xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision bd329f028f1cd51c7623c326147af07c6d832193)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <asm/nospec-branch.h>
41#include <linux/err.h>
42
43#include "calling.h"
44
45.code64
46.section .entry.text, "ax"
47
48#ifdef CONFIG_PARAVIRT
49ENTRY(native_usergs_sysret64)
50	UNWIND_HINT_EMPTY
51	swapgs
52	sysretq
53END(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_FLAGS flags:req
57#ifdef CONFIG_TRACE_IRQFLAGS
58	btl	$9, \flags		/* interrupts off? */
59	jnc	1f
60	TRACE_IRQS_ON
611:
62#endif
63.endm
64
65.macro TRACE_IRQS_IRETQ
66	TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
83	call	debug_stack_set_zero
84	TRACE_IRQS_OFF
85	call	debug_stack_reset
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
89	call	debug_stack_set_zero
90	TRACE_IRQS_ON
91	call	debug_stack_reset
92.endm
93
94.macro TRACE_IRQS_IRETQ_DEBUG
95	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
96	jnc	1f
97	TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
102# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105#endif
106
107/*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls.  The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries.  There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax  system call number
128 * rcx  return address
129 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi  arg0
131 * rsi  arg1
132 * rdx  arg2
133 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8   arg4
135 * r9   arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145	.pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address).  So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline.  We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
164			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165
166ENTRY(entry_SYSCALL_64_trampoline)
167	UNWIND_HINT_EMPTY
168	swapgs
169
170	/* Stash the user RSP. */
171	movq	%rsp, RSP_SCRATCH
172
173	/* Note: using %rsp as a scratch reg. */
174	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
176	/* Load the top of the task stack into RSP */
177	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179	/* Start building the simulated IRET frame. */
180	pushq	$__USER_DS			/* pt_regs->ss */
181	pushq	RSP_SCRATCH			/* pt_regs->sp */
182	pushq	%r11				/* pt_regs->flags */
183	pushq	$__USER_CS			/* pt_regs->cs */
184	pushq	%rcx				/* pt_regs->ip */
185
186	/*
187	 * x86 lacks a near absolute jump, and we can't jump to the real
188	 * entry text with a relative jump.  We could push the target
189	 * address and then use retq, but this destroys the pipeline on
190	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
191	 * spill RDI and restore it in a second-stage trampoline.
192	 */
193	pushq	%rdi
194	movq	$entry_SYSCALL_64_stage2, %rdi
195	JMP_NOSPEC %rdi
196END(entry_SYSCALL_64_trampoline)
197
198	.popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201	UNWIND_HINT_EMPTY
202	popq	%rdi
203	jmp	entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
206ENTRY(entry_SYSCALL_64)
207	UNWIND_HINT_EMPTY
208	/*
209	 * Interrupts are off on entry.
210	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211	 * it is too small to ever cause noticeable irq latency.
212	 */
213
214	swapgs
215	/*
216	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217	 * is not required to switch CR3.
218	 */
219	movq	%rsp, PER_CPU_VAR(rsp_scratch)
220	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221
222	/* Construct struct pt_regs on stack */
223	pushq	$__USER_DS			/* pt_regs->ss */
224	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
225	pushq	%r11				/* pt_regs->flags */
226	pushq	$__USER_CS			/* pt_regs->cs */
227	pushq	%rcx				/* pt_regs->ip */
228GLOBAL(entry_SYSCALL_64_after_hwframe)
229	pushq	%rax				/* pt_regs->orig_ax */
230
231	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232
233	TRACE_IRQS_OFF
234
235	/* IRQs are off. */
236	movq	%rsp, %rdi
237	call	do_syscall_64		/* returns with IRQs disabled */
238
239	TRACE_IRQS_IRETQ		/* we're about to change IF */
240
241	/*
242	 * Try to use SYSRET instead of IRET if we're returning to
243	 * a completely clean 64-bit userspace context.  If we're not,
244	 * go to the slow exit path.
245	 */
246	movq	RCX(%rsp), %rcx
247	movq	RIP(%rsp), %r11
248
249	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
250	jne	swapgs_restore_regs_and_return_to_usermode
251
252	/*
253	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
254	 * in kernel space.  This essentially lets the user take over
255	 * the kernel, since userspace controls RSP.
256	 *
257	 * If width of "canonical tail" ever becomes variable, this will need
258	 * to be updated to remain correct on both old and new CPUs.
259	 *
260	 * Change top bits to match most significant bit (47th or 56th bit
261	 * depending on paging mode) in the address.
262	 */
263	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
264	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
265
266	/* If this changed %rcx, it was not canonical */
267	cmpq	%rcx, %r11
268	jne	swapgs_restore_regs_and_return_to_usermode
269
270	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
271	jne	swapgs_restore_regs_and_return_to_usermode
272
273	movq	R11(%rsp), %r11
274	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
275	jne	swapgs_restore_regs_and_return_to_usermode
276
277	/*
278	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
279	 * restore RF properly. If the slowpath sets it for whatever reason, we
280	 * need to restore it correctly.
281	 *
282	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
283	 * trap from userspace immediately after SYSRET.  This would cause an
284	 * infinite loop whenever #DB happens with register state that satisfies
285	 * the opportunistic SYSRET conditions.  For example, single-stepping
286	 * this user code:
287	 *
288	 *           movq	$stuck_here, %rcx
289	 *           pushfq
290	 *           popq %r11
291	 *   stuck_here:
292	 *
293	 * would never get past 'stuck_here'.
294	 */
295	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296	jnz	swapgs_restore_regs_and_return_to_usermode
297
298	/* nothing to check for RSP */
299
300	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
301	jne	swapgs_restore_regs_and_return_to_usermode
302
303	/*
304	 * We win! This label is here just for ease of understanding
305	 * perf profiles. Nothing jumps here.
306	 */
307syscall_return_via_sysret:
308	/* rcx and r11 are already restored (see code above) */
309	UNWIND_HINT_EMPTY
310	POP_REGS pop_rdi=0 skip_r11rcx=1
311
312	/*
313	 * Now all regs are restored except RSP and RDI.
314	 * Save old stack pointer and switch to trampoline stack.
315	 */
316	movq	%rsp, %rdi
317	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
318
319	pushq	RSP-RDI(%rdi)	/* RSP */
320	pushq	(%rdi)		/* RDI */
321
322	/*
323	 * We are on the trampoline stack.  All regs except RDI are live.
324	 * We can do future final exit work right here.
325	 */
326	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
327
328	popq	%rdi
329	popq	%rsp
330	USERGS_SYSRET64
331END(entry_SYSCALL_64)
332
333/*
334 * %rdi: prev task
335 * %rsi: next task
336 */
337ENTRY(__switch_to_asm)
338	UNWIND_HINT_FUNC
339	/*
340	 * Save callee-saved registers
341	 * This must match the order in inactive_task_frame
342	 */
343	pushq	%rbp
344	pushq	%rbx
345	pushq	%r12
346	pushq	%r13
347	pushq	%r14
348	pushq	%r15
349
350	/* switch stack */
351	movq	%rsp, TASK_threadsp(%rdi)
352	movq	TASK_threadsp(%rsi), %rsp
353
354#ifdef CONFIG_CC_STACKPROTECTOR
355	movq	TASK_stack_canary(%rsi), %rbx
356	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
357#endif
358
359#ifdef CONFIG_RETPOLINE
360	/*
361	 * When switching from a shallower to a deeper call stack
362	 * the RSB may either underflow or use entries populated
363	 * with userspace addresses. On CPUs where those concerns
364	 * exist, overwrite the RSB with entries which capture
365	 * speculative execution to prevent attack.
366	 */
367	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
368#endif
369
370	/* restore callee-saved registers */
371	popq	%r15
372	popq	%r14
373	popq	%r13
374	popq	%r12
375	popq	%rbx
376	popq	%rbp
377
378	jmp	__switch_to
379END(__switch_to_asm)
380
381/*
382 * A newly forked process directly context switches into this address.
383 *
384 * rax: prev task we switched from
385 * rbx: kernel thread func (NULL for user thread)
386 * r12: kernel thread arg
387 */
388ENTRY(ret_from_fork)
389	UNWIND_HINT_EMPTY
390	movq	%rax, %rdi
391	call	schedule_tail			/* rdi: 'prev' task parameter */
392
393	testq	%rbx, %rbx			/* from kernel_thread? */
394	jnz	1f				/* kernel threads are uncommon */
395
3962:
397	UNWIND_HINT_REGS
398	movq	%rsp, %rdi
399	call	syscall_return_slowpath	/* returns with IRQs disabled */
400	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
401	jmp	swapgs_restore_regs_and_return_to_usermode
402
4031:
404	/* kernel thread */
405	movq	%r12, %rdi
406	CALL_NOSPEC %rbx
407	/*
408	 * A kernel thread is allowed to return here after successfully
409	 * calling do_execve().  Exit to userspace to complete the execve()
410	 * syscall.
411	 */
412	movq	$0, RAX(%rsp)
413	jmp	2b
414END(ret_from_fork)
415
416/*
417 * Build the entry stubs with some assembler magic.
418 * We pack 1 stub into every 8-byte block.
419 */
420	.align 8
421ENTRY(irq_entries_start)
422    vector=FIRST_EXTERNAL_VECTOR
423    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
424	UNWIND_HINT_IRET_REGS
425	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
426	jmp	common_interrupt
427	.align	8
428	vector=vector+1
429    .endr
430END(irq_entries_start)
431
432.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
433#ifdef CONFIG_DEBUG_ENTRY
434	pushq %rax
435	SAVE_FLAGS(CLBR_RAX)
436	testl $X86_EFLAGS_IF, %eax
437	jz .Lokay_\@
438	ud2
439.Lokay_\@:
440	popq %rax
441#endif
442.endm
443
444/*
445 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
446 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
447 * Requires kernel GSBASE.
448 *
449 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
450 */
451.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
452	DEBUG_ENTRY_ASSERT_IRQS_OFF
453
454	.if \save_ret
455	/*
456	 * If save_ret is set, the original stack contains one additional
457	 * entry -- the return address. Therefore, move the address one
458	 * entry below %rsp to \old_rsp.
459	 */
460	leaq	8(%rsp), \old_rsp
461	.else
462	movq	%rsp, \old_rsp
463	.endif
464
465	.if \regs
466	UNWIND_HINT_REGS base=\old_rsp
467	.endif
468
469	incl	PER_CPU_VAR(irq_count)
470	jnz	.Lirq_stack_push_old_rsp_\@
471
472	/*
473	 * Right now, if we just incremented irq_count to zero, we've
474	 * claimed the IRQ stack but we haven't switched to it yet.
475	 *
476	 * If anything is added that can interrupt us here without using IST,
477	 * it must be *extremely* careful to limit its stack usage.  This
478	 * could include kprobes and a hypothetical future IST-less #DB
479	 * handler.
480	 *
481	 * The OOPS unwinder relies on the word at the top of the IRQ
482	 * stack linking back to the previous RSP for the entire time we're
483	 * on the IRQ stack.  For this to work reliably, we need to write
484	 * it before we actually move ourselves to the IRQ stack.
485	 */
486
487	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
488	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
489
490#ifdef CONFIG_DEBUG_ENTRY
491	/*
492	 * If the first movq above becomes wrong due to IRQ stack layout
493	 * changes, the only way we'll notice is if we try to unwind right
494	 * here.  Assert that we set up the stack right to catch this type
495	 * of bug quickly.
496	 */
497	cmpq	-8(%rsp), \old_rsp
498	je	.Lirq_stack_okay\@
499	ud2
500	.Lirq_stack_okay\@:
501#endif
502
503.Lirq_stack_push_old_rsp_\@:
504	pushq	\old_rsp
505
506	.if \regs
507	UNWIND_HINT_REGS indirect=1
508	.endif
509
510	.if \save_ret
511	/*
512	 * Push the return address to the stack. This return address can
513	 * be found at the "real" original RSP, which was offset by 8 at
514	 * the beginning of this macro.
515	 */
516	pushq	-8(\old_rsp)
517	.endif
518.endm
519
520/*
521 * Undoes ENTER_IRQ_STACK.
522 */
523.macro LEAVE_IRQ_STACK regs=1
524	DEBUG_ENTRY_ASSERT_IRQS_OFF
525	/* We need to be off the IRQ stack before decrementing irq_count. */
526	popq	%rsp
527
528	.if \regs
529	UNWIND_HINT_REGS
530	.endif
531
532	/*
533	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
534	 * the irq stack but we're not on it.
535	 */
536
537	decl	PER_CPU_VAR(irq_count)
538.endm
539
540/*
541 * Interrupt entry helper function.
542 *
543 * Entry runs with interrupts off. Stack layout at entry:
544 * +----------------------------------------------------+
545 * | regs->ss						|
546 * | regs->rsp						|
547 * | regs->eflags					|
548 * | regs->cs						|
549 * | regs->ip						|
550 * +----------------------------------------------------+
551 * | regs->orig_ax = ~(interrupt number)		|
552 * +----------------------------------------------------+
553 * | return address					|
554 * +----------------------------------------------------+
555 */
556ENTRY(interrupt_entry)
557	UNWIND_HINT_FUNC
558	ASM_CLAC
559	cld
560
561	testb	$3, CS-ORIG_RAX+8(%rsp)
562	jz	1f
563	SWAPGS
564
565	/*
566	 * Switch to the thread stack. The IRET frame and orig_ax are
567	 * on the stack, as well as the return address. RDI..R12 are
568	 * not (yet) on the stack and space has not (yet) been
569	 * allocated for them.
570	 */
571	pushq	%rdi
572
573	/* Need to switch before accessing the thread stack. */
574	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
575	movq	%rsp, %rdi
576	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
577
578	 /*
579	  * We have RDI, return address, and orig_ax on the stack on
580	  * top of the IRET frame. That means offset=24
581	  */
582	UNWIND_HINT_IRET_REGS base=%rdi offset=24
583
584	pushq	7*8(%rdi)		/* regs->ss */
585	pushq	6*8(%rdi)		/* regs->rsp */
586	pushq	5*8(%rdi)		/* regs->eflags */
587	pushq	4*8(%rdi)		/* regs->cs */
588	pushq	3*8(%rdi)		/* regs->ip */
589	pushq	2*8(%rdi)		/* regs->orig_ax */
590	pushq	8(%rdi)			/* return address */
591	UNWIND_HINT_FUNC
592
593	movq	(%rdi), %rdi
5941:
595
596	PUSH_AND_CLEAR_REGS save_ret=1
597	ENCODE_FRAME_POINTER 8
598
599	testb	$3, CS+8(%rsp)
600	jz	1f
601
602	/*
603	 * IRQ from user mode.
604	 *
605	 * We need to tell lockdep that IRQs are off.  We can't do this until
606	 * we fix gsbase, and we should do it before enter_from_user_mode
607	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
608	 * the simplest way to handle it is to just call it twice if
609	 * we enter from user mode.  There's no reason to optimize this since
610	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
611	 */
612	TRACE_IRQS_OFF
613
614	CALL_enter_from_user_mode
615
6161:
617	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
618	/* We entered an interrupt context - irqs are off: */
619	TRACE_IRQS_OFF
620
621	ret
622END(interrupt_entry)
623
624
625/* Interrupt entry/exit. */
626
627	/*
628	 * The interrupt stubs push (~vector+0x80) onto the stack and
629	 * then jump to common_interrupt.
630	 */
631	.p2align CONFIG_X86_L1_CACHE_SHIFT
632common_interrupt:
633	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
634	call	interrupt_entry
635	UNWIND_HINT_REGS indirect=1
636	call	do_IRQ	/* rdi points to pt_regs */
637	/* 0(%rsp): old RSP */
638ret_from_intr:
639	DISABLE_INTERRUPTS(CLBR_ANY)
640	TRACE_IRQS_OFF
641
642	LEAVE_IRQ_STACK
643
644	testb	$3, CS(%rsp)
645	jz	retint_kernel
646
647	/* Interrupt came from user space */
648GLOBAL(retint_user)
649	mov	%rsp,%rdi
650	call	prepare_exit_to_usermode
651	TRACE_IRQS_IRETQ
652
653GLOBAL(swapgs_restore_regs_and_return_to_usermode)
654#ifdef CONFIG_DEBUG_ENTRY
655	/* Assert that pt_regs indicates user mode. */
656	testb	$3, CS(%rsp)
657	jnz	1f
658	ud2
6591:
660#endif
661	POP_REGS pop_rdi=0
662
663	/*
664	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
665	 * Save old stack pointer and switch to trampoline stack.
666	 */
667	movq	%rsp, %rdi
668	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
669
670	/* Copy the IRET frame to the trampoline stack. */
671	pushq	6*8(%rdi)	/* SS */
672	pushq	5*8(%rdi)	/* RSP */
673	pushq	4*8(%rdi)	/* EFLAGS */
674	pushq	3*8(%rdi)	/* CS */
675	pushq	2*8(%rdi)	/* RIP */
676
677	/* Push user RDI on the trampoline stack. */
678	pushq	(%rdi)
679
680	/*
681	 * We are on the trampoline stack.  All regs except RDI are live.
682	 * We can do future final exit work right here.
683	 */
684
685	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
686
687	/* Restore RDI. */
688	popq	%rdi
689	SWAPGS
690	INTERRUPT_RETURN
691
692
693/* Returning to kernel space */
694retint_kernel:
695#ifdef CONFIG_PREEMPT
696	/* Interrupts are off */
697	/* Check if we need preemption */
698	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
699	jnc	1f
7000:	cmpl	$0, PER_CPU_VAR(__preempt_count)
701	jnz	1f
702	call	preempt_schedule_irq
703	jmp	0b
7041:
705#endif
706	/*
707	 * The iretq could re-enable interrupts:
708	 */
709	TRACE_IRQS_IRETQ
710
711GLOBAL(restore_regs_and_return_to_kernel)
712#ifdef CONFIG_DEBUG_ENTRY
713	/* Assert that pt_regs indicates kernel mode. */
714	testb	$3, CS(%rsp)
715	jz	1f
716	ud2
7171:
718#endif
719	POP_REGS
720	addq	$8, %rsp	/* skip regs->orig_ax */
721	/*
722	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
723	 * when returning from IPI handler.
724	 */
725	INTERRUPT_RETURN
726
727ENTRY(native_iret)
728	UNWIND_HINT_IRET_REGS
729	/*
730	 * Are we returning to a stack segment from the LDT?  Note: in
731	 * 64-bit mode SS:RSP on the exception stack is always valid.
732	 */
733#ifdef CONFIG_X86_ESPFIX64
734	testb	$4, (SS-RIP)(%rsp)
735	jnz	native_irq_return_ldt
736#endif
737
738.global native_irq_return_iret
739native_irq_return_iret:
740	/*
741	 * This may fault.  Non-paranoid faults on return to userspace are
742	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
743	 * Double-faults due to espfix64 are handled in do_double_fault.
744	 * Other faults here are fatal.
745	 */
746	iretq
747
748#ifdef CONFIG_X86_ESPFIX64
749native_irq_return_ldt:
750	/*
751	 * We are running with user GSBASE.  All GPRs contain their user
752	 * values.  We have a percpu ESPFIX stack that is eight slots
753	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
754	 * of the ESPFIX stack.
755	 *
756	 * We clobber RAX and RDI in this code.  We stash RDI on the
757	 * normal stack and RAX on the ESPFIX stack.
758	 *
759	 * The ESPFIX stack layout we set up looks like this:
760	 *
761	 * --- top of ESPFIX stack ---
762	 * SS
763	 * RSP
764	 * RFLAGS
765	 * CS
766	 * RIP  <-- RSP points here when we're done
767	 * RAX  <-- espfix_waddr points here
768	 * --- bottom of ESPFIX stack ---
769	 */
770
771	pushq	%rdi				/* Stash user RDI */
772	SWAPGS					/* to kernel GS */
773	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
774
775	movq	PER_CPU_VAR(espfix_waddr), %rdi
776	movq	%rax, (0*8)(%rdi)		/* user RAX */
777	movq	(1*8)(%rsp), %rax		/* user RIP */
778	movq	%rax, (1*8)(%rdi)
779	movq	(2*8)(%rsp), %rax		/* user CS */
780	movq	%rax, (2*8)(%rdi)
781	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
782	movq	%rax, (3*8)(%rdi)
783	movq	(5*8)(%rsp), %rax		/* user SS */
784	movq	%rax, (5*8)(%rdi)
785	movq	(4*8)(%rsp), %rax		/* user RSP */
786	movq	%rax, (4*8)(%rdi)
787	/* Now RAX == RSP. */
788
789	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
790
791	/*
792	 * espfix_stack[31:16] == 0.  The page tables are set up such that
793	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
794	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
795	 * the same page.  Set up RSP so that RSP[31:16] contains the
796	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
797	 * still points to an RO alias of the ESPFIX stack.
798	 */
799	orq	PER_CPU_VAR(espfix_stack), %rax
800
801	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
802	SWAPGS					/* to user GS */
803	popq	%rdi				/* Restore user RDI */
804
805	movq	%rax, %rsp
806	UNWIND_HINT_IRET_REGS offset=8
807
808	/*
809	 * At this point, we cannot write to the stack any more, but we can
810	 * still read.
811	 */
812	popq	%rax				/* Restore user RAX */
813
814	/*
815	 * RSP now points to an ordinary IRET frame, except that the page
816	 * is read-only and RSP[31:16] are preloaded with the userspace
817	 * values.  We can now IRET back to userspace.
818	 */
819	jmp	native_irq_return_iret
820#endif
821END(common_interrupt)
822
823/*
824 * APIC interrupts.
825 */
826.macro apicinterrupt3 num sym do_sym
827ENTRY(\sym)
828	UNWIND_HINT_IRET_REGS
829	pushq	$~(\num)
830.Lcommon_\sym:
831	call	interrupt_entry
832	UNWIND_HINT_REGS indirect=1
833	call	\do_sym	/* rdi points to pt_regs */
834	jmp	ret_from_intr
835END(\sym)
836.endm
837
838/* Make sure APIC interrupt handlers end up in the irqentry section: */
839#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
840#define POP_SECTION_IRQENTRY	.popsection
841
842.macro apicinterrupt num sym do_sym
843PUSH_SECTION_IRQENTRY
844apicinterrupt3 \num \sym \do_sym
845POP_SECTION_IRQENTRY
846.endm
847
848#ifdef CONFIG_SMP
849apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
850apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
851#endif
852
853#ifdef CONFIG_X86_UV
854apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
855#endif
856
857apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
858apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
859
860#ifdef CONFIG_HAVE_KVM
861apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
862apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
863apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
864#endif
865
866#ifdef CONFIG_X86_MCE_THRESHOLD
867apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
868#endif
869
870#ifdef CONFIG_X86_MCE_AMD
871apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
872#endif
873
874#ifdef CONFIG_X86_THERMAL_VECTOR
875apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
876#endif
877
878#ifdef CONFIG_SMP
879apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
880apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
881apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
882#endif
883
884apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
885apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
886
887#ifdef CONFIG_IRQ_WORK
888apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
889#endif
890
891/*
892 * Exception entry points.
893 */
894#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
895
896.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
897ENTRY(\sym)
898	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
899
900	/* Sanity check */
901	.if \shift_ist != -1 && \paranoid == 0
902	.error "using shift_ist requires paranoid=1"
903	.endif
904
905	ASM_CLAC
906
907	.if \has_error_code == 0
908	pushq	$-1				/* ORIG_RAX: no syscall to restart */
909	.endif
910
911	.if \paranoid < 2
912	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
913	jnz	.Lfrom_usermode_switch_stack_\@
914	.endif
915
916	.if \paranoid
917	call	paranoid_entry
918	.else
919	call	error_entry
920	.endif
921	UNWIND_HINT_REGS
922	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
923
924	.if \paranoid
925	.if \shift_ist != -1
926	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
927	.else
928	TRACE_IRQS_OFF
929	.endif
930	.endif
931
932	movq	%rsp, %rdi			/* pt_regs pointer */
933
934	.if \has_error_code
935	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
936	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
937	.else
938	xorl	%esi, %esi			/* no error code */
939	.endif
940
941	.if \shift_ist != -1
942	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
943	.endif
944
945	call	\do_sym
946
947	.if \shift_ist != -1
948	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
949	.endif
950
951	/* these procedures expect "no swapgs" flag in ebx */
952	.if \paranoid
953	jmp	paranoid_exit
954	.else
955	jmp	error_exit
956	.endif
957
958	.if \paranoid < 2
959	/*
960	 * Entry from userspace.  Switch stacks and treat it
961	 * as a normal entry.  This means that paranoid handlers
962	 * run in real process context if user_mode(regs).
963	 */
964.Lfrom_usermode_switch_stack_\@:
965	call	error_entry
966
967	movq	%rsp, %rdi			/* pt_regs pointer */
968
969	.if \has_error_code
970	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
971	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
972	.else
973	xorl	%esi, %esi			/* no error code */
974	.endif
975
976	call	\do_sym
977
978	jmp	error_exit			/* %ebx: no swapgs flag */
979	.endif
980END(\sym)
981.endm
982
983idtentry divide_error			do_divide_error			has_error_code=0
984idtentry overflow			do_overflow			has_error_code=0
985idtentry bounds				do_bounds			has_error_code=0
986idtentry invalid_op			do_invalid_op			has_error_code=0
987idtentry device_not_available		do_device_not_available		has_error_code=0
988idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
989idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
990idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
991idtentry segment_not_present		do_segment_not_present		has_error_code=1
992idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
993idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
994idtentry alignment_check		do_alignment_check		has_error_code=1
995idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
996
997
998	/*
999	 * Reload gs selector with exception handling
1000	 * edi:  new selector
1001	 */
1002ENTRY(native_load_gs_index)
1003	FRAME_BEGIN
1004	pushfq
1005	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1006	TRACE_IRQS_OFF
1007	SWAPGS
1008.Lgs_change:
1009	movl	%edi, %gs
10102:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1011	SWAPGS
1012	TRACE_IRQS_FLAGS (%rsp)
1013	popfq
1014	FRAME_END
1015	ret
1016ENDPROC(native_load_gs_index)
1017EXPORT_SYMBOL(native_load_gs_index)
1018
1019	_ASM_EXTABLE(.Lgs_change, bad_gs)
1020	.section .fixup, "ax"
1021	/* running with kernelgs */
1022bad_gs:
1023	SWAPGS					/* switch back to user gs */
1024.macro ZAP_GS
1025	/* This can't be a string because the preprocessor needs to see it. */
1026	movl $__USER_DS, %eax
1027	movl %eax, %gs
1028.endm
1029	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1030	xorl	%eax, %eax
1031	movl	%eax, %gs
1032	jmp	2b
1033	.previous
1034
1035/* Call softirq on interrupt stack. Interrupts are off. */
1036ENTRY(do_softirq_own_stack)
1037	pushq	%rbp
1038	mov	%rsp, %rbp
1039	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1040	call	__do_softirq
1041	LEAVE_IRQ_STACK regs=0
1042	leaveq
1043	ret
1044ENDPROC(do_softirq_own_stack)
1045
1046#ifdef CONFIG_XEN
1047idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1048
1049/*
1050 * A note on the "critical region" in our callback handler.
1051 * We want to avoid stacking callback handlers due to events occurring
1052 * during handling of the last event. To do this, we keep events disabled
1053 * until we've done all processing. HOWEVER, we must enable events before
1054 * popping the stack frame (can't be done atomically) and so it would still
1055 * be possible to get enough handler activations to overflow the stack.
1056 * Although unlikely, bugs of that kind are hard to track down, so we'd
1057 * like to avoid the possibility.
1058 * So, on entry to the handler we detect whether we interrupted an
1059 * existing activation in its critical region -- if so, we pop the current
1060 * activation and restart the handler using the previous one.
1061 */
1062ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1063
1064/*
1065 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1066 * see the correct pointer to the pt_regs
1067 */
1068	UNWIND_HINT_FUNC
1069	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1070	UNWIND_HINT_REGS
1071
1072	ENTER_IRQ_STACK old_rsp=%r10
1073	call	xen_evtchn_do_upcall
1074	LEAVE_IRQ_STACK
1075
1076#ifndef CONFIG_PREEMPT
1077	call	xen_maybe_preempt_hcall
1078#endif
1079	jmp	error_exit
1080END(xen_do_hypervisor_callback)
1081
1082/*
1083 * Hypervisor uses this for application faults while it executes.
1084 * We get here for two reasons:
1085 *  1. Fault while reloading DS, ES, FS or GS
1086 *  2. Fault while executing IRET
1087 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1088 * registers that could be reloaded and zeroed the others.
1089 * Category 2 we fix up by killing the current process. We cannot use the
1090 * normal Linux return path in this case because if we use the IRET hypercall
1091 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1092 * We distinguish between categories by comparing each saved segment register
1093 * with its current contents: any discrepancy means we in category 1.
1094 */
1095ENTRY(xen_failsafe_callback)
1096	UNWIND_HINT_EMPTY
1097	movl	%ds, %ecx
1098	cmpw	%cx, 0x10(%rsp)
1099	jne	1f
1100	movl	%es, %ecx
1101	cmpw	%cx, 0x18(%rsp)
1102	jne	1f
1103	movl	%fs, %ecx
1104	cmpw	%cx, 0x20(%rsp)
1105	jne	1f
1106	movl	%gs, %ecx
1107	cmpw	%cx, 0x28(%rsp)
1108	jne	1f
1109	/* All segments match their saved values => Category 2 (Bad IRET). */
1110	movq	(%rsp), %rcx
1111	movq	8(%rsp), %r11
1112	addq	$0x30, %rsp
1113	pushq	$0				/* RIP */
1114	UNWIND_HINT_IRET_REGS offset=8
1115	jmp	general_protection
11161:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1117	movq	(%rsp), %rcx
1118	movq	8(%rsp), %r11
1119	addq	$0x30, %rsp
1120	UNWIND_HINT_IRET_REGS
1121	pushq	$-1 /* orig_ax = -1 => not a system call */
1122	PUSH_AND_CLEAR_REGS
1123	ENCODE_FRAME_POINTER
1124	jmp	error_exit
1125END(xen_failsafe_callback)
1126
1127apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1128	xen_hvm_callback_vector xen_evtchn_do_upcall
1129
1130#endif /* CONFIG_XEN */
1131
1132#if IS_ENABLED(CONFIG_HYPERV)
1133apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134	hyperv_callback_vector hyperv_vector_handler
1135
1136apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1137	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1138
1139apicinterrupt3 HYPERV_STIMER0_VECTOR \
1140	hv_stimer0_callback_vector hv_stimer0_vector_handler
1141#endif /* CONFIG_HYPERV */
1142
1143idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1144idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1145idtentry stack_segment		do_stack_segment	has_error_code=1
1146
1147#ifdef CONFIG_XEN
1148idtentry xennmi			do_nmi			has_error_code=0
1149idtentry xendebug		do_debug		has_error_code=0
1150idtentry xenint3		do_int3			has_error_code=0
1151#endif
1152
1153idtentry general_protection	do_general_protection	has_error_code=1
1154idtentry page_fault		do_page_fault		has_error_code=1
1155
1156#ifdef CONFIG_KVM_GUEST
1157idtentry async_page_fault	do_async_page_fault	has_error_code=1
1158#endif
1159
1160#ifdef CONFIG_X86_MCE
1161idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1162#endif
1163
1164/*
1165 * Save all registers in pt_regs, and switch gs if needed.
1166 * Use slow, but surefire "are we in kernel?" check.
1167 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1168 */
1169ENTRY(paranoid_entry)
1170	UNWIND_HINT_FUNC
1171	cld
1172	PUSH_AND_CLEAR_REGS save_ret=1
1173	ENCODE_FRAME_POINTER 8
1174	movl	$1, %ebx
1175	movl	$MSR_GS_BASE, %ecx
1176	rdmsr
1177	testl	%edx, %edx
1178	js	1f				/* negative -> in kernel */
1179	SWAPGS
1180	xorl	%ebx, %ebx
1181
11821:
1183	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1184
1185	ret
1186END(paranoid_entry)
1187
1188/*
1189 * "Paranoid" exit path from exception stack.  This is invoked
1190 * only on return from non-NMI IST interrupts that came
1191 * from kernel space.
1192 *
1193 * We may be returning to very strange contexts (e.g. very early
1194 * in syscall entry), so checking for preemption here would
1195 * be complicated.  Fortunately, we there's no good reason
1196 * to try to handle preemption here.
1197 *
1198 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1199 */
1200ENTRY(paranoid_exit)
1201	UNWIND_HINT_REGS
1202	DISABLE_INTERRUPTS(CLBR_ANY)
1203	TRACE_IRQS_OFF_DEBUG
1204	testl	%ebx, %ebx			/* swapgs needed? */
1205	jnz	.Lparanoid_exit_no_swapgs
1206	TRACE_IRQS_IRETQ
1207	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1208	SWAPGS_UNSAFE_STACK
1209	jmp	.Lparanoid_exit_restore
1210.Lparanoid_exit_no_swapgs:
1211	TRACE_IRQS_IRETQ_DEBUG
1212	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1213.Lparanoid_exit_restore:
1214	jmp restore_regs_and_return_to_kernel
1215END(paranoid_exit)
1216
1217/*
1218 * Save all registers in pt_regs, and switch GS if needed.
1219 * Return: EBX=0: came from user mode; EBX=1: otherwise
1220 */
1221ENTRY(error_entry)
1222	UNWIND_HINT_FUNC
1223	cld
1224	PUSH_AND_CLEAR_REGS save_ret=1
1225	ENCODE_FRAME_POINTER 8
1226	testb	$3, CS+8(%rsp)
1227	jz	.Lerror_kernelspace
1228
1229	/*
1230	 * We entered from user mode or we're pretending to have entered
1231	 * from user mode due to an IRET fault.
1232	 */
1233	SWAPGS
1234	/* We have user CR3.  Change to kernel CR3. */
1235	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1236
1237.Lerror_entry_from_usermode_after_swapgs:
1238	/* Put us onto the real thread stack. */
1239	popq	%r12				/* save return addr in %12 */
1240	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1241	call	sync_regs
1242	movq	%rax, %rsp			/* switch stack */
1243	ENCODE_FRAME_POINTER
1244	pushq	%r12
1245
1246	/*
1247	 * We need to tell lockdep that IRQs are off.  We can't do this until
1248	 * we fix gsbase, and we should do it before enter_from_user_mode
1249	 * (which can take locks).
1250	 */
1251	TRACE_IRQS_OFF
1252	CALL_enter_from_user_mode
1253	ret
1254
1255.Lerror_entry_done:
1256	TRACE_IRQS_OFF
1257	ret
1258
1259	/*
1260	 * There are two places in the kernel that can potentially fault with
1261	 * usergs. Handle them here.  B stepping K8s sometimes report a
1262	 * truncated RIP for IRET exceptions returning to compat mode. Check
1263	 * for these here too.
1264	 */
1265.Lerror_kernelspace:
1266	incl	%ebx
1267	leaq	native_irq_return_iret(%rip), %rcx
1268	cmpq	%rcx, RIP+8(%rsp)
1269	je	.Lerror_bad_iret
1270	movl	%ecx, %eax			/* zero extend */
1271	cmpq	%rax, RIP+8(%rsp)
1272	je	.Lbstep_iret
1273	cmpq	$.Lgs_change, RIP+8(%rsp)
1274	jne	.Lerror_entry_done
1275
1276	/*
1277	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1278	 * gsbase and proceed.  We'll fix up the exception and land in
1279	 * .Lgs_change's error handler with kernel gsbase.
1280	 */
1281	SWAPGS
1282	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1283	jmp .Lerror_entry_done
1284
1285.Lbstep_iret:
1286	/* Fix truncated RIP */
1287	movq	%rcx, RIP+8(%rsp)
1288	/* fall through */
1289
1290.Lerror_bad_iret:
1291	/*
1292	 * We came from an IRET to user mode, so we have user
1293	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1294	 */
1295	SWAPGS
1296	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1297
1298	/*
1299	 * Pretend that the exception came from user mode: set up pt_regs
1300	 * as if we faulted immediately after IRET and clear EBX so that
1301	 * error_exit knows that we will be returning to user mode.
1302	 */
1303	mov	%rsp, %rdi
1304	call	fixup_bad_iret
1305	mov	%rax, %rsp
1306	decl	%ebx
1307	jmp	.Lerror_entry_from_usermode_after_swapgs
1308END(error_entry)
1309
1310
1311/*
1312 * On entry, EBX is a "return to kernel mode" flag:
1313 *   1: already in kernel mode, don't need SWAPGS
1314 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1315 */
1316ENTRY(error_exit)
1317	UNWIND_HINT_REGS
1318	DISABLE_INTERRUPTS(CLBR_ANY)
1319	TRACE_IRQS_OFF
1320	testl	%ebx, %ebx
1321	jnz	retint_kernel
1322	jmp	retint_user
1323END(error_exit)
1324
1325/*
1326 * Runs on exception stack.  Xen PV does not go through this path at all,
1327 * so we can use real assembly here.
1328 *
1329 * Registers:
1330 *	%r14: Used to save/restore the CR3 of the interrupted context
1331 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1332 */
1333ENTRY(nmi)
1334	UNWIND_HINT_IRET_REGS
1335
1336	/*
1337	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1338	 * the iretq it performs will take us out of NMI context.
1339	 * This means that we can have nested NMIs where the next
1340	 * NMI is using the top of the stack of the previous NMI. We
1341	 * can't let it execute because the nested NMI will corrupt the
1342	 * stack of the previous NMI. NMI handlers are not re-entrant
1343	 * anyway.
1344	 *
1345	 * To handle this case we do the following:
1346	 *  Check the a special location on the stack that contains
1347	 *  a variable that is set when NMIs are executing.
1348	 *  The interrupted task's stack is also checked to see if it
1349	 *  is an NMI stack.
1350	 *  If the variable is not set and the stack is not the NMI
1351	 *  stack then:
1352	 *    o Set the special variable on the stack
1353	 *    o Copy the interrupt frame into an "outermost" location on the
1354	 *      stack
1355	 *    o Copy the interrupt frame into an "iret" location on the stack
1356	 *    o Continue processing the NMI
1357	 *  If the variable is set or the previous stack is the NMI stack:
1358	 *    o Modify the "iret" location to jump to the repeat_nmi
1359	 *    o return back to the first NMI
1360	 *
1361	 * Now on exit of the first NMI, we first clear the stack variable
1362	 * The NMI stack will tell any nested NMIs at that point that it is
1363	 * nested. Then we pop the stack normally with iret, and if there was
1364	 * a nested NMI that updated the copy interrupt stack frame, a
1365	 * jump will be made to the repeat_nmi code that will handle the second
1366	 * NMI.
1367	 *
1368	 * However, espfix prevents us from directly returning to userspace
1369	 * with a single IRET instruction.  Similarly, IRET to user mode
1370	 * can fault.  We therefore handle NMIs from user space like
1371	 * other IST entries.
1372	 */
1373
1374	ASM_CLAC
1375
1376	/* Use %rdx as our temp variable throughout */
1377	pushq	%rdx
1378
1379	testb	$3, CS-RIP+8(%rsp)
1380	jz	.Lnmi_from_kernel
1381
1382	/*
1383	 * NMI from user mode.  We need to run on the thread stack, but we
1384	 * can't go through the normal entry paths: NMIs are masked, and
1385	 * we don't want to enable interrupts, because then we'll end
1386	 * up in an awkward situation in which IRQs are on but NMIs
1387	 * are off.
1388	 *
1389	 * We also must not push anything to the stack before switching
1390	 * stacks lest we corrupt the "NMI executing" variable.
1391	 */
1392
1393	swapgs
1394	cld
1395	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1396	movq	%rsp, %rdx
1397	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1398	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1399	pushq	5*8(%rdx)	/* pt_regs->ss */
1400	pushq	4*8(%rdx)	/* pt_regs->rsp */
1401	pushq	3*8(%rdx)	/* pt_regs->flags */
1402	pushq	2*8(%rdx)	/* pt_regs->cs */
1403	pushq	1*8(%rdx)	/* pt_regs->rip */
1404	UNWIND_HINT_IRET_REGS
1405	pushq   $-1		/* pt_regs->orig_ax */
1406	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1407	ENCODE_FRAME_POINTER
1408
1409	/*
1410	 * At this point we no longer need to worry about stack damage
1411	 * due to nesting -- we're on the normal thread stack and we're
1412	 * done with the NMI stack.
1413	 */
1414
1415	movq	%rsp, %rdi
1416	movq	$-1, %rsi
1417	call	do_nmi
1418
1419	/*
1420	 * Return back to user mode.  We must *not* do the normal exit
1421	 * work, because we don't want to enable interrupts.
1422	 */
1423	jmp	swapgs_restore_regs_and_return_to_usermode
1424
1425.Lnmi_from_kernel:
1426	/*
1427	 * Here's what our stack frame will look like:
1428	 * +---------------------------------------------------------+
1429	 * | original SS                                             |
1430	 * | original Return RSP                                     |
1431	 * | original RFLAGS                                         |
1432	 * | original CS                                             |
1433	 * | original RIP                                            |
1434	 * +---------------------------------------------------------+
1435	 * | temp storage for rdx                                    |
1436	 * +---------------------------------------------------------+
1437	 * | "NMI executing" variable                                |
1438	 * +---------------------------------------------------------+
1439	 * | iret SS          } Copied from "outermost" frame        |
1440	 * | iret Return RSP  } on each loop iteration; overwritten  |
1441	 * | iret RFLAGS      } by a nested NMI to force another     |
1442	 * | iret CS          } iteration if needed.                 |
1443	 * | iret RIP         }                                      |
1444	 * +---------------------------------------------------------+
1445	 * | outermost SS          } initialized in first_nmi;       |
1446	 * | outermost Return RSP  } will not be changed before      |
1447	 * | outermost RFLAGS      } NMI processing is done.         |
1448	 * | outermost CS          } Copied to "iret" frame on each  |
1449	 * | outermost RIP         } iteration.                      |
1450	 * +---------------------------------------------------------+
1451	 * | pt_regs                                                 |
1452	 * +---------------------------------------------------------+
1453	 *
1454	 * The "original" frame is used by hardware.  Before re-enabling
1455	 * NMIs, we need to be done with it, and we need to leave enough
1456	 * space for the asm code here.
1457	 *
1458	 * We return by executing IRET while RSP points to the "iret" frame.
1459	 * That will either return for real or it will loop back into NMI
1460	 * processing.
1461	 *
1462	 * The "outermost" frame is copied to the "iret" frame on each
1463	 * iteration of the loop, so each iteration starts with the "iret"
1464	 * frame pointing to the final return target.
1465	 */
1466
1467	/*
1468	 * Determine whether we're a nested NMI.
1469	 *
1470	 * If we interrupted kernel code between repeat_nmi and
1471	 * end_repeat_nmi, then we are a nested NMI.  We must not
1472	 * modify the "iret" frame because it's being written by
1473	 * the outer NMI.  That's okay; the outer NMI handler is
1474	 * about to about to call do_nmi anyway, so we can just
1475	 * resume the outer NMI.
1476	 */
1477
1478	movq	$repeat_nmi, %rdx
1479	cmpq	8(%rsp), %rdx
1480	ja	1f
1481	movq	$end_repeat_nmi, %rdx
1482	cmpq	8(%rsp), %rdx
1483	ja	nested_nmi_out
14841:
1485
1486	/*
1487	 * Now check "NMI executing".  If it's set, then we're nested.
1488	 * This will not detect if we interrupted an outer NMI just
1489	 * before IRET.
1490	 */
1491	cmpl	$1, -8(%rsp)
1492	je	nested_nmi
1493
1494	/*
1495	 * Now test if the previous stack was an NMI stack.  This covers
1496	 * the case where we interrupt an outer NMI after it clears
1497	 * "NMI executing" but before IRET.  We need to be careful, though:
1498	 * there is one case in which RSP could point to the NMI stack
1499	 * despite there being no NMI active: naughty userspace controls
1500	 * RSP at the very beginning of the SYSCALL targets.  We can
1501	 * pull a fast one on naughty userspace, though: we program
1502	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1503	 * if it controls the kernel's RSP.  We set DF before we clear
1504	 * "NMI executing".
1505	 */
1506	lea	6*8(%rsp), %rdx
1507	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1508	cmpq	%rdx, 4*8(%rsp)
1509	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1510	ja	first_nmi
1511
1512	subq	$EXCEPTION_STKSZ, %rdx
1513	cmpq	%rdx, 4*8(%rsp)
1514	/* If it is below the NMI stack, it is a normal NMI */
1515	jb	first_nmi
1516
1517	/* Ah, it is within the NMI stack. */
1518
1519	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1520	jz	first_nmi	/* RSP was user controlled. */
1521
1522	/* This is a nested NMI. */
1523
1524nested_nmi:
1525	/*
1526	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1527	 * iteration of NMI handling.
1528	 */
1529	subq	$8, %rsp
1530	leaq	-10*8(%rsp), %rdx
1531	pushq	$__KERNEL_DS
1532	pushq	%rdx
1533	pushfq
1534	pushq	$__KERNEL_CS
1535	pushq	$repeat_nmi
1536
1537	/* Put stack back */
1538	addq	$(6*8), %rsp
1539
1540nested_nmi_out:
1541	popq	%rdx
1542
1543	/* We are returning to kernel mode, so this cannot result in a fault. */
1544	iretq
1545
1546first_nmi:
1547	/* Restore rdx. */
1548	movq	(%rsp), %rdx
1549
1550	/* Make room for "NMI executing". */
1551	pushq	$0
1552
1553	/* Leave room for the "iret" frame */
1554	subq	$(5*8), %rsp
1555
1556	/* Copy the "original" frame to the "outermost" frame */
1557	.rept 5
1558	pushq	11*8(%rsp)
1559	.endr
1560	UNWIND_HINT_IRET_REGS
1561
1562	/* Everything up to here is safe from nested NMIs */
1563
1564#ifdef CONFIG_DEBUG_ENTRY
1565	/*
1566	 * For ease of testing, unmask NMIs right away.  Disabled by
1567	 * default because IRET is very expensive.
1568	 */
1569	pushq	$0		/* SS */
1570	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1571	addq	$8, (%rsp)	/* Fix up RSP */
1572	pushfq			/* RFLAGS */
1573	pushq	$__KERNEL_CS	/* CS */
1574	pushq	$1f		/* RIP */
1575	iretq			/* continues at repeat_nmi below */
1576	UNWIND_HINT_IRET_REGS
15771:
1578#endif
1579
1580repeat_nmi:
1581	/*
1582	 * If there was a nested NMI, the first NMI's iret will return
1583	 * here. But NMIs are still enabled and we can take another
1584	 * nested NMI. The nested NMI checks the interrupted RIP to see
1585	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1586	 * it will just return, as we are about to repeat an NMI anyway.
1587	 * This makes it safe to copy to the stack frame that a nested
1588	 * NMI will update.
1589	 *
1590	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1591	 * we're repeating an NMI, gsbase has the same value that it had on
1592	 * the first iteration.  paranoid_entry will load the kernel
1593	 * gsbase if needed before we call do_nmi.  "NMI executing"
1594	 * is zero.
1595	 */
1596	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1597
1598	/*
1599	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1600	 * here must not modify the "iret" frame while we're writing to
1601	 * it or it will end up containing garbage.
1602	 */
1603	addq	$(10*8), %rsp
1604	.rept 5
1605	pushq	-6*8(%rsp)
1606	.endr
1607	subq	$(5*8), %rsp
1608end_repeat_nmi:
1609
1610	/*
1611	 * Everything below this point can be preempted by a nested NMI.
1612	 * If this happens, then the inner NMI will change the "iret"
1613	 * frame to point back to repeat_nmi.
1614	 */
1615	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1616
1617	/*
1618	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1619	 * as we should not be calling schedule in NMI context.
1620	 * Even with normal interrupts enabled. An NMI should not be
1621	 * setting NEED_RESCHED or anything that normal interrupts and
1622	 * exceptions might do.
1623	 */
1624	call	paranoid_entry
1625	UNWIND_HINT_REGS
1626
1627	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1628	movq	%rsp, %rdi
1629	movq	$-1, %rsi
1630	call	do_nmi
1631
1632	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1633
1634	testl	%ebx, %ebx			/* swapgs needed? */
1635	jnz	nmi_restore
1636nmi_swapgs:
1637	SWAPGS_UNSAFE_STACK
1638nmi_restore:
1639	POP_REGS
1640
1641	/*
1642	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1643	 * at the "iret" frame.
1644	 */
1645	addq	$6*8, %rsp
1646
1647	/*
1648	 * Clear "NMI executing".  Set DF first so that we can easily
1649	 * distinguish the remaining code between here and IRET from
1650	 * the SYSCALL entry and exit paths.
1651	 *
1652	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1653	 * this code when I had the misapprehension that Xen PV supported
1654	 * NMIs, and Xen PV would break that approach.
1655	 */
1656	std
1657	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1658
1659	/*
1660	 * iretq reads the "iret" frame and exits the NMI stack in a
1661	 * single instruction.  We are returning to kernel mode, so this
1662	 * cannot result in a fault.  Similarly, we don't need to worry
1663	 * about espfix64 on the way back to kernel mode.
1664	 */
1665	iretq
1666END(nmi)
1667
1668ENTRY(ignore_sysret)
1669	UNWIND_HINT_EMPTY
1670	mov	$-ENOSYS, %eax
1671	sysret
1672END(ignore_sysret)
1673
1674ENTRY(rewind_stack_do_exit)
1675	UNWIND_HINT_FUNC
1676	/* Prevent any naive code from trying to unwind to our caller. */
1677	xorl	%ebp, %ebp
1678
1679	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1680	leaq	-PTREGS_SIZE(%rax), %rsp
1681	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1682
1683	call	do_exit
1684END(rewind_stack_do_exit)
1685