1/* 2 * linux/arch/x86_64/entry.S 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 7 * 8 * entry.S contains the system-call and fault low-level handling routines. 9 * 10 * Some of this is documented in Documentation/x86/entry_64.txt 11 * 12 * A note on terminology: 13 * - iret frame: Architecture defined interrupt frame from SS to RIP 14 * at the top of the kernel process stack. 15 * 16 * Some macro usage: 17 * - ENTRY/END: Define functions in the symbol table. 18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include "calling.h" 26#include <asm/asm-offsets.h> 27#include <asm/msr.h> 28#include <asm/unistd.h> 29#include <asm/thread_info.h> 30#include <asm/hw_irq.h> 31#include <asm/page_types.h> 32#include <asm/irqflags.h> 33#include <asm/paravirt.h> 34#include <asm/percpu.h> 35#include <asm/asm.h> 36#include <asm/smap.h> 37#include <asm/pgtable_types.h> 38#include <asm/export.h> 39#include <asm/frame.h> 40#include <linux/err.h> 41 42.code64 43.section .entry.text, "ax" 44 45#ifdef CONFIG_PARAVIRT 46ENTRY(native_usergs_sysret64) 47 swapgs 48 sysretq 49ENDPROC(native_usergs_sysret64) 50#endif /* CONFIG_PARAVIRT */ 51 52.macro TRACE_IRQS_IRETQ 53#ifdef CONFIG_TRACE_IRQFLAGS 54 bt $9, EFLAGS(%rsp) /* interrupts off? */ 55 jnc 1f 56 TRACE_IRQS_ON 571: 58#endif 59.endm 60 61/* 62 * When dynamic function tracer is enabled it will add a breakpoint 63 * to all locations that it is about to modify, sync CPUs, update 64 * all the code, sync CPUs, then remove the breakpoints. In this time 65 * if lockdep is enabled, it might jump back into the debug handler 66 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). 67 * 68 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to 69 * make sure the stack pointer does not get reset back to the top 70 * of the debug stack, and instead just reuses the current stack. 71 */ 72#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) 73 74.macro TRACE_IRQS_OFF_DEBUG 75 call debug_stack_set_zero 76 TRACE_IRQS_OFF 77 call debug_stack_reset 78.endm 79 80.macro TRACE_IRQS_ON_DEBUG 81 call debug_stack_set_zero 82 TRACE_IRQS_ON 83 call debug_stack_reset 84.endm 85 86.macro TRACE_IRQS_IRETQ_DEBUG 87 bt $9, EFLAGS(%rsp) /* interrupts off? */ 88 jnc 1f 89 TRACE_IRQS_ON_DEBUG 901: 91.endm 92 93#else 94# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF 95# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON 96# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ 97#endif 98 99/* 100 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 101 * 102 * This is the only entry point used for 64-bit system calls. The 103 * hardware interface is reasonably well designed and the register to 104 * argument mapping Linux uses fits well with the registers that are 105 * available when SYSCALL is used. 106 * 107 * SYSCALL instructions can be found inlined in libc implementations as 108 * well as some other programs and libraries. There are also a handful 109 * of SYSCALL instructions in the vDSO used, for example, as a 110 * clock_gettimeofday fallback. 111 * 112 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 113 * then loads new ss, cs, and rip from previously programmed MSRs. 114 * rflags gets masked by a value from another MSR (so CLD and CLAC 115 * are not needed). SYSCALL does not save anything on the stack 116 * and does not change rsp. 117 * 118 * Registers on entry: 119 * rax system call number 120 * rcx return address 121 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 122 * rdi arg0 123 * rsi arg1 124 * rdx arg2 125 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 126 * r8 arg4 127 * r9 arg5 128 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 129 * 130 * Only called from user space. 131 * 132 * When user can change pt_regs->foo always force IRET. That is because 133 * it deals with uncanonical addresses better. SYSRET has trouble 134 * with them due to bugs in both AMD and Intel CPUs. 135 */ 136 137ENTRY(entry_SYSCALL_64) 138 /* 139 * Interrupts are off on entry. 140 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, 141 * it is too small to ever cause noticeable irq latency. 142 */ 143 SWAPGS_UNSAFE_STACK 144 /* 145 * A hypervisor implementation might want to use a label 146 * after the swapgs, so that it can do the swapgs 147 * for the guest and jump here on syscall. 148 */ 149GLOBAL(entry_SYSCALL_64_after_swapgs) 150 151 movq %rsp, PER_CPU_VAR(rsp_scratch) 152 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 153 154 TRACE_IRQS_OFF 155 156 /* Construct struct pt_regs on stack */ 157 pushq $__USER_DS /* pt_regs->ss */ 158 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ 159 pushq %r11 /* pt_regs->flags */ 160 pushq $__USER_CS /* pt_regs->cs */ 161 pushq %rcx /* pt_regs->ip */ 162 pushq %rax /* pt_regs->orig_ax */ 163 pushq %rdi /* pt_regs->di */ 164 pushq %rsi /* pt_regs->si */ 165 pushq %rdx /* pt_regs->dx */ 166 pushq %rcx /* pt_regs->cx */ 167 pushq $-ENOSYS /* pt_regs->ax */ 168 pushq %r8 /* pt_regs->r8 */ 169 pushq %r9 /* pt_regs->r9 */ 170 pushq %r10 /* pt_regs->r10 */ 171 pushq %r11 /* pt_regs->r11 */ 172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */ 173 174 /* 175 * If we need to do entry work or if we guess we'll need to do 176 * exit work, go straight to the slow path. 177 */ 178 movq PER_CPU_VAR(current_task), %r11 179 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11) 180 jnz entry_SYSCALL64_slow_path 181 182entry_SYSCALL_64_fastpath: 183 /* 184 * Easy case: enable interrupts and issue the syscall. If the syscall 185 * needs pt_regs, we'll call a stub that disables interrupts again 186 * and jumps to the slow path. 187 */ 188 TRACE_IRQS_ON 189 ENABLE_INTERRUPTS(CLBR_NONE) 190#if __SYSCALL_MASK == ~0 191 cmpq $__NR_syscall_max, %rax 192#else 193 andl $__SYSCALL_MASK, %eax 194 cmpl $__NR_syscall_max, %eax 195#endif 196 ja 1f /* return -ENOSYS (already in pt_regs->ax) */ 197 movq %r10, %rcx 198 199 /* 200 * This call instruction is handled specially in stub_ptregs_64. 201 * It might end up jumping to the slow path. If it jumps, RAX 202 * and all argument registers are clobbered. 203 */ 204 call *sys_call_table(, %rax, 8) 205.Lentry_SYSCALL_64_after_fastpath_call: 206 207 movq %rax, RAX(%rsp) 2081: 209 210 /* 211 * If we get here, then we know that pt_regs is clean for SYSRET64. 212 * If we see that no exit work is required (which we are required 213 * to check with IRQs off), then we can go straight to SYSRET64. 214 */ 215 DISABLE_INTERRUPTS(CLBR_ANY) 216 TRACE_IRQS_OFF 217 movq PER_CPU_VAR(current_task), %r11 218 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11) 219 jnz 1f 220 221 LOCKDEP_SYS_EXIT 222 TRACE_IRQS_ON /* user mode is traced as IRQs on */ 223 movq RIP(%rsp), %rcx 224 movq EFLAGS(%rsp), %r11 225 RESTORE_C_REGS_EXCEPT_RCX_R11 226 movq RSP(%rsp), %rsp 227 USERGS_SYSRET64 228 2291: 230 /* 231 * The fast path looked good when we started, but something changed 232 * along the way and we need to switch to the slow path. Calling 233 * raise(3) will trigger this, for example. IRQs are off. 234 */ 235 TRACE_IRQS_ON 236 ENABLE_INTERRUPTS(CLBR_ANY) 237 SAVE_EXTRA_REGS 238 movq %rsp, %rdi 239 call syscall_return_slowpath /* returns with IRQs disabled */ 240 jmp return_from_SYSCALL_64 241 242entry_SYSCALL64_slow_path: 243 /* IRQs are off. */ 244 SAVE_EXTRA_REGS 245 movq %rsp, %rdi 246 call do_syscall_64 /* returns with IRQs disabled */ 247 248return_from_SYSCALL_64: 249 RESTORE_EXTRA_REGS 250 TRACE_IRQS_IRETQ /* we're about to change IF */ 251 252 /* 253 * Try to use SYSRET instead of IRET if we're returning to 254 * a completely clean 64-bit userspace context. 255 */ 256 movq RCX(%rsp), %rcx 257 movq RIP(%rsp), %r11 258 cmpq %rcx, %r11 /* RCX == RIP */ 259 jne opportunistic_sysret_failed 260 261 /* 262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 263 * in kernel space. This essentially lets the user take over 264 * the kernel, since userspace controls RSP. 265 * 266 * If width of "canonical tail" ever becomes variable, this will need 267 * to be updated to remain correct on both old and new CPUs. 268 * 269 * Change top 16 bits to be the sign-extension of 47th bit 270 */ 271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 273 274 /* If this changed %rcx, it was not canonical */ 275 cmpq %rcx, %r11 276 jne opportunistic_sysret_failed 277 278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 279 jne opportunistic_sysret_failed 280 281 movq R11(%rsp), %r11 282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 283 jne opportunistic_sysret_failed 284 285 /* 286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 287 * restore RF properly. If the slowpath sets it for whatever reason, we 288 * need to restore it correctly. 289 * 290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 291 * trap from userspace immediately after SYSRET. This would cause an 292 * infinite loop whenever #DB happens with register state that satisfies 293 * the opportunistic SYSRET conditions. For example, single-stepping 294 * this user code: 295 * 296 * movq $stuck_here, %rcx 297 * pushfq 298 * popq %r11 299 * stuck_here: 300 * 301 * would never get past 'stuck_here'. 302 */ 303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 304 jnz opportunistic_sysret_failed 305 306 /* nothing to check for RSP */ 307 308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 309 jne opportunistic_sysret_failed 310 311 /* 312 * We win! This label is here just for ease of understanding 313 * perf profiles. Nothing jumps here. 314 */ 315syscall_return_via_sysret: 316 /* rcx and r11 are already restored (see code above) */ 317 RESTORE_C_REGS_EXCEPT_RCX_R11 318 movq RSP(%rsp), %rsp 319 USERGS_SYSRET64 320 321opportunistic_sysret_failed: 322 SWAPGS 323 jmp restore_c_regs_and_iret 324END(entry_SYSCALL_64) 325 326ENTRY(stub_ptregs_64) 327 /* 328 * Syscalls marked as needing ptregs land here. 329 * If we are on the fast path, we need to save the extra regs, 330 * which we achieve by trying again on the slow path. If we are on 331 * the slow path, the extra regs are already saved. 332 * 333 * RAX stores a pointer to the C function implementing the syscall. 334 * IRQs are on. 335 */ 336 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp) 337 jne 1f 338 339 /* 340 * Called from fast path -- disable IRQs again, pop return address 341 * and jump to slow path 342 */ 343 DISABLE_INTERRUPTS(CLBR_ANY) 344 TRACE_IRQS_OFF 345 popq %rax 346 jmp entry_SYSCALL64_slow_path 347 3481: 349 jmp *%rax /* Called from C */ 350END(stub_ptregs_64) 351 352.macro ptregs_stub func 353ENTRY(ptregs_\func) 354 leaq \func(%rip), %rax 355 jmp stub_ptregs_64 356END(ptregs_\func) 357.endm 358 359/* Instantiate ptregs_stub for each ptregs-using syscall */ 360#define __SYSCALL_64_QUAL_(sym) 361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym 362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym) 363#include <asm/syscalls_64.h> 364 365/* 366 * %rdi: prev task 367 * %rsi: next task 368 */ 369ENTRY(__switch_to_asm) 370 /* 371 * Save callee-saved registers 372 * This must match the order in inactive_task_frame 373 */ 374 pushq %rbp 375 pushq %rbx 376 pushq %r12 377 pushq %r13 378 pushq %r14 379 pushq %r15 380 381 /* switch stack */ 382 movq %rsp, TASK_threadsp(%rdi) 383 movq TASK_threadsp(%rsi), %rsp 384 385#ifdef CONFIG_CC_STACKPROTECTOR 386 movq TASK_stack_canary(%rsi), %rbx 387 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset 388#endif 389 390 /* restore callee-saved registers */ 391 popq %r15 392 popq %r14 393 popq %r13 394 popq %r12 395 popq %rbx 396 popq %rbp 397 398 jmp __switch_to 399END(__switch_to_asm) 400 401/* 402 * A newly forked process directly context switches into this address. 403 * 404 * rax: prev task we switched from 405 * rbx: kernel thread func (NULL for user thread) 406 * r12: kernel thread arg 407 */ 408ENTRY(ret_from_fork) 409 FRAME_BEGIN /* help unwinder find end of stack */ 410 movq %rax, %rdi 411 call schedule_tail /* rdi: 'prev' task parameter */ 412 413 testq %rbx, %rbx /* from kernel_thread? */ 414 jnz 1f /* kernel threads are uncommon */ 415 4162: 417 leaq FRAME_OFFSET(%rsp),%rdi /* pt_regs pointer */ 418 call syscall_return_slowpath /* returns with IRQs disabled */ 419 TRACE_IRQS_ON /* user mode is traced as IRQS on */ 420 SWAPGS 421 FRAME_END 422 jmp restore_regs_and_iret 423 4241: 425 /* kernel thread */ 426 movq %r12, %rdi 427 call *%rbx 428 /* 429 * A kernel thread is allowed to return here after successfully 430 * calling do_execve(). Exit to userspace to complete the execve() 431 * syscall. 432 */ 433 movq $0, RAX(%rsp) 434 jmp 2b 435END(ret_from_fork) 436 437/* 438 * Build the entry stubs with some assembler magic. 439 * We pack 1 stub into every 8-byte block. 440 */ 441 .align 8 442ENTRY(irq_entries_start) 443 vector=FIRST_EXTERNAL_VECTOR 444 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) 445 pushq $(~vector+0x80) /* Note: always in signed byte range */ 446 vector=vector+1 447 jmp common_interrupt 448 .align 8 449 .endr 450END(irq_entries_start) 451 452/* 453 * Interrupt entry/exit. 454 * 455 * Interrupt entry points save only callee clobbered registers in fast path. 456 * 457 * Entry runs with interrupts off. 458 */ 459 460/* 0(%rsp): ~(interrupt number) */ 461 .macro interrupt func 462 cld 463 ALLOC_PT_GPREGS_ON_STACK 464 SAVE_C_REGS 465 SAVE_EXTRA_REGS 466 ENCODE_FRAME_POINTER 467 468 testb $3, CS(%rsp) 469 jz 1f 470 471 /* 472 * IRQ from user mode. Switch to kernel gsbase and inform context 473 * tracking that we're in kernel mode. 474 */ 475 SWAPGS 476 477 /* 478 * We need to tell lockdep that IRQs are off. We can't do this until 479 * we fix gsbase, and we should do it before enter_from_user_mode 480 * (which can take locks). Since TRACE_IRQS_OFF idempotent, 481 * the simplest way to handle it is to just call it twice if 482 * we enter from user mode. There's no reason to optimize this since 483 * TRACE_IRQS_OFF is a no-op if lockdep is off. 484 */ 485 TRACE_IRQS_OFF 486 487 CALL_enter_from_user_mode 488 4891: 490 /* 491 * Save previous stack pointer, optionally switch to interrupt stack. 492 * irq_count is used to check if a CPU is already on an interrupt stack 493 * or not. While this is essentially redundant with preempt_count it is 494 * a little cheaper to use a separate counter in the PDA (short of 495 * moving irq_enter into assembly, which would be too much work) 496 */ 497 movq %rsp, %rdi 498 incl PER_CPU_VAR(irq_count) 499 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp 500 pushq %rdi 501 /* We entered an interrupt context - irqs are off: */ 502 TRACE_IRQS_OFF 503 504 call \func /* rdi points to pt_regs */ 505 .endm 506 507 /* 508 * The interrupt stubs push (~vector+0x80) onto the stack and 509 * then jump to common_interrupt. 510 */ 511 .p2align CONFIG_X86_L1_CACHE_SHIFT 512common_interrupt: 513 ASM_CLAC 514 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ 515 interrupt do_IRQ 516 /* 0(%rsp): old RSP */ 517ret_from_intr: 518 DISABLE_INTERRUPTS(CLBR_ANY) 519 TRACE_IRQS_OFF 520 decl PER_CPU_VAR(irq_count) 521 522 /* Restore saved previous stack */ 523 popq %rsp 524 525 testb $3, CS(%rsp) 526 jz retint_kernel 527 528 /* Interrupt came from user space */ 529GLOBAL(retint_user) 530 mov %rsp,%rdi 531 call prepare_exit_to_usermode 532 TRACE_IRQS_IRETQ 533 SWAPGS 534 jmp restore_regs_and_iret 535 536/* Returning to kernel space */ 537retint_kernel: 538#ifdef CONFIG_PREEMPT 539 /* Interrupts are off */ 540 /* Check if we need preemption */ 541 bt $9, EFLAGS(%rsp) /* were interrupts off? */ 542 jnc 1f 5430: cmpl $0, PER_CPU_VAR(__preempt_count) 544 jnz 1f 545 call preempt_schedule_irq 546 jmp 0b 5471: 548#endif 549 /* 550 * The iretq could re-enable interrupts: 551 */ 552 TRACE_IRQS_IRETQ 553 554/* 555 * At this label, code paths which return to kernel and to user, 556 * which come from interrupts/exception and from syscalls, merge. 557 */ 558GLOBAL(restore_regs_and_iret) 559 RESTORE_EXTRA_REGS 560restore_c_regs_and_iret: 561 RESTORE_C_REGS 562 REMOVE_PT_GPREGS_FROM_STACK 8 563 INTERRUPT_RETURN 564 565ENTRY(native_iret) 566 /* 567 * Are we returning to a stack segment from the LDT? Note: in 568 * 64-bit mode SS:RSP on the exception stack is always valid. 569 */ 570#ifdef CONFIG_X86_ESPFIX64 571 testb $4, (SS-RIP)(%rsp) 572 jnz native_irq_return_ldt 573#endif 574 575.global native_irq_return_iret 576native_irq_return_iret: 577 /* 578 * This may fault. Non-paranoid faults on return to userspace are 579 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 580 * Double-faults due to espfix64 are handled in do_double_fault. 581 * Other faults here are fatal. 582 */ 583 iretq 584 585#ifdef CONFIG_X86_ESPFIX64 586native_irq_return_ldt: 587 /* 588 * We are running with user GSBASE. All GPRs contain their user 589 * values. We have a percpu ESPFIX stack that is eight slots 590 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 591 * of the ESPFIX stack. 592 * 593 * We clobber RAX and RDI in this code. We stash RDI on the 594 * normal stack and RAX on the ESPFIX stack. 595 * 596 * The ESPFIX stack layout we set up looks like this: 597 * 598 * --- top of ESPFIX stack --- 599 * SS 600 * RSP 601 * RFLAGS 602 * CS 603 * RIP <-- RSP points here when we're done 604 * RAX <-- espfix_waddr points here 605 * --- bottom of ESPFIX stack --- 606 */ 607 608 pushq %rdi /* Stash user RDI */ 609 SWAPGS 610 movq PER_CPU_VAR(espfix_waddr), %rdi 611 movq %rax, (0*8)(%rdi) /* user RAX */ 612 movq (1*8)(%rsp), %rax /* user RIP */ 613 movq %rax, (1*8)(%rdi) 614 movq (2*8)(%rsp), %rax /* user CS */ 615 movq %rax, (2*8)(%rdi) 616 movq (3*8)(%rsp), %rax /* user RFLAGS */ 617 movq %rax, (3*8)(%rdi) 618 movq (5*8)(%rsp), %rax /* user SS */ 619 movq %rax, (5*8)(%rdi) 620 movq (4*8)(%rsp), %rax /* user RSP */ 621 movq %rax, (4*8)(%rdi) 622 /* Now RAX == RSP. */ 623 624 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 625 popq %rdi /* Restore user RDI */ 626 627 /* 628 * espfix_stack[31:16] == 0. The page tables are set up such that 629 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 630 * espfix_waddr for any X. That is, there are 65536 RO aliases of 631 * the same page. Set up RSP so that RSP[31:16] contains the 632 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 633 * still points to an RO alias of the ESPFIX stack. 634 */ 635 orq PER_CPU_VAR(espfix_stack), %rax 636 SWAPGS 637 movq %rax, %rsp 638 639 /* 640 * At this point, we cannot write to the stack any more, but we can 641 * still read. 642 */ 643 popq %rax /* Restore user RAX */ 644 645 /* 646 * RSP now points to an ordinary IRET frame, except that the page 647 * is read-only and RSP[31:16] are preloaded with the userspace 648 * values. We can now IRET back to userspace. 649 */ 650 jmp native_irq_return_iret 651#endif 652END(common_interrupt) 653 654/* 655 * APIC interrupts. 656 */ 657.macro apicinterrupt3 num sym do_sym 658ENTRY(\sym) 659 ASM_CLAC 660 pushq $~(\num) 661.Lcommon_\sym: 662 interrupt \do_sym 663 jmp ret_from_intr 664END(\sym) 665.endm 666 667#ifdef CONFIG_TRACING 668#define trace(sym) trace_##sym 669#define smp_trace(sym) smp_trace_##sym 670 671.macro trace_apicinterrupt num sym 672apicinterrupt3 \num trace(\sym) smp_trace(\sym) 673.endm 674#else 675.macro trace_apicinterrupt num sym do_sym 676.endm 677#endif 678 679/* Make sure APIC interrupt handlers end up in the irqentry section: */ 680#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN) 681# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax" 682# define POP_SECTION_IRQENTRY .popsection 683#else 684# define PUSH_SECTION_IRQENTRY 685# define POP_SECTION_IRQENTRY 686#endif 687 688.macro apicinterrupt num sym do_sym 689PUSH_SECTION_IRQENTRY 690apicinterrupt3 \num \sym \do_sym 691trace_apicinterrupt \num \sym 692POP_SECTION_IRQENTRY 693.endm 694 695#ifdef CONFIG_SMP 696apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt 697apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt 698#endif 699 700#ifdef CONFIG_X86_UV 701apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt 702#endif 703 704apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt 705apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi 706 707#ifdef CONFIG_HAVE_KVM 708apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi 709apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi 710#endif 711 712#ifdef CONFIG_X86_MCE_THRESHOLD 713apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt 714#endif 715 716#ifdef CONFIG_X86_MCE_AMD 717apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt 718#endif 719 720#ifdef CONFIG_X86_THERMAL_VECTOR 721apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt 722#endif 723 724#ifdef CONFIG_SMP 725apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt 726apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt 727apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt 728#endif 729 730apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt 731apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt 732 733#ifdef CONFIG_IRQ_WORK 734apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt 735#endif 736 737/* 738 * Exception entry points. 739 */ 740#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) 741 742.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 743ENTRY(\sym) 744 /* Sanity check */ 745 .if \shift_ist != -1 && \paranoid == 0 746 .error "using shift_ist requires paranoid=1" 747 .endif 748 749 ASM_CLAC 750 PARAVIRT_ADJUST_EXCEPTION_FRAME 751 752 .ifeq \has_error_code 753 pushq $-1 /* ORIG_RAX: no syscall to restart */ 754 .endif 755 756 ALLOC_PT_GPREGS_ON_STACK 757 758 .if \paranoid 759 .if \paranoid == 1 760 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */ 761 jnz 1f 762 .endif 763 call paranoid_entry 764 .else 765 call error_entry 766 .endif 767 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ 768 769 .if \paranoid 770 .if \shift_ist != -1 771 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ 772 .else 773 TRACE_IRQS_OFF 774 .endif 775 .endif 776 777 movq %rsp, %rdi /* pt_regs pointer */ 778 779 .if \has_error_code 780 movq ORIG_RAX(%rsp), %rsi /* get error code */ 781 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 782 .else 783 xorl %esi, %esi /* no error code */ 784 .endif 785 786 .if \shift_ist != -1 787 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 788 .endif 789 790 call \do_sym 791 792 .if \shift_ist != -1 793 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 794 .endif 795 796 /* these procedures expect "no swapgs" flag in ebx */ 797 .if \paranoid 798 jmp paranoid_exit 799 .else 800 jmp error_exit 801 .endif 802 803 .if \paranoid == 1 804 /* 805 * Paranoid entry from userspace. Switch stacks and treat it 806 * as a normal entry. This means that paranoid handlers 807 * run in real process context if user_mode(regs). 808 */ 8091: 810 call error_entry 811 812 813 movq %rsp, %rdi /* pt_regs pointer */ 814 call sync_regs 815 movq %rax, %rsp /* switch stack */ 816 817 movq %rsp, %rdi /* pt_regs pointer */ 818 819 .if \has_error_code 820 movq ORIG_RAX(%rsp), %rsi /* get error code */ 821 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 822 .else 823 xorl %esi, %esi /* no error code */ 824 .endif 825 826 call \do_sym 827 828 jmp error_exit /* %ebx: no swapgs flag */ 829 .endif 830END(\sym) 831.endm 832 833#ifdef CONFIG_TRACING 834.macro trace_idtentry sym do_sym has_error_code:req 835idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code 836idtentry \sym \do_sym has_error_code=\has_error_code 837.endm 838#else 839.macro trace_idtentry sym do_sym has_error_code:req 840idtentry \sym \do_sym has_error_code=\has_error_code 841.endm 842#endif 843 844idtentry divide_error do_divide_error has_error_code=0 845idtentry overflow do_overflow has_error_code=0 846idtentry bounds do_bounds has_error_code=0 847idtentry invalid_op do_invalid_op has_error_code=0 848idtentry device_not_available do_device_not_available has_error_code=0 849idtentry double_fault do_double_fault has_error_code=1 paranoid=2 850idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 851idtentry invalid_TSS do_invalid_TSS has_error_code=1 852idtentry segment_not_present do_segment_not_present has_error_code=1 853idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 854idtentry coprocessor_error do_coprocessor_error has_error_code=0 855idtentry alignment_check do_alignment_check has_error_code=1 856idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 857 858 859 /* 860 * Reload gs selector with exception handling 861 * edi: new selector 862 */ 863ENTRY(native_load_gs_index) 864 pushfq 865 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) 866 SWAPGS 867.Lgs_change: 868 movl %edi, %gs 8692: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 870 SWAPGS 871 popfq 872 ret 873END(native_load_gs_index) 874EXPORT_SYMBOL(native_load_gs_index) 875 876 _ASM_EXTABLE(.Lgs_change, bad_gs) 877 .section .fixup, "ax" 878 /* running with kernelgs */ 879bad_gs: 880 SWAPGS /* switch back to user gs */ 881.macro ZAP_GS 882 /* This can't be a string because the preprocessor needs to see it. */ 883 movl $__USER_DS, %eax 884 movl %eax, %gs 885.endm 886 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 887 xorl %eax, %eax 888 movl %eax, %gs 889 jmp 2b 890 .previous 891 892/* Call softirq on interrupt stack. Interrupts are off. */ 893ENTRY(do_softirq_own_stack) 894 pushq %rbp 895 mov %rsp, %rbp 896 incl PER_CPU_VAR(irq_count) 897 cmove PER_CPU_VAR(irq_stack_ptr), %rsp 898 push %rbp /* frame pointer backlink */ 899 call __do_softirq 900 leaveq 901 decl PER_CPU_VAR(irq_count) 902 ret 903END(do_softirq_own_stack) 904 905#ifdef CONFIG_XEN 906idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 907 908/* 909 * A note on the "critical region" in our callback handler. 910 * We want to avoid stacking callback handlers due to events occurring 911 * during handling of the last event. To do this, we keep events disabled 912 * until we've done all processing. HOWEVER, we must enable events before 913 * popping the stack frame (can't be done atomically) and so it would still 914 * be possible to get enough handler activations to overflow the stack. 915 * Although unlikely, bugs of that kind are hard to track down, so we'd 916 * like to avoid the possibility. 917 * So, on entry to the handler we detect whether we interrupted an 918 * existing activation in its critical region -- if so, we pop the current 919 * activation and restart the handler using the previous one. 920 */ 921ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */ 922 923/* 924 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 925 * see the correct pointer to the pt_regs 926 */ 927 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 92811: incl PER_CPU_VAR(irq_count) 929 movq %rsp, %rbp 930 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp 931 pushq %rbp /* frame pointer backlink */ 932 call xen_evtchn_do_upcall 933 popq %rsp 934 decl PER_CPU_VAR(irq_count) 935#ifndef CONFIG_PREEMPT 936 call xen_maybe_preempt_hcall 937#endif 938 jmp error_exit 939END(xen_do_hypervisor_callback) 940 941/* 942 * Hypervisor uses this for application faults while it executes. 943 * We get here for two reasons: 944 * 1. Fault while reloading DS, ES, FS or GS 945 * 2. Fault while executing IRET 946 * Category 1 we do not need to fix up as Xen has already reloaded all segment 947 * registers that could be reloaded and zeroed the others. 948 * Category 2 we fix up by killing the current process. We cannot use the 949 * normal Linux return path in this case because if we use the IRET hypercall 950 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 951 * We distinguish between categories by comparing each saved segment register 952 * with its current contents: any discrepancy means we in category 1. 953 */ 954ENTRY(xen_failsafe_callback) 955 movl %ds, %ecx 956 cmpw %cx, 0x10(%rsp) 957 jne 1f 958 movl %es, %ecx 959 cmpw %cx, 0x18(%rsp) 960 jne 1f 961 movl %fs, %ecx 962 cmpw %cx, 0x20(%rsp) 963 jne 1f 964 movl %gs, %ecx 965 cmpw %cx, 0x28(%rsp) 966 jne 1f 967 /* All segments match their saved values => Category 2 (Bad IRET). */ 968 movq (%rsp), %rcx 969 movq 8(%rsp), %r11 970 addq $0x30, %rsp 971 pushq $0 /* RIP */ 972 pushq %r11 973 pushq %rcx 974 jmp general_protection 9751: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 976 movq (%rsp), %rcx 977 movq 8(%rsp), %r11 978 addq $0x30, %rsp 979 pushq $-1 /* orig_ax = -1 => not a system call */ 980 ALLOC_PT_GPREGS_ON_STACK 981 SAVE_C_REGS 982 SAVE_EXTRA_REGS 983 ENCODE_FRAME_POINTER 984 jmp error_exit 985END(xen_failsafe_callback) 986 987apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 988 xen_hvm_callback_vector xen_evtchn_do_upcall 989 990#endif /* CONFIG_XEN */ 991 992#if IS_ENABLED(CONFIG_HYPERV) 993apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 994 hyperv_callback_vector hyperv_vector_handler 995#endif /* CONFIG_HYPERV */ 996 997idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 998idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 999idtentry stack_segment do_stack_segment has_error_code=1 1000 1001#ifdef CONFIG_XEN 1002idtentry xen_debug do_debug has_error_code=0 1003idtentry xen_int3 do_int3 has_error_code=0 1004idtentry xen_stack_segment do_stack_segment has_error_code=1 1005#endif 1006 1007idtentry general_protection do_general_protection has_error_code=1 1008trace_idtentry page_fault do_page_fault has_error_code=1 1009 1010#ifdef CONFIG_KVM_GUEST 1011idtentry async_page_fault do_async_page_fault has_error_code=1 1012#endif 1013 1014#ifdef CONFIG_X86_MCE 1015idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) 1016#endif 1017 1018/* 1019 * Save all registers in pt_regs, and switch gs if needed. 1020 * Use slow, but surefire "are we in kernel?" check. 1021 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 1022 */ 1023ENTRY(paranoid_entry) 1024 cld 1025 SAVE_C_REGS 8 1026 SAVE_EXTRA_REGS 8 1027 ENCODE_FRAME_POINTER 8 1028 movl $1, %ebx 1029 movl $MSR_GS_BASE, %ecx 1030 rdmsr 1031 testl %edx, %edx 1032 js 1f /* negative -> in kernel */ 1033 SWAPGS 1034 xorl %ebx, %ebx 10351: ret 1036END(paranoid_entry) 1037 1038/* 1039 * "Paranoid" exit path from exception stack. This is invoked 1040 * only on return from non-NMI IST interrupts that came 1041 * from kernel space. 1042 * 1043 * We may be returning to very strange contexts (e.g. very early 1044 * in syscall entry), so checking for preemption here would 1045 * be complicated. Fortunately, we there's no good reason 1046 * to try to handle preemption here. 1047 * 1048 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) 1049 */ 1050ENTRY(paranoid_exit) 1051 DISABLE_INTERRUPTS(CLBR_ANY) 1052 TRACE_IRQS_OFF_DEBUG 1053 testl %ebx, %ebx /* swapgs needed? */ 1054 jnz paranoid_exit_no_swapgs 1055 TRACE_IRQS_IRETQ 1056 SWAPGS_UNSAFE_STACK 1057 jmp paranoid_exit_restore 1058paranoid_exit_no_swapgs: 1059 TRACE_IRQS_IRETQ_DEBUG 1060paranoid_exit_restore: 1061 RESTORE_EXTRA_REGS 1062 RESTORE_C_REGS 1063 REMOVE_PT_GPREGS_FROM_STACK 8 1064 INTERRUPT_RETURN 1065END(paranoid_exit) 1066 1067/* 1068 * Save all registers in pt_regs, and switch gs if needed. 1069 * Return: EBX=0: came from user mode; EBX=1: otherwise 1070 */ 1071ENTRY(error_entry) 1072 cld 1073 SAVE_C_REGS 8 1074 SAVE_EXTRA_REGS 8 1075 ENCODE_FRAME_POINTER 8 1076 xorl %ebx, %ebx 1077 testb $3, CS+8(%rsp) 1078 jz .Lerror_kernelspace 1079 1080 /* 1081 * We entered from user mode or we're pretending to have entered 1082 * from user mode due to an IRET fault. 1083 */ 1084 SWAPGS 1085 1086.Lerror_entry_from_usermode_after_swapgs: 1087 /* 1088 * We need to tell lockdep that IRQs are off. We can't do this until 1089 * we fix gsbase, and we should do it before enter_from_user_mode 1090 * (which can take locks). 1091 */ 1092 TRACE_IRQS_OFF 1093 CALL_enter_from_user_mode 1094 ret 1095 1096.Lerror_entry_done: 1097 TRACE_IRQS_OFF 1098 ret 1099 1100 /* 1101 * There are two places in the kernel that can potentially fault with 1102 * usergs. Handle them here. B stepping K8s sometimes report a 1103 * truncated RIP for IRET exceptions returning to compat mode. Check 1104 * for these here too. 1105 */ 1106.Lerror_kernelspace: 1107 incl %ebx 1108 leaq native_irq_return_iret(%rip), %rcx 1109 cmpq %rcx, RIP+8(%rsp) 1110 je .Lerror_bad_iret 1111 movl %ecx, %eax /* zero extend */ 1112 cmpq %rax, RIP+8(%rsp) 1113 je .Lbstep_iret 1114 cmpq $.Lgs_change, RIP+8(%rsp) 1115 jne .Lerror_entry_done 1116 1117 /* 1118 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1119 * gsbase and proceed. We'll fix up the exception and land in 1120 * .Lgs_change's error handler with kernel gsbase. 1121 */ 1122 SWAPGS 1123 jmp .Lerror_entry_done 1124 1125.Lbstep_iret: 1126 /* Fix truncated RIP */ 1127 movq %rcx, RIP+8(%rsp) 1128 /* fall through */ 1129 1130.Lerror_bad_iret: 1131 /* 1132 * We came from an IRET to user mode, so we have user gsbase. 1133 * Switch to kernel gsbase: 1134 */ 1135 SWAPGS 1136 1137 /* 1138 * Pretend that the exception came from user mode: set up pt_regs 1139 * as if we faulted immediately after IRET and clear EBX so that 1140 * error_exit knows that we will be returning to user mode. 1141 */ 1142 mov %rsp, %rdi 1143 call fixup_bad_iret 1144 mov %rax, %rsp 1145 decl %ebx 1146 jmp .Lerror_entry_from_usermode_after_swapgs 1147END(error_entry) 1148 1149 1150/* 1151 * On entry, EBX is a "return to kernel mode" flag: 1152 * 1: already in kernel mode, don't need SWAPGS 1153 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode 1154 */ 1155ENTRY(error_exit) 1156 DISABLE_INTERRUPTS(CLBR_ANY) 1157 TRACE_IRQS_OFF 1158 testl %ebx, %ebx 1159 jnz retint_kernel 1160 jmp retint_user 1161END(error_exit) 1162 1163/* Runs on exception stack */ 1164ENTRY(nmi) 1165 /* 1166 * Fix up the exception frame if we're on Xen. 1167 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most 1168 * one value to the stack on native, so it may clobber the rdx 1169 * scratch slot, but it won't clobber any of the important 1170 * slots past it. 1171 * 1172 * Xen is a different story, because the Xen frame itself overlaps 1173 * the "NMI executing" variable. 1174 */ 1175 PARAVIRT_ADJUST_EXCEPTION_FRAME 1176 1177 /* 1178 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1179 * the iretq it performs will take us out of NMI context. 1180 * This means that we can have nested NMIs where the next 1181 * NMI is using the top of the stack of the previous NMI. We 1182 * can't let it execute because the nested NMI will corrupt the 1183 * stack of the previous NMI. NMI handlers are not re-entrant 1184 * anyway. 1185 * 1186 * To handle this case we do the following: 1187 * Check the a special location on the stack that contains 1188 * a variable that is set when NMIs are executing. 1189 * The interrupted task's stack is also checked to see if it 1190 * is an NMI stack. 1191 * If the variable is not set and the stack is not the NMI 1192 * stack then: 1193 * o Set the special variable on the stack 1194 * o Copy the interrupt frame into an "outermost" location on the 1195 * stack 1196 * o Copy the interrupt frame into an "iret" location on the stack 1197 * o Continue processing the NMI 1198 * If the variable is set or the previous stack is the NMI stack: 1199 * o Modify the "iret" location to jump to the repeat_nmi 1200 * o return back to the first NMI 1201 * 1202 * Now on exit of the first NMI, we first clear the stack variable 1203 * The NMI stack will tell any nested NMIs at that point that it is 1204 * nested. Then we pop the stack normally with iret, and if there was 1205 * a nested NMI that updated the copy interrupt stack frame, a 1206 * jump will be made to the repeat_nmi code that will handle the second 1207 * NMI. 1208 * 1209 * However, espfix prevents us from directly returning to userspace 1210 * with a single IRET instruction. Similarly, IRET to user mode 1211 * can fault. We therefore handle NMIs from user space like 1212 * other IST entries. 1213 */ 1214 1215 /* Use %rdx as our temp variable throughout */ 1216 pushq %rdx 1217 1218 testb $3, CS-RIP+8(%rsp) 1219 jz .Lnmi_from_kernel 1220 1221 /* 1222 * NMI from user mode. We need to run on the thread stack, but we 1223 * can't go through the normal entry paths: NMIs are masked, and 1224 * we don't want to enable interrupts, because then we'll end 1225 * up in an awkward situation in which IRQs are on but NMIs 1226 * are off. 1227 * 1228 * We also must not push anything to the stack before switching 1229 * stacks lest we corrupt the "NMI executing" variable. 1230 */ 1231 1232 SWAPGS_UNSAFE_STACK 1233 cld 1234 movq %rsp, %rdx 1235 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1236 pushq 5*8(%rdx) /* pt_regs->ss */ 1237 pushq 4*8(%rdx) /* pt_regs->rsp */ 1238 pushq 3*8(%rdx) /* pt_regs->flags */ 1239 pushq 2*8(%rdx) /* pt_regs->cs */ 1240 pushq 1*8(%rdx) /* pt_regs->rip */ 1241 pushq $-1 /* pt_regs->orig_ax */ 1242 pushq %rdi /* pt_regs->di */ 1243 pushq %rsi /* pt_regs->si */ 1244 pushq (%rdx) /* pt_regs->dx */ 1245 pushq %rcx /* pt_regs->cx */ 1246 pushq %rax /* pt_regs->ax */ 1247 pushq %r8 /* pt_regs->r8 */ 1248 pushq %r9 /* pt_regs->r9 */ 1249 pushq %r10 /* pt_regs->r10 */ 1250 pushq %r11 /* pt_regs->r11 */ 1251 pushq %rbx /* pt_regs->rbx */ 1252 pushq %rbp /* pt_regs->rbp */ 1253 pushq %r12 /* pt_regs->r12 */ 1254 pushq %r13 /* pt_regs->r13 */ 1255 pushq %r14 /* pt_regs->r14 */ 1256 pushq %r15 /* pt_regs->r15 */ 1257 ENCODE_FRAME_POINTER 1258 1259 /* 1260 * At this point we no longer need to worry about stack damage 1261 * due to nesting -- we're on the normal thread stack and we're 1262 * done with the NMI stack. 1263 */ 1264 1265 movq %rsp, %rdi 1266 movq $-1, %rsi 1267 call do_nmi 1268 1269 /* 1270 * Return back to user mode. We must *not* do the normal exit 1271 * work, because we don't want to enable interrupts. 1272 */ 1273 SWAPGS 1274 jmp restore_regs_and_iret 1275 1276.Lnmi_from_kernel: 1277 /* 1278 * Here's what our stack frame will look like: 1279 * +---------------------------------------------------------+ 1280 * | original SS | 1281 * | original Return RSP | 1282 * | original RFLAGS | 1283 * | original CS | 1284 * | original RIP | 1285 * +---------------------------------------------------------+ 1286 * | temp storage for rdx | 1287 * +---------------------------------------------------------+ 1288 * | "NMI executing" variable | 1289 * +---------------------------------------------------------+ 1290 * | iret SS } Copied from "outermost" frame | 1291 * | iret Return RSP } on each loop iteration; overwritten | 1292 * | iret RFLAGS } by a nested NMI to force another | 1293 * | iret CS } iteration if needed. | 1294 * | iret RIP } | 1295 * +---------------------------------------------------------+ 1296 * | outermost SS } initialized in first_nmi; | 1297 * | outermost Return RSP } will not be changed before | 1298 * | outermost RFLAGS } NMI processing is done. | 1299 * | outermost CS } Copied to "iret" frame on each | 1300 * | outermost RIP } iteration. | 1301 * +---------------------------------------------------------+ 1302 * | pt_regs | 1303 * +---------------------------------------------------------+ 1304 * 1305 * The "original" frame is used by hardware. Before re-enabling 1306 * NMIs, we need to be done with it, and we need to leave enough 1307 * space for the asm code here. 1308 * 1309 * We return by executing IRET while RSP points to the "iret" frame. 1310 * That will either return for real or it will loop back into NMI 1311 * processing. 1312 * 1313 * The "outermost" frame is copied to the "iret" frame on each 1314 * iteration of the loop, so each iteration starts with the "iret" 1315 * frame pointing to the final return target. 1316 */ 1317 1318 /* 1319 * Determine whether we're a nested NMI. 1320 * 1321 * If we interrupted kernel code between repeat_nmi and 1322 * end_repeat_nmi, then we are a nested NMI. We must not 1323 * modify the "iret" frame because it's being written by 1324 * the outer NMI. That's okay; the outer NMI handler is 1325 * about to about to call do_nmi anyway, so we can just 1326 * resume the outer NMI. 1327 */ 1328 1329 movq $repeat_nmi, %rdx 1330 cmpq 8(%rsp), %rdx 1331 ja 1f 1332 movq $end_repeat_nmi, %rdx 1333 cmpq 8(%rsp), %rdx 1334 ja nested_nmi_out 13351: 1336 1337 /* 1338 * Now check "NMI executing". If it's set, then we're nested. 1339 * This will not detect if we interrupted an outer NMI just 1340 * before IRET. 1341 */ 1342 cmpl $1, -8(%rsp) 1343 je nested_nmi 1344 1345 /* 1346 * Now test if the previous stack was an NMI stack. This covers 1347 * the case where we interrupt an outer NMI after it clears 1348 * "NMI executing" but before IRET. We need to be careful, though: 1349 * there is one case in which RSP could point to the NMI stack 1350 * despite there being no NMI active: naughty userspace controls 1351 * RSP at the very beginning of the SYSCALL targets. We can 1352 * pull a fast one on naughty userspace, though: we program 1353 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1354 * if it controls the kernel's RSP. We set DF before we clear 1355 * "NMI executing". 1356 */ 1357 lea 6*8(%rsp), %rdx 1358 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1359 cmpq %rdx, 4*8(%rsp) 1360 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1361 ja first_nmi 1362 1363 subq $EXCEPTION_STKSZ, %rdx 1364 cmpq %rdx, 4*8(%rsp) 1365 /* If it is below the NMI stack, it is a normal NMI */ 1366 jb first_nmi 1367 1368 /* Ah, it is within the NMI stack. */ 1369 1370 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1371 jz first_nmi /* RSP was user controlled. */ 1372 1373 /* This is a nested NMI. */ 1374 1375nested_nmi: 1376 /* 1377 * Modify the "iret" frame to point to repeat_nmi, forcing another 1378 * iteration of NMI handling. 1379 */ 1380 subq $8, %rsp 1381 leaq -10*8(%rsp), %rdx 1382 pushq $__KERNEL_DS 1383 pushq %rdx 1384 pushfq 1385 pushq $__KERNEL_CS 1386 pushq $repeat_nmi 1387 1388 /* Put stack back */ 1389 addq $(6*8), %rsp 1390 1391nested_nmi_out: 1392 popq %rdx 1393 1394 /* We are returning to kernel mode, so this cannot result in a fault. */ 1395 INTERRUPT_RETURN 1396 1397first_nmi: 1398 /* Restore rdx. */ 1399 movq (%rsp), %rdx 1400 1401 /* Make room for "NMI executing". */ 1402 pushq $0 1403 1404 /* Leave room for the "iret" frame */ 1405 subq $(5*8), %rsp 1406 1407 /* Copy the "original" frame to the "outermost" frame */ 1408 .rept 5 1409 pushq 11*8(%rsp) 1410 .endr 1411 1412 /* Everything up to here is safe from nested NMIs */ 1413 1414#ifdef CONFIG_DEBUG_ENTRY 1415 /* 1416 * For ease of testing, unmask NMIs right away. Disabled by 1417 * default because IRET is very expensive. 1418 */ 1419 pushq $0 /* SS */ 1420 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1421 addq $8, (%rsp) /* Fix up RSP */ 1422 pushfq /* RFLAGS */ 1423 pushq $__KERNEL_CS /* CS */ 1424 pushq $1f /* RIP */ 1425 INTERRUPT_RETURN /* continues at repeat_nmi below */ 14261: 1427#endif 1428 1429repeat_nmi: 1430 /* 1431 * If there was a nested NMI, the first NMI's iret will return 1432 * here. But NMIs are still enabled and we can take another 1433 * nested NMI. The nested NMI checks the interrupted RIP to see 1434 * if it is between repeat_nmi and end_repeat_nmi, and if so 1435 * it will just return, as we are about to repeat an NMI anyway. 1436 * This makes it safe to copy to the stack frame that a nested 1437 * NMI will update. 1438 * 1439 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1440 * we're repeating an NMI, gsbase has the same value that it had on 1441 * the first iteration. paranoid_entry will load the kernel 1442 * gsbase if needed before we call do_nmi. "NMI executing" 1443 * is zero. 1444 */ 1445 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1446 1447 /* 1448 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1449 * here must not modify the "iret" frame while we're writing to 1450 * it or it will end up containing garbage. 1451 */ 1452 addq $(10*8), %rsp 1453 .rept 5 1454 pushq -6*8(%rsp) 1455 .endr 1456 subq $(5*8), %rsp 1457end_repeat_nmi: 1458 1459 /* 1460 * Everything below this point can be preempted by a nested NMI. 1461 * If this happens, then the inner NMI will change the "iret" 1462 * frame to point back to repeat_nmi. 1463 */ 1464 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1465 ALLOC_PT_GPREGS_ON_STACK 1466 1467 /* 1468 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1469 * as we should not be calling schedule in NMI context. 1470 * Even with normal interrupts enabled. An NMI should not be 1471 * setting NEED_RESCHED or anything that normal interrupts and 1472 * exceptions might do. 1473 */ 1474 call paranoid_entry 1475 1476 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ 1477 movq %rsp, %rdi 1478 movq $-1, %rsi 1479 call do_nmi 1480 1481 testl %ebx, %ebx /* swapgs needed? */ 1482 jnz nmi_restore 1483nmi_swapgs: 1484 SWAPGS_UNSAFE_STACK 1485nmi_restore: 1486 RESTORE_EXTRA_REGS 1487 RESTORE_C_REGS 1488 1489 /* Point RSP at the "iret" frame. */ 1490 REMOVE_PT_GPREGS_FROM_STACK 6*8 1491 1492 /* 1493 * Clear "NMI executing". Set DF first so that we can easily 1494 * distinguish the remaining code between here and IRET from 1495 * the SYSCALL entry and exit paths. On a native kernel, we 1496 * could just inspect RIP, but, on paravirt kernels, 1497 * INTERRUPT_RETURN can translate into a jump into a 1498 * hypercall page. 1499 */ 1500 std 1501 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1502 1503 /* 1504 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI 1505 * stack in a single instruction. We are returning to kernel 1506 * mode, so this cannot result in a fault. 1507 */ 1508 INTERRUPT_RETURN 1509END(nmi) 1510 1511ENTRY(ignore_sysret) 1512 mov $-ENOSYS, %eax 1513 sysret 1514END(ignore_sysret) 1515 1516ENTRY(rewind_stack_do_exit) 1517 /* Prevent any naive code from trying to unwind to our caller. */ 1518 xorl %ebp, %ebp 1519 1520 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1521 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp 1522 1523 call do_exit 15241: jmp 1b 1525END(rewind_stack_do_exit) 1526