xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision bb0eb050)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <linux/err.h>
40
41.code64
42.section .entry.text, "ax"
43
44#ifdef CONFIG_PARAVIRT
45ENTRY(native_usergs_sysret64)
46	swapgs
47	sysretq
48ENDPROC(native_usergs_sysret64)
49#endif /* CONFIG_PARAVIRT */
50
51.macro TRACE_IRQS_IRETQ
52#ifdef CONFIG_TRACE_IRQFLAGS
53	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
54	jnc	1f
55	TRACE_IRQS_ON
561:
57#endif
58.endm
59
60/*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73.macro TRACE_IRQS_OFF_DEBUG
74	call	debug_stack_set_zero
75	TRACE_IRQS_OFF
76	call	debug_stack_reset
77.endm
78
79.macro TRACE_IRQS_ON_DEBUG
80	call	debug_stack_set_zero
81	TRACE_IRQS_ON
82	call	debug_stack_reset
83.endm
84
85.macro TRACE_IRQS_IRETQ_DEBUG
86	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
87	jnc	1f
88	TRACE_IRQS_ON_DEBUG
891:
90.endm
91
92#else
93# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
94# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
95# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96#endif
97
98/*
99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
100 *
101 * This is the only entry point used for 64-bit system calls.  The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries.  There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
118 * rax  system call number
119 * rcx  return address
120 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
121 * rdi  arg0
122 * rsi  arg1
123 * rdx  arg2
124 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
125 * r8   arg4
126 * r9   arg5
127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128 *
129 * Only called from user space.
130 *
131 * When user can change pt_regs->foo always force IRET. That is because
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
134 */
135
136ENTRY(entry_SYSCALL_64)
137	/*
138	 * Interrupts are off on entry.
139	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140	 * it is too small to ever cause noticeable irq latency.
141	 */
142	SWAPGS_UNSAFE_STACK
143	/*
144	 * A hypervisor implementation might want to use a label
145	 * after the swapgs, so that it can do the swapgs
146	 * for the guest and jump here on syscall.
147	 */
148GLOBAL(entry_SYSCALL_64_after_swapgs)
149
150	movq	%rsp, PER_CPU_VAR(rsp_scratch)
151	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152
153	TRACE_IRQS_OFF
154
155	/* Construct struct pt_regs on stack */
156	pushq	$__USER_DS			/* pt_regs->ss */
157	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
158	pushq	%r11				/* pt_regs->flags */
159	pushq	$__USER_CS			/* pt_regs->cs */
160	pushq	%rcx				/* pt_regs->ip */
161	pushq	%rax				/* pt_regs->orig_ax */
162	pushq	%rdi				/* pt_regs->di */
163	pushq	%rsi				/* pt_regs->si */
164	pushq	%rdx				/* pt_regs->dx */
165	pushq	%rcx				/* pt_regs->cx */
166	pushq	$-ENOSYS			/* pt_regs->ax */
167	pushq	%r8				/* pt_regs->r8 */
168	pushq	%r9				/* pt_regs->r9 */
169	pushq	%r10				/* pt_regs->r10 */
170	pushq	%r11				/* pt_regs->r11 */
171	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
172
173	/*
174	 * If we need to do entry work or if we guess we'll need to do
175	 * exit work, go straight to the slow path.
176	 */
177	movq	PER_CPU_VAR(current_task), %r11
178	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179	jnz	entry_SYSCALL64_slow_path
180
181entry_SYSCALL_64_fastpath:
182	/*
183	 * Easy case: enable interrupts and issue the syscall.  If the syscall
184	 * needs pt_regs, we'll call a stub that disables interrupts again
185	 * and jumps to the slow path.
186	 */
187	TRACE_IRQS_ON
188	ENABLE_INTERRUPTS(CLBR_NONE)
189#if __SYSCALL_MASK == ~0
190	cmpq	$__NR_syscall_max, %rax
191#else
192	andl	$__SYSCALL_MASK, %eax
193	cmpl	$__NR_syscall_max, %eax
194#endif
195	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
196	movq	%r10, %rcx
197
198	/*
199	 * This call instruction is handled specially in stub_ptregs_64.
200	 * It might end up jumping to the slow path.  If it jumps, RAX
201	 * and all argument registers are clobbered.
202	 */
203	call	*sys_call_table(, %rax, 8)
204.Lentry_SYSCALL_64_after_fastpath_call:
205
206	movq	%rax, RAX(%rsp)
2071:
208
209	/*
210	 * If we get here, then we know that pt_regs is clean for SYSRET64.
211	 * If we see that no exit work is required (which we are required
212	 * to check with IRQs off), then we can go straight to SYSRET64.
213	 */
214	DISABLE_INTERRUPTS(CLBR_ANY)
215	TRACE_IRQS_OFF
216	movq	PER_CPU_VAR(current_task), %r11
217	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218	jnz	1f
219
220	LOCKDEP_SYS_EXIT
221	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222	movq	RIP(%rsp), %rcx
223	movq	EFLAGS(%rsp), %r11
224	RESTORE_C_REGS_EXCEPT_RCX_R11
225	movq	RSP(%rsp), %rsp
226	USERGS_SYSRET64
227
2281:
229	/*
230	 * The fast path looked good when we started, but something changed
231	 * along the way and we need to switch to the slow path.  Calling
232	 * raise(3) will trigger this, for example.  IRQs are off.
233	 */
234	TRACE_IRQS_ON
235	ENABLE_INTERRUPTS(CLBR_ANY)
236	SAVE_EXTRA_REGS
237	movq	%rsp, %rdi
238	call	syscall_return_slowpath	/* returns with IRQs disabled */
239	jmp	return_from_SYSCALL_64
240
241entry_SYSCALL64_slow_path:
242	/* IRQs are off. */
243	SAVE_EXTRA_REGS
244	movq	%rsp, %rdi
245	call	do_syscall_64		/* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
248	RESTORE_EXTRA_REGS
249	TRACE_IRQS_IRETQ		/* we're about to change IF */
250
251	/*
252	 * Try to use SYSRET instead of IRET if we're returning to
253	 * a completely clean 64-bit userspace context.
254	 */
255	movq	RCX(%rsp), %rcx
256	movq	RIP(%rsp), %r11
257	cmpq	%rcx, %r11			/* RCX == RIP */
258	jne	opportunistic_sysret_failed
259
260	/*
261	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262	 * in kernel space.  This essentially lets the user take over
263	 * the kernel, since userspace controls RSP.
264	 *
265	 * If width of "canonical tail" ever becomes variable, this will need
266	 * to be updated to remain correct on both old and new CPUs.
267	 *
268	 * Change top 16 bits to be the sign-extension of 47th bit
269	 */
270	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
271	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272
273	/* If this changed %rcx, it was not canonical */
274	cmpq	%rcx, %r11
275	jne	opportunistic_sysret_failed
276
277	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
278	jne	opportunistic_sysret_failed
279
280	movq	R11(%rsp), %r11
281	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
282	jne	opportunistic_sysret_failed
283
284	/*
285	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
286	 * restore RF properly. If the slowpath sets it for whatever reason, we
287	 * need to restore it correctly.
288	 *
289	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
290	 * trap from userspace immediately after SYSRET.  This would cause an
291	 * infinite loop whenever #DB happens with register state that satisfies
292	 * the opportunistic SYSRET conditions.  For example, single-stepping
293	 * this user code:
294	 *
295	 *           movq	$stuck_here, %rcx
296	 *           pushfq
297	 *           popq %r11
298	 *   stuck_here:
299	 *
300	 * would never get past 'stuck_here'.
301	 */
302	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
303	jnz	opportunistic_sysret_failed
304
305	/* nothing to check for RSP */
306
307	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
308	jne	opportunistic_sysret_failed
309
310	/*
311	 * We win! This label is here just for ease of understanding
312	 * perf profiles. Nothing jumps here.
313	 */
314syscall_return_via_sysret:
315	/* rcx and r11 are already restored (see code above) */
316	RESTORE_C_REGS_EXCEPT_RCX_R11
317	movq	RSP(%rsp), %rsp
318	USERGS_SYSRET64
319
320opportunistic_sysret_failed:
321	SWAPGS
322	jmp	restore_c_regs_and_iret
323END(entry_SYSCALL_64)
324
325ENTRY(stub_ptregs_64)
326	/*
327	 * Syscalls marked as needing ptregs land here.
328	 * If we are on the fast path, we need to save the extra regs,
329	 * which we achieve by trying again on the slow path.  If we are on
330	 * the slow path, the extra regs are already saved.
331	 *
332	 * RAX stores a pointer to the C function implementing the syscall.
333	 * IRQs are on.
334	 */
335	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
336	jne	1f
337
338	/*
339	 * Called from fast path -- disable IRQs again, pop return address
340	 * and jump to slow path
341	 */
342	DISABLE_INTERRUPTS(CLBR_ANY)
343	TRACE_IRQS_OFF
344	popq	%rax
345	jmp	entry_SYSCALL64_slow_path
346
3471:
348	jmp	*%rax				/* Called from C */
349END(stub_ptregs_64)
350
351.macro ptregs_stub func
352ENTRY(ptregs_\func)
353	leaq	\func(%rip), %rax
354	jmp	stub_ptregs_64
355END(ptregs_\func)
356.endm
357
358/* Instantiate ptregs_stub for each ptregs-using syscall */
359#define __SYSCALL_64_QUAL_(sym)
360#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
361#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
362#include <asm/syscalls_64.h>
363
364/*
365 * %rdi: prev task
366 * %rsi: next task
367 */
368ENTRY(__switch_to_asm)
369	/*
370	 * Save callee-saved registers
371	 * This must match the order in inactive_task_frame
372	 */
373	pushq	%rbp
374	pushq	%rbx
375	pushq	%r12
376	pushq	%r13
377	pushq	%r14
378	pushq	%r15
379
380	/* switch stack */
381	movq	%rsp, TASK_threadsp(%rdi)
382	movq	TASK_threadsp(%rsi), %rsp
383
384#ifdef CONFIG_CC_STACKPROTECTOR
385	movq	TASK_stack_canary(%rsi), %rbx
386	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
387#endif
388
389	/* restore callee-saved registers */
390	popq	%r15
391	popq	%r14
392	popq	%r13
393	popq	%r12
394	popq	%rbx
395	popq	%rbp
396
397	jmp	__switch_to
398END(__switch_to_asm)
399
400/*
401 * A newly forked process directly context switches into this address.
402 *
403 * rax: prev task we switched from
404 * rbx: kernel thread func (NULL for user thread)
405 * r12: kernel thread arg
406 */
407ENTRY(ret_from_fork)
408	movq	%rax, %rdi
409	call	schedule_tail			/* rdi: 'prev' task parameter */
410
411	testq	%rbx, %rbx			/* from kernel_thread? */
412	jnz	1f				/* kernel threads are uncommon */
413
4142:
415	movq	%rsp, %rdi
416	call	syscall_return_slowpath	/* returns with IRQs disabled */
417	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
418	SWAPGS
419	jmp	restore_regs_and_iret
420
4211:
422	/* kernel thread */
423	movq	%r12, %rdi
424	call	*%rbx
425	/*
426	 * A kernel thread is allowed to return here after successfully
427	 * calling do_execve().  Exit to userspace to complete the execve()
428	 * syscall.
429	 */
430	movq	$0, RAX(%rsp)
431	jmp	2b
432END(ret_from_fork)
433
434/*
435 * Build the entry stubs with some assembler magic.
436 * We pack 1 stub into every 8-byte block.
437 */
438	.align 8
439ENTRY(irq_entries_start)
440    vector=FIRST_EXTERNAL_VECTOR
441    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
442	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
443    vector=vector+1
444	jmp	common_interrupt
445	.align	8
446    .endr
447END(irq_entries_start)
448
449/*
450 * Interrupt entry/exit.
451 *
452 * Interrupt entry points save only callee clobbered registers in fast path.
453 *
454 * Entry runs with interrupts off.
455 */
456
457/* 0(%rsp): ~(interrupt number) */
458	.macro interrupt func
459	cld
460	ALLOC_PT_GPREGS_ON_STACK
461	SAVE_C_REGS
462	SAVE_EXTRA_REGS
463	ENCODE_FRAME_POINTER
464
465	testb	$3, CS(%rsp)
466	jz	1f
467
468	/*
469	 * IRQ from user mode.  Switch to kernel gsbase and inform context
470	 * tracking that we're in kernel mode.
471	 */
472	SWAPGS
473
474	/*
475	 * We need to tell lockdep that IRQs are off.  We can't do this until
476	 * we fix gsbase, and we should do it before enter_from_user_mode
477	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
478	 * the simplest way to handle it is to just call it twice if
479	 * we enter from user mode.  There's no reason to optimize this since
480	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
481	 */
482	TRACE_IRQS_OFF
483
484	CALL_enter_from_user_mode
485
4861:
487	/*
488	 * Save previous stack pointer, optionally switch to interrupt stack.
489	 * irq_count is used to check if a CPU is already on an interrupt stack
490	 * or not. While this is essentially redundant with preempt_count it is
491	 * a little cheaper to use a separate counter in the PDA (short of
492	 * moving irq_enter into assembly, which would be too much work)
493	 */
494	movq	%rsp, %rdi
495	incl	PER_CPU_VAR(irq_count)
496	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
497	pushq	%rdi
498	/* We entered an interrupt context - irqs are off: */
499	TRACE_IRQS_OFF
500
501	call	\func	/* rdi points to pt_regs */
502	.endm
503
504	/*
505	 * The interrupt stubs push (~vector+0x80) onto the stack and
506	 * then jump to common_interrupt.
507	 */
508	.p2align CONFIG_X86_L1_CACHE_SHIFT
509common_interrupt:
510	ASM_CLAC
511	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
512	interrupt do_IRQ
513	/* 0(%rsp): old RSP */
514ret_from_intr:
515	DISABLE_INTERRUPTS(CLBR_ANY)
516	TRACE_IRQS_OFF
517	decl	PER_CPU_VAR(irq_count)
518
519	/* Restore saved previous stack */
520	popq	%rsp
521
522	testb	$3, CS(%rsp)
523	jz	retint_kernel
524
525	/* Interrupt came from user space */
526GLOBAL(retint_user)
527	mov	%rsp,%rdi
528	call	prepare_exit_to_usermode
529	TRACE_IRQS_IRETQ
530	SWAPGS
531	jmp	restore_regs_and_iret
532
533/* Returning to kernel space */
534retint_kernel:
535#ifdef CONFIG_PREEMPT
536	/* Interrupts are off */
537	/* Check if we need preemption */
538	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
539	jnc	1f
5400:	cmpl	$0, PER_CPU_VAR(__preempt_count)
541	jnz	1f
542	call	preempt_schedule_irq
543	jmp	0b
5441:
545#endif
546	/*
547	 * The iretq could re-enable interrupts:
548	 */
549	TRACE_IRQS_IRETQ
550
551/*
552 * At this label, code paths which return to kernel and to user,
553 * which come from interrupts/exception and from syscalls, merge.
554 */
555GLOBAL(restore_regs_and_iret)
556	RESTORE_EXTRA_REGS
557restore_c_regs_and_iret:
558	RESTORE_C_REGS
559	REMOVE_PT_GPREGS_FROM_STACK 8
560	INTERRUPT_RETURN
561
562ENTRY(native_iret)
563	/*
564	 * Are we returning to a stack segment from the LDT?  Note: in
565	 * 64-bit mode SS:RSP on the exception stack is always valid.
566	 */
567#ifdef CONFIG_X86_ESPFIX64
568	testb	$4, (SS-RIP)(%rsp)
569	jnz	native_irq_return_ldt
570#endif
571
572.global native_irq_return_iret
573native_irq_return_iret:
574	/*
575	 * This may fault.  Non-paranoid faults on return to userspace are
576	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
577	 * Double-faults due to espfix64 are handled in do_double_fault.
578	 * Other faults here are fatal.
579	 */
580	iretq
581
582#ifdef CONFIG_X86_ESPFIX64
583native_irq_return_ldt:
584	/*
585	 * We are running with user GSBASE.  All GPRs contain their user
586	 * values.  We have a percpu ESPFIX stack that is eight slots
587	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
588	 * of the ESPFIX stack.
589	 *
590	 * We clobber RAX and RDI in this code.  We stash RDI on the
591	 * normal stack and RAX on the ESPFIX stack.
592	 *
593	 * The ESPFIX stack layout we set up looks like this:
594	 *
595	 * --- top of ESPFIX stack ---
596	 * SS
597	 * RSP
598	 * RFLAGS
599	 * CS
600	 * RIP  <-- RSP points here when we're done
601	 * RAX  <-- espfix_waddr points here
602	 * --- bottom of ESPFIX stack ---
603	 */
604
605	pushq	%rdi				/* Stash user RDI */
606	SWAPGS
607	movq	PER_CPU_VAR(espfix_waddr), %rdi
608	movq	%rax, (0*8)(%rdi)		/* user RAX */
609	movq	(1*8)(%rsp), %rax		/* user RIP */
610	movq	%rax, (1*8)(%rdi)
611	movq	(2*8)(%rsp), %rax		/* user CS */
612	movq	%rax, (2*8)(%rdi)
613	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
614	movq	%rax, (3*8)(%rdi)
615	movq	(5*8)(%rsp), %rax		/* user SS */
616	movq	%rax, (5*8)(%rdi)
617	movq	(4*8)(%rsp), %rax		/* user RSP */
618	movq	%rax, (4*8)(%rdi)
619	/* Now RAX == RSP. */
620
621	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
622	popq	%rdi				/* Restore user RDI */
623
624	/*
625	 * espfix_stack[31:16] == 0.  The page tables are set up such that
626	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
627	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
628	 * the same page.  Set up RSP so that RSP[31:16] contains the
629	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
630	 * still points to an RO alias of the ESPFIX stack.
631	 */
632	orq	PER_CPU_VAR(espfix_stack), %rax
633	SWAPGS
634	movq	%rax, %rsp
635
636	/*
637	 * At this point, we cannot write to the stack any more, but we can
638	 * still read.
639	 */
640	popq	%rax				/* Restore user RAX */
641
642	/*
643	 * RSP now points to an ordinary IRET frame, except that the page
644	 * is read-only and RSP[31:16] are preloaded with the userspace
645	 * values.  We can now IRET back to userspace.
646	 */
647	jmp	native_irq_return_iret
648#endif
649END(common_interrupt)
650
651/*
652 * APIC interrupts.
653 */
654.macro apicinterrupt3 num sym do_sym
655ENTRY(\sym)
656	ASM_CLAC
657	pushq	$~(\num)
658.Lcommon_\sym:
659	interrupt \do_sym
660	jmp	ret_from_intr
661END(\sym)
662.endm
663
664#ifdef CONFIG_TRACING
665#define trace(sym) trace_##sym
666#define smp_trace(sym) smp_trace_##sym
667
668.macro trace_apicinterrupt num sym
669apicinterrupt3 \num trace(\sym) smp_trace(\sym)
670.endm
671#else
672.macro trace_apicinterrupt num sym do_sym
673.endm
674#endif
675
676/* Make sure APIC interrupt handlers end up in the irqentry section: */
677#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
678# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
679# define POP_SECTION_IRQENTRY	.popsection
680#else
681# define PUSH_SECTION_IRQENTRY
682# define POP_SECTION_IRQENTRY
683#endif
684
685.macro apicinterrupt num sym do_sym
686PUSH_SECTION_IRQENTRY
687apicinterrupt3 \num \sym \do_sym
688trace_apicinterrupt \num \sym
689POP_SECTION_IRQENTRY
690.endm
691
692#ifdef CONFIG_SMP
693apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
694apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
695#endif
696
697#ifdef CONFIG_X86_UV
698apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
699#endif
700
701apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
702apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
703
704#ifdef CONFIG_HAVE_KVM
705apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
706apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
707#endif
708
709#ifdef CONFIG_X86_MCE_THRESHOLD
710apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
711#endif
712
713#ifdef CONFIG_X86_MCE_AMD
714apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
715#endif
716
717#ifdef CONFIG_X86_THERMAL_VECTOR
718apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
719#endif
720
721#ifdef CONFIG_SMP
722apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
723apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
724apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
725#endif
726
727apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
728apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
729
730#ifdef CONFIG_IRQ_WORK
731apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
732#endif
733
734/*
735 * Exception entry points.
736 */
737#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
738
739.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
740ENTRY(\sym)
741	/* Sanity check */
742	.if \shift_ist != -1 && \paranoid == 0
743	.error "using shift_ist requires paranoid=1"
744	.endif
745
746	ASM_CLAC
747	PARAVIRT_ADJUST_EXCEPTION_FRAME
748
749	.ifeq \has_error_code
750	pushq	$-1				/* ORIG_RAX: no syscall to restart */
751	.endif
752
753	ALLOC_PT_GPREGS_ON_STACK
754
755	.if \paranoid
756	.if \paranoid == 1
757	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
758	jnz	1f
759	.endif
760	call	paranoid_entry
761	.else
762	call	error_entry
763	.endif
764	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
765
766	.if \paranoid
767	.if \shift_ist != -1
768	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
769	.else
770	TRACE_IRQS_OFF
771	.endif
772	.endif
773
774	movq	%rsp, %rdi			/* pt_regs pointer */
775
776	.if \has_error_code
777	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
778	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
779	.else
780	xorl	%esi, %esi			/* no error code */
781	.endif
782
783	.if \shift_ist != -1
784	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
785	.endif
786
787	call	\do_sym
788
789	.if \shift_ist != -1
790	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
791	.endif
792
793	/* these procedures expect "no swapgs" flag in ebx */
794	.if \paranoid
795	jmp	paranoid_exit
796	.else
797	jmp	error_exit
798	.endif
799
800	.if \paranoid == 1
801	/*
802	 * Paranoid entry from userspace.  Switch stacks and treat it
803	 * as a normal entry.  This means that paranoid handlers
804	 * run in real process context if user_mode(regs).
805	 */
8061:
807	call	error_entry
808
809
810	movq	%rsp, %rdi			/* pt_regs pointer */
811	call	sync_regs
812	movq	%rax, %rsp			/* switch stack */
813
814	movq	%rsp, %rdi			/* pt_regs pointer */
815
816	.if \has_error_code
817	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
818	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
819	.else
820	xorl	%esi, %esi			/* no error code */
821	.endif
822
823	call	\do_sym
824
825	jmp	error_exit			/* %ebx: no swapgs flag */
826	.endif
827END(\sym)
828.endm
829
830#ifdef CONFIG_TRACING
831.macro trace_idtentry sym do_sym has_error_code:req
832idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
833idtentry \sym \do_sym has_error_code=\has_error_code
834.endm
835#else
836.macro trace_idtentry sym do_sym has_error_code:req
837idtentry \sym \do_sym has_error_code=\has_error_code
838.endm
839#endif
840
841idtentry divide_error			do_divide_error			has_error_code=0
842idtentry overflow			do_overflow			has_error_code=0
843idtentry bounds				do_bounds			has_error_code=0
844idtentry invalid_op			do_invalid_op			has_error_code=0
845idtentry device_not_available		do_device_not_available		has_error_code=0
846idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
847idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
848idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
849idtentry segment_not_present		do_segment_not_present		has_error_code=1
850idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
851idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
852idtentry alignment_check		do_alignment_check		has_error_code=1
853idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
854
855
856	/*
857	 * Reload gs selector with exception handling
858	 * edi:  new selector
859	 */
860ENTRY(native_load_gs_index)
861	pushfq
862	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
863	SWAPGS
864.Lgs_change:
865	movl	%edi, %gs
8662:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
867	SWAPGS
868	popfq
869	ret
870END(native_load_gs_index)
871EXPORT_SYMBOL(native_load_gs_index)
872
873	_ASM_EXTABLE(.Lgs_change, bad_gs)
874	.section .fixup, "ax"
875	/* running with kernelgs */
876bad_gs:
877	SWAPGS					/* switch back to user gs */
878.macro ZAP_GS
879	/* This can't be a string because the preprocessor needs to see it. */
880	movl $__USER_DS, %eax
881	movl %eax, %gs
882.endm
883	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
884	xorl	%eax, %eax
885	movl	%eax, %gs
886	jmp	2b
887	.previous
888
889/* Call softirq on interrupt stack. Interrupts are off. */
890ENTRY(do_softirq_own_stack)
891	pushq	%rbp
892	mov	%rsp, %rbp
893	incl	PER_CPU_VAR(irq_count)
894	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
895	push	%rbp				/* frame pointer backlink */
896	call	__do_softirq
897	leaveq
898	decl	PER_CPU_VAR(irq_count)
899	ret
900END(do_softirq_own_stack)
901
902#ifdef CONFIG_XEN
903idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
904
905/*
906 * A note on the "critical region" in our callback handler.
907 * We want to avoid stacking callback handlers due to events occurring
908 * during handling of the last event. To do this, we keep events disabled
909 * until we've done all processing. HOWEVER, we must enable events before
910 * popping the stack frame (can't be done atomically) and so it would still
911 * be possible to get enough handler activations to overflow the stack.
912 * Although unlikely, bugs of that kind are hard to track down, so we'd
913 * like to avoid the possibility.
914 * So, on entry to the handler we detect whether we interrupted an
915 * existing activation in its critical region -- if so, we pop the current
916 * activation and restart the handler using the previous one.
917 */
918ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
919
920/*
921 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
922 * see the correct pointer to the pt_regs
923 */
924	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
92511:	incl	PER_CPU_VAR(irq_count)
926	movq	%rsp, %rbp
927	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
928	pushq	%rbp				/* frame pointer backlink */
929	call	xen_evtchn_do_upcall
930	popq	%rsp
931	decl	PER_CPU_VAR(irq_count)
932#ifndef CONFIG_PREEMPT
933	call	xen_maybe_preempt_hcall
934#endif
935	jmp	error_exit
936END(xen_do_hypervisor_callback)
937
938/*
939 * Hypervisor uses this for application faults while it executes.
940 * We get here for two reasons:
941 *  1. Fault while reloading DS, ES, FS or GS
942 *  2. Fault while executing IRET
943 * Category 1 we do not need to fix up as Xen has already reloaded all segment
944 * registers that could be reloaded and zeroed the others.
945 * Category 2 we fix up by killing the current process. We cannot use the
946 * normal Linux return path in this case because if we use the IRET hypercall
947 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
948 * We distinguish between categories by comparing each saved segment register
949 * with its current contents: any discrepancy means we in category 1.
950 */
951ENTRY(xen_failsafe_callback)
952	movl	%ds, %ecx
953	cmpw	%cx, 0x10(%rsp)
954	jne	1f
955	movl	%es, %ecx
956	cmpw	%cx, 0x18(%rsp)
957	jne	1f
958	movl	%fs, %ecx
959	cmpw	%cx, 0x20(%rsp)
960	jne	1f
961	movl	%gs, %ecx
962	cmpw	%cx, 0x28(%rsp)
963	jne	1f
964	/* All segments match their saved values => Category 2 (Bad IRET). */
965	movq	(%rsp), %rcx
966	movq	8(%rsp), %r11
967	addq	$0x30, %rsp
968	pushq	$0				/* RIP */
969	pushq	%r11
970	pushq	%rcx
971	jmp	general_protection
9721:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
973	movq	(%rsp), %rcx
974	movq	8(%rsp), %r11
975	addq	$0x30, %rsp
976	pushq	$-1 /* orig_ax = -1 => not a system call */
977	ALLOC_PT_GPREGS_ON_STACK
978	SAVE_C_REGS
979	SAVE_EXTRA_REGS
980	ENCODE_FRAME_POINTER
981	jmp	error_exit
982END(xen_failsafe_callback)
983
984apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
985	xen_hvm_callback_vector xen_evtchn_do_upcall
986
987#endif /* CONFIG_XEN */
988
989#if IS_ENABLED(CONFIG_HYPERV)
990apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
991	hyperv_callback_vector hyperv_vector_handler
992#endif /* CONFIG_HYPERV */
993
994idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
995idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
996idtentry stack_segment		do_stack_segment	has_error_code=1
997
998#ifdef CONFIG_XEN
999idtentry xen_debug		do_debug		has_error_code=0
1000idtentry xen_int3		do_int3			has_error_code=0
1001idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1002#endif
1003
1004idtentry general_protection	do_general_protection	has_error_code=1
1005trace_idtentry page_fault	do_page_fault		has_error_code=1
1006
1007#ifdef CONFIG_KVM_GUEST
1008idtentry async_page_fault	do_async_page_fault	has_error_code=1
1009#endif
1010
1011#ifdef CONFIG_X86_MCE
1012idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1013#endif
1014
1015/*
1016 * Save all registers in pt_regs, and switch gs if needed.
1017 * Use slow, but surefire "are we in kernel?" check.
1018 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1019 */
1020ENTRY(paranoid_entry)
1021	cld
1022	SAVE_C_REGS 8
1023	SAVE_EXTRA_REGS 8
1024	ENCODE_FRAME_POINTER 8
1025	movl	$1, %ebx
1026	movl	$MSR_GS_BASE, %ecx
1027	rdmsr
1028	testl	%edx, %edx
1029	js	1f				/* negative -> in kernel */
1030	SWAPGS
1031	xorl	%ebx, %ebx
10321:	ret
1033END(paranoid_entry)
1034
1035/*
1036 * "Paranoid" exit path from exception stack.  This is invoked
1037 * only on return from non-NMI IST interrupts that came
1038 * from kernel space.
1039 *
1040 * We may be returning to very strange contexts (e.g. very early
1041 * in syscall entry), so checking for preemption here would
1042 * be complicated.  Fortunately, we there's no good reason
1043 * to try to handle preemption here.
1044 *
1045 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1046 */
1047ENTRY(paranoid_exit)
1048	DISABLE_INTERRUPTS(CLBR_ANY)
1049	TRACE_IRQS_OFF_DEBUG
1050	testl	%ebx, %ebx			/* swapgs needed? */
1051	jnz	paranoid_exit_no_swapgs
1052	TRACE_IRQS_IRETQ
1053	SWAPGS_UNSAFE_STACK
1054	jmp	paranoid_exit_restore
1055paranoid_exit_no_swapgs:
1056	TRACE_IRQS_IRETQ_DEBUG
1057paranoid_exit_restore:
1058	RESTORE_EXTRA_REGS
1059	RESTORE_C_REGS
1060	REMOVE_PT_GPREGS_FROM_STACK 8
1061	INTERRUPT_RETURN
1062END(paranoid_exit)
1063
1064/*
1065 * Save all registers in pt_regs, and switch gs if needed.
1066 * Return: EBX=0: came from user mode; EBX=1: otherwise
1067 */
1068ENTRY(error_entry)
1069	cld
1070	SAVE_C_REGS 8
1071	SAVE_EXTRA_REGS 8
1072	ENCODE_FRAME_POINTER 8
1073	xorl	%ebx, %ebx
1074	testb	$3, CS+8(%rsp)
1075	jz	.Lerror_kernelspace
1076
1077	/*
1078	 * We entered from user mode or we're pretending to have entered
1079	 * from user mode due to an IRET fault.
1080	 */
1081	SWAPGS
1082
1083.Lerror_entry_from_usermode_after_swapgs:
1084	/*
1085	 * We need to tell lockdep that IRQs are off.  We can't do this until
1086	 * we fix gsbase, and we should do it before enter_from_user_mode
1087	 * (which can take locks).
1088	 */
1089	TRACE_IRQS_OFF
1090	CALL_enter_from_user_mode
1091	ret
1092
1093.Lerror_entry_done:
1094	TRACE_IRQS_OFF
1095	ret
1096
1097	/*
1098	 * There are two places in the kernel that can potentially fault with
1099	 * usergs. Handle them here.  B stepping K8s sometimes report a
1100	 * truncated RIP for IRET exceptions returning to compat mode. Check
1101	 * for these here too.
1102	 */
1103.Lerror_kernelspace:
1104	incl	%ebx
1105	leaq	native_irq_return_iret(%rip), %rcx
1106	cmpq	%rcx, RIP+8(%rsp)
1107	je	.Lerror_bad_iret
1108	movl	%ecx, %eax			/* zero extend */
1109	cmpq	%rax, RIP+8(%rsp)
1110	je	.Lbstep_iret
1111	cmpq	$.Lgs_change, RIP+8(%rsp)
1112	jne	.Lerror_entry_done
1113
1114	/*
1115	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1116	 * gsbase and proceed.  We'll fix up the exception and land in
1117	 * .Lgs_change's error handler with kernel gsbase.
1118	 */
1119	SWAPGS
1120	jmp .Lerror_entry_done
1121
1122.Lbstep_iret:
1123	/* Fix truncated RIP */
1124	movq	%rcx, RIP+8(%rsp)
1125	/* fall through */
1126
1127.Lerror_bad_iret:
1128	/*
1129	 * We came from an IRET to user mode, so we have user gsbase.
1130	 * Switch to kernel gsbase:
1131	 */
1132	SWAPGS
1133
1134	/*
1135	 * Pretend that the exception came from user mode: set up pt_regs
1136	 * as if we faulted immediately after IRET and clear EBX so that
1137	 * error_exit knows that we will be returning to user mode.
1138	 */
1139	mov	%rsp, %rdi
1140	call	fixup_bad_iret
1141	mov	%rax, %rsp
1142	decl	%ebx
1143	jmp	.Lerror_entry_from_usermode_after_swapgs
1144END(error_entry)
1145
1146
1147/*
1148 * On entry, EBX is a "return to kernel mode" flag:
1149 *   1: already in kernel mode, don't need SWAPGS
1150 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1151 */
1152ENTRY(error_exit)
1153	DISABLE_INTERRUPTS(CLBR_ANY)
1154	TRACE_IRQS_OFF
1155	testl	%ebx, %ebx
1156	jnz	retint_kernel
1157	jmp	retint_user
1158END(error_exit)
1159
1160/* Runs on exception stack */
1161ENTRY(nmi)
1162	/*
1163	 * Fix up the exception frame if we're on Xen.
1164	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1165	 * one value to the stack on native, so it may clobber the rdx
1166	 * scratch slot, but it won't clobber any of the important
1167	 * slots past it.
1168	 *
1169	 * Xen is a different story, because the Xen frame itself overlaps
1170	 * the "NMI executing" variable.
1171	 */
1172	PARAVIRT_ADJUST_EXCEPTION_FRAME
1173
1174	/*
1175	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1176	 * the iretq it performs will take us out of NMI context.
1177	 * This means that we can have nested NMIs where the next
1178	 * NMI is using the top of the stack of the previous NMI. We
1179	 * can't let it execute because the nested NMI will corrupt the
1180	 * stack of the previous NMI. NMI handlers are not re-entrant
1181	 * anyway.
1182	 *
1183	 * To handle this case we do the following:
1184	 *  Check the a special location on the stack that contains
1185	 *  a variable that is set when NMIs are executing.
1186	 *  The interrupted task's stack is also checked to see if it
1187	 *  is an NMI stack.
1188	 *  If the variable is not set and the stack is not the NMI
1189	 *  stack then:
1190	 *    o Set the special variable on the stack
1191	 *    o Copy the interrupt frame into an "outermost" location on the
1192	 *      stack
1193	 *    o Copy the interrupt frame into an "iret" location on the stack
1194	 *    o Continue processing the NMI
1195	 *  If the variable is set or the previous stack is the NMI stack:
1196	 *    o Modify the "iret" location to jump to the repeat_nmi
1197	 *    o return back to the first NMI
1198	 *
1199	 * Now on exit of the first NMI, we first clear the stack variable
1200	 * The NMI stack will tell any nested NMIs at that point that it is
1201	 * nested. Then we pop the stack normally with iret, and if there was
1202	 * a nested NMI that updated the copy interrupt stack frame, a
1203	 * jump will be made to the repeat_nmi code that will handle the second
1204	 * NMI.
1205	 *
1206	 * However, espfix prevents us from directly returning to userspace
1207	 * with a single IRET instruction.  Similarly, IRET to user mode
1208	 * can fault.  We therefore handle NMIs from user space like
1209	 * other IST entries.
1210	 */
1211
1212	/* Use %rdx as our temp variable throughout */
1213	pushq	%rdx
1214
1215	testb	$3, CS-RIP+8(%rsp)
1216	jz	.Lnmi_from_kernel
1217
1218	/*
1219	 * NMI from user mode.  We need to run on the thread stack, but we
1220	 * can't go through the normal entry paths: NMIs are masked, and
1221	 * we don't want to enable interrupts, because then we'll end
1222	 * up in an awkward situation in which IRQs are on but NMIs
1223	 * are off.
1224	 *
1225	 * We also must not push anything to the stack before switching
1226	 * stacks lest we corrupt the "NMI executing" variable.
1227	 */
1228
1229	SWAPGS_UNSAFE_STACK
1230	cld
1231	movq	%rsp, %rdx
1232	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1233	pushq	5*8(%rdx)	/* pt_regs->ss */
1234	pushq	4*8(%rdx)	/* pt_regs->rsp */
1235	pushq	3*8(%rdx)	/* pt_regs->flags */
1236	pushq	2*8(%rdx)	/* pt_regs->cs */
1237	pushq	1*8(%rdx)	/* pt_regs->rip */
1238	pushq   $-1		/* pt_regs->orig_ax */
1239	pushq   %rdi		/* pt_regs->di */
1240	pushq   %rsi		/* pt_regs->si */
1241	pushq   (%rdx)		/* pt_regs->dx */
1242	pushq   %rcx		/* pt_regs->cx */
1243	pushq   %rax		/* pt_regs->ax */
1244	pushq   %r8		/* pt_regs->r8 */
1245	pushq   %r9		/* pt_regs->r9 */
1246	pushq   %r10		/* pt_regs->r10 */
1247	pushq   %r11		/* pt_regs->r11 */
1248	pushq	%rbx		/* pt_regs->rbx */
1249	pushq	%rbp		/* pt_regs->rbp */
1250	pushq	%r12		/* pt_regs->r12 */
1251	pushq	%r13		/* pt_regs->r13 */
1252	pushq	%r14		/* pt_regs->r14 */
1253	pushq	%r15		/* pt_regs->r15 */
1254	ENCODE_FRAME_POINTER
1255
1256	/*
1257	 * At this point we no longer need to worry about stack damage
1258	 * due to nesting -- we're on the normal thread stack and we're
1259	 * done with the NMI stack.
1260	 */
1261
1262	movq	%rsp, %rdi
1263	movq	$-1, %rsi
1264	call	do_nmi
1265
1266	/*
1267	 * Return back to user mode.  We must *not* do the normal exit
1268	 * work, because we don't want to enable interrupts.
1269	 */
1270	SWAPGS
1271	jmp	restore_regs_and_iret
1272
1273.Lnmi_from_kernel:
1274	/*
1275	 * Here's what our stack frame will look like:
1276	 * +---------------------------------------------------------+
1277	 * | original SS                                             |
1278	 * | original Return RSP                                     |
1279	 * | original RFLAGS                                         |
1280	 * | original CS                                             |
1281	 * | original RIP                                            |
1282	 * +---------------------------------------------------------+
1283	 * | temp storage for rdx                                    |
1284	 * +---------------------------------------------------------+
1285	 * | "NMI executing" variable                                |
1286	 * +---------------------------------------------------------+
1287	 * | iret SS          } Copied from "outermost" frame        |
1288	 * | iret Return RSP  } on each loop iteration; overwritten  |
1289	 * | iret RFLAGS      } by a nested NMI to force another     |
1290	 * | iret CS          } iteration if needed.                 |
1291	 * | iret RIP         }                                      |
1292	 * +---------------------------------------------------------+
1293	 * | outermost SS          } initialized in first_nmi;       |
1294	 * | outermost Return RSP  } will not be changed before      |
1295	 * | outermost RFLAGS      } NMI processing is done.         |
1296	 * | outermost CS          } Copied to "iret" frame on each  |
1297	 * | outermost RIP         } iteration.                      |
1298	 * +---------------------------------------------------------+
1299	 * | pt_regs                                                 |
1300	 * +---------------------------------------------------------+
1301	 *
1302	 * The "original" frame is used by hardware.  Before re-enabling
1303	 * NMIs, we need to be done with it, and we need to leave enough
1304	 * space for the asm code here.
1305	 *
1306	 * We return by executing IRET while RSP points to the "iret" frame.
1307	 * That will either return for real or it will loop back into NMI
1308	 * processing.
1309	 *
1310	 * The "outermost" frame is copied to the "iret" frame on each
1311	 * iteration of the loop, so each iteration starts with the "iret"
1312	 * frame pointing to the final return target.
1313	 */
1314
1315	/*
1316	 * Determine whether we're a nested NMI.
1317	 *
1318	 * If we interrupted kernel code between repeat_nmi and
1319	 * end_repeat_nmi, then we are a nested NMI.  We must not
1320	 * modify the "iret" frame because it's being written by
1321	 * the outer NMI.  That's okay; the outer NMI handler is
1322	 * about to about to call do_nmi anyway, so we can just
1323	 * resume the outer NMI.
1324	 */
1325
1326	movq	$repeat_nmi, %rdx
1327	cmpq	8(%rsp), %rdx
1328	ja	1f
1329	movq	$end_repeat_nmi, %rdx
1330	cmpq	8(%rsp), %rdx
1331	ja	nested_nmi_out
13321:
1333
1334	/*
1335	 * Now check "NMI executing".  If it's set, then we're nested.
1336	 * This will not detect if we interrupted an outer NMI just
1337	 * before IRET.
1338	 */
1339	cmpl	$1, -8(%rsp)
1340	je	nested_nmi
1341
1342	/*
1343	 * Now test if the previous stack was an NMI stack.  This covers
1344	 * the case where we interrupt an outer NMI after it clears
1345	 * "NMI executing" but before IRET.  We need to be careful, though:
1346	 * there is one case in which RSP could point to the NMI stack
1347	 * despite there being no NMI active: naughty userspace controls
1348	 * RSP at the very beginning of the SYSCALL targets.  We can
1349	 * pull a fast one on naughty userspace, though: we program
1350	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1351	 * if it controls the kernel's RSP.  We set DF before we clear
1352	 * "NMI executing".
1353	 */
1354	lea	6*8(%rsp), %rdx
1355	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1356	cmpq	%rdx, 4*8(%rsp)
1357	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1358	ja	first_nmi
1359
1360	subq	$EXCEPTION_STKSZ, %rdx
1361	cmpq	%rdx, 4*8(%rsp)
1362	/* If it is below the NMI stack, it is a normal NMI */
1363	jb	first_nmi
1364
1365	/* Ah, it is within the NMI stack. */
1366
1367	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1368	jz	first_nmi	/* RSP was user controlled. */
1369
1370	/* This is a nested NMI. */
1371
1372nested_nmi:
1373	/*
1374	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1375	 * iteration of NMI handling.
1376	 */
1377	subq	$8, %rsp
1378	leaq	-10*8(%rsp), %rdx
1379	pushq	$__KERNEL_DS
1380	pushq	%rdx
1381	pushfq
1382	pushq	$__KERNEL_CS
1383	pushq	$repeat_nmi
1384
1385	/* Put stack back */
1386	addq	$(6*8), %rsp
1387
1388nested_nmi_out:
1389	popq	%rdx
1390
1391	/* We are returning to kernel mode, so this cannot result in a fault. */
1392	INTERRUPT_RETURN
1393
1394first_nmi:
1395	/* Restore rdx. */
1396	movq	(%rsp), %rdx
1397
1398	/* Make room for "NMI executing". */
1399	pushq	$0
1400
1401	/* Leave room for the "iret" frame */
1402	subq	$(5*8), %rsp
1403
1404	/* Copy the "original" frame to the "outermost" frame */
1405	.rept 5
1406	pushq	11*8(%rsp)
1407	.endr
1408
1409	/* Everything up to here is safe from nested NMIs */
1410
1411#ifdef CONFIG_DEBUG_ENTRY
1412	/*
1413	 * For ease of testing, unmask NMIs right away.  Disabled by
1414	 * default because IRET is very expensive.
1415	 */
1416	pushq	$0		/* SS */
1417	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1418	addq	$8, (%rsp)	/* Fix up RSP */
1419	pushfq			/* RFLAGS */
1420	pushq	$__KERNEL_CS	/* CS */
1421	pushq	$1f		/* RIP */
1422	INTERRUPT_RETURN	/* continues at repeat_nmi below */
14231:
1424#endif
1425
1426repeat_nmi:
1427	/*
1428	 * If there was a nested NMI, the first NMI's iret will return
1429	 * here. But NMIs are still enabled and we can take another
1430	 * nested NMI. The nested NMI checks the interrupted RIP to see
1431	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1432	 * it will just return, as we are about to repeat an NMI anyway.
1433	 * This makes it safe to copy to the stack frame that a nested
1434	 * NMI will update.
1435	 *
1436	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1437	 * we're repeating an NMI, gsbase has the same value that it had on
1438	 * the first iteration.  paranoid_entry will load the kernel
1439	 * gsbase if needed before we call do_nmi.  "NMI executing"
1440	 * is zero.
1441	 */
1442	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1443
1444	/*
1445	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1446	 * here must not modify the "iret" frame while we're writing to
1447	 * it or it will end up containing garbage.
1448	 */
1449	addq	$(10*8), %rsp
1450	.rept 5
1451	pushq	-6*8(%rsp)
1452	.endr
1453	subq	$(5*8), %rsp
1454end_repeat_nmi:
1455
1456	/*
1457	 * Everything below this point can be preempted by a nested NMI.
1458	 * If this happens, then the inner NMI will change the "iret"
1459	 * frame to point back to repeat_nmi.
1460	 */
1461	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1462	ALLOC_PT_GPREGS_ON_STACK
1463
1464	/*
1465	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1466	 * as we should not be calling schedule in NMI context.
1467	 * Even with normal interrupts enabled. An NMI should not be
1468	 * setting NEED_RESCHED or anything that normal interrupts and
1469	 * exceptions might do.
1470	 */
1471	call	paranoid_entry
1472
1473	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1474	movq	%rsp, %rdi
1475	movq	$-1, %rsi
1476	call	do_nmi
1477
1478	testl	%ebx, %ebx			/* swapgs needed? */
1479	jnz	nmi_restore
1480nmi_swapgs:
1481	SWAPGS_UNSAFE_STACK
1482nmi_restore:
1483	RESTORE_EXTRA_REGS
1484	RESTORE_C_REGS
1485
1486	/* Point RSP at the "iret" frame. */
1487	REMOVE_PT_GPREGS_FROM_STACK 6*8
1488
1489	/*
1490	 * Clear "NMI executing".  Set DF first so that we can easily
1491	 * distinguish the remaining code between here and IRET from
1492	 * the SYSCALL entry and exit paths.  On a native kernel, we
1493	 * could just inspect RIP, but, on paravirt kernels,
1494	 * INTERRUPT_RETURN can translate into a jump into a
1495	 * hypercall page.
1496	 */
1497	std
1498	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1499
1500	/*
1501	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1502	 * stack in a single instruction.  We are returning to kernel
1503	 * mode, so this cannot result in a fault.
1504	 */
1505	INTERRUPT_RETURN
1506END(nmi)
1507
1508ENTRY(ignore_sysret)
1509	mov	$-ENOSYS, %eax
1510	sysret
1511END(ignore_sysret)
1512
1513ENTRY(rewind_stack_do_exit)
1514	/* Prevent any naive code from trying to unwind to our caller. */
1515	xorl	%ebp, %ebp
1516
1517	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1518	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1519
1520	call	do_exit
15211:	jmp 1b
1522END(rewind_stack_do_exit)
1523