xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision a266ef69b890f099069cf51bb40572611c435a54)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
130		X86_FEATURE_XENPV
131
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_EMPTY
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
224	ANNOTATE_NOENDBR
225	swapgs
226	sysretq
227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
228	ANNOTATE_NOENDBR
229	int3
230SYM_CODE_END(entry_SYSCALL_64)
231
232/*
233 * %rdi: prev task
234 * %rsi: next task
235 */
236.pushsection .text, "ax"
237SYM_FUNC_START(__switch_to_asm)
238	/*
239	 * Save callee-saved registers
240	 * This must match the order in inactive_task_frame
241	 */
242	pushq	%rbp
243	pushq	%rbx
244	pushq	%r12
245	pushq	%r13
246	pushq	%r14
247	pushq	%r15
248
249	/* switch stack */
250	movq	%rsp, TASK_threadsp(%rdi)
251	movq	TASK_threadsp(%rsi), %rsp
252
253#ifdef CONFIG_STACKPROTECTOR
254	movq	TASK_stack_canary(%rsi), %rbx
255	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
256#endif
257
258	/*
259	 * When switching from a shallower to a deeper call stack
260	 * the RSB may either underflow or use entries populated
261	 * with userspace addresses. On CPUs where those concerns
262	 * exist, overwrite the RSB with entries which capture
263	 * speculative execution to prevent attack.
264	 */
265	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
266
267	/* restore callee-saved registers */
268	popq	%r15
269	popq	%r14
270	popq	%r13
271	popq	%r12
272	popq	%rbx
273	popq	%rbp
274
275	jmp	__switch_to
276SYM_FUNC_END(__switch_to_asm)
277.popsection
278
279/*
280 * A newly forked process directly context switches into this address.
281 *
282 * rax: prev task we switched from
283 * rbx: kernel thread func (NULL for user thread)
284 * r12: kernel thread arg
285 */
286.pushsection .text, "ax"
287	__FUNC_ALIGN
288SYM_CODE_START_NOALIGN(ret_from_fork)
289	UNWIND_HINT_EMPTY
290	ANNOTATE_NOENDBR // copy_thread
291	CALL_DEPTH_ACCOUNT
292	movq	%rax, %rdi
293	call	schedule_tail			/* rdi: 'prev' task parameter */
294
295	testq	%rbx, %rbx			/* from kernel_thread? */
296	jnz	1f				/* kernel threads are uncommon */
297
2982:
299	UNWIND_HINT_REGS
300	movq	%rsp, %rdi
301	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
302	jmp	swapgs_restore_regs_and_return_to_usermode
303
3041:
305	/* kernel thread */
306	UNWIND_HINT_EMPTY
307	movq	%r12, %rdi
308	CALL_NOSPEC rbx
309	/*
310	 * A kernel thread is allowed to return here after successfully
311	 * calling kernel_execve().  Exit to userspace to complete the execve()
312	 * syscall.
313	 */
314	movq	$0, RAX(%rsp)
315	jmp	2b
316SYM_CODE_END(ret_from_fork)
317.popsection
318
319.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
320#ifdef CONFIG_DEBUG_ENTRY
321	pushq %rax
322	SAVE_FLAGS
323	testl $X86_EFLAGS_IF, %eax
324	jz .Lokay_\@
325	ud2
326.Lokay_\@:
327	popq %rax
328#endif
329.endm
330
331SYM_CODE_START(xen_error_entry)
332	ANNOTATE_NOENDBR
333	UNWIND_HINT_FUNC
334	PUSH_AND_CLEAR_REGS save_ret=1
335	ENCODE_FRAME_POINTER 8
336	UNTRAIN_RET_FROM_CALL
337	RET
338SYM_CODE_END(xen_error_entry)
339
340/**
341 * idtentry_body - Macro to emit code calling the C function
342 * @cfunc:		C function to be called
343 * @has_error_code:	Hardware pushed error code on stack
344 */
345.macro idtentry_body cfunc has_error_code:req
346
347	/*
348	 * Call error_entry() and switch to the task stack if from userspace.
349	 *
350	 * When in XENPV, it is already in the task stack, and it can't fault
351	 * for native_iret() nor native_load_gs_index() since XENPV uses its
352	 * own pvops for IRET and load_gs_index().  And it doesn't need to
353	 * switch the CR3.  So it can skip invoking error_entry().
354	 */
355	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
356		    "call xen_error_entry", X86_FEATURE_XENPV
357
358	ENCODE_FRAME_POINTER
359	UNWIND_HINT_REGS
360
361	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
362
363	.if \has_error_code == 1
364		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
365		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
366	.endif
367
368	call	\cfunc
369
370	/* For some configurations \cfunc ends up being a noreturn. */
371	REACHABLE
372
373	jmp	error_return
374.endm
375
376/**
377 * idtentry - Macro to generate entry stubs for simple IDT entries
378 * @vector:		Vector number
379 * @asmsym:		ASM symbol for the entry point
380 * @cfunc:		C function to be called
381 * @has_error_code:	Hardware pushed error code on stack
382 *
383 * The macro emits code to set up the kernel context for straight forward
384 * and simple IDT entries. No IST stack, no paranoid entry checks.
385 */
386.macro idtentry vector asmsym cfunc has_error_code:req
387SYM_CODE_START(\asmsym)
388	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
389	ENDBR
390	ASM_CLAC
391	cld
392
393	.if \has_error_code == 0
394		pushq	$-1			/* ORIG_RAX: no syscall to restart */
395	.endif
396
397	.if \vector == X86_TRAP_BP
398		/*
399		 * If coming from kernel space, create a 6-word gap to allow the
400		 * int3 handler to emulate a call instruction.
401		 */
402		testb	$3, CS-ORIG_RAX(%rsp)
403		jnz	.Lfrom_usermode_no_gap_\@
404		.rept	6
405		pushq	5*8(%rsp)
406		.endr
407		UNWIND_HINT_IRET_REGS offset=8
408.Lfrom_usermode_no_gap_\@:
409	.endif
410
411	idtentry_body \cfunc \has_error_code
412
413_ASM_NOKPROBE(\asmsym)
414SYM_CODE_END(\asmsym)
415.endm
416
417/*
418 * Interrupt entry/exit.
419 *
420 + The interrupt stubs push (vector) onto the stack, which is the error_code
421 * position of idtentry exceptions, and jump to one of the two idtentry points
422 * (common/spurious).
423 *
424 * common_interrupt is a hotpath, align it to a cache line
425 */
426.macro idtentry_irq vector cfunc
427	.p2align CONFIG_X86_L1_CACHE_SHIFT
428	idtentry \vector asm_\cfunc \cfunc has_error_code=1
429.endm
430
431/*
432 * System vectors which invoke their handlers directly and are not
433 * going through the regular common device interrupt handling code.
434 */
435.macro idtentry_sysvec vector cfunc
436	idtentry \vector asm_\cfunc \cfunc has_error_code=0
437.endm
438
439/**
440 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
441 * @vector:		Vector number
442 * @asmsym:		ASM symbol for the entry point
443 * @cfunc:		C function to be called
444 *
445 * The macro emits code to set up the kernel context for #MC and #DB
446 *
447 * If the entry comes from user space it uses the normal entry path
448 * including the return to user space work and preemption checks on
449 * exit.
450 *
451 * If hits in kernel mode then it needs to go through the paranoid
452 * entry as the exception can hit any random state. No preemption
453 * check on exit to keep the paranoid path simple.
454 */
455.macro idtentry_mce_db vector asmsym cfunc
456SYM_CODE_START(\asmsym)
457	UNWIND_HINT_IRET_REGS
458	ENDBR
459	ASM_CLAC
460	cld
461
462	pushq	$-1			/* ORIG_RAX: no syscall to restart */
463
464	/*
465	 * If the entry is from userspace, switch stacks and treat it as
466	 * a normal entry.
467	 */
468	testb	$3, CS-ORIG_RAX(%rsp)
469	jnz	.Lfrom_usermode_switch_stack_\@
470
471	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
472	call	paranoid_entry
473
474	UNWIND_HINT_REGS
475
476	movq	%rsp, %rdi		/* pt_regs pointer */
477
478	call	\cfunc
479
480	jmp	paranoid_exit
481
482	/* Switch to the regular task stack and use the noist entry point */
483.Lfrom_usermode_switch_stack_\@:
484	idtentry_body noist_\cfunc, has_error_code=0
485
486_ASM_NOKPROBE(\asmsym)
487SYM_CODE_END(\asmsym)
488.endm
489
490#ifdef CONFIG_AMD_MEM_ENCRYPT
491/**
492 * idtentry_vc - Macro to generate entry stub for #VC
493 * @vector:		Vector number
494 * @asmsym:		ASM symbol for the entry point
495 * @cfunc:		C function to be called
496 *
497 * The macro emits code to set up the kernel context for #VC. The #VC handler
498 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
499 *
500 * To make this work the #VC entry code tries its best to pretend it doesn't use
501 * an IST stack by switching to the task stack if coming from user-space (which
502 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
503 * entered from kernel-mode.
504 *
505 * If entered from kernel-mode the return stack is validated first, and if it is
506 * not safe to use (e.g. because it points to the entry stack) the #VC handler
507 * will switch to a fall-back stack (VC2) and call a special handler function.
508 *
509 * The macro is only used for one vector, but it is planned to be extended in
510 * the future for the #HV exception.
511 */
512.macro idtentry_vc vector asmsym cfunc
513SYM_CODE_START(\asmsym)
514	UNWIND_HINT_IRET_REGS
515	ENDBR
516	ASM_CLAC
517	cld
518
519	/*
520	 * If the entry is from userspace, switch stacks and treat it as
521	 * a normal entry.
522	 */
523	testb	$3, CS-ORIG_RAX(%rsp)
524	jnz	.Lfrom_usermode_switch_stack_\@
525
526	/*
527	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
528	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
529	 */
530	call	paranoid_entry
531
532	UNWIND_HINT_REGS
533
534	/*
535	 * Switch off the IST stack to make it free for nested exceptions. The
536	 * vc_switch_off_ist() function will switch back to the interrupted
537	 * stack if it is safe to do so. If not it switches to the VC fall-back
538	 * stack.
539	 */
540	movq	%rsp, %rdi		/* pt_regs pointer */
541	call	vc_switch_off_ist
542	movq	%rax, %rsp		/* Switch to new stack */
543
544	ENCODE_FRAME_POINTER
545	UNWIND_HINT_REGS
546
547	/* Update pt_regs */
548	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
549	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
550
551	movq	%rsp, %rdi		/* pt_regs pointer */
552
553	call	kernel_\cfunc
554
555	/*
556	 * No need to switch back to the IST stack. The current stack is either
557	 * identical to the stack in the IRET frame or the VC fall-back stack,
558	 * so it is definitely mapped even with PTI enabled.
559	 */
560	jmp	paranoid_exit
561
562	/* Switch to the regular task stack */
563.Lfrom_usermode_switch_stack_\@:
564	idtentry_body user_\cfunc, has_error_code=1
565
566_ASM_NOKPROBE(\asmsym)
567SYM_CODE_END(\asmsym)
568.endm
569#endif
570
571/*
572 * Double fault entry. Straight paranoid. No checks from which context
573 * this comes because for the espfix induced #DF this would do the wrong
574 * thing.
575 */
576.macro idtentry_df vector asmsym cfunc
577SYM_CODE_START(\asmsym)
578	UNWIND_HINT_IRET_REGS offset=8
579	ENDBR
580	ASM_CLAC
581	cld
582
583	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
584	call	paranoid_entry
585	UNWIND_HINT_REGS
586
587	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
588	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
589	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
590	call	\cfunc
591
592	/* For some configurations \cfunc ends up being a noreturn. */
593	REACHABLE
594
595	jmp	paranoid_exit
596
597_ASM_NOKPROBE(\asmsym)
598SYM_CODE_END(\asmsym)
599.endm
600
601/*
602 * Include the defines which emit the idt entries which are shared
603 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
604 * so the stacktrace boundary checks work.
605 */
606	__ALIGN
607	.globl __irqentry_text_start
608__irqentry_text_start:
609
610#include <asm/idtentry.h>
611
612	__ALIGN
613	.globl __irqentry_text_end
614__irqentry_text_end:
615	ANNOTATE_NOENDBR
616
617SYM_CODE_START_LOCAL(common_interrupt_return)
618SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
619	IBRS_EXIT
620#ifdef CONFIG_DEBUG_ENTRY
621	/* Assert that pt_regs indicates user mode. */
622	testb	$3, CS(%rsp)
623	jnz	1f
624	ud2
6251:
626#endif
627#ifdef CONFIG_XEN_PV
628	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
629#endif
630
631	POP_REGS pop_rdi=0
632
633	/*
634	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
635	 * Save old stack pointer and switch to trampoline stack.
636	 */
637	movq	%rsp, %rdi
638	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
639	UNWIND_HINT_EMPTY
640
641	/* Copy the IRET frame to the trampoline stack. */
642	pushq	6*8(%rdi)	/* SS */
643	pushq	5*8(%rdi)	/* RSP */
644	pushq	4*8(%rdi)	/* EFLAGS */
645	pushq	3*8(%rdi)	/* CS */
646	pushq	2*8(%rdi)	/* RIP */
647
648	/* Push user RDI on the trampoline stack. */
649	pushq	(%rdi)
650
651	/*
652	 * We are on the trampoline stack.  All regs except RDI are live.
653	 * We can do future final exit work right here.
654	 */
655	STACKLEAK_ERASE_NOCLOBBER
656
657	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658
659	/* Restore RDI. */
660	popq	%rdi
661	swapgs
662	jmp	.Lnative_iret
663
664
665SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
666#ifdef CONFIG_DEBUG_ENTRY
667	/* Assert that pt_regs indicates kernel mode. */
668	testb	$3, CS(%rsp)
669	jz	1f
670	ud2
6711:
672#endif
673	POP_REGS
674	addq	$8, %rsp	/* skip regs->orig_ax */
675	/*
676	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
677	 * when returning from IPI handler.
678	 */
679#ifdef CONFIG_XEN_PV
680SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
681	ANNOTATE_NOENDBR
682	.byte 0xe9
683	.long .Lnative_iret - (. + 4)
684#endif
685
686.Lnative_iret:
687	UNWIND_HINT_IRET_REGS
688	/*
689	 * Are we returning to a stack segment from the LDT?  Note: in
690	 * 64-bit mode SS:RSP on the exception stack is always valid.
691	 */
692#ifdef CONFIG_X86_ESPFIX64
693	testb	$4, (SS-RIP)(%rsp)
694	jnz	native_irq_return_ldt
695#endif
696
697SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
698	ANNOTATE_NOENDBR // exc_double_fault
699	/*
700	 * This may fault.  Non-paranoid faults on return to userspace are
701	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
702	 * Double-faults due to espfix64 are handled in exc_double_fault.
703	 * Other faults here are fatal.
704	 */
705	iretq
706
707#ifdef CONFIG_X86_ESPFIX64
708native_irq_return_ldt:
709	/*
710	 * We are running with user GSBASE.  All GPRs contain their user
711	 * values.  We have a percpu ESPFIX stack that is eight slots
712	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
713	 * of the ESPFIX stack.
714	 *
715	 * We clobber RAX and RDI in this code.  We stash RDI on the
716	 * normal stack and RAX on the ESPFIX stack.
717	 *
718	 * The ESPFIX stack layout we set up looks like this:
719	 *
720	 * --- top of ESPFIX stack ---
721	 * SS
722	 * RSP
723	 * RFLAGS
724	 * CS
725	 * RIP  <-- RSP points here when we're done
726	 * RAX  <-- espfix_waddr points here
727	 * --- bottom of ESPFIX stack ---
728	 */
729
730	pushq	%rdi				/* Stash user RDI */
731	swapgs					/* to kernel GS */
732	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
733
734	movq	PER_CPU_VAR(espfix_waddr), %rdi
735	movq	%rax, (0*8)(%rdi)		/* user RAX */
736	movq	(1*8)(%rsp), %rax		/* user RIP */
737	movq	%rax, (1*8)(%rdi)
738	movq	(2*8)(%rsp), %rax		/* user CS */
739	movq	%rax, (2*8)(%rdi)
740	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
741	movq	%rax, (3*8)(%rdi)
742	movq	(5*8)(%rsp), %rax		/* user SS */
743	movq	%rax, (5*8)(%rdi)
744	movq	(4*8)(%rsp), %rax		/* user RSP */
745	movq	%rax, (4*8)(%rdi)
746	/* Now RAX == RSP. */
747
748	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
749
750	/*
751	 * espfix_stack[31:16] == 0.  The page tables are set up such that
752	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
753	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
754	 * the same page.  Set up RSP so that RSP[31:16] contains the
755	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
756	 * still points to an RO alias of the ESPFIX stack.
757	 */
758	orq	PER_CPU_VAR(espfix_stack), %rax
759
760	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
761	swapgs					/* to user GS */
762	popq	%rdi				/* Restore user RDI */
763
764	movq	%rax, %rsp
765	UNWIND_HINT_IRET_REGS offset=8
766
767	/*
768	 * At this point, we cannot write to the stack any more, but we can
769	 * still read.
770	 */
771	popq	%rax				/* Restore user RAX */
772
773	/*
774	 * RSP now points to an ordinary IRET frame, except that the page
775	 * is read-only and RSP[31:16] are preloaded with the userspace
776	 * values.  We can now IRET back to userspace.
777	 */
778	jmp	native_irq_return_iret
779#endif
780SYM_CODE_END(common_interrupt_return)
781_ASM_NOKPROBE(common_interrupt_return)
782
783/*
784 * Reload gs selector with exception handling
785 * edi:  new selector
786 *
787 * Is in entry.text as it shouldn't be instrumented.
788 */
789SYM_FUNC_START(asm_load_gs_index)
790	FRAME_BEGIN
791	swapgs
792.Lgs_change:
793	ANNOTATE_NOENDBR // error_entry
794	movl	%edi, %gs
7952:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
796	swapgs
797	FRAME_END
798	RET
799
800	/* running with kernelgs */
801.Lbad_gs:
802	swapgs					/* switch back to user gs */
803.macro ZAP_GS
804	/* This can't be a string because the preprocessor needs to see it. */
805	movl $__USER_DS, %eax
806	movl %eax, %gs
807.endm
808	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
809	xorl	%eax, %eax
810	movl	%eax, %gs
811	jmp	2b
812
813	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
814
815SYM_FUNC_END(asm_load_gs_index)
816EXPORT_SYMBOL(asm_load_gs_index)
817
818#ifdef CONFIG_XEN_PV
819/*
820 * A note on the "critical region" in our callback handler.
821 * We want to avoid stacking callback handlers due to events occurring
822 * during handling of the last event. To do this, we keep events disabled
823 * until we've done all processing. HOWEVER, we must enable events before
824 * popping the stack frame (can't be done atomically) and so it would still
825 * be possible to get enough handler activations to overflow the stack.
826 * Although unlikely, bugs of that kind are hard to track down, so we'd
827 * like to avoid the possibility.
828 * So, on entry to the handler we detect whether we interrupted an
829 * existing activation in its critical region -- if so, we pop the current
830 * activation and restart the handler using the previous one.
831 *
832 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
833 */
834	__FUNC_ALIGN
835SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
836
837/*
838 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
839 * see the correct pointer to the pt_regs
840 */
841	UNWIND_HINT_FUNC
842	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
843	UNWIND_HINT_REGS
844
845	call	xen_pv_evtchn_do_upcall
846
847	jmp	error_return
848SYM_CODE_END(exc_xen_hypervisor_callback)
849
850/*
851 * Hypervisor uses this for application faults while it executes.
852 * We get here for two reasons:
853 *  1. Fault while reloading DS, ES, FS or GS
854 *  2. Fault while executing IRET
855 * Category 1 we do not need to fix up as Xen has already reloaded all segment
856 * registers that could be reloaded and zeroed the others.
857 * Category 2 we fix up by killing the current process. We cannot use the
858 * normal Linux return path in this case because if we use the IRET hypercall
859 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
860 * We distinguish between categories by comparing each saved segment register
861 * with its current contents: any discrepancy means we in category 1.
862 */
863	__FUNC_ALIGN
864SYM_CODE_START_NOALIGN(xen_failsafe_callback)
865	UNWIND_HINT_EMPTY
866	ENDBR
867	movl	%ds, %ecx
868	cmpw	%cx, 0x10(%rsp)
869	jne	1f
870	movl	%es, %ecx
871	cmpw	%cx, 0x18(%rsp)
872	jne	1f
873	movl	%fs, %ecx
874	cmpw	%cx, 0x20(%rsp)
875	jne	1f
876	movl	%gs, %ecx
877	cmpw	%cx, 0x28(%rsp)
878	jne	1f
879	/* All segments match their saved values => Category 2 (Bad IRET). */
880	movq	(%rsp), %rcx
881	movq	8(%rsp), %r11
882	addq	$0x30, %rsp
883	pushq	$0				/* RIP */
884	UNWIND_HINT_IRET_REGS offset=8
885	jmp	asm_exc_general_protection
8861:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
887	movq	(%rsp), %rcx
888	movq	8(%rsp), %r11
889	addq	$0x30, %rsp
890	UNWIND_HINT_IRET_REGS
891	pushq	$-1 /* orig_ax = -1 => not a system call */
892	PUSH_AND_CLEAR_REGS
893	ENCODE_FRAME_POINTER
894	jmp	error_return
895SYM_CODE_END(xen_failsafe_callback)
896#endif /* CONFIG_XEN_PV */
897
898/*
899 * Save all registers in pt_regs. Return GSBASE related information
900 * in EBX depending on the availability of the FSGSBASE instructions:
901 *
902 * FSGSBASE	R/EBX
903 *     N        0 -> SWAPGS on exit
904 *              1 -> no SWAPGS on exit
905 *
906 *     Y        GSBASE value at entry, must be restored in paranoid_exit
907 *
908 * R14 - old CR3
909 * R15 - old SPEC_CTRL
910 */
911SYM_CODE_START(paranoid_entry)
912	ANNOTATE_NOENDBR
913	UNWIND_HINT_FUNC
914	PUSH_AND_CLEAR_REGS save_ret=1
915	ENCODE_FRAME_POINTER 8
916
917	/*
918	 * Always stash CR3 in %r14.  This value will be restored,
919	 * verbatim, at exit.  Needed if paranoid_entry interrupted
920	 * another entry that already switched to the user CR3 value
921	 * but has not yet returned to userspace.
922	 *
923	 * This is also why CS (stashed in the "iret frame" by the
924	 * hardware at entry) can not be used: this may be a return
925	 * to kernel code, but with a user CR3 value.
926	 *
927	 * Switching CR3 does not depend on kernel GSBASE so it can
928	 * be done before switching to the kernel GSBASE. This is
929	 * required for FSGSBASE because the kernel GSBASE has to
930	 * be retrieved from a kernel internal table.
931	 */
932	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
933
934	/*
935	 * Handling GSBASE depends on the availability of FSGSBASE.
936	 *
937	 * Without FSGSBASE the kernel enforces that negative GSBASE
938	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
939	 * can be made about the GSBASE value when entering from user
940	 * space.
941	 */
942	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
943
944	/*
945	 * Read the current GSBASE and store it in %rbx unconditionally,
946	 * retrieve and set the current CPUs kernel GSBASE. The stored value
947	 * has to be restored in paranoid_exit unconditionally.
948	 *
949	 * The unconditional write to GS base below ensures that no subsequent
950	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
951	 * is needed here.
952	 */
953	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
954	jmp .Lparanoid_gsbase_done
955
956.Lparanoid_entry_checkgs:
957	/* EBX = 1 -> kernel GSBASE active, no restore required */
958	movl	$1, %ebx
959
960	/*
961	 * The kernel-enforced convention is a negative GSBASE indicates
962	 * a kernel value. No SWAPGS needed on entry and exit.
963	 */
964	movl	$MSR_GS_BASE, %ecx
965	rdmsr
966	testl	%edx, %edx
967	js	.Lparanoid_kernel_gsbase
968
969	/* EBX = 0 -> SWAPGS required on exit */
970	xorl	%ebx, %ebx
971	swapgs
972.Lparanoid_kernel_gsbase:
973	FENCE_SWAPGS_KERNEL_ENTRY
974.Lparanoid_gsbase_done:
975
976	/*
977	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
978	 * CR3 above, keep the old value in a callee saved register.
979	 */
980	IBRS_ENTER save_reg=%r15
981	UNTRAIN_RET_FROM_CALL
982
983	RET
984SYM_CODE_END(paranoid_entry)
985
986/*
987 * "Paranoid" exit path from exception stack.  This is invoked
988 * only on return from non-NMI IST interrupts that came
989 * from kernel space.
990 *
991 * We may be returning to very strange contexts (e.g. very early
992 * in syscall entry), so checking for preemption here would
993 * be complicated.  Fortunately, there's no good reason to try
994 * to handle preemption here.
995 *
996 * R/EBX contains the GSBASE related information depending on the
997 * availability of the FSGSBASE instructions:
998 *
999 * FSGSBASE	R/EBX
1000 *     N        0 -> SWAPGS on exit
1001 *              1 -> no SWAPGS on exit
1002 *
1003 *     Y        User space GSBASE, must be restored unconditionally
1004 *
1005 * R14 - old CR3
1006 * R15 - old SPEC_CTRL
1007 */
1008SYM_CODE_START_LOCAL(paranoid_exit)
1009	UNWIND_HINT_REGS
1010
1011	/*
1012	 * Must restore IBRS state before both CR3 and %GS since we need access
1013	 * to the per-CPU x86_spec_ctrl_shadow variable.
1014	 */
1015	IBRS_EXIT save_reg=%r15
1016
1017	/*
1018	 * The order of operations is important. RESTORE_CR3 requires
1019	 * kernel GSBASE.
1020	 *
1021	 * NB to anyone to try to optimize this code: this code does
1022	 * not execute at all for exceptions from user mode. Those
1023	 * exceptions go through error_exit instead.
1024	 */
1025	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1026
1027	/* Handle the three GSBASE cases */
1028	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1029
1030	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1031	wrgsbase	%rbx
1032	jmp		restore_regs_and_return_to_kernel
1033
1034.Lparanoid_exit_checkgs:
1035	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1036	testl		%ebx, %ebx
1037	jnz		restore_regs_and_return_to_kernel
1038
1039	/* We are returning to a context with user GSBASE */
1040	swapgs
1041	jmp		restore_regs_and_return_to_kernel
1042SYM_CODE_END(paranoid_exit)
1043
1044/*
1045 * Switch GS and CR3 if needed.
1046 */
1047SYM_CODE_START(error_entry)
1048	ANNOTATE_NOENDBR
1049	UNWIND_HINT_FUNC
1050
1051	PUSH_AND_CLEAR_REGS save_ret=1
1052	ENCODE_FRAME_POINTER 8
1053
1054	testb	$3, CS+8(%rsp)
1055	jz	.Lerror_kernelspace
1056
1057	/*
1058	 * We entered from user mode or we're pretending to have entered
1059	 * from user mode due to an IRET fault.
1060	 */
1061	swapgs
1062	FENCE_SWAPGS_USER_ENTRY
1063	/* We have user CR3.  Change to kernel CR3. */
1064	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1065	IBRS_ENTER
1066	UNTRAIN_RET_FROM_CALL
1067
1068	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1069	/* Put us onto the real thread stack. */
1070	jmp	sync_regs
1071
1072	/*
1073	 * There are two places in the kernel that can potentially fault with
1074	 * usergs. Handle them here.  B stepping K8s sometimes report a
1075	 * truncated RIP for IRET exceptions returning to compat mode. Check
1076	 * for these here too.
1077	 */
1078.Lerror_kernelspace:
1079	leaq	native_irq_return_iret(%rip), %rcx
1080	cmpq	%rcx, RIP+8(%rsp)
1081	je	.Lerror_bad_iret
1082	movl	%ecx, %eax			/* zero extend */
1083	cmpq	%rax, RIP+8(%rsp)
1084	je	.Lbstep_iret
1085	cmpq	$.Lgs_change, RIP+8(%rsp)
1086	jne	.Lerror_entry_done_lfence
1087
1088	/*
1089	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1090	 * gsbase and proceed.  We'll fix up the exception and land in
1091	 * .Lgs_change's error handler with kernel gsbase.
1092	 */
1093	swapgs
1094
1095	/*
1096	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1097	 * kernel or user gsbase.
1098	 */
1099.Lerror_entry_done_lfence:
1100	FENCE_SWAPGS_KERNEL_ENTRY
1101	CALL_DEPTH_ACCOUNT
1102	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1103	ANNOTATE_UNRET_END
1104	RET
1105
1106.Lbstep_iret:
1107	/* Fix truncated RIP */
1108	movq	%rcx, RIP+8(%rsp)
1109	/* fall through */
1110
1111.Lerror_bad_iret:
1112	/*
1113	 * We came from an IRET to user mode, so we have user
1114	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1115	 */
1116	swapgs
1117	FENCE_SWAPGS_USER_ENTRY
1118	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1119	IBRS_ENTER
1120	UNTRAIN_RET_FROM_CALL
1121
1122	/*
1123	 * Pretend that the exception came from user mode: set up pt_regs
1124	 * as if we faulted immediately after IRET.
1125	 */
1126	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1127	call	fixup_bad_iret
1128	mov	%rax, %rdi
1129	jmp	sync_regs
1130SYM_CODE_END(error_entry)
1131
1132SYM_CODE_START_LOCAL(error_return)
1133	UNWIND_HINT_REGS
1134	DEBUG_ENTRY_ASSERT_IRQS_OFF
1135	testb	$3, CS(%rsp)
1136	jz	restore_regs_and_return_to_kernel
1137	jmp	swapgs_restore_regs_and_return_to_usermode
1138SYM_CODE_END(error_return)
1139
1140/*
1141 * Runs on exception stack.  Xen PV does not go through this path at all,
1142 * so we can use real assembly here.
1143 *
1144 * Registers:
1145 *	%r14: Used to save/restore the CR3 of the interrupted context
1146 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1147 */
1148SYM_CODE_START(asm_exc_nmi)
1149	UNWIND_HINT_IRET_REGS
1150	ENDBR
1151
1152	/*
1153	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1154	 * the iretq it performs will take us out of NMI context.
1155	 * This means that we can have nested NMIs where the next
1156	 * NMI is using the top of the stack of the previous NMI. We
1157	 * can't let it execute because the nested NMI will corrupt the
1158	 * stack of the previous NMI. NMI handlers are not re-entrant
1159	 * anyway.
1160	 *
1161	 * To handle this case we do the following:
1162	 *  Check the a special location on the stack that contains
1163	 *  a variable that is set when NMIs are executing.
1164	 *  The interrupted task's stack is also checked to see if it
1165	 *  is an NMI stack.
1166	 *  If the variable is not set and the stack is not the NMI
1167	 *  stack then:
1168	 *    o Set the special variable on the stack
1169	 *    o Copy the interrupt frame into an "outermost" location on the
1170	 *      stack
1171	 *    o Copy the interrupt frame into an "iret" location on the stack
1172	 *    o Continue processing the NMI
1173	 *  If the variable is set or the previous stack is the NMI stack:
1174	 *    o Modify the "iret" location to jump to the repeat_nmi
1175	 *    o return back to the first NMI
1176	 *
1177	 * Now on exit of the first NMI, we first clear the stack variable
1178	 * The NMI stack will tell any nested NMIs at that point that it is
1179	 * nested. Then we pop the stack normally with iret, and if there was
1180	 * a nested NMI that updated the copy interrupt stack frame, a
1181	 * jump will be made to the repeat_nmi code that will handle the second
1182	 * NMI.
1183	 *
1184	 * However, espfix prevents us from directly returning to userspace
1185	 * with a single IRET instruction.  Similarly, IRET to user mode
1186	 * can fault.  We therefore handle NMIs from user space like
1187	 * other IST entries.
1188	 */
1189
1190	ASM_CLAC
1191	cld
1192
1193	/* Use %rdx as our temp variable throughout */
1194	pushq	%rdx
1195
1196	testb	$3, CS-RIP+8(%rsp)
1197	jz	.Lnmi_from_kernel
1198
1199	/*
1200	 * NMI from user mode.  We need to run on the thread stack, but we
1201	 * can't go through the normal entry paths: NMIs are masked, and
1202	 * we don't want to enable interrupts, because then we'll end
1203	 * up in an awkward situation in which IRQs are on but NMIs
1204	 * are off.
1205	 *
1206	 * We also must not push anything to the stack before switching
1207	 * stacks lest we corrupt the "NMI executing" variable.
1208	 */
1209
1210	swapgs
1211	FENCE_SWAPGS_USER_ENTRY
1212	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1213	movq	%rsp, %rdx
1214	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1215	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1216	pushq	5*8(%rdx)	/* pt_regs->ss */
1217	pushq	4*8(%rdx)	/* pt_regs->rsp */
1218	pushq	3*8(%rdx)	/* pt_regs->flags */
1219	pushq	2*8(%rdx)	/* pt_regs->cs */
1220	pushq	1*8(%rdx)	/* pt_regs->rip */
1221	UNWIND_HINT_IRET_REGS
1222	pushq   $-1		/* pt_regs->orig_ax */
1223	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1224	ENCODE_FRAME_POINTER
1225
1226	IBRS_ENTER
1227	UNTRAIN_RET
1228
1229	/*
1230	 * At this point we no longer need to worry about stack damage
1231	 * due to nesting -- we're on the normal thread stack and we're
1232	 * done with the NMI stack.
1233	 */
1234
1235	movq	%rsp, %rdi
1236	movq	$-1, %rsi
1237	call	exc_nmi
1238
1239	/*
1240	 * Return back to user mode.  We must *not* do the normal exit
1241	 * work, because we don't want to enable interrupts.
1242	 */
1243	jmp	swapgs_restore_regs_and_return_to_usermode
1244
1245.Lnmi_from_kernel:
1246	/*
1247	 * Here's what our stack frame will look like:
1248	 * +---------------------------------------------------------+
1249	 * | original SS                                             |
1250	 * | original Return RSP                                     |
1251	 * | original RFLAGS                                         |
1252	 * | original CS                                             |
1253	 * | original RIP                                            |
1254	 * +---------------------------------------------------------+
1255	 * | temp storage for rdx                                    |
1256	 * +---------------------------------------------------------+
1257	 * | "NMI executing" variable                                |
1258	 * +---------------------------------------------------------+
1259	 * | iret SS          } Copied from "outermost" frame        |
1260	 * | iret Return RSP  } on each loop iteration; overwritten  |
1261	 * | iret RFLAGS      } by a nested NMI to force another     |
1262	 * | iret CS          } iteration if needed.                 |
1263	 * | iret RIP         }                                      |
1264	 * +---------------------------------------------------------+
1265	 * | outermost SS          } initialized in first_nmi;       |
1266	 * | outermost Return RSP  } will not be changed before      |
1267	 * | outermost RFLAGS      } NMI processing is done.         |
1268	 * | outermost CS          } Copied to "iret" frame on each  |
1269	 * | outermost RIP         } iteration.                      |
1270	 * +---------------------------------------------------------+
1271	 * | pt_regs                                                 |
1272	 * +---------------------------------------------------------+
1273	 *
1274	 * The "original" frame is used by hardware.  Before re-enabling
1275	 * NMIs, we need to be done with it, and we need to leave enough
1276	 * space for the asm code here.
1277	 *
1278	 * We return by executing IRET while RSP points to the "iret" frame.
1279	 * That will either return for real or it will loop back into NMI
1280	 * processing.
1281	 *
1282	 * The "outermost" frame is copied to the "iret" frame on each
1283	 * iteration of the loop, so each iteration starts with the "iret"
1284	 * frame pointing to the final return target.
1285	 */
1286
1287	/*
1288	 * Determine whether we're a nested NMI.
1289	 *
1290	 * If we interrupted kernel code between repeat_nmi and
1291	 * end_repeat_nmi, then we are a nested NMI.  We must not
1292	 * modify the "iret" frame because it's being written by
1293	 * the outer NMI.  That's okay; the outer NMI handler is
1294	 * about to about to call exc_nmi() anyway, so we can just
1295	 * resume the outer NMI.
1296	 */
1297
1298	movq	$repeat_nmi, %rdx
1299	cmpq	8(%rsp), %rdx
1300	ja	1f
1301	movq	$end_repeat_nmi, %rdx
1302	cmpq	8(%rsp), %rdx
1303	ja	nested_nmi_out
13041:
1305
1306	/*
1307	 * Now check "NMI executing".  If it's set, then we're nested.
1308	 * This will not detect if we interrupted an outer NMI just
1309	 * before IRET.
1310	 */
1311	cmpl	$1, -8(%rsp)
1312	je	nested_nmi
1313
1314	/*
1315	 * Now test if the previous stack was an NMI stack.  This covers
1316	 * the case where we interrupt an outer NMI after it clears
1317	 * "NMI executing" but before IRET.  We need to be careful, though:
1318	 * there is one case in which RSP could point to the NMI stack
1319	 * despite there being no NMI active: naughty userspace controls
1320	 * RSP at the very beginning of the SYSCALL targets.  We can
1321	 * pull a fast one on naughty userspace, though: we program
1322	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1323	 * if it controls the kernel's RSP.  We set DF before we clear
1324	 * "NMI executing".
1325	 */
1326	lea	6*8(%rsp), %rdx
1327	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1328	cmpq	%rdx, 4*8(%rsp)
1329	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1330	ja	first_nmi
1331
1332	subq	$EXCEPTION_STKSZ, %rdx
1333	cmpq	%rdx, 4*8(%rsp)
1334	/* If it is below the NMI stack, it is a normal NMI */
1335	jb	first_nmi
1336
1337	/* Ah, it is within the NMI stack. */
1338
1339	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1340	jz	first_nmi	/* RSP was user controlled. */
1341
1342	/* This is a nested NMI. */
1343
1344nested_nmi:
1345	/*
1346	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1347	 * iteration of NMI handling.
1348	 */
1349	subq	$8, %rsp
1350	leaq	-10*8(%rsp), %rdx
1351	pushq	$__KERNEL_DS
1352	pushq	%rdx
1353	pushfq
1354	pushq	$__KERNEL_CS
1355	pushq	$repeat_nmi
1356
1357	/* Put stack back */
1358	addq	$(6*8), %rsp
1359
1360nested_nmi_out:
1361	popq	%rdx
1362
1363	/* We are returning to kernel mode, so this cannot result in a fault. */
1364	iretq
1365
1366first_nmi:
1367	/* Restore rdx. */
1368	movq	(%rsp), %rdx
1369
1370	/* Make room for "NMI executing". */
1371	pushq	$0
1372
1373	/* Leave room for the "iret" frame */
1374	subq	$(5*8), %rsp
1375
1376	/* Copy the "original" frame to the "outermost" frame */
1377	.rept 5
1378	pushq	11*8(%rsp)
1379	.endr
1380	UNWIND_HINT_IRET_REGS
1381
1382	/* Everything up to here is safe from nested NMIs */
1383
1384#ifdef CONFIG_DEBUG_ENTRY
1385	/*
1386	 * For ease of testing, unmask NMIs right away.  Disabled by
1387	 * default because IRET is very expensive.
1388	 */
1389	pushq	$0		/* SS */
1390	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1391	addq	$8, (%rsp)	/* Fix up RSP */
1392	pushfq			/* RFLAGS */
1393	pushq	$__KERNEL_CS	/* CS */
1394	pushq	$1f		/* RIP */
1395	iretq			/* continues at repeat_nmi below */
1396	UNWIND_HINT_IRET_REGS
13971:
1398#endif
1399
1400repeat_nmi:
1401	ANNOTATE_NOENDBR // this code
1402	/*
1403	 * If there was a nested NMI, the first NMI's iret will return
1404	 * here. But NMIs are still enabled and we can take another
1405	 * nested NMI. The nested NMI checks the interrupted RIP to see
1406	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1407	 * it will just return, as we are about to repeat an NMI anyway.
1408	 * This makes it safe to copy to the stack frame that a nested
1409	 * NMI will update.
1410	 *
1411	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1412	 * we're repeating an NMI, gsbase has the same value that it had on
1413	 * the first iteration.  paranoid_entry will load the kernel
1414	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1415	 * is zero.
1416	 */
1417	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1418
1419	/*
1420	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1421	 * here must not modify the "iret" frame while we're writing to
1422	 * it or it will end up containing garbage.
1423	 */
1424	addq	$(10*8), %rsp
1425	.rept 5
1426	pushq	-6*8(%rsp)
1427	.endr
1428	subq	$(5*8), %rsp
1429end_repeat_nmi:
1430	ANNOTATE_NOENDBR // this code
1431
1432	/*
1433	 * Everything below this point can be preempted by a nested NMI.
1434	 * If this happens, then the inner NMI will change the "iret"
1435	 * frame to point back to repeat_nmi.
1436	 */
1437	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1438
1439	/*
1440	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1441	 * as we should not be calling schedule in NMI context.
1442	 * Even with normal interrupts enabled. An NMI should not be
1443	 * setting NEED_RESCHED or anything that normal interrupts and
1444	 * exceptions might do.
1445	 */
1446	call	paranoid_entry
1447	UNWIND_HINT_REGS
1448
1449	movq	%rsp, %rdi
1450	movq	$-1, %rsi
1451	call	exc_nmi
1452
1453	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1454	IBRS_EXIT save_reg=%r15
1455
1456	/* Always restore stashed CR3 value (see paranoid_entry) */
1457	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1458
1459	/*
1460	 * The above invocation of paranoid_entry stored the GSBASE
1461	 * related information in R/EBX depending on the availability
1462	 * of FSGSBASE.
1463	 *
1464	 * If FSGSBASE is enabled, restore the saved GSBASE value
1465	 * unconditionally, otherwise take the conditional SWAPGS path.
1466	 */
1467	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1468
1469	wrgsbase	%rbx
1470	jmp	nmi_restore
1471
1472nmi_no_fsgsbase:
1473	/* EBX == 0 -> invoke SWAPGS */
1474	testl	%ebx, %ebx
1475	jnz	nmi_restore
1476
1477nmi_swapgs:
1478	swapgs
1479
1480nmi_restore:
1481	POP_REGS
1482
1483	/*
1484	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1485	 * at the "iret" frame.
1486	 */
1487	addq	$6*8, %rsp
1488
1489	/*
1490	 * Clear "NMI executing".  Set DF first so that we can easily
1491	 * distinguish the remaining code between here and IRET from
1492	 * the SYSCALL entry and exit paths.
1493	 *
1494	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1495	 * this code when I had the misapprehension that Xen PV supported
1496	 * NMIs, and Xen PV would break that approach.
1497	 */
1498	std
1499	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1500
1501	/*
1502	 * iretq reads the "iret" frame and exits the NMI stack in a
1503	 * single instruction.  We are returning to kernel mode, so this
1504	 * cannot result in a fault.  Similarly, we don't need to worry
1505	 * about espfix64 on the way back to kernel mode.
1506	 */
1507	iretq
1508SYM_CODE_END(asm_exc_nmi)
1509
1510#ifndef CONFIG_IA32_EMULATION
1511/*
1512 * This handles SYSCALL from 32-bit code.  There is no way to program
1513 * MSRs to fully disable 32-bit SYSCALL.
1514 */
1515SYM_CODE_START(ignore_sysret)
1516	UNWIND_HINT_EMPTY
1517	ENDBR
1518	mov	$-ENOSYS, %eax
1519	sysretl
1520SYM_CODE_END(ignore_sysret)
1521#endif
1522
1523.pushsection .text, "ax"
1524	__FUNC_ALIGN
1525SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1526	UNWIND_HINT_FUNC
1527	/* Prevent any naive code from trying to unwind to our caller. */
1528	xorl	%ebp, %ebp
1529
1530	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1531	leaq	-PTREGS_SIZE(%rax), %rsp
1532	UNWIND_HINT_REGS
1533
1534	call	make_task_dead
1535SYM_CODE_END(rewind_stack_and_make_dead)
1536.popsection
1537