xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include "calling.h"
27#include <asm/asm-offsets.h>
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
32#include <asm/page_types.h>
33#include <asm/irqflags.h>
34#include <asm/paravirt.h>
35#include <asm/percpu.h>
36#include <asm/asm.h>
37#include <asm/smap.h>
38#include <asm/pgtable_types.h>
39#include <asm/export.h>
40#include <asm/frame.h>
41#include <linux/err.h>
42
43.code64
44.section .entry.text, "ax"
45
46#ifdef CONFIG_PARAVIRT
47ENTRY(native_usergs_sysret64)
48	UNWIND_HINT_EMPTY
49	swapgs
50	sysretq
51END(native_usergs_sysret64)
52#endif /* CONFIG_PARAVIRT */
53
54.macro TRACE_IRQS_FLAGS flags:req
55#ifdef CONFIG_TRACE_IRQFLAGS
56	bt	$9, \flags		/* interrupts off? */
57	jnc	1f
58	TRACE_IRQS_ON
591:
60#endif
61.endm
62
63.macro TRACE_IRQS_IRETQ
64	TRACE_IRQS_FLAGS EFLAGS(%rsp)
65.endm
66
67/*
68 * When dynamic function tracer is enabled it will add a breakpoint
69 * to all locations that it is about to modify, sync CPUs, update
70 * all the code, sync CPUs, then remove the breakpoints. In this time
71 * if lockdep is enabled, it might jump back into the debug handler
72 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
73 *
74 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
75 * make sure the stack pointer does not get reset back to the top
76 * of the debug stack, and instead just reuses the current stack.
77 */
78#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
79
80.macro TRACE_IRQS_OFF_DEBUG
81	call	debug_stack_set_zero
82	TRACE_IRQS_OFF
83	call	debug_stack_reset
84.endm
85
86.macro TRACE_IRQS_ON_DEBUG
87	call	debug_stack_set_zero
88	TRACE_IRQS_ON
89	call	debug_stack_reset
90.endm
91
92.macro TRACE_IRQS_IRETQ_DEBUG
93	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
94	jnc	1f
95	TRACE_IRQS_ON_DEBUG
961:
97.endm
98
99#else
100# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
101# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
102# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
103#endif
104
105/*
106 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
107 *
108 * This is the only entry point used for 64-bit system calls.  The
109 * hardware interface is reasonably well designed and the register to
110 * argument mapping Linux uses fits well with the registers that are
111 * available when SYSCALL is used.
112 *
113 * SYSCALL instructions can be found inlined in libc implementations as
114 * well as some other programs and libraries.  There are also a handful
115 * of SYSCALL instructions in the vDSO used, for example, as a
116 * clock_gettimeofday fallback.
117 *
118 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
119 * then loads new ss, cs, and rip from previously programmed MSRs.
120 * rflags gets masked by a value from another MSR (so CLD and CLAC
121 * are not needed). SYSCALL does not save anything on the stack
122 * and does not change rsp.
123 *
124 * Registers on entry:
125 * rax  system call number
126 * rcx  return address
127 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
128 * rdi  arg0
129 * rsi  arg1
130 * rdx  arg2
131 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
132 * r8   arg4
133 * r9   arg5
134 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
135 *
136 * Only called from user space.
137 *
138 * When user can change pt_regs->foo always force IRET. That is because
139 * it deals with uncanonical addresses better. SYSRET has trouble
140 * with them due to bugs in both AMD and Intel CPUs.
141 */
142
143	.pushsection .entry_trampoline, "ax"
144
145/*
146 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
147 * that the assembler and linker have the wrong idea as to where this code
148 * lives (and, in fact, it's mapped more than once, so it's not even at a
149 * fixed address).  So we can't reference any symbols outside the entry
150 * trampoline and expect it to work.
151 *
152 * Instead, we carefully abuse %rip-relative addressing.
153 * _entry_trampoline(%rip) refers to the start of the remapped) entry
154 * trampoline.  We can thus find cpu_entry_area with this macro:
155 */
156
157#define CPU_ENTRY_AREA \
158	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
159
160/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
161#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
162			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
163
164ENTRY(entry_SYSCALL_64_trampoline)
165	UNWIND_HINT_EMPTY
166	swapgs
167
168	/* Stash the user RSP. */
169	movq	%rsp, RSP_SCRATCH
170
171	/* Load the top of the task stack into RSP */
172	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
173
174	/* Start building the simulated IRET frame. */
175	pushq	$__USER_DS			/* pt_regs->ss */
176	pushq	RSP_SCRATCH			/* pt_regs->sp */
177	pushq	%r11				/* pt_regs->flags */
178	pushq	$__USER_CS			/* pt_regs->cs */
179	pushq	%rcx				/* pt_regs->ip */
180
181	/*
182	 * x86 lacks a near absolute jump, and we can't jump to the real
183	 * entry text with a relative jump.  We could push the target
184	 * address and then use retq, but this destroys the pipeline on
185	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
186	 * spill RDI and restore it in a second-stage trampoline.
187	 */
188	pushq	%rdi
189	movq	$entry_SYSCALL_64_stage2, %rdi
190	jmp	*%rdi
191END(entry_SYSCALL_64_trampoline)
192
193	.popsection
194
195ENTRY(entry_SYSCALL_64_stage2)
196	UNWIND_HINT_EMPTY
197	popq	%rdi
198	jmp	entry_SYSCALL_64_after_hwframe
199END(entry_SYSCALL_64_stage2)
200
201ENTRY(entry_SYSCALL_64)
202	UNWIND_HINT_EMPTY
203	/*
204	 * Interrupts are off on entry.
205	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
206	 * it is too small to ever cause noticeable irq latency.
207	 */
208
209	swapgs
210	movq	%rsp, PER_CPU_VAR(rsp_scratch)
211	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
212
213	/* Construct struct pt_regs on stack */
214	pushq	$__USER_DS			/* pt_regs->ss */
215	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
216	pushq	%r11				/* pt_regs->flags */
217	pushq	$__USER_CS			/* pt_regs->cs */
218	pushq	%rcx				/* pt_regs->ip */
219GLOBAL(entry_SYSCALL_64_after_hwframe)
220	pushq	%rax				/* pt_regs->orig_ax */
221	pushq	%rdi				/* pt_regs->di */
222	pushq	%rsi				/* pt_regs->si */
223	pushq	%rdx				/* pt_regs->dx */
224	pushq	%rcx				/* pt_regs->cx */
225	pushq	$-ENOSYS			/* pt_regs->ax */
226	pushq	%r8				/* pt_regs->r8 */
227	pushq	%r9				/* pt_regs->r9 */
228	pushq	%r10				/* pt_regs->r10 */
229	pushq	%r11				/* pt_regs->r11 */
230	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
231	UNWIND_HINT_REGS extra=0
232
233	TRACE_IRQS_OFF
234
235	/*
236	 * If we need to do entry work or if we guess we'll need to do
237	 * exit work, go straight to the slow path.
238	 */
239	movq	PER_CPU_VAR(current_task), %r11
240	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
241	jnz	entry_SYSCALL64_slow_path
242
243entry_SYSCALL_64_fastpath:
244	/*
245	 * Easy case: enable interrupts and issue the syscall.  If the syscall
246	 * needs pt_regs, we'll call a stub that disables interrupts again
247	 * and jumps to the slow path.
248	 */
249	TRACE_IRQS_ON
250	ENABLE_INTERRUPTS(CLBR_NONE)
251#if __SYSCALL_MASK == ~0
252	cmpq	$__NR_syscall_max, %rax
253#else
254	andl	$__SYSCALL_MASK, %eax
255	cmpl	$__NR_syscall_max, %eax
256#endif
257	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
258	movq	%r10, %rcx
259
260	/*
261	 * This call instruction is handled specially in stub_ptregs_64.
262	 * It might end up jumping to the slow path.  If it jumps, RAX
263	 * and all argument registers are clobbered.
264	 */
265	call	*sys_call_table(, %rax, 8)
266.Lentry_SYSCALL_64_after_fastpath_call:
267
268	movq	%rax, RAX(%rsp)
2691:
270
271	/*
272	 * If we get here, then we know that pt_regs is clean for SYSRET64.
273	 * If we see that no exit work is required (which we are required
274	 * to check with IRQs off), then we can go straight to SYSRET64.
275	 */
276	DISABLE_INTERRUPTS(CLBR_ANY)
277	TRACE_IRQS_OFF
278	movq	PER_CPU_VAR(current_task), %r11
279	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
280	jnz	1f
281
282	LOCKDEP_SYS_EXIT
283	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
284	movq	RIP(%rsp), %rcx
285	movq	EFLAGS(%rsp), %r11
286	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
287	UNWIND_HINT_EMPTY
288	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
289
2901:
291	/*
292	 * The fast path looked good when we started, but something changed
293	 * along the way and we need to switch to the slow path.  Calling
294	 * raise(3) will trigger this, for example.  IRQs are off.
295	 */
296	TRACE_IRQS_ON
297	ENABLE_INTERRUPTS(CLBR_ANY)
298	SAVE_EXTRA_REGS
299	movq	%rsp, %rdi
300	call	syscall_return_slowpath	/* returns with IRQs disabled */
301	jmp	return_from_SYSCALL_64
302
303entry_SYSCALL64_slow_path:
304	/* IRQs are off. */
305	SAVE_EXTRA_REGS
306	movq	%rsp, %rdi
307	call	do_syscall_64		/* returns with IRQs disabled */
308
309return_from_SYSCALL_64:
310	TRACE_IRQS_IRETQ		/* we're about to change IF */
311
312	/*
313	 * Try to use SYSRET instead of IRET if we're returning to
314	 * a completely clean 64-bit userspace context.  If we're not,
315	 * go to the slow exit path.
316	 */
317	movq	RCX(%rsp), %rcx
318	movq	RIP(%rsp), %r11
319
320	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
321	jne	swapgs_restore_regs_and_return_to_usermode
322
323	/*
324	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
325	 * in kernel space.  This essentially lets the user take over
326	 * the kernel, since userspace controls RSP.
327	 *
328	 * If width of "canonical tail" ever becomes variable, this will need
329	 * to be updated to remain correct on both old and new CPUs.
330	 *
331	 * Change top bits to match most significant bit (47th or 56th bit
332	 * depending on paging mode) in the address.
333	 */
334	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
335	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
336
337	/* If this changed %rcx, it was not canonical */
338	cmpq	%rcx, %r11
339	jne	swapgs_restore_regs_and_return_to_usermode
340
341	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
342	jne	swapgs_restore_regs_and_return_to_usermode
343
344	movq	R11(%rsp), %r11
345	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
346	jne	swapgs_restore_regs_and_return_to_usermode
347
348	/*
349	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
350	 * restore RF properly. If the slowpath sets it for whatever reason, we
351	 * need to restore it correctly.
352	 *
353	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
354	 * trap from userspace immediately after SYSRET.  This would cause an
355	 * infinite loop whenever #DB happens with register state that satisfies
356	 * the opportunistic SYSRET conditions.  For example, single-stepping
357	 * this user code:
358	 *
359	 *           movq	$stuck_here, %rcx
360	 *           pushfq
361	 *           popq %r11
362	 *   stuck_here:
363	 *
364	 * would never get past 'stuck_here'.
365	 */
366	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
367	jnz	swapgs_restore_regs_and_return_to_usermode
368
369	/* nothing to check for RSP */
370
371	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
372	jne	swapgs_restore_regs_and_return_to_usermode
373
374	/*
375	 * We win! This label is here just for ease of understanding
376	 * perf profiles. Nothing jumps here.
377	 */
378syscall_return_via_sysret:
379	/* rcx and r11 are already restored (see code above) */
380	UNWIND_HINT_EMPTY
381	POP_EXTRA_REGS
382.Lpop_c_regs_except_rcx_r11_and_sysret:
383	popq	%rsi	/* skip r11 */
384	popq	%r10
385	popq	%r9
386	popq	%r8
387	popq	%rax
388	popq	%rsi	/* skip rcx */
389	popq	%rdx
390	popq	%rsi
391
392	/*
393	 * Now all regs are restored except RSP and RDI.
394	 * Save old stack pointer and switch to trampoline stack.
395	 */
396	movq	%rsp, %rdi
397	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
398
399	pushq	RSP-RDI(%rdi)	/* RSP */
400	pushq	(%rdi)		/* RDI */
401
402	/*
403	 * We are on the trampoline stack.  All regs except RDI are live.
404	 * We can do future final exit work right here.
405	 */
406
407	popq	%rdi
408	popq	%rsp
409	USERGS_SYSRET64
410END(entry_SYSCALL_64)
411
412ENTRY(stub_ptregs_64)
413	/*
414	 * Syscalls marked as needing ptregs land here.
415	 * If we are on the fast path, we need to save the extra regs,
416	 * which we achieve by trying again on the slow path.  If we are on
417	 * the slow path, the extra regs are already saved.
418	 *
419	 * RAX stores a pointer to the C function implementing the syscall.
420	 * IRQs are on.
421	 */
422	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
423	jne	1f
424
425	/*
426	 * Called from fast path -- disable IRQs again, pop return address
427	 * and jump to slow path
428	 */
429	DISABLE_INTERRUPTS(CLBR_ANY)
430	TRACE_IRQS_OFF
431	popq	%rax
432	UNWIND_HINT_REGS extra=0
433	jmp	entry_SYSCALL64_slow_path
434
4351:
436	jmp	*%rax				/* Called from C */
437END(stub_ptregs_64)
438
439.macro ptregs_stub func
440ENTRY(ptregs_\func)
441	UNWIND_HINT_FUNC
442	leaq	\func(%rip), %rax
443	jmp	stub_ptregs_64
444END(ptregs_\func)
445.endm
446
447/* Instantiate ptregs_stub for each ptregs-using syscall */
448#define __SYSCALL_64_QUAL_(sym)
449#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
450#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
451#include <asm/syscalls_64.h>
452
453/*
454 * %rdi: prev task
455 * %rsi: next task
456 */
457ENTRY(__switch_to_asm)
458	UNWIND_HINT_FUNC
459	/*
460	 * Save callee-saved registers
461	 * This must match the order in inactive_task_frame
462	 */
463	pushq	%rbp
464	pushq	%rbx
465	pushq	%r12
466	pushq	%r13
467	pushq	%r14
468	pushq	%r15
469
470	/* switch stack */
471	movq	%rsp, TASK_threadsp(%rdi)
472	movq	TASK_threadsp(%rsi), %rsp
473
474#ifdef CONFIG_CC_STACKPROTECTOR
475	movq	TASK_stack_canary(%rsi), %rbx
476	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
477#endif
478
479	/* restore callee-saved registers */
480	popq	%r15
481	popq	%r14
482	popq	%r13
483	popq	%r12
484	popq	%rbx
485	popq	%rbp
486
487	jmp	__switch_to
488END(__switch_to_asm)
489
490/*
491 * A newly forked process directly context switches into this address.
492 *
493 * rax: prev task we switched from
494 * rbx: kernel thread func (NULL for user thread)
495 * r12: kernel thread arg
496 */
497ENTRY(ret_from_fork)
498	UNWIND_HINT_EMPTY
499	movq	%rax, %rdi
500	call	schedule_tail			/* rdi: 'prev' task parameter */
501
502	testq	%rbx, %rbx			/* from kernel_thread? */
503	jnz	1f				/* kernel threads are uncommon */
504
5052:
506	UNWIND_HINT_REGS
507	movq	%rsp, %rdi
508	call	syscall_return_slowpath	/* returns with IRQs disabled */
509	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
510	jmp	swapgs_restore_regs_and_return_to_usermode
511
5121:
513	/* kernel thread */
514	movq	%r12, %rdi
515	call	*%rbx
516	/*
517	 * A kernel thread is allowed to return here after successfully
518	 * calling do_execve().  Exit to userspace to complete the execve()
519	 * syscall.
520	 */
521	movq	$0, RAX(%rsp)
522	jmp	2b
523END(ret_from_fork)
524
525/*
526 * Build the entry stubs with some assembler magic.
527 * We pack 1 stub into every 8-byte block.
528 */
529	.align 8
530ENTRY(irq_entries_start)
531    vector=FIRST_EXTERNAL_VECTOR
532    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
533	UNWIND_HINT_IRET_REGS
534	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
535	jmp	common_interrupt
536	.align	8
537	vector=vector+1
538    .endr
539END(irq_entries_start)
540
541.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
542#ifdef CONFIG_DEBUG_ENTRY
543	pushq %rax
544	SAVE_FLAGS(CLBR_RAX)
545	testl $X86_EFLAGS_IF, %eax
546	jz .Lokay_\@
547	ud2
548.Lokay_\@:
549	popq %rax
550#endif
551.endm
552
553/*
554 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
555 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
556 * Requires kernel GSBASE.
557 *
558 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
559 */
560.macro ENTER_IRQ_STACK regs=1 old_rsp
561	DEBUG_ENTRY_ASSERT_IRQS_OFF
562	movq	%rsp, \old_rsp
563
564	.if \regs
565	UNWIND_HINT_REGS base=\old_rsp
566	.endif
567
568	incl	PER_CPU_VAR(irq_count)
569	jnz	.Lirq_stack_push_old_rsp_\@
570
571	/*
572	 * Right now, if we just incremented irq_count to zero, we've
573	 * claimed the IRQ stack but we haven't switched to it yet.
574	 *
575	 * If anything is added that can interrupt us here without using IST,
576	 * it must be *extremely* careful to limit its stack usage.  This
577	 * could include kprobes and a hypothetical future IST-less #DB
578	 * handler.
579	 *
580	 * The OOPS unwinder relies on the word at the top of the IRQ
581	 * stack linking back to the previous RSP for the entire time we're
582	 * on the IRQ stack.  For this to work reliably, we need to write
583	 * it before we actually move ourselves to the IRQ stack.
584	 */
585
586	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
587	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
588
589#ifdef CONFIG_DEBUG_ENTRY
590	/*
591	 * If the first movq above becomes wrong due to IRQ stack layout
592	 * changes, the only way we'll notice is if we try to unwind right
593	 * here.  Assert that we set up the stack right to catch this type
594	 * of bug quickly.
595	 */
596	cmpq	-8(%rsp), \old_rsp
597	je	.Lirq_stack_okay\@
598	ud2
599	.Lirq_stack_okay\@:
600#endif
601
602.Lirq_stack_push_old_rsp_\@:
603	pushq	\old_rsp
604
605	.if \regs
606	UNWIND_HINT_REGS indirect=1
607	.endif
608.endm
609
610/*
611 * Undoes ENTER_IRQ_STACK.
612 */
613.macro LEAVE_IRQ_STACK regs=1
614	DEBUG_ENTRY_ASSERT_IRQS_OFF
615	/* We need to be off the IRQ stack before decrementing irq_count. */
616	popq	%rsp
617
618	.if \regs
619	UNWIND_HINT_REGS
620	.endif
621
622	/*
623	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
624	 * the irq stack but we're not on it.
625	 */
626
627	decl	PER_CPU_VAR(irq_count)
628.endm
629
630/*
631 * Interrupt entry/exit.
632 *
633 * Interrupt entry points save only callee clobbered registers in fast path.
634 *
635 * Entry runs with interrupts off.
636 */
637
638/* 0(%rsp): ~(interrupt number) */
639	.macro interrupt func
640	cld
641
642	testb	$3, CS-ORIG_RAX(%rsp)
643	jz	1f
644	SWAPGS
645	call	switch_to_thread_stack
6461:
647
648	ALLOC_PT_GPREGS_ON_STACK
649	SAVE_C_REGS
650	SAVE_EXTRA_REGS
651	ENCODE_FRAME_POINTER
652
653	testb	$3, CS(%rsp)
654	jz	1f
655
656	/*
657	 * IRQ from user mode.
658	 *
659	 * We need to tell lockdep that IRQs are off.  We can't do this until
660	 * we fix gsbase, and we should do it before enter_from_user_mode
661	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
662	 * the simplest way to handle it is to just call it twice if
663	 * we enter from user mode.  There's no reason to optimize this since
664	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
665	 */
666	TRACE_IRQS_OFF
667
668	CALL_enter_from_user_mode
669
6701:
671	ENTER_IRQ_STACK old_rsp=%rdi
672	/* We entered an interrupt context - irqs are off: */
673	TRACE_IRQS_OFF
674
675	call	\func	/* rdi points to pt_regs */
676	.endm
677
678	/*
679	 * The interrupt stubs push (~vector+0x80) onto the stack and
680	 * then jump to common_interrupt.
681	 */
682	.p2align CONFIG_X86_L1_CACHE_SHIFT
683common_interrupt:
684	ASM_CLAC
685	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
686	interrupt do_IRQ
687	/* 0(%rsp): old RSP */
688ret_from_intr:
689	DISABLE_INTERRUPTS(CLBR_ANY)
690	TRACE_IRQS_OFF
691
692	LEAVE_IRQ_STACK
693
694	testb	$3, CS(%rsp)
695	jz	retint_kernel
696
697	/* Interrupt came from user space */
698GLOBAL(retint_user)
699	mov	%rsp,%rdi
700	call	prepare_exit_to_usermode
701	TRACE_IRQS_IRETQ
702
703GLOBAL(swapgs_restore_regs_and_return_to_usermode)
704#ifdef CONFIG_DEBUG_ENTRY
705	/* Assert that pt_regs indicates user mode. */
706	testb	$3, CS(%rsp)
707	jnz	1f
708	ud2
7091:
710#endif
711	POP_EXTRA_REGS
712	popq	%r11
713	popq	%r10
714	popq	%r9
715	popq	%r8
716	popq	%rax
717	popq	%rcx
718	popq	%rdx
719	popq	%rsi
720
721	/*
722	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
723	 * Save old stack pointer and switch to trampoline stack.
724	 */
725	movq	%rsp, %rdi
726	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
727
728	/* Copy the IRET frame to the trampoline stack. */
729	pushq	6*8(%rdi)	/* SS */
730	pushq	5*8(%rdi)	/* RSP */
731	pushq	4*8(%rdi)	/* EFLAGS */
732	pushq	3*8(%rdi)	/* CS */
733	pushq	2*8(%rdi)	/* RIP */
734
735	/* Push user RDI on the trampoline stack. */
736	pushq	(%rdi)
737
738	/*
739	 * We are on the trampoline stack.  All regs except RDI are live.
740	 * We can do future final exit work right here.
741	 */
742
743	/* Restore RDI. */
744	popq	%rdi
745	SWAPGS
746	INTERRUPT_RETURN
747
748
749/* Returning to kernel space */
750retint_kernel:
751#ifdef CONFIG_PREEMPT
752	/* Interrupts are off */
753	/* Check if we need preemption */
754	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
755	jnc	1f
7560:	cmpl	$0, PER_CPU_VAR(__preempt_count)
757	jnz	1f
758	call	preempt_schedule_irq
759	jmp	0b
7601:
761#endif
762	/*
763	 * The iretq could re-enable interrupts:
764	 */
765	TRACE_IRQS_IRETQ
766
767GLOBAL(restore_regs_and_return_to_kernel)
768#ifdef CONFIG_DEBUG_ENTRY
769	/* Assert that pt_regs indicates kernel mode. */
770	testb	$3, CS(%rsp)
771	jz	1f
772	ud2
7731:
774#endif
775	POP_EXTRA_REGS
776	POP_C_REGS
777	addq	$8, %rsp	/* skip regs->orig_ax */
778	INTERRUPT_RETURN
779
780ENTRY(native_iret)
781	UNWIND_HINT_IRET_REGS
782	/*
783	 * Are we returning to a stack segment from the LDT?  Note: in
784	 * 64-bit mode SS:RSP on the exception stack is always valid.
785	 */
786#ifdef CONFIG_X86_ESPFIX64
787	testb	$4, (SS-RIP)(%rsp)
788	jnz	native_irq_return_ldt
789#endif
790
791.global native_irq_return_iret
792native_irq_return_iret:
793	/*
794	 * This may fault.  Non-paranoid faults on return to userspace are
795	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
796	 * Double-faults due to espfix64 are handled in do_double_fault.
797	 * Other faults here are fatal.
798	 */
799	iretq
800
801#ifdef CONFIG_X86_ESPFIX64
802native_irq_return_ldt:
803	/*
804	 * We are running with user GSBASE.  All GPRs contain their user
805	 * values.  We have a percpu ESPFIX stack that is eight slots
806	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
807	 * of the ESPFIX stack.
808	 *
809	 * We clobber RAX and RDI in this code.  We stash RDI on the
810	 * normal stack and RAX on the ESPFIX stack.
811	 *
812	 * The ESPFIX stack layout we set up looks like this:
813	 *
814	 * --- top of ESPFIX stack ---
815	 * SS
816	 * RSP
817	 * RFLAGS
818	 * CS
819	 * RIP  <-- RSP points here when we're done
820	 * RAX  <-- espfix_waddr points here
821	 * --- bottom of ESPFIX stack ---
822	 */
823
824	pushq	%rdi				/* Stash user RDI */
825	SWAPGS
826	movq	PER_CPU_VAR(espfix_waddr), %rdi
827	movq	%rax, (0*8)(%rdi)		/* user RAX */
828	movq	(1*8)(%rsp), %rax		/* user RIP */
829	movq	%rax, (1*8)(%rdi)
830	movq	(2*8)(%rsp), %rax		/* user CS */
831	movq	%rax, (2*8)(%rdi)
832	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
833	movq	%rax, (3*8)(%rdi)
834	movq	(5*8)(%rsp), %rax		/* user SS */
835	movq	%rax, (5*8)(%rdi)
836	movq	(4*8)(%rsp), %rax		/* user RSP */
837	movq	%rax, (4*8)(%rdi)
838	/* Now RAX == RSP. */
839
840	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
841	popq	%rdi				/* Restore user RDI */
842
843	/*
844	 * espfix_stack[31:16] == 0.  The page tables are set up such that
845	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
846	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
847	 * the same page.  Set up RSP so that RSP[31:16] contains the
848	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
849	 * still points to an RO alias of the ESPFIX stack.
850	 */
851	orq	PER_CPU_VAR(espfix_stack), %rax
852	SWAPGS
853	movq	%rax, %rsp
854	UNWIND_HINT_IRET_REGS offset=8
855
856	/*
857	 * At this point, we cannot write to the stack any more, but we can
858	 * still read.
859	 */
860	popq	%rax				/* Restore user RAX */
861
862	/*
863	 * RSP now points to an ordinary IRET frame, except that the page
864	 * is read-only and RSP[31:16] are preloaded with the userspace
865	 * values.  We can now IRET back to userspace.
866	 */
867	jmp	native_irq_return_iret
868#endif
869END(common_interrupt)
870
871/*
872 * APIC interrupts.
873 */
874.macro apicinterrupt3 num sym do_sym
875ENTRY(\sym)
876	UNWIND_HINT_IRET_REGS
877	ASM_CLAC
878	pushq	$~(\num)
879.Lcommon_\sym:
880	interrupt \do_sym
881	jmp	ret_from_intr
882END(\sym)
883.endm
884
885/* Make sure APIC interrupt handlers end up in the irqentry section: */
886#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
887#define POP_SECTION_IRQENTRY	.popsection
888
889.macro apicinterrupt num sym do_sym
890PUSH_SECTION_IRQENTRY
891apicinterrupt3 \num \sym \do_sym
892POP_SECTION_IRQENTRY
893.endm
894
895#ifdef CONFIG_SMP
896apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
897apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
898#endif
899
900#ifdef CONFIG_X86_UV
901apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
902#endif
903
904apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
905apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
906
907#ifdef CONFIG_HAVE_KVM
908apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
909apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
910apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
911#endif
912
913#ifdef CONFIG_X86_MCE_THRESHOLD
914apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
915#endif
916
917#ifdef CONFIG_X86_MCE_AMD
918apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
919#endif
920
921#ifdef CONFIG_X86_THERMAL_VECTOR
922apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
923#endif
924
925#ifdef CONFIG_SMP
926apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
927apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
928apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
929#endif
930
931apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
932apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
933
934#ifdef CONFIG_IRQ_WORK
935apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
936#endif
937
938/*
939 * Exception entry points.
940 */
941#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
942
943/*
944 * Switch to the thread stack.  This is called with the IRET frame and
945 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
946 * space has not been allocated for them.)
947 */
948ENTRY(switch_to_thread_stack)
949	UNWIND_HINT_FUNC
950
951	pushq	%rdi
952	movq	%rsp, %rdi
953	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
954	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
955
956	pushq	7*8(%rdi)		/* regs->ss */
957	pushq	6*8(%rdi)		/* regs->rsp */
958	pushq	5*8(%rdi)		/* regs->eflags */
959	pushq	4*8(%rdi)		/* regs->cs */
960	pushq	3*8(%rdi)		/* regs->ip */
961	pushq	2*8(%rdi)		/* regs->orig_ax */
962	pushq	8(%rdi)			/* return address */
963	UNWIND_HINT_FUNC
964
965	movq	(%rdi), %rdi
966	ret
967END(switch_to_thread_stack)
968
969.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
970ENTRY(\sym)
971	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
972
973	/* Sanity check */
974	.if \shift_ist != -1 && \paranoid == 0
975	.error "using shift_ist requires paranoid=1"
976	.endif
977
978	ASM_CLAC
979
980	.if \has_error_code == 0
981	pushq	$-1				/* ORIG_RAX: no syscall to restart */
982	.endif
983
984	ALLOC_PT_GPREGS_ON_STACK
985
986	.if \paranoid < 2
987	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
988	jnz	.Lfrom_usermode_switch_stack_\@
989	.endif
990
991	.if \paranoid
992	call	paranoid_entry
993	.else
994	call	error_entry
995	.endif
996	UNWIND_HINT_REGS
997	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
998
999	.if \paranoid
1000	.if \shift_ist != -1
1001	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
1002	.else
1003	TRACE_IRQS_OFF
1004	.endif
1005	.endif
1006
1007	movq	%rsp, %rdi			/* pt_regs pointer */
1008
1009	.if \has_error_code
1010	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
1011	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1012	.else
1013	xorl	%esi, %esi			/* no error code */
1014	.endif
1015
1016	.if \shift_ist != -1
1017	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1018	.endif
1019
1020	call	\do_sym
1021
1022	.if \shift_ist != -1
1023	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1024	.endif
1025
1026	/* these procedures expect "no swapgs" flag in ebx */
1027	.if \paranoid
1028	jmp	paranoid_exit
1029	.else
1030	jmp	error_exit
1031	.endif
1032
1033	.if \paranoid < 2
1034	/*
1035	 * Entry from userspace.  Switch stacks and treat it
1036	 * as a normal entry.  This means that paranoid handlers
1037	 * run in real process context if user_mode(regs).
1038	 */
1039.Lfrom_usermode_switch_stack_\@:
1040	call	error_entry
1041
1042	movq	%rsp, %rdi			/* pt_regs pointer */
1043
1044	.if \has_error_code
1045	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
1046	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1047	.else
1048	xorl	%esi, %esi			/* no error code */
1049	.endif
1050
1051	call	\do_sym
1052
1053	jmp	error_exit			/* %ebx: no swapgs flag */
1054	.endif
1055END(\sym)
1056.endm
1057
1058idtentry divide_error			do_divide_error			has_error_code=0
1059idtentry overflow			do_overflow			has_error_code=0
1060idtentry bounds				do_bounds			has_error_code=0
1061idtentry invalid_op			do_invalid_op			has_error_code=0
1062idtentry device_not_available		do_device_not_available		has_error_code=0
1063idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
1064idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
1065idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
1066idtentry segment_not_present		do_segment_not_present		has_error_code=1
1067idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
1068idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
1069idtentry alignment_check		do_alignment_check		has_error_code=1
1070idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
1071
1072
1073	/*
1074	 * Reload gs selector with exception handling
1075	 * edi:  new selector
1076	 */
1077ENTRY(native_load_gs_index)
1078	FRAME_BEGIN
1079	pushfq
1080	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1081	TRACE_IRQS_OFF
1082	SWAPGS
1083.Lgs_change:
1084	movl	%edi, %gs
10852:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1086	SWAPGS
1087	TRACE_IRQS_FLAGS (%rsp)
1088	popfq
1089	FRAME_END
1090	ret
1091ENDPROC(native_load_gs_index)
1092EXPORT_SYMBOL(native_load_gs_index)
1093
1094	_ASM_EXTABLE(.Lgs_change, bad_gs)
1095	.section .fixup, "ax"
1096	/* running with kernelgs */
1097bad_gs:
1098	SWAPGS					/* switch back to user gs */
1099.macro ZAP_GS
1100	/* This can't be a string because the preprocessor needs to see it. */
1101	movl $__USER_DS, %eax
1102	movl %eax, %gs
1103.endm
1104	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1105	xorl	%eax, %eax
1106	movl	%eax, %gs
1107	jmp	2b
1108	.previous
1109
1110/* Call softirq on interrupt stack. Interrupts are off. */
1111ENTRY(do_softirq_own_stack)
1112	pushq	%rbp
1113	mov	%rsp, %rbp
1114	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1115	call	__do_softirq
1116	LEAVE_IRQ_STACK regs=0
1117	leaveq
1118	ret
1119ENDPROC(do_softirq_own_stack)
1120
1121#ifdef CONFIG_XEN
1122idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1123
1124/*
1125 * A note on the "critical region" in our callback handler.
1126 * We want to avoid stacking callback handlers due to events occurring
1127 * during handling of the last event. To do this, we keep events disabled
1128 * until we've done all processing. HOWEVER, we must enable events before
1129 * popping the stack frame (can't be done atomically) and so it would still
1130 * be possible to get enough handler activations to overflow the stack.
1131 * Although unlikely, bugs of that kind are hard to track down, so we'd
1132 * like to avoid the possibility.
1133 * So, on entry to the handler we detect whether we interrupted an
1134 * existing activation in its critical region -- if so, we pop the current
1135 * activation and restart the handler using the previous one.
1136 */
1137ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1138
1139/*
1140 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1141 * see the correct pointer to the pt_regs
1142 */
1143	UNWIND_HINT_FUNC
1144	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1145	UNWIND_HINT_REGS
1146
1147	ENTER_IRQ_STACK old_rsp=%r10
1148	call	xen_evtchn_do_upcall
1149	LEAVE_IRQ_STACK
1150
1151#ifndef CONFIG_PREEMPT
1152	call	xen_maybe_preempt_hcall
1153#endif
1154	jmp	error_exit
1155END(xen_do_hypervisor_callback)
1156
1157/*
1158 * Hypervisor uses this for application faults while it executes.
1159 * We get here for two reasons:
1160 *  1. Fault while reloading DS, ES, FS or GS
1161 *  2. Fault while executing IRET
1162 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1163 * registers that could be reloaded and zeroed the others.
1164 * Category 2 we fix up by killing the current process. We cannot use the
1165 * normal Linux return path in this case because if we use the IRET hypercall
1166 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1167 * We distinguish between categories by comparing each saved segment register
1168 * with its current contents: any discrepancy means we in category 1.
1169 */
1170ENTRY(xen_failsafe_callback)
1171	UNWIND_HINT_EMPTY
1172	movl	%ds, %ecx
1173	cmpw	%cx, 0x10(%rsp)
1174	jne	1f
1175	movl	%es, %ecx
1176	cmpw	%cx, 0x18(%rsp)
1177	jne	1f
1178	movl	%fs, %ecx
1179	cmpw	%cx, 0x20(%rsp)
1180	jne	1f
1181	movl	%gs, %ecx
1182	cmpw	%cx, 0x28(%rsp)
1183	jne	1f
1184	/* All segments match their saved values => Category 2 (Bad IRET). */
1185	movq	(%rsp), %rcx
1186	movq	8(%rsp), %r11
1187	addq	$0x30, %rsp
1188	pushq	$0				/* RIP */
1189	UNWIND_HINT_IRET_REGS offset=8
1190	jmp	general_protection
11911:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1192	movq	(%rsp), %rcx
1193	movq	8(%rsp), %r11
1194	addq	$0x30, %rsp
1195	UNWIND_HINT_IRET_REGS
1196	pushq	$-1 /* orig_ax = -1 => not a system call */
1197	ALLOC_PT_GPREGS_ON_STACK
1198	SAVE_C_REGS
1199	SAVE_EXTRA_REGS
1200	ENCODE_FRAME_POINTER
1201	jmp	error_exit
1202END(xen_failsafe_callback)
1203
1204apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1205	xen_hvm_callback_vector xen_evtchn_do_upcall
1206
1207#endif /* CONFIG_XEN */
1208
1209#if IS_ENABLED(CONFIG_HYPERV)
1210apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1211	hyperv_callback_vector hyperv_vector_handler
1212#endif /* CONFIG_HYPERV */
1213
1214idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1215idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1216idtentry stack_segment		do_stack_segment	has_error_code=1
1217
1218#ifdef CONFIG_XEN
1219idtentry xennmi			do_nmi			has_error_code=0
1220idtentry xendebug		do_debug		has_error_code=0
1221idtentry xenint3		do_int3			has_error_code=0
1222#endif
1223
1224idtentry general_protection	do_general_protection	has_error_code=1
1225idtentry page_fault		do_page_fault		has_error_code=1
1226
1227#ifdef CONFIG_KVM_GUEST
1228idtentry async_page_fault	do_async_page_fault	has_error_code=1
1229#endif
1230
1231#ifdef CONFIG_X86_MCE
1232idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1233#endif
1234
1235/*
1236 * Save all registers in pt_regs, and switch gs if needed.
1237 * Use slow, but surefire "are we in kernel?" check.
1238 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1239 */
1240ENTRY(paranoid_entry)
1241	UNWIND_HINT_FUNC
1242	cld
1243	SAVE_C_REGS 8
1244	SAVE_EXTRA_REGS 8
1245	ENCODE_FRAME_POINTER 8
1246	movl	$1, %ebx
1247	movl	$MSR_GS_BASE, %ecx
1248	rdmsr
1249	testl	%edx, %edx
1250	js	1f				/* negative -> in kernel */
1251	SWAPGS
1252	xorl	%ebx, %ebx
12531:	ret
1254END(paranoid_entry)
1255
1256/*
1257 * "Paranoid" exit path from exception stack.  This is invoked
1258 * only on return from non-NMI IST interrupts that came
1259 * from kernel space.
1260 *
1261 * We may be returning to very strange contexts (e.g. very early
1262 * in syscall entry), so checking for preemption here would
1263 * be complicated.  Fortunately, we there's no good reason
1264 * to try to handle preemption here.
1265 *
1266 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1267 */
1268ENTRY(paranoid_exit)
1269	UNWIND_HINT_REGS
1270	DISABLE_INTERRUPTS(CLBR_ANY)
1271	TRACE_IRQS_OFF_DEBUG
1272	testl	%ebx, %ebx			/* swapgs needed? */
1273	jnz	.Lparanoid_exit_no_swapgs
1274	TRACE_IRQS_IRETQ
1275	SWAPGS_UNSAFE_STACK
1276	jmp	.Lparanoid_exit_restore
1277.Lparanoid_exit_no_swapgs:
1278	TRACE_IRQS_IRETQ_DEBUG
1279.Lparanoid_exit_restore:
1280	jmp restore_regs_and_return_to_kernel
1281END(paranoid_exit)
1282
1283/*
1284 * Save all registers in pt_regs, and switch gs if needed.
1285 * Return: EBX=0: came from user mode; EBX=1: otherwise
1286 */
1287ENTRY(error_entry)
1288	UNWIND_HINT_FUNC
1289	cld
1290	SAVE_C_REGS 8
1291	SAVE_EXTRA_REGS 8
1292	ENCODE_FRAME_POINTER 8
1293	xorl	%ebx, %ebx
1294	testb	$3, CS+8(%rsp)
1295	jz	.Lerror_kernelspace
1296
1297	/*
1298	 * We entered from user mode or we're pretending to have entered
1299	 * from user mode due to an IRET fault.
1300	 */
1301	SWAPGS
1302
1303.Lerror_entry_from_usermode_after_swapgs:
1304	/* Put us onto the real thread stack. */
1305	popq	%r12				/* save return addr in %12 */
1306	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1307	call	sync_regs
1308	movq	%rax, %rsp			/* switch stack */
1309	ENCODE_FRAME_POINTER
1310	pushq	%r12
1311
1312	/*
1313	 * We need to tell lockdep that IRQs are off.  We can't do this until
1314	 * we fix gsbase, and we should do it before enter_from_user_mode
1315	 * (which can take locks).
1316	 */
1317	TRACE_IRQS_OFF
1318	CALL_enter_from_user_mode
1319	ret
1320
1321.Lerror_entry_done:
1322	TRACE_IRQS_OFF
1323	ret
1324
1325	/*
1326	 * There are two places in the kernel that can potentially fault with
1327	 * usergs. Handle them here.  B stepping K8s sometimes report a
1328	 * truncated RIP for IRET exceptions returning to compat mode. Check
1329	 * for these here too.
1330	 */
1331.Lerror_kernelspace:
1332	incl	%ebx
1333	leaq	native_irq_return_iret(%rip), %rcx
1334	cmpq	%rcx, RIP+8(%rsp)
1335	je	.Lerror_bad_iret
1336	movl	%ecx, %eax			/* zero extend */
1337	cmpq	%rax, RIP+8(%rsp)
1338	je	.Lbstep_iret
1339	cmpq	$.Lgs_change, RIP+8(%rsp)
1340	jne	.Lerror_entry_done
1341
1342	/*
1343	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1344	 * gsbase and proceed.  We'll fix up the exception and land in
1345	 * .Lgs_change's error handler with kernel gsbase.
1346	 */
1347	SWAPGS
1348	jmp .Lerror_entry_done
1349
1350.Lbstep_iret:
1351	/* Fix truncated RIP */
1352	movq	%rcx, RIP+8(%rsp)
1353	/* fall through */
1354
1355.Lerror_bad_iret:
1356	/*
1357	 * We came from an IRET to user mode, so we have user gsbase.
1358	 * Switch to kernel gsbase:
1359	 */
1360	SWAPGS
1361
1362	/*
1363	 * Pretend that the exception came from user mode: set up pt_regs
1364	 * as if we faulted immediately after IRET and clear EBX so that
1365	 * error_exit knows that we will be returning to user mode.
1366	 */
1367	mov	%rsp, %rdi
1368	call	fixup_bad_iret
1369	mov	%rax, %rsp
1370	decl	%ebx
1371	jmp	.Lerror_entry_from_usermode_after_swapgs
1372END(error_entry)
1373
1374
1375/*
1376 * On entry, EBX is a "return to kernel mode" flag:
1377 *   1: already in kernel mode, don't need SWAPGS
1378 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1379 */
1380ENTRY(error_exit)
1381	UNWIND_HINT_REGS
1382	DISABLE_INTERRUPTS(CLBR_ANY)
1383	TRACE_IRQS_OFF
1384	testl	%ebx, %ebx
1385	jnz	retint_kernel
1386	jmp	retint_user
1387END(error_exit)
1388
1389/*
1390 * Runs on exception stack.  Xen PV does not go through this path at all,
1391 * so we can use real assembly here.
1392 */
1393ENTRY(nmi)
1394	UNWIND_HINT_IRET_REGS
1395
1396	/*
1397	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1398	 * the iretq it performs will take us out of NMI context.
1399	 * This means that we can have nested NMIs where the next
1400	 * NMI is using the top of the stack of the previous NMI. We
1401	 * can't let it execute because the nested NMI will corrupt the
1402	 * stack of the previous NMI. NMI handlers are not re-entrant
1403	 * anyway.
1404	 *
1405	 * To handle this case we do the following:
1406	 *  Check the a special location on the stack that contains
1407	 *  a variable that is set when NMIs are executing.
1408	 *  The interrupted task's stack is also checked to see if it
1409	 *  is an NMI stack.
1410	 *  If the variable is not set and the stack is not the NMI
1411	 *  stack then:
1412	 *    o Set the special variable on the stack
1413	 *    o Copy the interrupt frame into an "outermost" location on the
1414	 *      stack
1415	 *    o Copy the interrupt frame into an "iret" location on the stack
1416	 *    o Continue processing the NMI
1417	 *  If the variable is set or the previous stack is the NMI stack:
1418	 *    o Modify the "iret" location to jump to the repeat_nmi
1419	 *    o return back to the first NMI
1420	 *
1421	 * Now on exit of the first NMI, we first clear the stack variable
1422	 * The NMI stack will tell any nested NMIs at that point that it is
1423	 * nested. Then we pop the stack normally with iret, and if there was
1424	 * a nested NMI that updated the copy interrupt stack frame, a
1425	 * jump will be made to the repeat_nmi code that will handle the second
1426	 * NMI.
1427	 *
1428	 * However, espfix prevents us from directly returning to userspace
1429	 * with a single IRET instruction.  Similarly, IRET to user mode
1430	 * can fault.  We therefore handle NMIs from user space like
1431	 * other IST entries.
1432	 */
1433
1434	ASM_CLAC
1435
1436	/* Use %rdx as our temp variable throughout */
1437	pushq	%rdx
1438
1439	testb	$3, CS-RIP+8(%rsp)
1440	jz	.Lnmi_from_kernel
1441
1442	/*
1443	 * NMI from user mode.  We need to run on the thread stack, but we
1444	 * can't go through the normal entry paths: NMIs are masked, and
1445	 * we don't want to enable interrupts, because then we'll end
1446	 * up in an awkward situation in which IRQs are on but NMIs
1447	 * are off.
1448	 *
1449	 * We also must not push anything to the stack before switching
1450	 * stacks lest we corrupt the "NMI executing" variable.
1451	 */
1452
1453	swapgs
1454	cld
1455	movq	%rsp, %rdx
1456	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1457	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1458	pushq	5*8(%rdx)	/* pt_regs->ss */
1459	pushq	4*8(%rdx)	/* pt_regs->rsp */
1460	pushq	3*8(%rdx)	/* pt_regs->flags */
1461	pushq	2*8(%rdx)	/* pt_regs->cs */
1462	pushq	1*8(%rdx)	/* pt_regs->rip */
1463	UNWIND_HINT_IRET_REGS
1464	pushq   $-1		/* pt_regs->orig_ax */
1465	pushq   %rdi		/* pt_regs->di */
1466	pushq   %rsi		/* pt_regs->si */
1467	pushq   (%rdx)		/* pt_regs->dx */
1468	pushq   %rcx		/* pt_regs->cx */
1469	pushq   %rax		/* pt_regs->ax */
1470	pushq   %r8		/* pt_regs->r8 */
1471	pushq   %r9		/* pt_regs->r9 */
1472	pushq   %r10		/* pt_regs->r10 */
1473	pushq   %r11		/* pt_regs->r11 */
1474	pushq	%rbx		/* pt_regs->rbx */
1475	pushq	%rbp		/* pt_regs->rbp */
1476	pushq	%r12		/* pt_regs->r12 */
1477	pushq	%r13		/* pt_regs->r13 */
1478	pushq	%r14		/* pt_regs->r14 */
1479	pushq	%r15		/* pt_regs->r15 */
1480	UNWIND_HINT_REGS
1481	ENCODE_FRAME_POINTER
1482
1483	/*
1484	 * At this point we no longer need to worry about stack damage
1485	 * due to nesting -- we're on the normal thread stack and we're
1486	 * done with the NMI stack.
1487	 */
1488
1489	movq	%rsp, %rdi
1490	movq	$-1, %rsi
1491	call	do_nmi
1492
1493	/*
1494	 * Return back to user mode.  We must *not* do the normal exit
1495	 * work, because we don't want to enable interrupts.
1496	 */
1497	jmp	swapgs_restore_regs_and_return_to_usermode
1498
1499.Lnmi_from_kernel:
1500	/*
1501	 * Here's what our stack frame will look like:
1502	 * +---------------------------------------------------------+
1503	 * | original SS                                             |
1504	 * | original Return RSP                                     |
1505	 * | original RFLAGS                                         |
1506	 * | original CS                                             |
1507	 * | original RIP                                            |
1508	 * +---------------------------------------------------------+
1509	 * | temp storage for rdx                                    |
1510	 * +---------------------------------------------------------+
1511	 * | "NMI executing" variable                                |
1512	 * +---------------------------------------------------------+
1513	 * | iret SS          } Copied from "outermost" frame        |
1514	 * | iret Return RSP  } on each loop iteration; overwritten  |
1515	 * | iret RFLAGS      } by a nested NMI to force another     |
1516	 * | iret CS          } iteration if needed.                 |
1517	 * | iret RIP         }                                      |
1518	 * +---------------------------------------------------------+
1519	 * | outermost SS          } initialized in first_nmi;       |
1520	 * | outermost Return RSP  } will not be changed before      |
1521	 * | outermost RFLAGS      } NMI processing is done.         |
1522	 * | outermost CS          } Copied to "iret" frame on each  |
1523	 * | outermost RIP         } iteration.                      |
1524	 * +---------------------------------------------------------+
1525	 * | pt_regs                                                 |
1526	 * +---------------------------------------------------------+
1527	 *
1528	 * The "original" frame is used by hardware.  Before re-enabling
1529	 * NMIs, we need to be done with it, and we need to leave enough
1530	 * space for the asm code here.
1531	 *
1532	 * We return by executing IRET while RSP points to the "iret" frame.
1533	 * That will either return for real or it will loop back into NMI
1534	 * processing.
1535	 *
1536	 * The "outermost" frame is copied to the "iret" frame on each
1537	 * iteration of the loop, so each iteration starts with the "iret"
1538	 * frame pointing to the final return target.
1539	 */
1540
1541	/*
1542	 * Determine whether we're a nested NMI.
1543	 *
1544	 * If we interrupted kernel code between repeat_nmi and
1545	 * end_repeat_nmi, then we are a nested NMI.  We must not
1546	 * modify the "iret" frame because it's being written by
1547	 * the outer NMI.  That's okay; the outer NMI handler is
1548	 * about to about to call do_nmi anyway, so we can just
1549	 * resume the outer NMI.
1550	 */
1551
1552	movq	$repeat_nmi, %rdx
1553	cmpq	8(%rsp), %rdx
1554	ja	1f
1555	movq	$end_repeat_nmi, %rdx
1556	cmpq	8(%rsp), %rdx
1557	ja	nested_nmi_out
15581:
1559
1560	/*
1561	 * Now check "NMI executing".  If it's set, then we're nested.
1562	 * This will not detect if we interrupted an outer NMI just
1563	 * before IRET.
1564	 */
1565	cmpl	$1, -8(%rsp)
1566	je	nested_nmi
1567
1568	/*
1569	 * Now test if the previous stack was an NMI stack.  This covers
1570	 * the case where we interrupt an outer NMI after it clears
1571	 * "NMI executing" but before IRET.  We need to be careful, though:
1572	 * there is one case in which RSP could point to the NMI stack
1573	 * despite there being no NMI active: naughty userspace controls
1574	 * RSP at the very beginning of the SYSCALL targets.  We can
1575	 * pull a fast one on naughty userspace, though: we program
1576	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1577	 * if it controls the kernel's RSP.  We set DF before we clear
1578	 * "NMI executing".
1579	 */
1580	lea	6*8(%rsp), %rdx
1581	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1582	cmpq	%rdx, 4*8(%rsp)
1583	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1584	ja	first_nmi
1585
1586	subq	$EXCEPTION_STKSZ, %rdx
1587	cmpq	%rdx, 4*8(%rsp)
1588	/* If it is below the NMI stack, it is a normal NMI */
1589	jb	first_nmi
1590
1591	/* Ah, it is within the NMI stack. */
1592
1593	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1594	jz	first_nmi	/* RSP was user controlled. */
1595
1596	/* This is a nested NMI. */
1597
1598nested_nmi:
1599	/*
1600	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1601	 * iteration of NMI handling.
1602	 */
1603	subq	$8, %rsp
1604	leaq	-10*8(%rsp), %rdx
1605	pushq	$__KERNEL_DS
1606	pushq	%rdx
1607	pushfq
1608	pushq	$__KERNEL_CS
1609	pushq	$repeat_nmi
1610
1611	/* Put stack back */
1612	addq	$(6*8), %rsp
1613
1614nested_nmi_out:
1615	popq	%rdx
1616
1617	/* We are returning to kernel mode, so this cannot result in a fault. */
1618	iretq
1619
1620first_nmi:
1621	/* Restore rdx. */
1622	movq	(%rsp), %rdx
1623
1624	/* Make room for "NMI executing". */
1625	pushq	$0
1626
1627	/* Leave room for the "iret" frame */
1628	subq	$(5*8), %rsp
1629
1630	/* Copy the "original" frame to the "outermost" frame */
1631	.rept 5
1632	pushq	11*8(%rsp)
1633	.endr
1634	UNWIND_HINT_IRET_REGS
1635
1636	/* Everything up to here is safe from nested NMIs */
1637
1638#ifdef CONFIG_DEBUG_ENTRY
1639	/*
1640	 * For ease of testing, unmask NMIs right away.  Disabled by
1641	 * default because IRET is very expensive.
1642	 */
1643	pushq	$0		/* SS */
1644	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1645	addq	$8, (%rsp)	/* Fix up RSP */
1646	pushfq			/* RFLAGS */
1647	pushq	$__KERNEL_CS	/* CS */
1648	pushq	$1f		/* RIP */
1649	iretq			/* continues at repeat_nmi below */
1650	UNWIND_HINT_IRET_REGS
16511:
1652#endif
1653
1654repeat_nmi:
1655	/*
1656	 * If there was a nested NMI, the first NMI's iret will return
1657	 * here. But NMIs are still enabled and we can take another
1658	 * nested NMI. The nested NMI checks the interrupted RIP to see
1659	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1660	 * it will just return, as we are about to repeat an NMI anyway.
1661	 * This makes it safe to copy to the stack frame that a nested
1662	 * NMI will update.
1663	 *
1664	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1665	 * we're repeating an NMI, gsbase has the same value that it had on
1666	 * the first iteration.  paranoid_entry will load the kernel
1667	 * gsbase if needed before we call do_nmi.  "NMI executing"
1668	 * is zero.
1669	 */
1670	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1671
1672	/*
1673	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1674	 * here must not modify the "iret" frame while we're writing to
1675	 * it or it will end up containing garbage.
1676	 */
1677	addq	$(10*8), %rsp
1678	.rept 5
1679	pushq	-6*8(%rsp)
1680	.endr
1681	subq	$(5*8), %rsp
1682end_repeat_nmi:
1683
1684	/*
1685	 * Everything below this point can be preempted by a nested NMI.
1686	 * If this happens, then the inner NMI will change the "iret"
1687	 * frame to point back to repeat_nmi.
1688	 */
1689	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1690	ALLOC_PT_GPREGS_ON_STACK
1691
1692	/*
1693	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1694	 * as we should not be calling schedule in NMI context.
1695	 * Even with normal interrupts enabled. An NMI should not be
1696	 * setting NEED_RESCHED or anything that normal interrupts and
1697	 * exceptions might do.
1698	 */
1699	call	paranoid_entry
1700	UNWIND_HINT_REGS
1701
1702	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1703	movq	%rsp, %rdi
1704	movq	$-1, %rsi
1705	call	do_nmi
1706
1707	testl	%ebx, %ebx			/* swapgs needed? */
1708	jnz	nmi_restore
1709nmi_swapgs:
1710	SWAPGS_UNSAFE_STACK
1711nmi_restore:
1712	POP_EXTRA_REGS
1713	POP_C_REGS
1714
1715	/*
1716	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1717	 * at the "iret" frame.
1718	 */
1719	addq	$6*8, %rsp
1720
1721	/*
1722	 * Clear "NMI executing".  Set DF first so that we can easily
1723	 * distinguish the remaining code between here and IRET from
1724	 * the SYSCALL entry and exit paths.
1725	 *
1726	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1727	 * this code when I had the misapprehension that Xen PV supported
1728	 * NMIs, and Xen PV would break that approach.
1729	 */
1730	std
1731	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1732
1733	/*
1734	 * iretq reads the "iret" frame and exits the NMI stack in a
1735	 * single instruction.  We are returning to kernel mode, so this
1736	 * cannot result in a fault.  Similarly, we don't need to worry
1737	 * about espfix64 on the way back to kernel mode.
1738	 */
1739	iretq
1740END(nmi)
1741
1742ENTRY(ignore_sysret)
1743	UNWIND_HINT_EMPTY
1744	mov	$-ENOSYS, %eax
1745	sysret
1746END(ignore_sysret)
1747
1748ENTRY(rewind_stack_do_exit)
1749	UNWIND_HINT_FUNC
1750	/* Prevent any naive code from trying to unwind to our caller. */
1751	xorl	%ebp, %ebp
1752
1753	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1754	leaq	-PTREGS_SIZE(%rax), %rsp
1755	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1756
1757	call	do_exit
1758END(rewind_stack_do_exit)
1759