xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision a8fe58ce)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <linux/err.h>
39
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
41#include <linux/elf-em.h>
42#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT			0x80000000
44#define __AUDIT_ARCH_LE				0x40000000
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT
50ENTRY(native_usergs_sysret64)
51	swapgs
52	sysretq
53ENDPROC(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_IRETQ
57#ifdef CONFIG_TRACE_IRQFLAGS
58	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
59	jnc	1f
60	TRACE_IRQS_ON
611:
62#endif
63.endm
64
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
79	call	debug_stack_set_zero
80	TRACE_IRQS_OFF
81	call	debug_stack_reset
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
85	call	debug_stack_set_zero
86	TRACE_IRQS_ON
87	call	debug_stack_reset
88.endm
89
90.macro TRACE_IRQS_IRETQ_DEBUG
91	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
92	jnc	1f
93	TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
98# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101#endif
102
103/*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
113 * rax  system call number
114 * rcx  return address
115 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
116 * rdi  arg0
117 * rsi  arg1
118 * rdx  arg2
119 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
120 * r8   arg4
121 * r9   arg5
122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123 *
124 * Only called from user space.
125 *
126 * When user can change pt_regs->foo always force IRET. That is because
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
129 */
130
131ENTRY(entry_SYSCALL_64)
132	/*
133	 * Interrupts are off on entry.
134	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135	 * it is too small to ever cause noticeable irq latency.
136	 */
137	SWAPGS_UNSAFE_STACK
138	/*
139	 * A hypervisor implementation might want to use a label
140	 * after the swapgs, so that it can do the swapgs
141	 * for the guest and jump here on syscall.
142	 */
143GLOBAL(entry_SYSCALL_64_after_swapgs)
144
145	movq	%rsp, PER_CPU_VAR(rsp_scratch)
146	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147
148	/* Construct struct pt_regs on stack */
149	pushq	$__USER_DS			/* pt_regs->ss */
150	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
151	/*
152	 * Re-enable interrupts.
153	 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154	 * must execute atomically in the face of possible interrupt-driven
155	 * task preemption. We must enable interrupts only after we're done
156	 * with using rsp_scratch:
157	 */
158	ENABLE_INTERRUPTS(CLBR_NONE)
159	pushq	%r11				/* pt_regs->flags */
160	pushq	$__USER_CS			/* pt_regs->cs */
161	pushq	%rcx				/* pt_regs->ip */
162	pushq	%rax				/* pt_regs->orig_ax */
163	pushq	%rdi				/* pt_regs->di */
164	pushq	%rsi				/* pt_regs->si */
165	pushq	%rdx				/* pt_regs->dx */
166	pushq	%rcx				/* pt_regs->cx */
167	pushq	$-ENOSYS			/* pt_regs->ax */
168	pushq	%r8				/* pt_regs->r8 */
169	pushq	%r9				/* pt_regs->r9 */
170	pushq	%r10				/* pt_regs->r10 */
171	pushq	%r11				/* pt_regs->r11 */
172	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
173
174	testl	$_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175	jnz	tracesys
176entry_SYSCALL_64_fastpath:
177#if __SYSCALL_MASK == ~0
178	cmpq	$__NR_syscall_max, %rax
179#else
180	andl	$__SYSCALL_MASK, %eax
181	cmpl	$__NR_syscall_max, %eax
182#endif
183	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
184	movq	%r10, %rcx
185	call	*sys_call_table(, %rax, 8)
186	movq	%rax, RAX(%rsp)
1871:
188/*
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
191 */
192	LOCKDEP_SYS_EXIT
193	/*
194	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195	 * it is too small to ever cause noticeable irq latency.
196	 */
197	DISABLE_INTERRUPTS(CLBR_NONE)
198
199	/*
200	 * We must check ti flags with interrupts (or at least preemption)
201	 * off because we must *never* return to userspace without
202	 * processing exit work that is enqueued if we're preempted here.
203	 * In particular, returning to userspace with any of the one-shot
204	 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205	 * very bad.
206	 */
207	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208	jnz	int_ret_from_sys_call_irqs_off	/* Go to the slow path */
209
210	RESTORE_C_REGS_EXCEPT_RCX_R11
211	movq	RIP(%rsp), %rcx
212	movq	EFLAGS(%rsp), %r11
213	movq	RSP(%rsp), %rsp
214	/*
215	 * 64-bit SYSRET restores rip from rcx,
216	 * rflags from r11 (but RF and VM bits are forced to 0),
217	 * cs and ss are loaded from MSRs.
218	 * Restoration of rflags re-enables interrupts.
219	 *
220	 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221	 * descriptor is not reinitialized.  This means that we should
222	 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223	 * exit the kernel, and re-enter using an interrupt vector.  (All
224	 * interrupt entries on x86_64 set SS to NULL.)  We prevent that
225	 * from happening by reloading SS in __switch_to.  (Actually
226	 * detecting the failure in 64-bit userspace is tricky but can be
227	 * done.)
228	 */
229	USERGS_SYSRET64
230
231GLOBAL(int_ret_from_sys_call_irqs_off)
232	TRACE_IRQS_ON
233	ENABLE_INTERRUPTS(CLBR_NONE)
234	jmp int_ret_from_sys_call
235
236	/* Do syscall entry tracing */
237tracesys:
238	movq	%rsp, %rdi
239	movl	$AUDIT_ARCH_X86_64, %esi
240	call	syscall_trace_enter_phase1
241	test	%rax, %rax
242	jnz	tracesys_phase2			/* if needed, run the slow path */
243	RESTORE_C_REGS_EXCEPT_RAX		/* else restore clobbered regs */
244	movq	ORIG_RAX(%rsp), %rax
245	jmp	entry_SYSCALL_64_fastpath	/* and return to the fast path */
246
247tracesys_phase2:
248	SAVE_EXTRA_REGS
249	movq	%rsp, %rdi
250	movl	$AUDIT_ARCH_X86_64, %esi
251	movq	%rax, %rdx
252	call	syscall_trace_enter_phase2
253
254	/*
255	 * Reload registers from stack in case ptrace changed them.
256	 * We don't reload %rax because syscall_trace_entry_phase2() returned
257	 * the value it wants us to use in the table lookup.
258	 */
259	RESTORE_C_REGS_EXCEPT_RAX
260	RESTORE_EXTRA_REGS
261#if __SYSCALL_MASK == ~0
262	cmpq	$__NR_syscall_max, %rax
263#else
264	andl	$__SYSCALL_MASK, %eax
265	cmpl	$__NR_syscall_max, %eax
266#endif
267	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
268	movq	%r10, %rcx			/* fixup for C */
269	call	*sys_call_table(, %rax, 8)
270	movq	%rax, RAX(%rsp)
2711:
272	/* Use IRET because user could have changed pt_regs->foo */
273
274/*
275 * Syscall return path ending with IRET.
276 * Has correct iret frame.
277 */
278GLOBAL(int_ret_from_sys_call)
279	SAVE_EXTRA_REGS
280	movq	%rsp, %rdi
281	call	syscall_return_slowpath	/* returns with IRQs disabled */
282	RESTORE_EXTRA_REGS
283	TRACE_IRQS_IRETQ		/* we're about to change IF */
284
285	/*
286	 * Try to use SYSRET instead of IRET if we're returning to
287	 * a completely clean 64-bit userspace context.
288	 */
289	movq	RCX(%rsp), %rcx
290	movq	RIP(%rsp), %r11
291	cmpq	%rcx, %r11			/* RCX == RIP */
292	jne	opportunistic_sysret_failed
293
294	/*
295	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296	 * in kernel space.  This essentially lets the user take over
297	 * the kernel, since userspace controls RSP.
298	 *
299	 * If width of "canonical tail" ever becomes variable, this will need
300	 * to be updated to remain correct on both old and new CPUs.
301	 */
302	.ifne __VIRTUAL_MASK_SHIFT - 47
303	.error "virtual address width changed -- SYSRET checks need update"
304	.endif
305
306	/* Change top 16 bits to be the sign-extension of 47th bit */
307	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
309
310	/* If this changed %rcx, it was not canonical */
311	cmpq	%rcx, %r11
312	jne	opportunistic_sysret_failed
313
314	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
315	jne	opportunistic_sysret_failed
316
317	movq	R11(%rsp), %r11
318	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
319	jne	opportunistic_sysret_failed
320
321	/*
322	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
323	 * restoring TF results in a trap from userspace immediately after
324	 * SYSRET.  This would cause an infinite loop whenever #DB happens
325	 * with register state that satisfies the opportunistic SYSRET
326	 * conditions.  For example, single-stepping this user code:
327	 *
328	 *           movq	$stuck_here, %rcx
329	 *           pushfq
330	 *           popq %r11
331	 *   stuck_here:
332	 *
333	 * would never get past 'stuck_here'.
334	 */
335	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336	jnz	opportunistic_sysret_failed
337
338	/* nothing to check for RSP */
339
340	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
341	jne	opportunistic_sysret_failed
342
343	/*
344	 * We win! This label is here just for ease of understanding
345	 * perf profiles. Nothing jumps here.
346	 */
347syscall_return_via_sysret:
348	/* rcx and r11 are already restored (see code above) */
349	RESTORE_C_REGS_EXCEPT_RCX_R11
350	movq	RSP(%rsp), %rsp
351	USERGS_SYSRET64
352
353opportunistic_sysret_failed:
354	SWAPGS
355	jmp	restore_c_regs_and_iret
356END(entry_SYSCALL_64)
357
358
359	.macro FORK_LIKE func
360ENTRY(stub_\func)
361	SAVE_EXTRA_REGS 8
362	jmp	sys_\func
363END(stub_\func)
364	.endm
365
366	FORK_LIKE  clone
367	FORK_LIKE  fork
368	FORK_LIKE  vfork
369
370ENTRY(stub_execve)
371	call	sys_execve
372return_from_execve:
373	testl	%eax, %eax
374	jz	1f
375	/* exec failed, can use fast SYSRET code path in this case */
376	ret
3771:
378	/* must use IRET code path (pt_regs->cs may have changed) */
379	addq	$8, %rsp
380	ZERO_EXTRA_REGS
381	movq	%rax, RAX(%rsp)
382	jmp	int_ret_from_sys_call
383END(stub_execve)
384/*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388	.align	8
389GLOBAL(stub_execveat)
390	call	sys_execveat
391	jmp	return_from_execve
392END(stub_execveat)
393
394#if defined(CONFIG_X86_X32_ABI)
395	.align	8
396GLOBAL(stub_x32_execve)
397	call	compat_sys_execve
398	jmp	return_from_execve
399END(stub_x32_execve)
400	.align	8
401GLOBAL(stub_x32_execveat)
402	call	compat_sys_execveat
403	jmp	return_from_execve
404END(stub_x32_execveat)
405#endif
406
407/*
408 * sigreturn is special because it needs to restore all registers on return.
409 * This cannot be done with SYSRET, so use the IRET return path instead.
410 */
411ENTRY(stub_rt_sigreturn)
412	/*
413	 * SAVE_EXTRA_REGS result is not normally needed:
414	 * sigreturn overwrites all pt_regs->GPREGS.
415	 * But sigreturn can fail (!), and there is no easy way to detect that.
416	 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
417	 * we SAVE_EXTRA_REGS here.
418	 */
419	SAVE_EXTRA_REGS 8
420	call	sys_rt_sigreturn
421return_from_stub:
422	addq	$8, %rsp
423	RESTORE_EXTRA_REGS
424	movq	%rax, RAX(%rsp)
425	jmp	int_ret_from_sys_call
426END(stub_rt_sigreturn)
427
428#ifdef CONFIG_X86_X32_ABI
429ENTRY(stub_x32_rt_sigreturn)
430	SAVE_EXTRA_REGS 8
431	call	sys32_x32_rt_sigreturn
432	jmp	return_from_stub
433END(stub_x32_rt_sigreturn)
434#endif
435
436/*
437 * A newly forked process directly context switches into this address.
438 *
439 * rdi: prev task we switched from
440 */
441ENTRY(ret_from_fork)
442
443	LOCK ; btr $TIF_FORK, TI_flags(%r8)
444
445	pushq	$0x0002
446	popfq					/* reset kernel eflags */
447
448	call	schedule_tail			/* rdi: 'prev' task parameter */
449
450	RESTORE_EXTRA_REGS
451
452	testb	$3, CS(%rsp)			/* from kernel_thread? */
453
454	/*
455	 * By the time we get here, we have no idea whether our pt_regs,
456	 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
457	 * the slow path, or one of the 32-bit compat paths.
458	 * Use IRET code path to return, since it can safely handle
459	 * all of the above.
460	 */
461	jnz	int_ret_from_sys_call
462
463	/*
464	 * We came from kernel_thread
465	 * nb: we depend on RESTORE_EXTRA_REGS above
466	 */
467	movq	%rbp, %rdi
468	call	*%rbx
469	movl	$0, RAX(%rsp)
470	RESTORE_EXTRA_REGS
471	jmp	int_ret_from_sys_call
472END(ret_from_fork)
473
474/*
475 * Build the entry stubs with some assembler magic.
476 * We pack 1 stub into every 8-byte block.
477 */
478	.align 8
479ENTRY(irq_entries_start)
480    vector=FIRST_EXTERNAL_VECTOR
481    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
482	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
483    vector=vector+1
484	jmp	common_interrupt
485	.align	8
486    .endr
487END(irq_entries_start)
488
489/*
490 * Interrupt entry/exit.
491 *
492 * Interrupt entry points save only callee clobbered registers in fast path.
493 *
494 * Entry runs with interrupts off.
495 */
496
497/* 0(%rsp): ~(interrupt number) */
498	.macro interrupt func
499	cld
500	ALLOC_PT_GPREGS_ON_STACK
501	SAVE_C_REGS
502	SAVE_EXTRA_REGS
503
504	testb	$3, CS(%rsp)
505	jz	1f
506
507	/*
508	 * IRQ from user mode.  Switch to kernel gsbase and inform context
509	 * tracking that we're in kernel mode.
510	 */
511	SWAPGS
512
513	/*
514	 * We need to tell lockdep that IRQs are off.  We can't do this until
515	 * we fix gsbase, and we should do it before enter_from_user_mode
516	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
517	 * the simplest way to handle it is to just call it twice if
518	 * we enter from user mode.  There's no reason to optimize this since
519	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
520	 */
521	TRACE_IRQS_OFF
522
523	CALL_enter_from_user_mode
524
5251:
526	/*
527	 * Save previous stack pointer, optionally switch to interrupt stack.
528	 * irq_count is used to check if a CPU is already on an interrupt stack
529	 * or not. While this is essentially redundant with preempt_count it is
530	 * a little cheaper to use a separate counter in the PDA (short of
531	 * moving irq_enter into assembly, which would be too much work)
532	 */
533	movq	%rsp, %rdi
534	incl	PER_CPU_VAR(irq_count)
535	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
536	pushq	%rdi
537	/* We entered an interrupt context - irqs are off: */
538	TRACE_IRQS_OFF
539
540	call	\func	/* rdi points to pt_regs */
541	.endm
542
543	/*
544	 * The interrupt stubs push (~vector+0x80) onto the stack and
545	 * then jump to common_interrupt.
546	 */
547	.p2align CONFIG_X86_L1_CACHE_SHIFT
548common_interrupt:
549	ASM_CLAC
550	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
551	interrupt do_IRQ
552	/* 0(%rsp): old RSP */
553ret_from_intr:
554	DISABLE_INTERRUPTS(CLBR_NONE)
555	TRACE_IRQS_OFF
556	decl	PER_CPU_VAR(irq_count)
557
558	/* Restore saved previous stack */
559	popq	%rsp
560
561	testb	$3, CS(%rsp)
562	jz	retint_kernel
563
564	/* Interrupt came from user space */
565GLOBAL(retint_user)
566	mov	%rsp,%rdi
567	call	prepare_exit_to_usermode
568	TRACE_IRQS_IRETQ
569	SWAPGS
570	jmp	restore_regs_and_iret
571
572/* Returning to kernel space */
573retint_kernel:
574#ifdef CONFIG_PREEMPT
575	/* Interrupts are off */
576	/* Check if we need preemption */
577	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
578	jnc	1f
5790:	cmpl	$0, PER_CPU_VAR(__preempt_count)
580	jnz	1f
581	call	preempt_schedule_irq
582	jmp	0b
5831:
584#endif
585	/*
586	 * The iretq could re-enable interrupts:
587	 */
588	TRACE_IRQS_IRETQ
589
590/*
591 * At this label, code paths which return to kernel and to user,
592 * which come from interrupts/exception and from syscalls, merge.
593 */
594GLOBAL(restore_regs_and_iret)
595	RESTORE_EXTRA_REGS
596restore_c_regs_and_iret:
597	RESTORE_C_REGS
598	REMOVE_PT_GPREGS_FROM_STACK 8
599	INTERRUPT_RETURN
600
601ENTRY(native_iret)
602	/*
603	 * Are we returning to a stack segment from the LDT?  Note: in
604	 * 64-bit mode SS:RSP on the exception stack is always valid.
605	 */
606#ifdef CONFIG_X86_ESPFIX64
607	testb	$4, (SS-RIP)(%rsp)
608	jnz	native_irq_return_ldt
609#endif
610
611.global native_irq_return_iret
612native_irq_return_iret:
613	/*
614	 * This may fault.  Non-paranoid faults on return to userspace are
615	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
616	 * Double-faults due to espfix64 are handled in do_double_fault.
617	 * Other faults here are fatal.
618	 */
619	iretq
620
621#ifdef CONFIG_X86_ESPFIX64
622native_irq_return_ldt:
623	pushq	%rax
624	pushq	%rdi
625	SWAPGS
626	movq	PER_CPU_VAR(espfix_waddr), %rdi
627	movq	%rax, (0*8)(%rdi)		/* RAX */
628	movq	(2*8)(%rsp), %rax		/* RIP */
629	movq	%rax, (1*8)(%rdi)
630	movq	(3*8)(%rsp), %rax		/* CS */
631	movq	%rax, (2*8)(%rdi)
632	movq	(4*8)(%rsp), %rax		/* RFLAGS */
633	movq	%rax, (3*8)(%rdi)
634	movq	(6*8)(%rsp), %rax		/* SS */
635	movq	%rax, (5*8)(%rdi)
636	movq	(5*8)(%rsp), %rax		/* RSP */
637	movq	%rax, (4*8)(%rdi)
638	andl	$0xffff0000, %eax
639	popq	%rdi
640	orq	PER_CPU_VAR(espfix_stack), %rax
641	SWAPGS
642	movq	%rax, %rsp
643	popq	%rax
644	jmp	native_irq_return_iret
645#endif
646END(common_interrupt)
647
648/*
649 * APIC interrupts.
650 */
651.macro apicinterrupt3 num sym do_sym
652ENTRY(\sym)
653	ASM_CLAC
654	pushq	$~(\num)
655.Lcommon_\sym:
656	interrupt \do_sym
657	jmp	ret_from_intr
658END(\sym)
659.endm
660
661#ifdef CONFIG_TRACING
662#define trace(sym) trace_##sym
663#define smp_trace(sym) smp_trace_##sym
664
665.macro trace_apicinterrupt num sym
666apicinterrupt3 \num trace(\sym) smp_trace(\sym)
667.endm
668#else
669.macro trace_apicinterrupt num sym do_sym
670.endm
671#endif
672
673.macro apicinterrupt num sym do_sym
674apicinterrupt3 \num \sym \do_sym
675trace_apicinterrupt \num \sym
676.endm
677
678#ifdef CONFIG_SMP
679apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
680apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
681#endif
682
683#ifdef CONFIG_X86_UV
684apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
685#endif
686
687apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
688apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
689
690#ifdef CONFIG_HAVE_KVM
691apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
692apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
693#endif
694
695#ifdef CONFIG_X86_MCE_THRESHOLD
696apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
697#endif
698
699#ifdef CONFIG_X86_MCE_AMD
700apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
701#endif
702
703#ifdef CONFIG_X86_THERMAL_VECTOR
704apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
705#endif
706
707#ifdef CONFIG_SMP
708apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
709apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
710apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
711#endif
712
713apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
714apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
715
716#ifdef CONFIG_IRQ_WORK
717apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
718#endif
719
720/*
721 * Exception entry points.
722 */
723#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
724
725.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
726ENTRY(\sym)
727	/* Sanity check */
728	.if \shift_ist != -1 && \paranoid == 0
729	.error "using shift_ist requires paranoid=1"
730	.endif
731
732	ASM_CLAC
733	PARAVIRT_ADJUST_EXCEPTION_FRAME
734
735	.ifeq \has_error_code
736	pushq	$-1				/* ORIG_RAX: no syscall to restart */
737	.endif
738
739	ALLOC_PT_GPREGS_ON_STACK
740
741	.if \paranoid
742	.if \paranoid == 1
743	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
744	jnz	1f
745	.endif
746	call	paranoid_entry
747	.else
748	call	error_entry
749	.endif
750	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
751
752	.if \paranoid
753	.if \shift_ist != -1
754	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
755	.else
756	TRACE_IRQS_OFF
757	.endif
758	.endif
759
760	movq	%rsp, %rdi			/* pt_regs pointer */
761
762	.if \has_error_code
763	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
764	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
765	.else
766	xorl	%esi, %esi			/* no error code */
767	.endif
768
769	.if \shift_ist != -1
770	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
771	.endif
772
773	call	\do_sym
774
775	.if \shift_ist != -1
776	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
777	.endif
778
779	/* these procedures expect "no swapgs" flag in ebx */
780	.if \paranoid
781	jmp	paranoid_exit
782	.else
783	jmp	error_exit
784	.endif
785
786	.if \paranoid == 1
787	/*
788	 * Paranoid entry from userspace.  Switch stacks and treat it
789	 * as a normal entry.  This means that paranoid handlers
790	 * run in real process context if user_mode(regs).
791	 */
7921:
793	call	error_entry
794
795
796	movq	%rsp, %rdi			/* pt_regs pointer */
797	call	sync_regs
798	movq	%rax, %rsp			/* switch stack */
799
800	movq	%rsp, %rdi			/* pt_regs pointer */
801
802	.if \has_error_code
803	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
804	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
805	.else
806	xorl	%esi, %esi			/* no error code */
807	.endif
808
809	call	\do_sym
810
811	jmp	error_exit			/* %ebx: no swapgs flag */
812	.endif
813END(\sym)
814.endm
815
816#ifdef CONFIG_TRACING
817.macro trace_idtentry sym do_sym has_error_code:req
818idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
819idtentry \sym \do_sym has_error_code=\has_error_code
820.endm
821#else
822.macro trace_idtentry sym do_sym has_error_code:req
823idtentry \sym \do_sym has_error_code=\has_error_code
824.endm
825#endif
826
827idtentry divide_error			do_divide_error			has_error_code=0
828idtentry overflow			do_overflow			has_error_code=0
829idtentry bounds				do_bounds			has_error_code=0
830idtentry invalid_op			do_invalid_op			has_error_code=0
831idtentry device_not_available		do_device_not_available		has_error_code=0
832idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
833idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
834idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
835idtentry segment_not_present		do_segment_not_present		has_error_code=1
836idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
837idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
838idtentry alignment_check		do_alignment_check		has_error_code=1
839idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
840
841
842	/*
843	 * Reload gs selector with exception handling
844	 * edi:  new selector
845	 */
846ENTRY(native_load_gs_index)
847	pushfq
848	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
849	SWAPGS
850gs_change:
851	movl	%edi, %gs
8522:	mfence					/* workaround */
853	SWAPGS
854	popfq
855	ret
856END(native_load_gs_index)
857
858	_ASM_EXTABLE(gs_change, bad_gs)
859	.section .fixup, "ax"
860	/* running with kernelgs */
861bad_gs:
862	SWAPGS					/* switch back to user gs */
863	xorl	%eax, %eax
864	movl	%eax, %gs
865	jmp	2b
866	.previous
867
868/* Call softirq on interrupt stack. Interrupts are off. */
869ENTRY(do_softirq_own_stack)
870	pushq	%rbp
871	mov	%rsp, %rbp
872	incl	PER_CPU_VAR(irq_count)
873	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
874	push	%rbp				/* frame pointer backlink */
875	call	__do_softirq
876	leaveq
877	decl	PER_CPU_VAR(irq_count)
878	ret
879END(do_softirq_own_stack)
880
881#ifdef CONFIG_XEN
882idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
883
884/*
885 * A note on the "critical region" in our callback handler.
886 * We want to avoid stacking callback handlers due to events occurring
887 * during handling of the last event. To do this, we keep events disabled
888 * until we've done all processing. HOWEVER, we must enable events before
889 * popping the stack frame (can't be done atomically) and so it would still
890 * be possible to get enough handler activations to overflow the stack.
891 * Although unlikely, bugs of that kind are hard to track down, so we'd
892 * like to avoid the possibility.
893 * So, on entry to the handler we detect whether we interrupted an
894 * existing activation in its critical region -- if so, we pop the current
895 * activation and restart the handler using the previous one.
896 */
897ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
898
899/*
900 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
901 * see the correct pointer to the pt_regs
902 */
903	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
90411:	incl	PER_CPU_VAR(irq_count)
905	movq	%rsp, %rbp
906	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
907	pushq	%rbp				/* frame pointer backlink */
908	call	xen_evtchn_do_upcall
909	popq	%rsp
910	decl	PER_CPU_VAR(irq_count)
911#ifndef CONFIG_PREEMPT
912	call	xen_maybe_preempt_hcall
913#endif
914	jmp	error_exit
915END(xen_do_hypervisor_callback)
916
917/*
918 * Hypervisor uses this for application faults while it executes.
919 * We get here for two reasons:
920 *  1. Fault while reloading DS, ES, FS or GS
921 *  2. Fault while executing IRET
922 * Category 1 we do not need to fix up as Xen has already reloaded all segment
923 * registers that could be reloaded and zeroed the others.
924 * Category 2 we fix up by killing the current process. We cannot use the
925 * normal Linux return path in this case because if we use the IRET hypercall
926 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
927 * We distinguish between categories by comparing each saved segment register
928 * with its current contents: any discrepancy means we in category 1.
929 */
930ENTRY(xen_failsafe_callback)
931	movl	%ds, %ecx
932	cmpw	%cx, 0x10(%rsp)
933	jne	1f
934	movl	%es, %ecx
935	cmpw	%cx, 0x18(%rsp)
936	jne	1f
937	movl	%fs, %ecx
938	cmpw	%cx, 0x20(%rsp)
939	jne	1f
940	movl	%gs, %ecx
941	cmpw	%cx, 0x28(%rsp)
942	jne	1f
943	/* All segments match their saved values => Category 2 (Bad IRET). */
944	movq	(%rsp), %rcx
945	movq	8(%rsp), %r11
946	addq	$0x30, %rsp
947	pushq	$0				/* RIP */
948	pushq	%r11
949	pushq	%rcx
950	jmp	general_protection
9511:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
952	movq	(%rsp), %rcx
953	movq	8(%rsp), %r11
954	addq	$0x30, %rsp
955	pushq	$-1 /* orig_ax = -1 => not a system call */
956	ALLOC_PT_GPREGS_ON_STACK
957	SAVE_C_REGS
958	SAVE_EXTRA_REGS
959	jmp	error_exit
960END(xen_failsafe_callback)
961
962apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
963	xen_hvm_callback_vector xen_evtchn_do_upcall
964
965#endif /* CONFIG_XEN */
966
967#if IS_ENABLED(CONFIG_HYPERV)
968apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
969	hyperv_callback_vector hyperv_vector_handler
970#endif /* CONFIG_HYPERV */
971
972idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
973idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
974idtentry stack_segment		do_stack_segment	has_error_code=1
975
976#ifdef CONFIG_XEN
977idtentry xen_debug		do_debug		has_error_code=0
978idtentry xen_int3		do_int3			has_error_code=0
979idtentry xen_stack_segment	do_stack_segment	has_error_code=1
980#endif
981
982idtentry general_protection	do_general_protection	has_error_code=1
983trace_idtentry page_fault	do_page_fault		has_error_code=1
984
985#ifdef CONFIG_KVM_GUEST
986idtentry async_page_fault	do_async_page_fault	has_error_code=1
987#endif
988
989#ifdef CONFIG_X86_MCE
990idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
991#endif
992
993/*
994 * Save all registers in pt_regs, and switch gs if needed.
995 * Use slow, but surefire "are we in kernel?" check.
996 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
997 */
998ENTRY(paranoid_entry)
999	cld
1000	SAVE_C_REGS 8
1001	SAVE_EXTRA_REGS 8
1002	movl	$1, %ebx
1003	movl	$MSR_GS_BASE, %ecx
1004	rdmsr
1005	testl	%edx, %edx
1006	js	1f				/* negative -> in kernel */
1007	SWAPGS
1008	xorl	%ebx, %ebx
10091:	ret
1010END(paranoid_entry)
1011
1012/*
1013 * "Paranoid" exit path from exception stack.  This is invoked
1014 * only on return from non-NMI IST interrupts that came
1015 * from kernel space.
1016 *
1017 * We may be returning to very strange contexts (e.g. very early
1018 * in syscall entry), so checking for preemption here would
1019 * be complicated.  Fortunately, we there's no good reason
1020 * to try to handle preemption here.
1021 *
1022 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1023 */
1024ENTRY(paranoid_exit)
1025	DISABLE_INTERRUPTS(CLBR_NONE)
1026	TRACE_IRQS_OFF_DEBUG
1027	testl	%ebx, %ebx			/* swapgs needed? */
1028	jnz	paranoid_exit_no_swapgs
1029	TRACE_IRQS_IRETQ
1030	SWAPGS_UNSAFE_STACK
1031	jmp	paranoid_exit_restore
1032paranoid_exit_no_swapgs:
1033	TRACE_IRQS_IRETQ_DEBUG
1034paranoid_exit_restore:
1035	RESTORE_EXTRA_REGS
1036	RESTORE_C_REGS
1037	REMOVE_PT_GPREGS_FROM_STACK 8
1038	INTERRUPT_RETURN
1039END(paranoid_exit)
1040
1041/*
1042 * Save all registers in pt_regs, and switch gs if needed.
1043 * Return: EBX=0: came from user mode; EBX=1: otherwise
1044 */
1045ENTRY(error_entry)
1046	cld
1047	SAVE_C_REGS 8
1048	SAVE_EXTRA_REGS 8
1049	xorl	%ebx, %ebx
1050	testb	$3, CS+8(%rsp)
1051	jz	.Lerror_kernelspace
1052
1053.Lerror_entry_from_usermode_swapgs:
1054	/*
1055	 * We entered from user mode or we're pretending to have entered
1056	 * from user mode due to an IRET fault.
1057	 */
1058	SWAPGS
1059
1060.Lerror_entry_from_usermode_after_swapgs:
1061	/*
1062	 * We need to tell lockdep that IRQs are off.  We can't do this until
1063	 * we fix gsbase, and we should do it before enter_from_user_mode
1064	 * (which can take locks).
1065	 */
1066	TRACE_IRQS_OFF
1067	CALL_enter_from_user_mode
1068	ret
1069
1070.Lerror_entry_done:
1071	TRACE_IRQS_OFF
1072	ret
1073
1074	/*
1075	 * There are two places in the kernel that can potentially fault with
1076	 * usergs. Handle them here.  B stepping K8s sometimes report a
1077	 * truncated RIP for IRET exceptions returning to compat mode. Check
1078	 * for these here too.
1079	 */
1080.Lerror_kernelspace:
1081	incl	%ebx
1082	leaq	native_irq_return_iret(%rip), %rcx
1083	cmpq	%rcx, RIP+8(%rsp)
1084	je	.Lerror_bad_iret
1085	movl	%ecx, %eax			/* zero extend */
1086	cmpq	%rax, RIP+8(%rsp)
1087	je	.Lbstep_iret
1088	cmpq	$gs_change, RIP+8(%rsp)
1089	jne	.Lerror_entry_done
1090
1091	/*
1092	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
1093	 * gsbase and proceed.  We'll fix up the exception and land in
1094	 * gs_change's error handler with kernel gsbase.
1095	 */
1096	jmp	.Lerror_entry_from_usermode_swapgs
1097
1098.Lbstep_iret:
1099	/* Fix truncated RIP */
1100	movq	%rcx, RIP+8(%rsp)
1101	/* fall through */
1102
1103.Lerror_bad_iret:
1104	/*
1105	 * We came from an IRET to user mode, so we have user gsbase.
1106	 * Switch to kernel gsbase:
1107	 */
1108	SWAPGS
1109
1110	/*
1111	 * Pretend that the exception came from user mode: set up pt_regs
1112	 * as if we faulted immediately after IRET and clear EBX so that
1113	 * error_exit knows that we will be returning to user mode.
1114	 */
1115	mov	%rsp, %rdi
1116	call	fixup_bad_iret
1117	mov	%rax, %rsp
1118	decl	%ebx
1119	jmp	.Lerror_entry_from_usermode_after_swapgs
1120END(error_entry)
1121
1122
1123/*
1124 * On entry, EBS is a "return to kernel mode" flag:
1125 *   1: already in kernel mode, don't need SWAPGS
1126 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1127 */
1128ENTRY(error_exit)
1129	movl	%ebx, %eax
1130	DISABLE_INTERRUPTS(CLBR_NONE)
1131	TRACE_IRQS_OFF
1132	testl	%eax, %eax
1133	jnz	retint_kernel
1134	jmp	retint_user
1135END(error_exit)
1136
1137/* Runs on exception stack */
1138ENTRY(nmi)
1139	/*
1140	 * Fix up the exception frame if we're on Xen.
1141	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1142	 * one value to the stack on native, so it may clobber the rdx
1143	 * scratch slot, but it won't clobber any of the important
1144	 * slots past it.
1145	 *
1146	 * Xen is a different story, because the Xen frame itself overlaps
1147	 * the "NMI executing" variable.
1148	 */
1149	PARAVIRT_ADJUST_EXCEPTION_FRAME
1150
1151	/*
1152	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1153	 * the iretq it performs will take us out of NMI context.
1154	 * This means that we can have nested NMIs where the next
1155	 * NMI is using the top of the stack of the previous NMI. We
1156	 * can't let it execute because the nested NMI will corrupt the
1157	 * stack of the previous NMI. NMI handlers are not re-entrant
1158	 * anyway.
1159	 *
1160	 * To handle this case we do the following:
1161	 *  Check the a special location on the stack that contains
1162	 *  a variable that is set when NMIs are executing.
1163	 *  The interrupted task's stack is also checked to see if it
1164	 *  is an NMI stack.
1165	 *  If the variable is not set and the stack is not the NMI
1166	 *  stack then:
1167	 *    o Set the special variable on the stack
1168	 *    o Copy the interrupt frame into an "outermost" location on the
1169	 *      stack
1170	 *    o Copy the interrupt frame into an "iret" location on the stack
1171	 *    o Continue processing the NMI
1172	 *  If the variable is set or the previous stack is the NMI stack:
1173	 *    o Modify the "iret" location to jump to the repeat_nmi
1174	 *    o return back to the first NMI
1175	 *
1176	 * Now on exit of the first NMI, we first clear the stack variable
1177	 * The NMI stack will tell any nested NMIs at that point that it is
1178	 * nested. Then we pop the stack normally with iret, and if there was
1179	 * a nested NMI that updated the copy interrupt stack frame, a
1180	 * jump will be made to the repeat_nmi code that will handle the second
1181	 * NMI.
1182	 *
1183	 * However, espfix prevents us from directly returning to userspace
1184	 * with a single IRET instruction.  Similarly, IRET to user mode
1185	 * can fault.  We therefore handle NMIs from user space like
1186	 * other IST entries.
1187	 */
1188
1189	/* Use %rdx as our temp variable throughout */
1190	pushq	%rdx
1191
1192	testb	$3, CS-RIP+8(%rsp)
1193	jz	.Lnmi_from_kernel
1194
1195	/*
1196	 * NMI from user mode.  We need to run on the thread stack, but we
1197	 * can't go through the normal entry paths: NMIs are masked, and
1198	 * we don't want to enable interrupts, because then we'll end
1199	 * up in an awkward situation in which IRQs are on but NMIs
1200	 * are off.
1201	 *
1202	 * We also must not push anything to the stack before switching
1203	 * stacks lest we corrupt the "NMI executing" variable.
1204	 */
1205
1206	SWAPGS_UNSAFE_STACK
1207	cld
1208	movq	%rsp, %rdx
1209	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1210	pushq	5*8(%rdx)	/* pt_regs->ss */
1211	pushq	4*8(%rdx)	/* pt_regs->rsp */
1212	pushq	3*8(%rdx)	/* pt_regs->flags */
1213	pushq	2*8(%rdx)	/* pt_regs->cs */
1214	pushq	1*8(%rdx)	/* pt_regs->rip */
1215	pushq   $-1		/* pt_regs->orig_ax */
1216	pushq   %rdi		/* pt_regs->di */
1217	pushq   %rsi		/* pt_regs->si */
1218	pushq   (%rdx)		/* pt_regs->dx */
1219	pushq   %rcx		/* pt_regs->cx */
1220	pushq   %rax		/* pt_regs->ax */
1221	pushq   %r8		/* pt_regs->r8 */
1222	pushq   %r9		/* pt_regs->r9 */
1223	pushq   %r10		/* pt_regs->r10 */
1224	pushq   %r11		/* pt_regs->r11 */
1225	pushq	%rbx		/* pt_regs->rbx */
1226	pushq	%rbp		/* pt_regs->rbp */
1227	pushq	%r12		/* pt_regs->r12 */
1228	pushq	%r13		/* pt_regs->r13 */
1229	pushq	%r14		/* pt_regs->r14 */
1230	pushq	%r15		/* pt_regs->r15 */
1231
1232	/*
1233	 * At this point we no longer need to worry about stack damage
1234	 * due to nesting -- we're on the normal thread stack and we're
1235	 * done with the NMI stack.
1236	 */
1237
1238	movq	%rsp, %rdi
1239	movq	$-1, %rsi
1240	call	do_nmi
1241
1242	/*
1243	 * Return back to user mode.  We must *not* do the normal exit
1244	 * work, because we don't want to enable interrupts.  Fortunately,
1245	 * do_nmi doesn't modify pt_regs.
1246	 */
1247	SWAPGS
1248	jmp	restore_c_regs_and_iret
1249
1250.Lnmi_from_kernel:
1251	/*
1252	 * Here's what our stack frame will look like:
1253	 * +---------------------------------------------------------+
1254	 * | original SS                                             |
1255	 * | original Return RSP                                     |
1256	 * | original RFLAGS                                         |
1257	 * | original CS                                             |
1258	 * | original RIP                                            |
1259	 * +---------------------------------------------------------+
1260	 * | temp storage for rdx                                    |
1261	 * +---------------------------------------------------------+
1262	 * | "NMI executing" variable                                |
1263	 * +---------------------------------------------------------+
1264	 * | iret SS          } Copied from "outermost" frame        |
1265	 * | iret Return RSP  } on each loop iteration; overwritten  |
1266	 * | iret RFLAGS      } by a nested NMI to force another     |
1267	 * | iret CS          } iteration if needed.                 |
1268	 * | iret RIP         }                                      |
1269	 * +---------------------------------------------------------+
1270	 * | outermost SS          } initialized in first_nmi;       |
1271	 * | outermost Return RSP  } will not be changed before      |
1272	 * | outermost RFLAGS      } NMI processing is done.         |
1273	 * | outermost CS          } Copied to "iret" frame on each  |
1274	 * | outermost RIP         } iteration.                      |
1275	 * +---------------------------------------------------------+
1276	 * | pt_regs                                                 |
1277	 * +---------------------------------------------------------+
1278	 *
1279	 * The "original" frame is used by hardware.  Before re-enabling
1280	 * NMIs, we need to be done with it, and we need to leave enough
1281	 * space for the asm code here.
1282	 *
1283	 * We return by executing IRET while RSP points to the "iret" frame.
1284	 * That will either return for real or it will loop back into NMI
1285	 * processing.
1286	 *
1287	 * The "outermost" frame is copied to the "iret" frame on each
1288	 * iteration of the loop, so each iteration starts with the "iret"
1289	 * frame pointing to the final return target.
1290	 */
1291
1292	/*
1293	 * Determine whether we're a nested NMI.
1294	 *
1295	 * If we interrupted kernel code between repeat_nmi and
1296	 * end_repeat_nmi, then we are a nested NMI.  We must not
1297	 * modify the "iret" frame because it's being written by
1298	 * the outer NMI.  That's okay; the outer NMI handler is
1299	 * about to about to call do_nmi anyway, so we can just
1300	 * resume the outer NMI.
1301	 */
1302
1303	movq	$repeat_nmi, %rdx
1304	cmpq	8(%rsp), %rdx
1305	ja	1f
1306	movq	$end_repeat_nmi, %rdx
1307	cmpq	8(%rsp), %rdx
1308	ja	nested_nmi_out
13091:
1310
1311	/*
1312	 * Now check "NMI executing".  If it's set, then we're nested.
1313	 * This will not detect if we interrupted an outer NMI just
1314	 * before IRET.
1315	 */
1316	cmpl	$1, -8(%rsp)
1317	je	nested_nmi
1318
1319	/*
1320	 * Now test if the previous stack was an NMI stack.  This covers
1321	 * the case where we interrupt an outer NMI after it clears
1322	 * "NMI executing" but before IRET.  We need to be careful, though:
1323	 * there is one case in which RSP could point to the NMI stack
1324	 * despite there being no NMI active: naughty userspace controls
1325	 * RSP at the very beginning of the SYSCALL targets.  We can
1326	 * pull a fast one on naughty userspace, though: we program
1327	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1328	 * if it controls the kernel's RSP.  We set DF before we clear
1329	 * "NMI executing".
1330	 */
1331	lea	6*8(%rsp), %rdx
1332	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1333	cmpq	%rdx, 4*8(%rsp)
1334	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1335	ja	first_nmi
1336
1337	subq	$EXCEPTION_STKSZ, %rdx
1338	cmpq	%rdx, 4*8(%rsp)
1339	/* If it is below the NMI stack, it is a normal NMI */
1340	jb	first_nmi
1341
1342	/* Ah, it is within the NMI stack. */
1343
1344	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1345	jz	first_nmi	/* RSP was user controlled. */
1346
1347	/* This is a nested NMI. */
1348
1349nested_nmi:
1350	/*
1351	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1352	 * iteration of NMI handling.
1353	 */
1354	subq	$8, %rsp
1355	leaq	-10*8(%rsp), %rdx
1356	pushq	$__KERNEL_DS
1357	pushq	%rdx
1358	pushfq
1359	pushq	$__KERNEL_CS
1360	pushq	$repeat_nmi
1361
1362	/* Put stack back */
1363	addq	$(6*8), %rsp
1364
1365nested_nmi_out:
1366	popq	%rdx
1367
1368	/* We are returning to kernel mode, so this cannot result in a fault. */
1369	INTERRUPT_RETURN
1370
1371first_nmi:
1372	/* Restore rdx. */
1373	movq	(%rsp), %rdx
1374
1375	/* Make room for "NMI executing". */
1376	pushq	$0
1377
1378	/* Leave room for the "iret" frame */
1379	subq	$(5*8), %rsp
1380
1381	/* Copy the "original" frame to the "outermost" frame */
1382	.rept 5
1383	pushq	11*8(%rsp)
1384	.endr
1385
1386	/* Everything up to here is safe from nested NMIs */
1387
1388#ifdef CONFIG_DEBUG_ENTRY
1389	/*
1390	 * For ease of testing, unmask NMIs right away.  Disabled by
1391	 * default because IRET is very expensive.
1392	 */
1393	pushq	$0		/* SS */
1394	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1395	addq	$8, (%rsp)	/* Fix up RSP */
1396	pushfq			/* RFLAGS */
1397	pushq	$__KERNEL_CS	/* CS */
1398	pushq	$1f		/* RIP */
1399	INTERRUPT_RETURN	/* continues at repeat_nmi below */
14001:
1401#endif
1402
1403repeat_nmi:
1404	/*
1405	 * If there was a nested NMI, the first NMI's iret will return
1406	 * here. But NMIs are still enabled and we can take another
1407	 * nested NMI. The nested NMI checks the interrupted RIP to see
1408	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1409	 * it will just return, as we are about to repeat an NMI anyway.
1410	 * This makes it safe to copy to the stack frame that a nested
1411	 * NMI will update.
1412	 *
1413	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1414	 * we're repeating an NMI, gsbase has the same value that it had on
1415	 * the first iteration.  paranoid_entry will load the kernel
1416	 * gsbase if needed before we call do_nmi.  "NMI executing"
1417	 * is zero.
1418	 */
1419	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1420
1421	/*
1422	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1423	 * here must not modify the "iret" frame while we're writing to
1424	 * it or it will end up containing garbage.
1425	 */
1426	addq	$(10*8), %rsp
1427	.rept 5
1428	pushq	-6*8(%rsp)
1429	.endr
1430	subq	$(5*8), %rsp
1431end_repeat_nmi:
1432
1433	/*
1434	 * Everything below this point can be preempted by a nested NMI.
1435	 * If this happens, then the inner NMI will change the "iret"
1436	 * frame to point back to repeat_nmi.
1437	 */
1438	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1439	ALLOC_PT_GPREGS_ON_STACK
1440
1441	/*
1442	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1443	 * as we should not be calling schedule in NMI context.
1444	 * Even with normal interrupts enabled. An NMI should not be
1445	 * setting NEED_RESCHED or anything that normal interrupts and
1446	 * exceptions might do.
1447	 */
1448	call	paranoid_entry
1449
1450	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1451	movq	%rsp, %rdi
1452	movq	$-1, %rsi
1453	call	do_nmi
1454
1455	testl	%ebx, %ebx			/* swapgs needed? */
1456	jnz	nmi_restore
1457nmi_swapgs:
1458	SWAPGS_UNSAFE_STACK
1459nmi_restore:
1460	RESTORE_EXTRA_REGS
1461	RESTORE_C_REGS
1462
1463	/* Point RSP at the "iret" frame. */
1464	REMOVE_PT_GPREGS_FROM_STACK 6*8
1465
1466	/*
1467	 * Clear "NMI executing".  Set DF first so that we can easily
1468	 * distinguish the remaining code between here and IRET from
1469	 * the SYSCALL entry and exit paths.  On a native kernel, we
1470	 * could just inspect RIP, but, on paravirt kernels,
1471	 * INTERRUPT_RETURN can translate into a jump into a
1472	 * hypercall page.
1473	 */
1474	std
1475	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1476
1477	/*
1478	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1479	 * stack in a single instruction.  We are returning to kernel
1480	 * mode, so this cannot result in a fault.
1481	 */
1482	INTERRUPT_RETURN
1483END(nmi)
1484
1485ENTRY(ignore_sysret)
1486	mov	$-ENOSYS, %eax
1487	sysret
1488END(ignore_sysret)
1489