1/* 2 * linux/arch/x86_64/entry.S 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 7 * 8 * entry.S contains the system-call and fault low-level handling routines. 9 * 10 * Some of this is documented in Documentation/x86/entry_64.txt 11 * 12 * A note on terminology: 13 * - iret frame: Architecture defined interrupt frame from SS to RIP 14 * at the top of the kernel process stack. 15 * 16 * Some macro usage: 17 * - ENTRY/END: Define functions in the symbol table. 18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include "calling.h" 26#include <asm/asm-offsets.h> 27#include <asm/msr.h> 28#include <asm/unistd.h> 29#include <asm/thread_info.h> 30#include <asm/hw_irq.h> 31#include <asm/page_types.h> 32#include <asm/irqflags.h> 33#include <asm/paravirt.h> 34#include <asm/percpu.h> 35#include <asm/asm.h> 36#include <asm/smap.h> 37#include <asm/pgtable_types.h> 38#include <asm/export.h> 39#include <linux/err.h> 40 41.code64 42.section .entry.text, "ax" 43 44#ifdef CONFIG_PARAVIRT 45ENTRY(native_usergs_sysret64) 46 swapgs 47 sysretq 48ENDPROC(native_usergs_sysret64) 49#endif /* CONFIG_PARAVIRT */ 50 51.macro TRACE_IRQS_IRETQ 52#ifdef CONFIG_TRACE_IRQFLAGS 53 bt $9, EFLAGS(%rsp) /* interrupts off? */ 54 jnc 1f 55 TRACE_IRQS_ON 561: 57#endif 58.endm 59 60/* 61 * When dynamic function tracer is enabled it will add a breakpoint 62 * to all locations that it is about to modify, sync CPUs, update 63 * all the code, sync CPUs, then remove the breakpoints. In this time 64 * if lockdep is enabled, it might jump back into the debug handler 65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). 66 * 67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to 68 * make sure the stack pointer does not get reset back to the top 69 * of the debug stack, and instead just reuses the current stack. 70 */ 71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) 72 73.macro TRACE_IRQS_OFF_DEBUG 74 call debug_stack_set_zero 75 TRACE_IRQS_OFF 76 call debug_stack_reset 77.endm 78 79.macro TRACE_IRQS_ON_DEBUG 80 call debug_stack_set_zero 81 TRACE_IRQS_ON 82 call debug_stack_reset 83.endm 84 85.macro TRACE_IRQS_IRETQ_DEBUG 86 bt $9, EFLAGS(%rsp) /* interrupts off? */ 87 jnc 1f 88 TRACE_IRQS_ON_DEBUG 891: 90.endm 91 92#else 93# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF 94# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON 95# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ 96#endif 97 98/* 99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 100 * 101 * This is the only entry point used for 64-bit system calls. The 102 * hardware interface is reasonably well designed and the register to 103 * argument mapping Linux uses fits well with the registers that are 104 * available when SYSCALL is used. 105 * 106 * SYSCALL instructions can be found inlined in libc implementations as 107 * well as some other programs and libraries. There are also a handful 108 * of SYSCALL instructions in the vDSO used, for example, as a 109 * clock_gettimeofday fallback. 110 * 111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 112 * then loads new ss, cs, and rip from previously programmed MSRs. 113 * rflags gets masked by a value from another MSR (so CLD and CLAC 114 * are not needed). SYSCALL does not save anything on the stack 115 * and does not change rsp. 116 * 117 * Registers on entry: 118 * rax system call number 119 * rcx return address 120 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 121 * rdi arg0 122 * rsi arg1 123 * rdx arg2 124 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 125 * r8 arg4 126 * r9 arg5 127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 128 * 129 * Only called from user space. 130 * 131 * When user can change pt_regs->foo always force IRET. That is because 132 * it deals with uncanonical addresses better. SYSRET has trouble 133 * with them due to bugs in both AMD and Intel CPUs. 134 */ 135 136ENTRY(entry_SYSCALL_64) 137 /* 138 * Interrupts are off on entry. 139 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, 140 * it is too small to ever cause noticeable irq latency. 141 */ 142 SWAPGS_UNSAFE_STACK 143 /* 144 * A hypervisor implementation might want to use a label 145 * after the swapgs, so that it can do the swapgs 146 * for the guest and jump here on syscall. 147 */ 148GLOBAL(entry_SYSCALL_64_after_swapgs) 149 150 movq %rsp, PER_CPU_VAR(rsp_scratch) 151 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 152 153 TRACE_IRQS_OFF 154 155 /* Construct struct pt_regs on stack */ 156 pushq $__USER_DS /* pt_regs->ss */ 157 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ 158 pushq %r11 /* pt_regs->flags */ 159 pushq $__USER_CS /* pt_regs->cs */ 160 pushq %rcx /* pt_regs->ip */ 161 pushq %rax /* pt_regs->orig_ax */ 162 pushq %rdi /* pt_regs->di */ 163 pushq %rsi /* pt_regs->si */ 164 pushq %rdx /* pt_regs->dx */ 165 pushq %rcx /* pt_regs->cx */ 166 pushq $-ENOSYS /* pt_regs->ax */ 167 pushq %r8 /* pt_regs->r8 */ 168 pushq %r9 /* pt_regs->r9 */ 169 pushq %r10 /* pt_regs->r10 */ 170 pushq %r11 /* pt_regs->r11 */ 171 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */ 172 173 /* 174 * If we need to do entry work or if we guess we'll need to do 175 * exit work, go straight to the slow path. 176 */ 177 movq PER_CPU_VAR(current_task), %r11 178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11) 179 jnz entry_SYSCALL64_slow_path 180 181entry_SYSCALL_64_fastpath: 182 /* 183 * Easy case: enable interrupts and issue the syscall. If the syscall 184 * needs pt_regs, we'll call a stub that disables interrupts again 185 * and jumps to the slow path. 186 */ 187 TRACE_IRQS_ON 188 ENABLE_INTERRUPTS(CLBR_NONE) 189#if __SYSCALL_MASK == ~0 190 cmpq $__NR_syscall_max, %rax 191#else 192 andl $__SYSCALL_MASK, %eax 193 cmpl $__NR_syscall_max, %eax 194#endif 195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */ 196 movq %r10, %rcx 197 198 /* 199 * This call instruction is handled specially in stub_ptregs_64. 200 * It might end up jumping to the slow path. If it jumps, RAX 201 * and all argument registers are clobbered. 202 */ 203 call *sys_call_table(, %rax, 8) 204.Lentry_SYSCALL_64_after_fastpath_call: 205 206 movq %rax, RAX(%rsp) 2071: 208 209 /* 210 * If we get here, then we know that pt_regs is clean for SYSRET64. 211 * If we see that no exit work is required (which we are required 212 * to check with IRQs off), then we can go straight to SYSRET64. 213 */ 214 DISABLE_INTERRUPTS(CLBR_ANY) 215 TRACE_IRQS_OFF 216 movq PER_CPU_VAR(current_task), %r11 217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11) 218 jnz 1f 219 220 LOCKDEP_SYS_EXIT 221 TRACE_IRQS_ON /* user mode is traced as IRQs on */ 222 movq RIP(%rsp), %rcx 223 movq EFLAGS(%rsp), %r11 224 RESTORE_C_REGS_EXCEPT_RCX_R11 225 movq RSP(%rsp), %rsp 226 USERGS_SYSRET64 227 2281: 229 /* 230 * The fast path looked good when we started, but something changed 231 * along the way and we need to switch to the slow path. Calling 232 * raise(3) will trigger this, for example. IRQs are off. 233 */ 234 TRACE_IRQS_ON 235 ENABLE_INTERRUPTS(CLBR_ANY) 236 SAVE_EXTRA_REGS 237 movq %rsp, %rdi 238 call syscall_return_slowpath /* returns with IRQs disabled */ 239 jmp return_from_SYSCALL_64 240 241entry_SYSCALL64_slow_path: 242 /* IRQs are off. */ 243 SAVE_EXTRA_REGS 244 movq %rsp, %rdi 245 call do_syscall_64 /* returns with IRQs disabled */ 246 247return_from_SYSCALL_64: 248 RESTORE_EXTRA_REGS 249 TRACE_IRQS_IRETQ /* we're about to change IF */ 250 251 /* 252 * Try to use SYSRET instead of IRET if we're returning to 253 * a completely clean 64-bit userspace context. 254 */ 255 movq RCX(%rsp), %rcx 256 movq RIP(%rsp), %r11 257 cmpq %rcx, %r11 /* RCX == RIP */ 258 jne opportunistic_sysret_failed 259 260 /* 261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 262 * in kernel space. This essentially lets the user take over 263 * the kernel, since userspace controls RSP. 264 * 265 * If width of "canonical tail" ever becomes variable, this will need 266 * to be updated to remain correct on both old and new CPUs. 267 * 268 * Change top bits to match most significant bit (47th or 56th bit 269 * depending on paging mode) in the address. 270 */ 271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 273 274 /* If this changed %rcx, it was not canonical */ 275 cmpq %rcx, %r11 276 jne opportunistic_sysret_failed 277 278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 279 jne opportunistic_sysret_failed 280 281 movq R11(%rsp), %r11 282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 283 jne opportunistic_sysret_failed 284 285 /* 286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 287 * restore RF properly. If the slowpath sets it for whatever reason, we 288 * need to restore it correctly. 289 * 290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 291 * trap from userspace immediately after SYSRET. This would cause an 292 * infinite loop whenever #DB happens with register state that satisfies 293 * the opportunistic SYSRET conditions. For example, single-stepping 294 * this user code: 295 * 296 * movq $stuck_here, %rcx 297 * pushfq 298 * popq %r11 299 * stuck_here: 300 * 301 * would never get past 'stuck_here'. 302 */ 303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 304 jnz opportunistic_sysret_failed 305 306 /* nothing to check for RSP */ 307 308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 309 jne opportunistic_sysret_failed 310 311 /* 312 * We win! This label is here just for ease of understanding 313 * perf profiles. Nothing jumps here. 314 */ 315syscall_return_via_sysret: 316 /* rcx and r11 are already restored (see code above) */ 317 RESTORE_C_REGS_EXCEPT_RCX_R11 318 movq RSP(%rsp), %rsp 319 USERGS_SYSRET64 320 321opportunistic_sysret_failed: 322 SWAPGS 323 jmp restore_c_regs_and_iret 324END(entry_SYSCALL_64) 325 326ENTRY(stub_ptregs_64) 327 /* 328 * Syscalls marked as needing ptregs land here. 329 * If we are on the fast path, we need to save the extra regs, 330 * which we achieve by trying again on the slow path. If we are on 331 * the slow path, the extra regs are already saved. 332 * 333 * RAX stores a pointer to the C function implementing the syscall. 334 * IRQs are on. 335 */ 336 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp) 337 jne 1f 338 339 /* 340 * Called from fast path -- disable IRQs again, pop return address 341 * and jump to slow path 342 */ 343 DISABLE_INTERRUPTS(CLBR_ANY) 344 TRACE_IRQS_OFF 345 popq %rax 346 jmp entry_SYSCALL64_slow_path 347 3481: 349 jmp *%rax /* Called from C */ 350END(stub_ptregs_64) 351 352.macro ptregs_stub func 353ENTRY(ptregs_\func) 354 leaq \func(%rip), %rax 355 jmp stub_ptregs_64 356END(ptregs_\func) 357.endm 358 359/* Instantiate ptregs_stub for each ptregs-using syscall */ 360#define __SYSCALL_64_QUAL_(sym) 361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym 362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym) 363#include <asm/syscalls_64.h> 364 365/* 366 * %rdi: prev task 367 * %rsi: next task 368 */ 369ENTRY(__switch_to_asm) 370 /* 371 * Save callee-saved registers 372 * This must match the order in inactive_task_frame 373 */ 374 pushq %rbp 375 pushq %rbx 376 pushq %r12 377 pushq %r13 378 pushq %r14 379 pushq %r15 380 381 /* switch stack */ 382 movq %rsp, TASK_threadsp(%rdi) 383 movq TASK_threadsp(%rsi), %rsp 384 385#ifdef CONFIG_CC_STACKPROTECTOR 386 movq TASK_stack_canary(%rsi), %rbx 387 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset 388#endif 389 390 /* restore callee-saved registers */ 391 popq %r15 392 popq %r14 393 popq %r13 394 popq %r12 395 popq %rbx 396 popq %rbp 397 398 jmp __switch_to 399END(__switch_to_asm) 400 401/* 402 * A newly forked process directly context switches into this address. 403 * 404 * rax: prev task we switched from 405 * rbx: kernel thread func (NULL for user thread) 406 * r12: kernel thread arg 407 */ 408ENTRY(ret_from_fork) 409 movq %rax, %rdi 410 call schedule_tail /* rdi: 'prev' task parameter */ 411 412 testq %rbx, %rbx /* from kernel_thread? */ 413 jnz 1f /* kernel threads are uncommon */ 414 4152: 416 movq %rsp, %rdi 417 call syscall_return_slowpath /* returns with IRQs disabled */ 418 TRACE_IRQS_ON /* user mode is traced as IRQS on */ 419 SWAPGS 420 jmp restore_regs_and_iret 421 4221: 423 /* kernel thread */ 424 movq %r12, %rdi 425 call *%rbx 426 /* 427 * A kernel thread is allowed to return here after successfully 428 * calling do_execve(). Exit to userspace to complete the execve() 429 * syscall. 430 */ 431 movq $0, RAX(%rsp) 432 jmp 2b 433END(ret_from_fork) 434 435/* 436 * Build the entry stubs with some assembler magic. 437 * We pack 1 stub into every 8-byte block. 438 */ 439 .align 8 440ENTRY(irq_entries_start) 441 vector=FIRST_EXTERNAL_VECTOR 442 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) 443 pushq $(~vector+0x80) /* Note: always in signed byte range */ 444 vector=vector+1 445 jmp common_interrupt 446 .align 8 447 .endr 448END(irq_entries_start) 449 450/* 451 * Interrupt entry/exit. 452 * 453 * Interrupt entry points save only callee clobbered registers in fast path. 454 * 455 * Entry runs with interrupts off. 456 */ 457 458/* 0(%rsp): ~(interrupt number) */ 459 .macro interrupt func 460 cld 461 ALLOC_PT_GPREGS_ON_STACK 462 SAVE_C_REGS 463 SAVE_EXTRA_REGS 464 ENCODE_FRAME_POINTER 465 466 testb $3, CS(%rsp) 467 jz 1f 468 469 /* 470 * IRQ from user mode. Switch to kernel gsbase and inform context 471 * tracking that we're in kernel mode. 472 */ 473 SWAPGS 474 475 /* 476 * We need to tell lockdep that IRQs are off. We can't do this until 477 * we fix gsbase, and we should do it before enter_from_user_mode 478 * (which can take locks). Since TRACE_IRQS_OFF idempotent, 479 * the simplest way to handle it is to just call it twice if 480 * we enter from user mode. There's no reason to optimize this since 481 * TRACE_IRQS_OFF is a no-op if lockdep is off. 482 */ 483 TRACE_IRQS_OFF 484 485 CALL_enter_from_user_mode 486 4871: 488 /* 489 * Save previous stack pointer, optionally switch to interrupt stack. 490 * irq_count is used to check if a CPU is already on an interrupt stack 491 * or not. While this is essentially redundant with preempt_count it is 492 * a little cheaper to use a separate counter in the PDA (short of 493 * moving irq_enter into assembly, which would be too much work) 494 */ 495 movq %rsp, %rdi 496 incl PER_CPU_VAR(irq_count) 497 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp 498 pushq %rdi 499 /* We entered an interrupt context - irqs are off: */ 500 TRACE_IRQS_OFF 501 502 call \func /* rdi points to pt_regs */ 503 .endm 504 505 /* 506 * The interrupt stubs push (~vector+0x80) onto the stack and 507 * then jump to common_interrupt. 508 */ 509 .p2align CONFIG_X86_L1_CACHE_SHIFT 510common_interrupt: 511 ASM_CLAC 512 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ 513 interrupt do_IRQ 514 /* 0(%rsp): old RSP */ 515ret_from_intr: 516 DISABLE_INTERRUPTS(CLBR_ANY) 517 TRACE_IRQS_OFF 518 decl PER_CPU_VAR(irq_count) 519 520 /* Restore saved previous stack */ 521 popq %rsp 522 523 testb $3, CS(%rsp) 524 jz retint_kernel 525 526 /* Interrupt came from user space */ 527GLOBAL(retint_user) 528 mov %rsp,%rdi 529 call prepare_exit_to_usermode 530 TRACE_IRQS_IRETQ 531 SWAPGS 532 jmp restore_regs_and_iret 533 534/* Returning to kernel space */ 535retint_kernel: 536#ifdef CONFIG_PREEMPT 537 /* Interrupts are off */ 538 /* Check if we need preemption */ 539 bt $9, EFLAGS(%rsp) /* were interrupts off? */ 540 jnc 1f 5410: cmpl $0, PER_CPU_VAR(__preempt_count) 542 jnz 1f 543 call preempt_schedule_irq 544 jmp 0b 5451: 546#endif 547 /* 548 * The iretq could re-enable interrupts: 549 */ 550 TRACE_IRQS_IRETQ 551 552/* 553 * At this label, code paths which return to kernel and to user, 554 * which come from interrupts/exception and from syscalls, merge. 555 */ 556GLOBAL(restore_regs_and_iret) 557 RESTORE_EXTRA_REGS 558restore_c_regs_and_iret: 559 RESTORE_C_REGS 560 REMOVE_PT_GPREGS_FROM_STACK 8 561 INTERRUPT_RETURN 562 563ENTRY(native_iret) 564 /* 565 * Are we returning to a stack segment from the LDT? Note: in 566 * 64-bit mode SS:RSP on the exception stack is always valid. 567 */ 568#ifdef CONFIG_X86_ESPFIX64 569 testb $4, (SS-RIP)(%rsp) 570 jnz native_irq_return_ldt 571#endif 572 573.global native_irq_return_iret 574native_irq_return_iret: 575 /* 576 * This may fault. Non-paranoid faults on return to userspace are 577 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 578 * Double-faults due to espfix64 are handled in do_double_fault. 579 * Other faults here are fatal. 580 */ 581 iretq 582 583#ifdef CONFIG_X86_ESPFIX64 584native_irq_return_ldt: 585 /* 586 * We are running with user GSBASE. All GPRs contain their user 587 * values. We have a percpu ESPFIX stack that is eight slots 588 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 589 * of the ESPFIX stack. 590 * 591 * We clobber RAX and RDI in this code. We stash RDI on the 592 * normal stack and RAX on the ESPFIX stack. 593 * 594 * The ESPFIX stack layout we set up looks like this: 595 * 596 * --- top of ESPFIX stack --- 597 * SS 598 * RSP 599 * RFLAGS 600 * CS 601 * RIP <-- RSP points here when we're done 602 * RAX <-- espfix_waddr points here 603 * --- bottom of ESPFIX stack --- 604 */ 605 606 pushq %rdi /* Stash user RDI */ 607 SWAPGS 608 movq PER_CPU_VAR(espfix_waddr), %rdi 609 movq %rax, (0*8)(%rdi) /* user RAX */ 610 movq (1*8)(%rsp), %rax /* user RIP */ 611 movq %rax, (1*8)(%rdi) 612 movq (2*8)(%rsp), %rax /* user CS */ 613 movq %rax, (2*8)(%rdi) 614 movq (3*8)(%rsp), %rax /* user RFLAGS */ 615 movq %rax, (3*8)(%rdi) 616 movq (5*8)(%rsp), %rax /* user SS */ 617 movq %rax, (5*8)(%rdi) 618 movq (4*8)(%rsp), %rax /* user RSP */ 619 movq %rax, (4*8)(%rdi) 620 /* Now RAX == RSP. */ 621 622 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 623 popq %rdi /* Restore user RDI */ 624 625 /* 626 * espfix_stack[31:16] == 0. The page tables are set up such that 627 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 628 * espfix_waddr for any X. That is, there are 65536 RO aliases of 629 * the same page. Set up RSP so that RSP[31:16] contains the 630 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 631 * still points to an RO alias of the ESPFIX stack. 632 */ 633 orq PER_CPU_VAR(espfix_stack), %rax 634 SWAPGS 635 movq %rax, %rsp 636 637 /* 638 * At this point, we cannot write to the stack any more, but we can 639 * still read. 640 */ 641 popq %rax /* Restore user RAX */ 642 643 /* 644 * RSP now points to an ordinary IRET frame, except that the page 645 * is read-only and RSP[31:16] are preloaded with the userspace 646 * values. We can now IRET back to userspace. 647 */ 648 jmp native_irq_return_iret 649#endif 650END(common_interrupt) 651 652/* 653 * APIC interrupts. 654 */ 655.macro apicinterrupt3 num sym do_sym 656ENTRY(\sym) 657 ASM_CLAC 658 pushq $~(\num) 659.Lcommon_\sym: 660 interrupt \do_sym 661 jmp ret_from_intr 662END(\sym) 663.endm 664 665#ifdef CONFIG_TRACING 666#define trace(sym) trace_##sym 667#define smp_trace(sym) smp_trace_##sym 668 669.macro trace_apicinterrupt num sym 670apicinterrupt3 \num trace(\sym) smp_trace(\sym) 671.endm 672#else 673.macro trace_apicinterrupt num sym do_sym 674.endm 675#endif 676 677/* Make sure APIC interrupt handlers end up in the irqentry section: */ 678#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN) 679# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax" 680# define POP_SECTION_IRQENTRY .popsection 681#else 682# define PUSH_SECTION_IRQENTRY 683# define POP_SECTION_IRQENTRY 684#endif 685 686.macro apicinterrupt num sym do_sym 687PUSH_SECTION_IRQENTRY 688apicinterrupt3 \num \sym \do_sym 689trace_apicinterrupt \num \sym 690POP_SECTION_IRQENTRY 691.endm 692 693#ifdef CONFIG_SMP 694apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt 695apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt 696#endif 697 698#ifdef CONFIG_X86_UV 699apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt 700#endif 701 702apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt 703apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi 704 705#ifdef CONFIG_HAVE_KVM 706apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi 707apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi 708apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi 709#endif 710 711#ifdef CONFIG_X86_MCE_THRESHOLD 712apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt 713#endif 714 715#ifdef CONFIG_X86_MCE_AMD 716apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt 717#endif 718 719#ifdef CONFIG_X86_THERMAL_VECTOR 720apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt 721#endif 722 723#ifdef CONFIG_SMP 724apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt 725apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt 726apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt 727#endif 728 729apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt 730apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt 731 732#ifdef CONFIG_IRQ_WORK 733apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt 734#endif 735 736/* 737 * Exception entry points. 738 */ 739#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) 740 741.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 742ENTRY(\sym) 743 /* Sanity check */ 744 .if \shift_ist != -1 && \paranoid == 0 745 .error "using shift_ist requires paranoid=1" 746 .endif 747 748 ASM_CLAC 749 PARAVIRT_ADJUST_EXCEPTION_FRAME 750 751 .ifeq \has_error_code 752 pushq $-1 /* ORIG_RAX: no syscall to restart */ 753 .endif 754 755 ALLOC_PT_GPREGS_ON_STACK 756 757 .if \paranoid 758 .if \paranoid == 1 759 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */ 760 jnz 1f 761 .endif 762 call paranoid_entry 763 .else 764 call error_entry 765 .endif 766 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ 767 768 .if \paranoid 769 .if \shift_ist != -1 770 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ 771 .else 772 TRACE_IRQS_OFF 773 .endif 774 .endif 775 776 movq %rsp, %rdi /* pt_regs pointer */ 777 778 .if \has_error_code 779 movq ORIG_RAX(%rsp), %rsi /* get error code */ 780 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 781 .else 782 xorl %esi, %esi /* no error code */ 783 .endif 784 785 .if \shift_ist != -1 786 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 787 .endif 788 789 call \do_sym 790 791 .if \shift_ist != -1 792 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 793 .endif 794 795 /* these procedures expect "no swapgs" flag in ebx */ 796 .if \paranoid 797 jmp paranoid_exit 798 .else 799 jmp error_exit 800 .endif 801 802 .if \paranoid == 1 803 /* 804 * Paranoid entry from userspace. Switch stacks and treat it 805 * as a normal entry. This means that paranoid handlers 806 * run in real process context if user_mode(regs). 807 */ 8081: 809 call error_entry 810 811 812 movq %rsp, %rdi /* pt_regs pointer */ 813 call sync_regs 814 movq %rax, %rsp /* switch stack */ 815 816 movq %rsp, %rdi /* pt_regs pointer */ 817 818 .if \has_error_code 819 movq ORIG_RAX(%rsp), %rsi /* get error code */ 820 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 821 .else 822 xorl %esi, %esi /* no error code */ 823 .endif 824 825 call \do_sym 826 827 jmp error_exit /* %ebx: no swapgs flag */ 828 .endif 829END(\sym) 830.endm 831 832#ifdef CONFIG_TRACING 833.macro trace_idtentry sym do_sym has_error_code:req 834idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code 835idtentry \sym \do_sym has_error_code=\has_error_code 836.endm 837#else 838.macro trace_idtentry sym do_sym has_error_code:req 839idtentry \sym \do_sym has_error_code=\has_error_code 840.endm 841#endif 842 843idtentry divide_error do_divide_error has_error_code=0 844idtentry overflow do_overflow has_error_code=0 845idtentry bounds do_bounds has_error_code=0 846idtentry invalid_op do_invalid_op has_error_code=0 847idtentry device_not_available do_device_not_available has_error_code=0 848idtentry double_fault do_double_fault has_error_code=1 paranoid=2 849idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 850idtentry invalid_TSS do_invalid_TSS has_error_code=1 851idtentry segment_not_present do_segment_not_present has_error_code=1 852idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 853idtentry coprocessor_error do_coprocessor_error has_error_code=0 854idtentry alignment_check do_alignment_check has_error_code=1 855idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 856 857 858 /* 859 * Reload gs selector with exception handling 860 * edi: new selector 861 */ 862ENTRY(native_load_gs_index) 863 pushfq 864 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) 865 SWAPGS 866.Lgs_change: 867 movl %edi, %gs 8682: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 869 SWAPGS 870 popfq 871 ret 872END(native_load_gs_index) 873EXPORT_SYMBOL(native_load_gs_index) 874 875 _ASM_EXTABLE(.Lgs_change, bad_gs) 876 .section .fixup, "ax" 877 /* running with kernelgs */ 878bad_gs: 879 SWAPGS /* switch back to user gs */ 880.macro ZAP_GS 881 /* This can't be a string because the preprocessor needs to see it. */ 882 movl $__USER_DS, %eax 883 movl %eax, %gs 884.endm 885 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 886 xorl %eax, %eax 887 movl %eax, %gs 888 jmp 2b 889 .previous 890 891/* Call softirq on interrupt stack. Interrupts are off. */ 892ENTRY(do_softirq_own_stack) 893 pushq %rbp 894 mov %rsp, %rbp 895 incl PER_CPU_VAR(irq_count) 896 cmove PER_CPU_VAR(irq_stack_ptr), %rsp 897 push %rbp /* frame pointer backlink */ 898 call __do_softirq 899 leaveq 900 decl PER_CPU_VAR(irq_count) 901 ret 902END(do_softirq_own_stack) 903 904#ifdef CONFIG_XEN 905idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 906 907/* 908 * A note on the "critical region" in our callback handler. 909 * We want to avoid stacking callback handlers due to events occurring 910 * during handling of the last event. To do this, we keep events disabled 911 * until we've done all processing. HOWEVER, we must enable events before 912 * popping the stack frame (can't be done atomically) and so it would still 913 * be possible to get enough handler activations to overflow the stack. 914 * Although unlikely, bugs of that kind are hard to track down, so we'd 915 * like to avoid the possibility. 916 * So, on entry to the handler we detect whether we interrupted an 917 * existing activation in its critical region -- if so, we pop the current 918 * activation and restart the handler using the previous one. 919 */ 920ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */ 921 922/* 923 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 924 * see the correct pointer to the pt_regs 925 */ 926 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 92711: incl PER_CPU_VAR(irq_count) 928 movq %rsp, %rbp 929 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp 930 pushq %rbp /* frame pointer backlink */ 931 call xen_evtchn_do_upcall 932 popq %rsp 933 decl PER_CPU_VAR(irq_count) 934#ifndef CONFIG_PREEMPT 935 call xen_maybe_preempt_hcall 936#endif 937 jmp error_exit 938END(xen_do_hypervisor_callback) 939 940/* 941 * Hypervisor uses this for application faults while it executes. 942 * We get here for two reasons: 943 * 1. Fault while reloading DS, ES, FS or GS 944 * 2. Fault while executing IRET 945 * Category 1 we do not need to fix up as Xen has already reloaded all segment 946 * registers that could be reloaded and zeroed the others. 947 * Category 2 we fix up by killing the current process. We cannot use the 948 * normal Linux return path in this case because if we use the IRET hypercall 949 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 950 * We distinguish between categories by comparing each saved segment register 951 * with its current contents: any discrepancy means we in category 1. 952 */ 953ENTRY(xen_failsafe_callback) 954 movl %ds, %ecx 955 cmpw %cx, 0x10(%rsp) 956 jne 1f 957 movl %es, %ecx 958 cmpw %cx, 0x18(%rsp) 959 jne 1f 960 movl %fs, %ecx 961 cmpw %cx, 0x20(%rsp) 962 jne 1f 963 movl %gs, %ecx 964 cmpw %cx, 0x28(%rsp) 965 jne 1f 966 /* All segments match their saved values => Category 2 (Bad IRET). */ 967 movq (%rsp), %rcx 968 movq 8(%rsp), %r11 969 addq $0x30, %rsp 970 pushq $0 /* RIP */ 971 pushq %r11 972 pushq %rcx 973 jmp general_protection 9741: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 975 movq (%rsp), %rcx 976 movq 8(%rsp), %r11 977 addq $0x30, %rsp 978 pushq $-1 /* orig_ax = -1 => not a system call */ 979 ALLOC_PT_GPREGS_ON_STACK 980 SAVE_C_REGS 981 SAVE_EXTRA_REGS 982 ENCODE_FRAME_POINTER 983 jmp error_exit 984END(xen_failsafe_callback) 985 986apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 987 xen_hvm_callback_vector xen_evtchn_do_upcall 988 989#endif /* CONFIG_XEN */ 990 991#if IS_ENABLED(CONFIG_HYPERV) 992apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 993 hyperv_callback_vector hyperv_vector_handler 994#endif /* CONFIG_HYPERV */ 995 996idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 997idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 998idtentry stack_segment do_stack_segment has_error_code=1 999 1000#ifdef CONFIG_XEN 1001idtentry xen_debug do_debug has_error_code=0 1002idtentry xen_int3 do_int3 has_error_code=0 1003idtentry xen_stack_segment do_stack_segment has_error_code=1 1004#endif 1005 1006idtentry general_protection do_general_protection has_error_code=1 1007trace_idtentry page_fault do_page_fault has_error_code=1 1008 1009#ifdef CONFIG_KVM_GUEST 1010idtentry async_page_fault do_async_page_fault has_error_code=1 1011#endif 1012 1013#ifdef CONFIG_X86_MCE 1014idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) 1015#endif 1016 1017/* 1018 * Save all registers in pt_regs, and switch gs if needed. 1019 * Use slow, but surefire "are we in kernel?" check. 1020 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 1021 */ 1022ENTRY(paranoid_entry) 1023 cld 1024 SAVE_C_REGS 8 1025 SAVE_EXTRA_REGS 8 1026 ENCODE_FRAME_POINTER 8 1027 movl $1, %ebx 1028 movl $MSR_GS_BASE, %ecx 1029 rdmsr 1030 testl %edx, %edx 1031 js 1f /* negative -> in kernel */ 1032 SWAPGS 1033 xorl %ebx, %ebx 10341: ret 1035END(paranoid_entry) 1036 1037/* 1038 * "Paranoid" exit path from exception stack. This is invoked 1039 * only on return from non-NMI IST interrupts that came 1040 * from kernel space. 1041 * 1042 * We may be returning to very strange contexts (e.g. very early 1043 * in syscall entry), so checking for preemption here would 1044 * be complicated. Fortunately, we there's no good reason 1045 * to try to handle preemption here. 1046 * 1047 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) 1048 */ 1049ENTRY(paranoid_exit) 1050 DISABLE_INTERRUPTS(CLBR_ANY) 1051 TRACE_IRQS_OFF_DEBUG 1052 testl %ebx, %ebx /* swapgs needed? */ 1053 jnz paranoid_exit_no_swapgs 1054 TRACE_IRQS_IRETQ 1055 SWAPGS_UNSAFE_STACK 1056 jmp paranoid_exit_restore 1057paranoid_exit_no_swapgs: 1058 TRACE_IRQS_IRETQ_DEBUG 1059paranoid_exit_restore: 1060 RESTORE_EXTRA_REGS 1061 RESTORE_C_REGS 1062 REMOVE_PT_GPREGS_FROM_STACK 8 1063 INTERRUPT_RETURN 1064END(paranoid_exit) 1065 1066/* 1067 * Save all registers in pt_regs, and switch gs if needed. 1068 * Return: EBX=0: came from user mode; EBX=1: otherwise 1069 */ 1070ENTRY(error_entry) 1071 cld 1072 SAVE_C_REGS 8 1073 SAVE_EXTRA_REGS 8 1074 ENCODE_FRAME_POINTER 8 1075 xorl %ebx, %ebx 1076 testb $3, CS+8(%rsp) 1077 jz .Lerror_kernelspace 1078 1079 /* 1080 * We entered from user mode or we're pretending to have entered 1081 * from user mode due to an IRET fault. 1082 */ 1083 SWAPGS 1084 1085.Lerror_entry_from_usermode_after_swapgs: 1086 /* 1087 * We need to tell lockdep that IRQs are off. We can't do this until 1088 * we fix gsbase, and we should do it before enter_from_user_mode 1089 * (which can take locks). 1090 */ 1091 TRACE_IRQS_OFF 1092 CALL_enter_from_user_mode 1093 ret 1094 1095.Lerror_entry_done: 1096 TRACE_IRQS_OFF 1097 ret 1098 1099 /* 1100 * There are two places in the kernel that can potentially fault with 1101 * usergs. Handle them here. B stepping K8s sometimes report a 1102 * truncated RIP for IRET exceptions returning to compat mode. Check 1103 * for these here too. 1104 */ 1105.Lerror_kernelspace: 1106 incl %ebx 1107 leaq native_irq_return_iret(%rip), %rcx 1108 cmpq %rcx, RIP+8(%rsp) 1109 je .Lerror_bad_iret 1110 movl %ecx, %eax /* zero extend */ 1111 cmpq %rax, RIP+8(%rsp) 1112 je .Lbstep_iret 1113 cmpq $.Lgs_change, RIP+8(%rsp) 1114 jne .Lerror_entry_done 1115 1116 /* 1117 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1118 * gsbase and proceed. We'll fix up the exception and land in 1119 * .Lgs_change's error handler with kernel gsbase. 1120 */ 1121 SWAPGS 1122 jmp .Lerror_entry_done 1123 1124.Lbstep_iret: 1125 /* Fix truncated RIP */ 1126 movq %rcx, RIP+8(%rsp) 1127 /* fall through */ 1128 1129.Lerror_bad_iret: 1130 /* 1131 * We came from an IRET to user mode, so we have user gsbase. 1132 * Switch to kernel gsbase: 1133 */ 1134 SWAPGS 1135 1136 /* 1137 * Pretend that the exception came from user mode: set up pt_regs 1138 * as if we faulted immediately after IRET and clear EBX so that 1139 * error_exit knows that we will be returning to user mode. 1140 */ 1141 mov %rsp, %rdi 1142 call fixup_bad_iret 1143 mov %rax, %rsp 1144 decl %ebx 1145 jmp .Lerror_entry_from_usermode_after_swapgs 1146END(error_entry) 1147 1148 1149/* 1150 * On entry, EBX is a "return to kernel mode" flag: 1151 * 1: already in kernel mode, don't need SWAPGS 1152 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode 1153 */ 1154ENTRY(error_exit) 1155 DISABLE_INTERRUPTS(CLBR_ANY) 1156 TRACE_IRQS_OFF 1157 testl %ebx, %ebx 1158 jnz retint_kernel 1159 jmp retint_user 1160END(error_exit) 1161 1162/* Runs on exception stack */ 1163ENTRY(nmi) 1164 /* 1165 * Fix up the exception frame if we're on Xen. 1166 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most 1167 * one value to the stack on native, so it may clobber the rdx 1168 * scratch slot, but it won't clobber any of the important 1169 * slots past it. 1170 * 1171 * Xen is a different story, because the Xen frame itself overlaps 1172 * the "NMI executing" variable. 1173 */ 1174 PARAVIRT_ADJUST_EXCEPTION_FRAME 1175 1176 /* 1177 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1178 * the iretq it performs will take us out of NMI context. 1179 * This means that we can have nested NMIs where the next 1180 * NMI is using the top of the stack of the previous NMI. We 1181 * can't let it execute because the nested NMI will corrupt the 1182 * stack of the previous NMI. NMI handlers are not re-entrant 1183 * anyway. 1184 * 1185 * To handle this case we do the following: 1186 * Check the a special location on the stack that contains 1187 * a variable that is set when NMIs are executing. 1188 * The interrupted task's stack is also checked to see if it 1189 * is an NMI stack. 1190 * If the variable is not set and the stack is not the NMI 1191 * stack then: 1192 * o Set the special variable on the stack 1193 * o Copy the interrupt frame into an "outermost" location on the 1194 * stack 1195 * o Copy the interrupt frame into an "iret" location on the stack 1196 * o Continue processing the NMI 1197 * If the variable is set or the previous stack is the NMI stack: 1198 * o Modify the "iret" location to jump to the repeat_nmi 1199 * o return back to the first NMI 1200 * 1201 * Now on exit of the first NMI, we first clear the stack variable 1202 * The NMI stack will tell any nested NMIs at that point that it is 1203 * nested. Then we pop the stack normally with iret, and if there was 1204 * a nested NMI that updated the copy interrupt stack frame, a 1205 * jump will be made to the repeat_nmi code that will handle the second 1206 * NMI. 1207 * 1208 * However, espfix prevents us from directly returning to userspace 1209 * with a single IRET instruction. Similarly, IRET to user mode 1210 * can fault. We therefore handle NMIs from user space like 1211 * other IST entries. 1212 */ 1213 1214 ASM_CLAC 1215 1216 /* Use %rdx as our temp variable throughout */ 1217 pushq %rdx 1218 1219 testb $3, CS-RIP+8(%rsp) 1220 jz .Lnmi_from_kernel 1221 1222 /* 1223 * NMI from user mode. We need to run on the thread stack, but we 1224 * can't go through the normal entry paths: NMIs are masked, and 1225 * we don't want to enable interrupts, because then we'll end 1226 * up in an awkward situation in which IRQs are on but NMIs 1227 * are off. 1228 * 1229 * We also must not push anything to the stack before switching 1230 * stacks lest we corrupt the "NMI executing" variable. 1231 */ 1232 1233 SWAPGS_UNSAFE_STACK 1234 cld 1235 movq %rsp, %rdx 1236 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1237 pushq 5*8(%rdx) /* pt_regs->ss */ 1238 pushq 4*8(%rdx) /* pt_regs->rsp */ 1239 pushq 3*8(%rdx) /* pt_regs->flags */ 1240 pushq 2*8(%rdx) /* pt_regs->cs */ 1241 pushq 1*8(%rdx) /* pt_regs->rip */ 1242 pushq $-1 /* pt_regs->orig_ax */ 1243 pushq %rdi /* pt_regs->di */ 1244 pushq %rsi /* pt_regs->si */ 1245 pushq (%rdx) /* pt_regs->dx */ 1246 pushq %rcx /* pt_regs->cx */ 1247 pushq %rax /* pt_regs->ax */ 1248 pushq %r8 /* pt_regs->r8 */ 1249 pushq %r9 /* pt_regs->r9 */ 1250 pushq %r10 /* pt_regs->r10 */ 1251 pushq %r11 /* pt_regs->r11 */ 1252 pushq %rbx /* pt_regs->rbx */ 1253 pushq %rbp /* pt_regs->rbp */ 1254 pushq %r12 /* pt_regs->r12 */ 1255 pushq %r13 /* pt_regs->r13 */ 1256 pushq %r14 /* pt_regs->r14 */ 1257 pushq %r15 /* pt_regs->r15 */ 1258 ENCODE_FRAME_POINTER 1259 1260 /* 1261 * At this point we no longer need to worry about stack damage 1262 * due to nesting -- we're on the normal thread stack and we're 1263 * done with the NMI stack. 1264 */ 1265 1266 movq %rsp, %rdi 1267 movq $-1, %rsi 1268 call do_nmi 1269 1270 /* 1271 * Return back to user mode. We must *not* do the normal exit 1272 * work, because we don't want to enable interrupts. 1273 */ 1274 SWAPGS 1275 jmp restore_regs_and_iret 1276 1277.Lnmi_from_kernel: 1278 /* 1279 * Here's what our stack frame will look like: 1280 * +---------------------------------------------------------+ 1281 * | original SS | 1282 * | original Return RSP | 1283 * | original RFLAGS | 1284 * | original CS | 1285 * | original RIP | 1286 * +---------------------------------------------------------+ 1287 * | temp storage for rdx | 1288 * +---------------------------------------------------------+ 1289 * | "NMI executing" variable | 1290 * +---------------------------------------------------------+ 1291 * | iret SS } Copied from "outermost" frame | 1292 * | iret Return RSP } on each loop iteration; overwritten | 1293 * | iret RFLAGS } by a nested NMI to force another | 1294 * | iret CS } iteration if needed. | 1295 * | iret RIP } | 1296 * +---------------------------------------------------------+ 1297 * | outermost SS } initialized in first_nmi; | 1298 * | outermost Return RSP } will not be changed before | 1299 * | outermost RFLAGS } NMI processing is done. | 1300 * | outermost CS } Copied to "iret" frame on each | 1301 * | outermost RIP } iteration. | 1302 * +---------------------------------------------------------+ 1303 * | pt_regs | 1304 * +---------------------------------------------------------+ 1305 * 1306 * The "original" frame is used by hardware. Before re-enabling 1307 * NMIs, we need to be done with it, and we need to leave enough 1308 * space for the asm code here. 1309 * 1310 * We return by executing IRET while RSP points to the "iret" frame. 1311 * That will either return for real or it will loop back into NMI 1312 * processing. 1313 * 1314 * The "outermost" frame is copied to the "iret" frame on each 1315 * iteration of the loop, so each iteration starts with the "iret" 1316 * frame pointing to the final return target. 1317 */ 1318 1319 /* 1320 * Determine whether we're a nested NMI. 1321 * 1322 * If we interrupted kernel code between repeat_nmi and 1323 * end_repeat_nmi, then we are a nested NMI. We must not 1324 * modify the "iret" frame because it's being written by 1325 * the outer NMI. That's okay; the outer NMI handler is 1326 * about to about to call do_nmi anyway, so we can just 1327 * resume the outer NMI. 1328 */ 1329 1330 movq $repeat_nmi, %rdx 1331 cmpq 8(%rsp), %rdx 1332 ja 1f 1333 movq $end_repeat_nmi, %rdx 1334 cmpq 8(%rsp), %rdx 1335 ja nested_nmi_out 13361: 1337 1338 /* 1339 * Now check "NMI executing". If it's set, then we're nested. 1340 * This will not detect if we interrupted an outer NMI just 1341 * before IRET. 1342 */ 1343 cmpl $1, -8(%rsp) 1344 je nested_nmi 1345 1346 /* 1347 * Now test if the previous stack was an NMI stack. This covers 1348 * the case where we interrupt an outer NMI after it clears 1349 * "NMI executing" but before IRET. We need to be careful, though: 1350 * there is one case in which RSP could point to the NMI stack 1351 * despite there being no NMI active: naughty userspace controls 1352 * RSP at the very beginning of the SYSCALL targets. We can 1353 * pull a fast one on naughty userspace, though: we program 1354 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1355 * if it controls the kernel's RSP. We set DF before we clear 1356 * "NMI executing". 1357 */ 1358 lea 6*8(%rsp), %rdx 1359 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1360 cmpq %rdx, 4*8(%rsp) 1361 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1362 ja first_nmi 1363 1364 subq $EXCEPTION_STKSZ, %rdx 1365 cmpq %rdx, 4*8(%rsp) 1366 /* If it is below the NMI stack, it is a normal NMI */ 1367 jb first_nmi 1368 1369 /* Ah, it is within the NMI stack. */ 1370 1371 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1372 jz first_nmi /* RSP was user controlled. */ 1373 1374 /* This is a nested NMI. */ 1375 1376nested_nmi: 1377 /* 1378 * Modify the "iret" frame to point to repeat_nmi, forcing another 1379 * iteration of NMI handling. 1380 */ 1381 subq $8, %rsp 1382 leaq -10*8(%rsp), %rdx 1383 pushq $__KERNEL_DS 1384 pushq %rdx 1385 pushfq 1386 pushq $__KERNEL_CS 1387 pushq $repeat_nmi 1388 1389 /* Put stack back */ 1390 addq $(6*8), %rsp 1391 1392nested_nmi_out: 1393 popq %rdx 1394 1395 /* We are returning to kernel mode, so this cannot result in a fault. */ 1396 INTERRUPT_RETURN 1397 1398first_nmi: 1399 /* Restore rdx. */ 1400 movq (%rsp), %rdx 1401 1402 /* Make room for "NMI executing". */ 1403 pushq $0 1404 1405 /* Leave room for the "iret" frame */ 1406 subq $(5*8), %rsp 1407 1408 /* Copy the "original" frame to the "outermost" frame */ 1409 .rept 5 1410 pushq 11*8(%rsp) 1411 .endr 1412 1413 /* Everything up to here is safe from nested NMIs */ 1414 1415#ifdef CONFIG_DEBUG_ENTRY 1416 /* 1417 * For ease of testing, unmask NMIs right away. Disabled by 1418 * default because IRET is very expensive. 1419 */ 1420 pushq $0 /* SS */ 1421 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1422 addq $8, (%rsp) /* Fix up RSP */ 1423 pushfq /* RFLAGS */ 1424 pushq $__KERNEL_CS /* CS */ 1425 pushq $1f /* RIP */ 1426 INTERRUPT_RETURN /* continues at repeat_nmi below */ 14271: 1428#endif 1429 1430repeat_nmi: 1431 /* 1432 * If there was a nested NMI, the first NMI's iret will return 1433 * here. But NMIs are still enabled and we can take another 1434 * nested NMI. The nested NMI checks the interrupted RIP to see 1435 * if it is between repeat_nmi and end_repeat_nmi, and if so 1436 * it will just return, as we are about to repeat an NMI anyway. 1437 * This makes it safe to copy to the stack frame that a nested 1438 * NMI will update. 1439 * 1440 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1441 * we're repeating an NMI, gsbase has the same value that it had on 1442 * the first iteration. paranoid_entry will load the kernel 1443 * gsbase if needed before we call do_nmi. "NMI executing" 1444 * is zero. 1445 */ 1446 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1447 1448 /* 1449 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1450 * here must not modify the "iret" frame while we're writing to 1451 * it or it will end up containing garbage. 1452 */ 1453 addq $(10*8), %rsp 1454 .rept 5 1455 pushq -6*8(%rsp) 1456 .endr 1457 subq $(5*8), %rsp 1458end_repeat_nmi: 1459 1460 /* 1461 * Everything below this point can be preempted by a nested NMI. 1462 * If this happens, then the inner NMI will change the "iret" 1463 * frame to point back to repeat_nmi. 1464 */ 1465 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1466 ALLOC_PT_GPREGS_ON_STACK 1467 1468 /* 1469 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1470 * as we should not be calling schedule in NMI context. 1471 * Even with normal interrupts enabled. An NMI should not be 1472 * setting NEED_RESCHED or anything that normal interrupts and 1473 * exceptions might do. 1474 */ 1475 call paranoid_entry 1476 1477 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ 1478 movq %rsp, %rdi 1479 movq $-1, %rsi 1480 call do_nmi 1481 1482 testl %ebx, %ebx /* swapgs needed? */ 1483 jnz nmi_restore 1484nmi_swapgs: 1485 SWAPGS_UNSAFE_STACK 1486nmi_restore: 1487 RESTORE_EXTRA_REGS 1488 RESTORE_C_REGS 1489 1490 /* Point RSP at the "iret" frame. */ 1491 REMOVE_PT_GPREGS_FROM_STACK 6*8 1492 1493 /* 1494 * Clear "NMI executing". Set DF first so that we can easily 1495 * distinguish the remaining code between here and IRET from 1496 * the SYSCALL entry and exit paths. On a native kernel, we 1497 * could just inspect RIP, but, on paravirt kernels, 1498 * INTERRUPT_RETURN can translate into a jump into a 1499 * hypercall page. 1500 */ 1501 std 1502 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1503 1504 /* 1505 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI 1506 * stack in a single instruction. We are returning to kernel 1507 * mode, so this cannot result in a fault. 1508 */ 1509 INTERRUPT_RETURN 1510END(nmi) 1511 1512ENTRY(ignore_sysret) 1513 mov $-ENOSYS, %eax 1514 sysret 1515END(ignore_sysret) 1516 1517ENTRY(rewind_stack_do_exit) 1518 /* Prevent any naive code from trying to unwind to our caller. */ 1519 xorl %ebp, %ebp 1520 1521 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1522 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp 1523 1524 call do_exit 15251: jmp 1b 1526END(rewind_stack_do_exit) 1527