xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision a8da474e)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <linux/err.h>
39
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
41#include <linux/elf-em.h>
42#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT			0x80000000
44#define __AUDIT_ARCH_LE				0x40000000
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT
50ENTRY(native_usergs_sysret64)
51	swapgs
52	sysretq
53ENDPROC(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_IRETQ
57#ifdef CONFIG_TRACE_IRQFLAGS
58	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
59	jnc	1f
60	TRACE_IRQS_ON
611:
62#endif
63.endm
64
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
79	call	debug_stack_set_zero
80	TRACE_IRQS_OFF
81	call	debug_stack_reset
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
85	call	debug_stack_set_zero
86	TRACE_IRQS_ON
87	call	debug_stack_reset
88.endm
89
90.macro TRACE_IRQS_IRETQ_DEBUG
91	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
92	jnc	1f
93	TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
98# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101#endif
102
103/*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
113 * rax  system call number
114 * rcx  return address
115 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
116 * rdi  arg0
117 * rsi  arg1
118 * rdx  arg2
119 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
120 * r8   arg4
121 * r9   arg5
122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123 *
124 * Only called from user space.
125 *
126 * When user can change pt_regs->foo always force IRET. That is because
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
129 */
130
131ENTRY(entry_SYSCALL_64)
132	/*
133	 * Interrupts are off on entry.
134	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135	 * it is too small to ever cause noticeable irq latency.
136	 */
137	SWAPGS_UNSAFE_STACK
138	/*
139	 * A hypervisor implementation might want to use a label
140	 * after the swapgs, so that it can do the swapgs
141	 * for the guest and jump here on syscall.
142	 */
143GLOBAL(entry_SYSCALL_64_after_swapgs)
144
145	movq	%rsp, PER_CPU_VAR(rsp_scratch)
146	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147
148	/* Construct struct pt_regs on stack */
149	pushq	$__USER_DS			/* pt_regs->ss */
150	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
151	/*
152	 * Re-enable interrupts.
153	 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154	 * must execute atomically in the face of possible interrupt-driven
155	 * task preemption. We must enable interrupts only after we're done
156	 * with using rsp_scratch:
157	 */
158	ENABLE_INTERRUPTS(CLBR_NONE)
159	pushq	%r11				/* pt_regs->flags */
160	pushq	$__USER_CS			/* pt_regs->cs */
161	pushq	%rcx				/* pt_regs->ip */
162	pushq	%rax				/* pt_regs->orig_ax */
163	pushq	%rdi				/* pt_regs->di */
164	pushq	%rsi				/* pt_regs->si */
165	pushq	%rdx				/* pt_regs->dx */
166	pushq	%rcx				/* pt_regs->cx */
167	pushq	$-ENOSYS			/* pt_regs->ax */
168	pushq	%r8				/* pt_regs->r8 */
169	pushq	%r9				/* pt_regs->r9 */
170	pushq	%r10				/* pt_regs->r10 */
171	pushq	%r11				/* pt_regs->r11 */
172	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
173
174	testl	$_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175	jnz	tracesys
176entry_SYSCALL_64_fastpath:
177#if __SYSCALL_MASK == ~0
178	cmpq	$__NR_syscall_max, %rax
179#else
180	andl	$__SYSCALL_MASK, %eax
181	cmpl	$__NR_syscall_max, %eax
182#endif
183	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
184	movq	%r10, %rcx
185	call	*sys_call_table(, %rax, 8)
186	movq	%rax, RAX(%rsp)
1871:
188/*
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
191 */
192	LOCKDEP_SYS_EXIT
193	/*
194	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195	 * it is too small to ever cause noticeable irq latency.
196	 */
197	DISABLE_INTERRUPTS(CLBR_NONE)
198
199	/*
200	 * We must check ti flags with interrupts (or at least preemption)
201	 * off because we must *never* return to userspace without
202	 * processing exit work that is enqueued if we're preempted here.
203	 * In particular, returning to userspace with any of the one-shot
204	 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205	 * very bad.
206	 */
207	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208	jnz	int_ret_from_sys_call_irqs_off	/* Go to the slow path */
209
210	RESTORE_C_REGS_EXCEPT_RCX_R11
211	movq	RIP(%rsp), %rcx
212	movq	EFLAGS(%rsp), %r11
213	movq	RSP(%rsp), %rsp
214	/*
215	 * 64-bit SYSRET restores rip from rcx,
216	 * rflags from r11 (but RF and VM bits are forced to 0),
217	 * cs and ss are loaded from MSRs.
218	 * Restoration of rflags re-enables interrupts.
219	 *
220	 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221	 * descriptor is not reinitialized.  This means that we should
222	 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223	 * exit the kernel, and re-enter using an interrupt vector.  (All
224	 * interrupt entries on x86_64 set SS to NULL.)  We prevent that
225	 * from happening by reloading SS in __switch_to.  (Actually
226	 * detecting the failure in 64-bit userspace is tricky but can be
227	 * done.)
228	 */
229	USERGS_SYSRET64
230
231GLOBAL(int_ret_from_sys_call_irqs_off)
232	TRACE_IRQS_ON
233	ENABLE_INTERRUPTS(CLBR_NONE)
234	jmp int_ret_from_sys_call
235
236	/* Do syscall entry tracing */
237tracesys:
238	movq	%rsp, %rdi
239	movl	$AUDIT_ARCH_X86_64, %esi
240	call	syscall_trace_enter_phase1
241	test	%rax, %rax
242	jnz	tracesys_phase2			/* if needed, run the slow path */
243	RESTORE_C_REGS_EXCEPT_RAX		/* else restore clobbered regs */
244	movq	ORIG_RAX(%rsp), %rax
245	jmp	entry_SYSCALL_64_fastpath	/* and return to the fast path */
246
247tracesys_phase2:
248	SAVE_EXTRA_REGS
249	movq	%rsp, %rdi
250	movl	$AUDIT_ARCH_X86_64, %esi
251	movq	%rax, %rdx
252	call	syscall_trace_enter_phase2
253
254	/*
255	 * Reload registers from stack in case ptrace changed them.
256	 * We don't reload %rax because syscall_trace_entry_phase2() returned
257	 * the value it wants us to use in the table lookup.
258	 */
259	RESTORE_C_REGS_EXCEPT_RAX
260	RESTORE_EXTRA_REGS
261#if __SYSCALL_MASK == ~0
262	cmpq	$__NR_syscall_max, %rax
263#else
264	andl	$__SYSCALL_MASK, %eax
265	cmpl	$__NR_syscall_max, %eax
266#endif
267	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
268	movq	%r10, %rcx			/* fixup for C */
269	call	*sys_call_table(, %rax, 8)
270	movq	%rax, RAX(%rsp)
2711:
272	/* Use IRET because user could have changed pt_regs->foo */
273
274/*
275 * Syscall return path ending with IRET.
276 * Has correct iret frame.
277 */
278GLOBAL(int_ret_from_sys_call)
279	SAVE_EXTRA_REGS
280	movq	%rsp, %rdi
281	call	syscall_return_slowpath	/* returns with IRQs disabled */
282	RESTORE_EXTRA_REGS
283	TRACE_IRQS_IRETQ		/* we're about to change IF */
284
285	/*
286	 * Try to use SYSRET instead of IRET if we're returning to
287	 * a completely clean 64-bit userspace context.
288	 */
289	movq	RCX(%rsp), %rcx
290	movq	RIP(%rsp), %r11
291	cmpq	%rcx, %r11			/* RCX == RIP */
292	jne	opportunistic_sysret_failed
293
294	/*
295	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296	 * in kernel space.  This essentially lets the user take over
297	 * the kernel, since userspace controls RSP.
298	 *
299	 * If width of "canonical tail" ever becomes variable, this will need
300	 * to be updated to remain correct on both old and new CPUs.
301	 */
302	.ifne __VIRTUAL_MASK_SHIFT - 47
303	.error "virtual address width changed -- SYSRET checks need update"
304	.endif
305
306	/* Change top 16 bits to be the sign-extension of 47th bit */
307	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
309
310	/* If this changed %rcx, it was not canonical */
311	cmpq	%rcx, %r11
312	jne	opportunistic_sysret_failed
313
314	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
315	jne	opportunistic_sysret_failed
316
317	movq	R11(%rsp), %r11
318	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
319	jne	opportunistic_sysret_failed
320
321	/*
322	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
323	 * restoring TF results in a trap from userspace immediately after
324	 * SYSRET.  This would cause an infinite loop whenever #DB happens
325	 * with register state that satisfies the opportunistic SYSRET
326	 * conditions.  For example, single-stepping this user code:
327	 *
328	 *           movq	$stuck_here, %rcx
329	 *           pushfq
330	 *           popq %r11
331	 *   stuck_here:
332	 *
333	 * would never get past 'stuck_here'.
334	 */
335	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336	jnz	opportunistic_sysret_failed
337
338	/* nothing to check for RSP */
339
340	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
341	jne	opportunistic_sysret_failed
342
343	/*
344	 * We win! This label is here just for ease of understanding
345	 * perf profiles. Nothing jumps here.
346	 */
347syscall_return_via_sysret:
348	/* rcx and r11 are already restored (see code above) */
349	RESTORE_C_REGS_EXCEPT_RCX_R11
350	movq	RSP(%rsp), %rsp
351	USERGS_SYSRET64
352
353opportunistic_sysret_failed:
354	SWAPGS
355	jmp	restore_c_regs_and_iret
356END(entry_SYSCALL_64)
357
358
359	.macro FORK_LIKE func
360ENTRY(stub_\func)
361	SAVE_EXTRA_REGS 8
362	jmp	sys_\func
363END(stub_\func)
364	.endm
365
366	FORK_LIKE  clone
367	FORK_LIKE  fork
368	FORK_LIKE  vfork
369
370ENTRY(stub_execve)
371	call	sys_execve
372return_from_execve:
373	testl	%eax, %eax
374	jz	1f
375	/* exec failed, can use fast SYSRET code path in this case */
376	ret
3771:
378	/* must use IRET code path (pt_regs->cs may have changed) */
379	addq	$8, %rsp
380	ZERO_EXTRA_REGS
381	movq	%rax, RAX(%rsp)
382	jmp	int_ret_from_sys_call
383END(stub_execve)
384/*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388	.align	8
389GLOBAL(stub_execveat)
390	call	sys_execveat
391	jmp	return_from_execve
392END(stub_execveat)
393
394#if defined(CONFIG_X86_X32_ABI)
395	.align	8
396GLOBAL(stub_x32_execve)
397	call	compat_sys_execve
398	jmp	return_from_execve
399END(stub_x32_execve)
400	.align	8
401GLOBAL(stub_x32_execveat)
402	call	compat_sys_execveat
403	jmp	return_from_execve
404END(stub_x32_execveat)
405#endif
406
407/*
408 * sigreturn is special because it needs to restore all registers on return.
409 * This cannot be done with SYSRET, so use the IRET return path instead.
410 */
411ENTRY(stub_rt_sigreturn)
412	/*
413	 * SAVE_EXTRA_REGS result is not normally needed:
414	 * sigreturn overwrites all pt_regs->GPREGS.
415	 * But sigreturn can fail (!), and there is no easy way to detect that.
416	 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
417	 * we SAVE_EXTRA_REGS here.
418	 */
419	SAVE_EXTRA_REGS 8
420	call	sys_rt_sigreturn
421return_from_stub:
422	addq	$8, %rsp
423	RESTORE_EXTRA_REGS
424	movq	%rax, RAX(%rsp)
425	jmp	int_ret_from_sys_call
426END(stub_rt_sigreturn)
427
428#ifdef CONFIG_X86_X32_ABI
429ENTRY(stub_x32_rt_sigreturn)
430	SAVE_EXTRA_REGS 8
431	call	sys32_x32_rt_sigreturn
432	jmp	return_from_stub
433END(stub_x32_rt_sigreturn)
434#endif
435
436/*
437 * A newly forked process directly context switches into this address.
438 *
439 * rdi: prev task we switched from
440 */
441ENTRY(ret_from_fork)
442
443	LOCK ; btr $TIF_FORK, TI_flags(%r8)
444
445	pushq	$0x0002
446	popfq					/* reset kernel eflags */
447
448	call	schedule_tail			/* rdi: 'prev' task parameter */
449
450	RESTORE_EXTRA_REGS
451
452	testb	$3, CS(%rsp)			/* from kernel_thread? */
453
454	/*
455	 * By the time we get here, we have no idea whether our pt_regs,
456	 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
457	 * the slow path, or one of the 32-bit compat paths.
458	 * Use IRET code path to return, since it can safely handle
459	 * all of the above.
460	 */
461	jnz	int_ret_from_sys_call
462
463	/*
464	 * We came from kernel_thread
465	 * nb: we depend on RESTORE_EXTRA_REGS above
466	 */
467	movq	%rbp, %rdi
468	call	*%rbx
469	movl	$0, RAX(%rsp)
470	RESTORE_EXTRA_REGS
471	jmp	int_ret_from_sys_call
472END(ret_from_fork)
473
474/*
475 * Build the entry stubs with some assembler magic.
476 * We pack 1 stub into every 8-byte block.
477 */
478	.align 8
479ENTRY(irq_entries_start)
480    vector=FIRST_EXTERNAL_VECTOR
481    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
482	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
483    vector=vector+1
484	jmp	common_interrupt
485	.align	8
486    .endr
487END(irq_entries_start)
488
489/*
490 * Interrupt entry/exit.
491 *
492 * Interrupt entry points save only callee clobbered registers in fast path.
493 *
494 * Entry runs with interrupts off.
495 */
496
497/* 0(%rsp): ~(interrupt number) */
498	.macro interrupt func
499	cld
500	ALLOC_PT_GPREGS_ON_STACK
501	SAVE_C_REGS
502	SAVE_EXTRA_REGS
503
504	testb	$3, CS(%rsp)
505	jz	1f
506
507	/*
508	 * IRQ from user mode.  Switch to kernel gsbase and inform context
509	 * tracking that we're in kernel mode.
510	 */
511	SWAPGS
512#ifdef CONFIG_CONTEXT_TRACKING
513	call enter_from_user_mode
514#endif
515
5161:
517	/*
518	 * Save previous stack pointer, optionally switch to interrupt stack.
519	 * irq_count is used to check if a CPU is already on an interrupt stack
520	 * or not. While this is essentially redundant with preempt_count it is
521	 * a little cheaper to use a separate counter in the PDA (short of
522	 * moving irq_enter into assembly, which would be too much work)
523	 */
524	movq	%rsp, %rdi
525	incl	PER_CPU_VAR(irq_count)
526	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
527	pushq	%rdi
528	/* We entered an interrupt context - irqs are off: */
529	TRACE_IRQS_OFF
530
531	call	\func	/* rdi points to pt_regs */
532	.endm
533
534	/*
535	 * The interrupt stubs push (~vector+0x80) onto the stack and
536	 * then jump to common_interrupt.
537	 */
538	.p2align CONFIG_X86_L1_CACHE_SHIFT
539common_interrupt:
540	ASM_CLAC
541	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
542	interrupt do_IRQ
543	/* 0(%rsp): old RSP */
544ret_from_intr:
545	DISABLE_INTERRUPTS(CLBR_NONE)
546	TRACE_IRQS_OFF
547	decl	PER_CPU_VAR(irq_count)
548
549	/* Restore saved previous stack */
550	popq	%rsp
551
552	testb	$3, CS(%rsp)
553	jz	retint_kernel
554
555	/* Interrupt came from user space */
556GLOBAL(retint_user)
557	mov	%rsp,%rdi
558	call	prepare_exit_to_usermode
559	TRACE_IRQS_IRETQ
560	SWAPGS
561	jmp	restore_regs_and_iret
562
563/* Returning to kernel space */
564retint_kernel:
565#ifdef CONFIG_PREEMPT
566	/* Interrupts are off */
567	/* Check if we need preemption */
568	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
569	jnc	1f
5700:	cmpl	$0, PER_CPU_VAR(__preempt_count)
571	jnz	1f
572	call	preempt_schedule_irq
573	jmp	0b
5741:
575#endif
576	/*
577	 * The iretq could re-enable interrupts:
578	 */
579	TRACE_IRQS_IRETQ
580
581/*
582 * At this label, code paths which return to kernel and to user,
583 * which come from interrupts/exception and from syscalls, merge.
584 */
585GLOBAL(restore_regs_and_iret)
586	RESTORE_EXTRA_REGS
587restore_c_regs_and_iret:
588	RESTORE_C_REGS
589	REMOVE_PT_GPREGS_FROM_STACK 8
590	INTERRUPT_RETURN
591
592ENTRY(native_iret)
593	/*
594	 * Are we returning to a stack segment from the LDT?  Note: in
595	 * 64-bit mode SS:RSP on the exception stack is always valid.
596	 */
597#ifdef CONFIG_X86_ESPFIX64
598	testb	$4, (SS-RIP)(%rsp)
599	jnz	native_irq_return_ldt
600#endif
601
602.global native_irq_return_iret
603native_irq_return_iret:
604	/*
605	 * This may fault.  Non-paranoid faults on return to userspace are
606	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
607	 * Double-faults due to espfix64 are handled in do_double_fault.
608	 * Other faults here are fatal.
609	 */
610	iretq
611
612#ifdef CONFIG_X86_ESPFIX64
613native_irq_return_ldt:
614	pushq	%rax
615	pushq	%rdi
616	SWAPGS
617	movq	PER_CPU_VAR(espfix_waddr), %rdi
618	movq	%rax, (0*8)(%rdi)		/* RAX */
619	movq	(2*8)(%rsp), %rax		/* RIP */
620	movq	%rax, (1*8)(%rdi)
621	movq	(3*8)(%rsp), %rax		/* CS */
622	movq	%rax, (2*8)(%rdi)
623	movq	(4*8)(%rsp), %rax		/* RFLAGS */
624	movq	%rax, (3*8)(%rdi)
625	movq	(6*8)(%rsp), %rax		/* SS */
626	movq	%rax, (5*8)(%rdi)
627	movq	(5*8)(%rsp), %rax		/* RSP */
628	movq	%rax, (4*8)(%rdi)
629	andl	$0xffff0000, %eax
630	popq	%rdi
631	orq	PER_CPU_VAR(espfix_stack), %rax
632	SWAPGS
633	movq	%rax, %rsp
634	popq	%rax
635	jmp	native_irq_return_iret
636#endif
637END(common_interrupt)
638
639/*
640 * APIC interrupts.
641 */
642.macro apicinterrupt3 num sym do_sym
643ENTRY(\sym)
644	ASM_CLAC
645	pushq	$~(\num)
646.Lcommon_\sym:
647	interrupt \do_sym
648	jmp	ret_from_intr
649END(\sym)
650.endm
651
652#ifdef CONFIG_TRACING
653#define trace(sym) trace_##sym
654#define smp_trace(sym) smp_trace_##sym
655
656.macro trace_apicinterrupt num sym
657apicinterrupt3 \num trace(\sym) smp_trace(\sym)
658.endm
659#else
660.macro trace_apicinterrupt num sym do_sym
661.endm
662#endif
663
664.macro apicinterrupt num sym do_sym
665apicinterrupt3 \num \sym \do_sym
666trace_apicinterrupt \num \sym
667.endm
668
669#ifdef CONFIG_SMP
670apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
671apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
672#endif
673
674#ifdef CONFIG_X86_UV
675apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
676#endif
677
678apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
679apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
680
681#ifdef CONFIG_HAVE_KVM
682apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
683apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
684#endif
685
686#ifdef CONFIG_X86_MCE_THRESHOLD
687apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
688#endif
689
690#ifdef CONFIG_X86_MCE_AMD
691apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
692#endif
693
694#ifdef CONFIG_X86_THERMAL_VECTOR
695apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
696#endif
697
698#ifdef CONFIG_SMP
699apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
700apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
701apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
702#endif
703
704apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
705apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
706
707#ifdef CONFIG_IRQ_WORK
708apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
709#endif
710
711/*
712 * Exception entry points.
713 */
714#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
715
716.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
717ENTRY(\sym)
718	/* Sanity check */
719	.if \shift_ist != -1 && \paranoid == 0
720	.error "using shift_ist requires paranoid=1"
721	.endif
722
723	ASM_CLAC
724	PARAVIRT_ADJUST_EXCEPTION_FRAME
725
726	.ifeq \has_error_code
727	pushq	$-1				/* ORIG_RAX: no syscall to restart */
728	.endif
729
730	ALLOC_PT_GPREGS_ON_STACK
731
732	.if \paranoid
733	.if \paranoid == 1
734	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
735	jnz	1f
736	.endif
737	call	paranoid_entry
738	.else
739	call	error_entry
740	.endif
741	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
742
743	.if \paranoid
744	.if \shift_ist != -1
745	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
746	.else
747	TRACE_IRQS_OFF
748	.endif
749	.endif
750
751	movq	%rsp, %rdi			/* pt_regs pointer */
752
753	.if \has_error_code
754	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
755	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
756	.else
757	xorl	%esi, %esi			/* no error code */
758	.endif
759
760	.if \shift_ist != -1
761	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
762	.endif
763
764	call	\do_sym
765
766	.if \shift_ist != -1
767	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
768	.endif
769
770	/* these procedures expect "no swapgs" flag in ebx */
771	.if \paranoid
772	jmp	paranoid_exit
773	.else
774	jmp	error_exit
775	.endif
776
777	.if \paranoid == 1
778	/*
779	 * Paranoid entry from userspace.  Switch stacks and treat it
780	 * as a normal entry.  This means that paranoid handlers
781	 * run in real process context if user_mode(regs).
782	 */
7831:
784	call	error_entry
785
786
787	movq	%rsp, %rdi			/* pt_regs pointer */
788	call	sync_regs
789	movq	%rax, %rsp			/* switch stack */
790
791	movq	%rsp, %rdi			/* pt_regs pointer */
792
793	.if \has_error_code
794	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
795	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
796	.else
797	xorl	%esi, %esi			/* no error code */
798	.endif
799
800	call	\do_sym
801
802	jmp	error_exit			/* %ebx: no swapgs flag */
803	.endif
804END(\sym)
805.endm
806
807#ifdef CONFIG_TRACING
808.macro trace_idtentry sym do_sym has_error_code:req
809idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
810idtentry \sym \do_sym has_error_code=\has_error_code
811.endm
812#else
813.macro trace_idtentry sym do_sym has_error_code:req
814idtentry \sym \do_sym has_error_code=\has_error_code
815.endm
816#endif
817
818idtentry divide_error			do_divide_error			has_error_code=0
819idtentry overflow			do_overflow			has_error_code=0
820idtentry bounds				do_bounds			has_error_code=0
821idtentry invalid_op			do_invalid_op			has_error_code=0
822idtentry device_not_available		do_device_not_available		has_error_code=0
823idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
824idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
825idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
826idtentry segment_not_present		do_segment_not_present		has_error_code=1
827idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
828idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
829idtentry alignment_check		do_alignment_check		has_error_code=1
830idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
831
832
833	/*
834	 * Reload gs selector with exception handling
835	 * edi:  new selector
836	 */
837ENTRY(native_load_gs_index)
838	pushfq
839	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
840	SWAPGS
841gs_change:
842	movl	%edi, %gs
8432:	mfence					/* workaround */
844	SWAPGS
845	popfq
846	ret
847END(native_load_gs_index)
848
849	_ASM_EXTABLE(gs_change, bad_gs)
850	.section .fixup, "ax"
851	/* running with kernelgs */
852bad_gs:
853	SWAPGS					/* switch back to user gs */
854	xorl	%eax, %eax
855	movl	%eax, %gs
856	jmp	2b
857	.previous
858
859/* Call softirq on interrupt stack. Interrupts are off. */
860ENTRY(do_softirq_own_stack)
861	pushq	%rbp
862	mov	%rsp, %rbp
863	incl	PER_CPU_VAR(irq_count)
864	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
865	push	%rbp				/* frame pointer backlink */
866	call	__do_softirq
867	leaveq
868	decl	PER_CPU_VAR(irq_count)
869	ret
870END(do_softirq_own_stack)
871
872#ifdef CONFIG_XEN
873idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
874
875/*
876 * A note on the "critical region" in our callback handler.
877 * We want to avoid stacking callback handlers due to events occurring
878 * during handling of the last event. To do this, we keep events disabled
879 * until we've done all processing. HOWEVER, we must enable events before
880 * popping the stack frame (can't be done atomically) and so it would still
881 * be possible to get enough handler activations to overflow the stack.
882 * Although unlikely, bugs of that kind are hard to track down, so we'd
883 * like to avoid the possibility.
884 * So, on entry to the handler we detect whether we interrupted an
885 * existing activation in its critical region -- if so, we pop the current
886 * activation and restart the handler using the previous one.
887 */
888ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
889
890/*
891 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
892 * see the correct pointer to the pt_regs
893 */
894	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
89511:	incl	PER_CPU_VAR(irq_count)
896	movq	%rsp, %rbp
897	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
898	pushq	%rbp				/* frame pointer backlink */
899	call	xen_evtchn_do_upcall
900	popq	%rsp
901	decl	PER_CPU_VAR(irq_count)
902#ifndef CONFIG_PREEMPT
903	call	xen_maybe_preempt_hcall
904#endif
905	jmp	error_exit
906END(xen_do_hypervisor_callback)
907
908/*
909 * Hypervisor uses this for application faults while it executes.
910 * We get here for two reasons:
911 *  1. Fault while reloading DS, ES, FS or GS
912 *  2. Fault while executing IRET
913 * Category 1 we do not need to fix up as Xen has already reloaded all segment
914 * registers that could be reloaded and zeroed the others.
915 * Category 2 we fix up by killing the current process. We cannot use the
916 * normal Linux return path in this case because if we use the IRET hypercall
917 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
918 * We distinguish between categories by comparing each saved segment register
919 * with its current contents: any discrepancy means we in category 1.
920 */
921ENTRY(xen_failsafe_callback)
922	movl	%ds, %ecx
923	cmpw	%cx, 0x10(%rsp)
924	jne	1f
925	movl	%es, %ecx
926	cmpw	%cx, 0x18(%rsp)
927	jne	1f
928	movl	%fs, %ecx
929	cmpw	%cx, 0x20(%rsp)
930	jne	1f
931	movl	%gs, %ecx
932	cmpw	%cx, 0x28(%rsp)
933	jne	1f
934	/* All segments match their saved values => Category 2 (Bad IRET). */
935	movq	(%rsp), %rcx
936	movq	8(%rsp), %r11
937	addq	$0x30, %rsp
938	pushq	$0				/* RIP */
939	pushq	%r11
940	pushq	%rcx
941	jmp	general_protection
9421:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
943	movq	(%rsp), %rcx
944	movq	8(%rsp), %r11
945	addq	$0x30, %rsp
946	pushq	$-1 /* orig_ax = -1 => not a system call */
947	ALLOC_PT_GPREGS_ON_STACK
948	SAVE_C_REGS
949	SAVE_EXTRA_REGS
950	jmp	error_exit
951END(xen_failsafe_callback)
952
953apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
954	xen_hvm_callback_vector xen_evtchn_do_upcall
955
956#endif /* CONFIG_XEN */
957
958#if IS_ENABLED(CONFIG_HYPERV)
959apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
960	hyperv_callback_vector hyperv_vector_handler
961#endif /* CONFIG_HYPERV */
962
963idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
964idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
965idtentry stack_segment		do_stack_segment	has_error_code=1
966
967#ifdef CONFIG_XEN
968idtentry xen_debug		do_debug		has_error_code=0
969idtentry xen_int3		do_int3			has_error_code=0
970idtentry xen_stack_segment	do_stack_segment	has_error_code=1
971#endif
972
973idtentry general_protection	do_general_protection	has_error_code=1
974trace_idtentry page_fault	do_page_fault		has_error_code=1
975
976#ifdef CONFIG_KVM_GUEST
977idtentry async_page_fault	do_async_page_fault	has_error_code=1
978#endif
979
980#ifdef CONFIG_X86_MCE
981idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
982#endif
983
984/*
985 * Save all registers in pt_regs, and switch gs if needed.
986 * Use slow, but surefire "are we in kernel?" check.
987 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
988 */
989ENTRY(paranoid_entry)
990	cld
991	SAVE_C_REGS 8
992	SAVE_EXTRA_REGS 8
993	movl	$1, %ebx
994	movl	$MSR_GS_BASE, %ecx
995	rdmsr
996	testl	%edx, %edx
997	js	1f				/* negative -> in kernel */
998	SWAPGS
999	xorl	%ebx, %ebx
10001:	ret
1001END(paranoid_entry)
1002
1003/*
1004 * "Paranoid" exit path from exception stack.  This is invoked
1005 * only on return from non-NMI IST interrupts that came
1006 * from kernel space.
1007 *
1008 * We may be returning to very strange contexts (e.g. very early
1009 * in syscall entry), so checking for preemption here would
1010 * be complicated.  Fortunately, we there's no good reason
1011 * to try to handle preemption here.
1012 *
1013 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1014 */
1015ENTRY(paranoid_exit)
1016	DISABLE_INTERRUPTS(CLBR_NONE)
1017	TRACE_IRQS_OFF_DEBUG
1018	testl	%ebx, %ebx			/* swapgs needed? */
1019	jnz	paranoid_exit_no_swapgs
1020	TRACE_IRQS_IRETQ
1021	SWAPGS_UNSAFE_STACK
1022	jmp	paranoid_exit_restore
1023paranoid_exit_no_swapgs:
1024	TRACE_IRQS_IRETQ_DEBUG
1025paranoid_exit_restore:
1026	RESTORE_EXTRA_REGS
1027	RESTORE_C_REGS
1028	REMOVE_PT_GPREGS_FROM_STACK 8
1029	INTERRUPT_RETURN
1030END(paranoid_exit)
1031
1032/*
1033 * Save all registers in pt_regs, and switch gs if needed.
1034 * Return: EBX=0: came from user mode; EBX=1: otherwise
1035 */
1036ENTRY(error_entry)
1037	cld
1038	SAVE_C_REGS 8
1039	SAVE_EXTRA_REGS 8
1040	xorl	%ebx, %ebx
1041	testb	$3, CS+8(%rsp)
1042	jz	.Lerror_kernelspace
1043
1044.Lerror_entry_from_usermode_swapgs:
1045	/*
1046	 * We entered from user mode or we're pretending to have entered
1047	 * from user mode due to an IRET fault.
1048	 */
1049	SWAPGS
1050
1051.Lerror_entry_from_usermode_after_swapgs:
1052#ifdef CONFIG_CONTEXT_TRACKING
1053	call enter_from_user_mode
1054#endif
1055
1056.Lerror_entry_done:
1057
1058	TRACE_IRQS_OFF
1059	ret
1060
1061	/*
1062	 * There are two places in the kernel that can potentially fault with
1063	 * usergs. Handle them here.  B stepping K8s sometimes report a
1064	 * truncated RIP for IRET exceptions returning to compat mode. Check
1065	 * for these here too.
1066	 */
1067.Lerror_kernelspace:
1068	incl	%ebx
1069	leaq	native_irq_return_iret(%rip), %rcx
1070	cmpq	%rcx, RIP+8(%rsp)
1071	je	.Lerror_bad_iret
1072	movl	%ecx, %eax			/* zero extend */
1073	cmpq	%rax, RIP+8(%rsp)
1074	je	.Lbstep_iret
1075	cmpq	$gs_change, RIP+8(%rsp)
1076	jne	.Lerror_entry_done
1077
1078	/*
1079	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
1080	 * gsbase and proceed.  We'll fix up the exception and land in
1081	 * gs_change's error handler with kernel gsbase.
1082	 */
1083	jmp	.Lerror_entry_from_usermode_swapgs
1084
1085.Lbstep_iret:
1086	/* Fix truncated RIP */
1087	movq	%rcx, RIP+8(%rsp)
1088	/* fall through */
1089
1090.Lerror_bad_iret:
1091	/*
1092	 * We came from an IRET to user mode, so we have user gsbase.
1093	 * Switch to kernel gsbase:
1094	 */
1095	SWAPGS
1096
1097	/*
1098	 * Pretend that the exception came from user mode: set up pt_regs
1099	 * as if we faulted immediately after IRET and clear EBX so that
1100	 * error_exit knows that we will be returning to user mode.
1101	 */
1102	mov	%rsp, %rdi
1103	call	fixup_bad_iret
1104	mov	%rax, %rsp
1105	decl	%ebx
1106	jmp	.Lerror_entry_from_usermode_after_swapgs
1107END(error_entry)
1108
1109
1110/*
1111 * On entry, EBS is a "return to kernel mode" flag:
1112 *   1: already in kernel mode, don't need SWAPGS
1113 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1114 */
1115ENTRY(error_exit)
1116	movl	%ebx, %eax
1117	DISABLE_INTERRUPTS(CLBR_NONE)
1118	TRACE_IRQS_OFF
1119	testl	%eax, %eax
1120	jnz	retint_kernel
1121	jmp	retint_user
1122END(error_exit)
1123
1124/* Runs on exception stack */
1125ENTRY(nmi)
1126	/*
1127	 * Fix up the exception frame if we're on Xen.
1128	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1129	 * one value to the stack on native, so it may clobber the rdx
1130	 * scratch slot, but it won't clobber any of the important
1131	 * slots past it.
1132	 *
1133	 * Xen is a different story, because the Xen frame itself overlaps
1134	 * the "NMI executing" variable.
1135	 */
1136	PARAVIRT_ADJUST_EXCEPTION_FRAME
1137
1138	/*
1139	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1140	 * the iretq it performs will take us out of NMI context.
1141	 * This means that we can have nested NMIs where the next
1142	 * NMI is using the top of the stack of the previous NMI. We
1143	 * can't let it execute because the nested NMI will corrupt the
1144	 * stack of the previous NMI. NMI handlers are not re-entrant
1145	 * anyway.
1146	 *
1147	 * To handle this case we do the following:
1148	 *  Check the a special location on the stack that contains
1149	 *  a variable that is set when NMIs are executing.
1150	 *  The interrupted task's stack is also checked to see if it
1151	 *  is an NMI stack.
1152	 *  If the variable is not set and the stack is not the NMI
1153	 *  stack then:
1154	 *    o Set the special variable on the stack
1155	 *    o Copy the interrupt frame into an "outermost" location on the
1156	 *      stack
1157	 *    o Copy the interrupt frame into an "iret" location on the stack
1158	 *    o Continue processing the NMI
1159	 *  If the variable is set or the previous stack is the NMI stack:
1160	 *    o Modify the "iret" location to jump to the repeat_nmi
1161	 *    o return back to the first NMI
1162	 *
1163	 * Now on exit of the first NMI, we first clear the stack variable
1164	 * The NMI stack will tell any nested NMIs at that point that it is
1165	 * nested. Then we pop the stack normally with iret, and if there was
1166	 * a nested NMI that updated the copy interrupt stack frame, a
1167	 * jump will be made to the repeat_nmi code that will handle the second
1168	 * NMI.
1169	 *
1170	 * However, espfix prevents us from directly returning to userspace
1171	 * with a single IRET instruction.  Similarly, IRET to user mode
1172	 * can fault.  We therefore handle NMIs from user space like
1173	 * other IST entries.
1174	 */
1175
1176	/* Use %rdx as our temp variable throughout */
1177	pushq	%rdx
1178
1179	testb	$3, CS-RIP+8(%rsp)
1180	jz	.Lnmi_from_kernel
1181
1182	/*
1183	 * NMI from user mode.  We need to run on the thread stack, but we
1184	 * can't go through the normal entry paths: NMIs are masked, and
1185	 * we don't want to enable interrupts, because then we'll end
1186	 * up in an awkward situation in which IRQs are on but NMIs
1187	 * are off.
1188	 *
1189	 * We also must not push anything to the stack before switching
1190	 * stacks lest we corrupt the "NMI executing" variable.
1191	 */
1192
1193	SWAPGS_UNSAFE_STACK
1194	cld
1195	movq	%rsp, %rdx
1196	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1197	pushq	5*8(%rdx)	/* pt_regs->ss */
1198	pushq	4*8(%rdx)	/* pt_regs->rsp */
1199	pushq	3*8(%rdx)	/* pt_regs->flags */
1200	pushq	2*8(%rdx)	/* pt_regs->cs */
1201	pushq	1*8(%rdx)	/* pt_regs->rip */
1202	pushq   $-1		/* pt_regs->orig_ax */
1203	pushq   %rdi		/* pt_regs->di */
1204	pushq   %rsi		/* pt_regs->si */
1205	pushq   (%rdx)		/* pt_regs->dx */
1206	pushq   %rcx		/* pt_regs->cx */
1207	pushq   %rax		/* pt_regs->ax */
1208	pushq   %r8		/* pt_regs->r8 */
1209	pushq   %r9		/* pt_regs->r9 */
1210	pushq   %r10		/* pt_regs->r10 */
1211	pushq   %r11		/* pt_regs->r11 */
1212	pushq	%rbx		/* pt_regs->rbx */
1213	pushq	%rbp		/* pt_regs->rbp */
1214	pushq	%r12		/* pt_regs->r12 */
1215	pushq	%r13		/* pt_regs->r13 */
1216	pushq	%r14		/* pt_regs->r14 */
1217	pushq	%r15		/* pt_regs->r15 */
1218
1219	/*
1220	 * At this point we no longer need to worry about stack damage
1221	 * due to nesting -- we're on the normal thread stack and we're
1222	 * done with the NMI stack.
1223	 */
1224
1225	movq	%rsp, %rdi
1226	movq	$-1, %rsi
1227	call	do_nmi
1228
1229	/*
1230	 * Return back to user mode.  We must *not* do the normal exit
1231	 * work, because we don't want to enable interrupts.  Fortunately,
1232	 * do_nmi doesn't modify pt_regs.
1233	 */
1234	SWAPGS
1235	jmp	restore_c_regs_and_iret
1236
1237.Lnmi_from_kernel:
1238	/*
1239	 * Here's what our stack frame will look like:
1240	 * +---------------------------------------------------------+
1241	 * | original SS                                             |
1242	 * | original Return RSP                                     |
1243	 * | original RFLAGS                                         |
1244	 * | original CS                                             |
1245	 * | original RIP                                            |
1246	 * +---------------------------------------------------------+
1247	 * | temp storage for rdx                                    |
1248	 * +---------------------------------------------------------+
1249	 * | "NMI executing" variable                                |
1250	 * +---------------------------------------------------------+
1251	 * | iret SS          } Copied from "outermost" frame        |
1252	 * | iret Return RSP  } on each loop iteration; overwritten  |
1253	 * | iret RFLAGS      } by a nested NMI to force another     |
1254	 * | iret CS          } iteration if needed.                 |
1255	 * | iret RIP         }                                      |
1256	 * +---------------------------------------------------------+
1257	 * | outermost SS          } initialized in first_nmi;       |
1258	 * | outermost Return RSP  } will not be changed before      |
1259	 * | outermost RFLAGS      } NMI processing is done.         |
1260	 * | outermost CS          } Copied to "iret" frame on each  |
1261	 * | outermost RIP         } iteration.                      |
1262	 * +---------------------------------------------------------+
1263	 * | pt_regs                                                 |
1264	 * +---------------------------------------------------------+
1265	 *
1266	 * The "original" frame is used by hardware.  Before re-enabling
1267	 * NMIs, we need to be done with it, and we need to leave enough
1268	 * space for the asm code here.
1269	 *
1270	 * We return by executing IRET while RSP points to the "iret" frame.
1271	 * That will either return for real or it will loop back into NMI
1272	 * processing.
1273	 *
1274	 * The "outermost" frame is copied to the "iret" frame on each
1275	 * iteration of the loop, so each iteration starts with the "iret"
1276	 * frame pointing to the final return target.
1277	 */
1278
1279	/*
1280	 * Determine whether we're a nested NMI.
1281	 *
1282	 * If we interrupted kernel code between repeat_nmi and
1283	 * end_repeat_nmi, then we are a nested NMI.  We must not
1284	 * modify the "iret" frame because it's being written by
1285	 * the outer NMI.  That's okay; the outer NMI handler is
1286	 * about to about to call do_nmi anyway, so we can just
1287	 * resume the outer NMI.
1288	 */
1289
1290	movq	$repeat_nmi, %rdx
1291	cmpq	8(%rsp), %rdx
1292	ja	1f
1293	movq	$end_repeat_nmi, %rdx
1294	cmpq	8(%rsp), %rdx
1295	ja	nested_nmi_out
12961:
1297
1298	/*
1299	 * Now check "NMI executing".  If it's set, then we're nested.
1300	 * This will not detect if we interrupted an outer NMI just
1301	 * before IRET.
1302	 */
1303	cmpl	$1, -8(%rsp)
1304	je	nested_nmi
1305
1306	/*
1307	 * Now test if the previous stack was an NMI stack.  This covers
1308	 * the case where we interrupt an outer NMI after it clears
1309	 * "NMI executing" but before IRET.  We need to be careful, though:
1310	 * there is one case in which RSP could point to the NMI stack
1311	 * despite there being no NMI active: naughty userspace controls
1312	 * RSP at the very beginning of the SYSCALL targets.  We can
1313	 * pull a fast one on naughty userspace, though: we program
1314	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1315	 * if it controls the kernel's RSP.  We set DF before we clear
1316	 * "NMI executing".
1317	 */
1318	lea	6*8(%rsp), %rdx
1319	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1320	cmpq	%rdx, 4*8(%rsp)
1321	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1322	ja	first_nmi
1323
1324	subq	$EXCEPTION_STKSZ, %rdx
1325	cmpq	%rdx, 4*8(%rsp)
1326	/* If it is below the NMI stack, it is a normal NMI */
1327	jb	first_nmi
1328
1329	/* Ah, it is within the NMI stack. */
1330
1331	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1332	jz	first_nmi	/* RSP was user controlled. */
1333
1334	/* This is a nested NMI. */
1335
1336nested_nmi:
1337	/*
1338	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1339	 * iteration of NMI handling.
1340	 */
1341	subq	$8, %rsp
1342	leaq	-10*8(%rsp), %rdx
1343	pushq	$__KERNEL_DS
1344	pushq	%rdx
1345	pushfq
1346	pushq	$__KERNEL_CS
1347	pushq	$repeat_nmi
1348
1349	/* Put stack back */
1350	addq	$(6*8), %rsp
1351
1352nested_nmi_out:
1353	popq	%rdx
1354
1355	/* We are returning to kernel mode, so this cannot result in a fault. */
1356	INTERRUPT_RETURN
1357
1358first_nmi:
1359	/* Restore rdx. */
1360	movq	(%rsp), %rdx
1361
1362	/* Make room for "NMI executing". */
1363	pushq	$0
1364
1365	/* Leave room for the "iret" frame */
1366	subq	$(5*8), %rsp
1367
1368	/* Copy the "original" frame to the "outermost" frame */
1369	.rept 5
1370	pushq	11*8(%rsp)
1371	.endr
1372
1373	/* Everything up to here is safe from nested NMIs */
1374
1375#ifdef CONFIG_DEBUG_ENTRY
1376	/*
1377	 * For ease of testing, unmask NMIs right away.  Disabled by
1378	 * default because IRET is very expensive.
1379	 */
1380	pushq	$0		/* SS */
1381	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1382	addq	$8, (%rsp)	/* Fix up RSP */
1383	pushfq			/* RFLAGS */
1384	pushq	$__KERNEL_CS	/* CS */
1385	pushq	$1f		/* RIP */
1386	INTERRUPT_RETURN	/* continues at repeat_nmi below */
13871:
1388#endif
1389
1390repeat_nmi:
1391	/*
1392	 * If there was a nested NMI, the first NMI's iret will return
1393	 * here. But NMIs are still enabled and we can take another
1394	 * nested NMI. The nested NMI checks the interrupted RIP to see
1395	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1396	 * it will just return, as we are about to repeat an NMI anyway.
1397	 * This makes it safe to copy to the stack frame that a nested
1398	 * NMI will update.
1399	 *
1400	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1401	 * we're repeating an NMI, gsbase has the same value that it had on
1402	 * the first iteration.  paranoid_entry will load the kernel
1403	 * gsbase if needed before we call do_nmi.  "NMI executing"
1404	 * is zero.
1405	 */
1406	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1407
1408	/*
1409	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1410	 * here must not modify the "iret" frame while we're writing to
1411	 * it or it will end up containing garbage.
1412	 */
1413	addq	$(10*8), %rsp
1414	.rept 5
1415	pushq	-6*8(%rsp)
1416	.endr
1417	subq	$(5*8), %rsp
1418end_repeat_nmi:
1419
1420	/*
1421	 * Everything below this point can be preempted by a nested NMI.
1422	 * If this happens, then the inner NMI will change the "iret"
1423	 * frame to point back to repeat_nmi.
1424	 */
1425	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1426	ALLOC_PT_GPREGS_ON_STACK
1427
1428	/*
1429	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1430	 * as we should not be calling schedule in NMI context.
1431	 * Even with normal interrupts enabled. An NMI should not be
1432	 * setting NEED_RESCHED or anything that normal interrupts and
1433	 * exceptions might do.
1434	 */
1435	call	paranoid_entry
1436
1437	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1438	movq	%rsp, %rdi
1439	movq	$-1, %rsi
1440	call	do_nmi
1441
1442	testl	%ebx, %ebx			/* swapgs needed? */
1443	jnz	nmi_restore
1444nmi_swapgs:
1445	SWAPGS_UNSAFE_STACK
1446nmi_restore:
1447	RESTORE_EXTRA_REGS
1448	RESTORE_C_REGS
1449
1450	/* Point RSP at the "iret" frame. */
1451	REMOVE_PT_GPREGS_FROM_STACK 6*8
1452
1453	/*
1454	 * Clear "NMI executing".  Set DF first so that we can easily
1455	 * distinguish the remaining code between here and IRET from
1456	 * the SYSCALL entry and exit paths.  On a native kernel, we
1457	 * could just inspect RIP, but, on paravirt kernels,
1458	 * INTERRUPT_RETURN can translate into a jump into a
1459	 * hypercall page.
1460	 */
1461	std
1462	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1463
1464	/*
1465	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1466	 * stack in a single instruction.  We are returning to kernel
1467	 * mode, so this cannot result in a fault.
1468	 */
1469	INTERRUPT_RETURN
1470END(nmi)
1471
1472ENTRY(ignore_sysret)
1473	mov	$-ENOSYS, %eax
1474	sysret
1475END(ignore_sysret)
1476