RFLAGS      } NMI processing is done.         |
1300	 * | outermost CS          } Copied to "iret" frame on each  |
1301	 * | outermost RIP         } iteration.                      |
1302	 * +---------------------------------------------------------+
1303	 * | pt_regs                                                 |
1304	 * +---------------------------------------------------------+
1305	 *
1306	 * The "original" frame is used by hardware.  Before re-enabling
1307	 * NMIs, we need to be done with it, and we need to leave enough
1308	 * space for the asm code here.
1309	 *
1310	 * We return by executing IRET while RSP points to the "iret" frame.
1311	 * That will either return for real or it will loop back into NMI
1312	 * processing.
1313	 *
1314	 * The "outermost" frame is copied to the "iret" frame on each
1315	 * iteration of the loop, so each iteration starts with the "iret"
1316	 * frame pointing to the final return target.
1317	 */
1318
1319	/*
1320	 * Determine whether we're a nested NMI.
1321	 *
1322	 * If we interrupted kernel code between repeat_nmi and
1323	 * end_repeat_nmi, then we are a nested NMI.  We must not
1324	 * modify the "iret" frame because it's being written by
1325	 * the outer NMI.  That's okay; the outer NMI handler is
1326	 * about to about to call do_nmi anyway, so we can just
1327	 * resume the outer NMI.
1328	 */
1329
1330	movq	$repeat_nmi, %rdx
1331	cmpq	8(%rsp), %rdx
1332	ja	1f
1333	movq	$end_repeat_nmi, %rdx
1334	cmpq	8(%rsp), %rdx
1335	ja	nested_nmi_out
13361:
1337
1338	/*
1339	 * Now check "NMI executing".  If it's set, then we're nested.
1340	 * This will not detect if we interrupted an outer NMI just
1341	 * before IRET.
1342	 */
1343	cmpl	$1, -8(%rsp)
1344	je	nested_nmi
1345
1346	/*
1347	 * Now test if the previous stack was an NMI stack.  This covers
1348	 * the case where we interrupt an outer NMI after it clears
1349	 * "NMI executing" but before IRET.  We need to be careful, though:
1350	 * there is one case in which RSP could point to the NMI stack
1351	 * despite there being no NMI active: naughty userspace controls
1352	 * RSP at the very beginning of the SYSCALL targets.  We can
1353	 * pull a fast one on naughty userspace, though: we program
1354	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1355	 * if it controls the kernel's RSP.  We set DF before we clear
1356	 * "NMI executing".
1357	 */
1358	lea	6*8(%rsp), %rdx
1359	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1360	cmpq	%rdx, 4*8(%rsp)
1361	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1362	ja	first_nmi
1363
1364	subq	$EXCEPTION_STKSZ, %rdx
1365	cmpq	%rdx, 4*8(%rsp)
1366	/* If it is below the NMI stack, it is a normal NMI */
1367	jb	first_nmi
1368
1369	/* Ah, it is within the NMI stack. */
1370
1371	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1372	jz	first_nmi	/* RSP was user controlled. */
1373
1374	/* This is a nested NMI. */
1375
1376nested_nmi:
1377	/*
1378	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1379	 * iteration of NMI handling.
1380	 */
1381	subq	$8, %rsp
1382	leaq	-10*8(%rsp), %rdx
1383	pushq	$__KERNEL_DS
1384	pushq	%rdx
1385	pushfq
1386	pushq	$__KERNEL_CS
1387	pushq	$repeat_nmi
1388
1389	/* Put stack back */
1390	addq	$(6*8), %rsp
1391
1392nested_nmi_out:
1393	popq	%rdx
1394
1395	/* We are returning to kernel mode, so this cannot result in a fault. */
1396	INTERRUPT_RETURN
1397
1398first_nmi:
1399	/* Restore rdx. */
1400	movq	(%rsp), %rdx
1401
1402	/* Make room for "NMI executing". */
1403	pushq	$0
1404
1405	/* Leave room for the "iret" frame */
1406	subq	$(5*8), %rsp
1407
1408	/* Copy the "original" frame to the "outermost" frame */
1409	.rept 5
1410	pushq	11*8(%rsp)
1411	.endr
1412
1413	/* Everything up to here is safe from nested NMIs */
1414
1415#ifdef CONFIG_DEBUG_ENTRY
1416	/*
1417	 * For ease of testing, unmask NMIs right away.  Disabled by
1418	 * default because IRET is very expensive.
1419	 */
1420	pushq	$0		/* SS */
1421	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1422	addq	$8, (%rsp)	/* Fix up RSP */
1423	pushfq			/* RFLAGS */
1424	pushq	$__KERNEL_CS	/* CS */
1425	pushq	$1f		/* RIP */
1426	INTERRUPT_RETURN	/* continues at repeat_nmi below */
14271:
1428#endif
1429
1430repeat_nmi:
1431	/*
1432	 * If there was a nested NMI, the first NMI's iret will return
1433	 * here. But NMIs are still enabled and we can take another
1434	 * nested NMI. The nested NMI checks the interrupted RIP to see
1435	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1436	 * it will just return, as we are about to repeat an NMI anyway.
1437	 * This makes it safe to copy to the stack frame that a nested
1438	 * NMI will update.
1439	 *
1440	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1441	 * we're repeating an NMI, gsbase has the same value that it had on
1442	 * the first iteration.  paranoid_entry will load the kernel
1443	 * gsbase if needed before we call do_nmi.  "NMI executing"
1444	 * is zero.
1445	 */
1446	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1447
1448	/*
1449	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1450	 * here must not modify the "iret" frame while we're writing to
1451	 * it or it will end up containing garbage.
1452	 */
1453	addq	$(10*8), %rsp
1454	.rept 5
1455	pushq	-6*8(%rsp)
1456	.endr
1457	subq	$(5*8), %rsp
1458end_repeat_nmi:
1459
1460	/*
1461	 * Everything below this point can be preempted by a nested NMI.
1462	 * If this happens, then the inner NMI will change the "iret"
1463	 * frame to point back to repeat_nmi.
1464	 */
1465	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1466	ALLOC_PT_GPREGS_ON_STACK
1467
1468	/*
1469	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1470	 * as we should not be calling schedule in NMI context.
1471	 * Even with normal interrupts enabled. An NMI should not be
1472	 * setting NEED_RESCHED or anything that normal interrupts and
1473	 * exceptions might do.
1474	 */
1475	call	paranoid_entry
1476
1477	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1478	movq	%rsp, %rdi
1479	movq	$-1, %rsi
1480	call	do_nmi
1481
1482	testl	%ebx, %ebx			/* swapgs needed? */
1483	jnz	nmi_restore
1484nmi_swapgs:
1485	SWAPGS_UNSAFE_STACK
1486nmi_restore:
1487	RESTORE_EXTRA_REGS
1488	RESTORE_C_REGS
1489
1490	/* Point RSP at the "iret" frame. */
1491	REMOVE_PT_GPREGS_FROM_STACK 6*8
1492
1493	/*
1494	 * Clear "NMI executing".  Set DF first so that we can easily
1495	 * distinguish the remaining code between here and IRET from
1496	 * the SYSCALL entry and exit paths.  On a native kernel, we
1497	 * could just inspect RIP, but, on paravirt kernels,
1498	 * INTERRUPT_RETURN can translate into a jump into a
1499	 * hypercall page.
1500	 */
1501	std
1502	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1503
1504	/*
1505	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1506	 * stack in a single instruction.  We are returning to kernel
1507	 * mode, so this cannot result in a fault.
1508	 */
1509	INTERRUPT_RETURN
1510END(nmi)
1511
1512ENTRY(ignore_sysret)
1513	mov	$-ENOSYS, %eax
1514	sysret
1515END(ignore_sysret)
1516
1517ENTRY(rewind_stack_do_exit)
1518	/* Prevent any naive code from trying to unwind to our caller. */
1519	xorl	%ebp, %ebp
1520
1521	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1522	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1523
1524	call	do_exit
15251:	jmp 1b
1526END(rewind_stack_do_exit)
1527