1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 * In the Xen PV case we must use iret anyway. 127 */ 128 129 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 130 X86_FEATURE_XENPV 131 132 movq RCX(%rsp), %rcx 133 movq RIP(%rsp), %r11 134 135 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 136 jne swapgs_restore_regs_and_return_to_usermode 137 138 /* 139 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 140 * in kernel space. This essentially lets the user take over 141 * the kernel, since userspace controls RSP. 142 * 143 * If width of "canonical tail" ever becomes variable, this will need 144 * to be updated to remain correct on both old and new CPUs. 145 * 146 * Change top bits to match most significant bit (47th or 56th bit 147 * depending on paging mode) in the address. 148 */ 149#ifdef CONFIG_X86_5LEVEL 150 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 151 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 152#else 153 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 154 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155#endif 156 157 /* If this changed %rcx, it was not canonical */ 158 cmpq %rcx, %r11 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 162 jne swapgs_restore_regs_and_return_to_usermode 163 164 movq R11(%rsp), %r11 165 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 166 jne swapgs_restore_regs_and_return_to_usermode 167 168 /* 169 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 170 * restore RF properly. If the slowpath sets it for whatever reason, we 171 * need to restore it correctly. 172 * 173 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 174 * trap from userspace immediately after SYSRET. This would cause an 175 * infinite loop whenever #DB happens with register state that satisfies 176 * the opportunistic SYSRET conditions. For example, single-stepping 177 * this user code: 178 * 179 * movq $stuck_here, %rcx 180 * pushfq 181 * popq %r11 182 * stuck_here: 183 * 184 * would never get past 'stuck_here'. 185 */ 186 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 187 jnz swapgs_restore_regs_and_return_to_usermode 188 189 /* nothing to check for RSP */ 190 191 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 192 jne swapgs_restore_regs_and_return_to_usermode 193 194 /* 195 * We win! This label is here just for ease of understanding 196 * perf profiles. Nothing jumps here. 197 */ 198syscall_return_via_sysret: 199 IBRS_EXIT 200 POP_REGS pop_rdi=0 201 202 /* 203 * Now all regs are restored except RSP and RDI. 204 * Save old stack pointer and switch to trampoline stack. 205 */ 206 movq %rsp, %rdi 207 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 208 UNWIND_HINT_END_OF_STACK 209 210 pushq RSP-RDI(%rdi) /* RSP */ 211 pushq (%rdi) /* RDI */ 212 213 /* 214 * We are on the trampoline stack. All regs except RDI are live. 215 * We can do future final exit work right here. 216 */ 217 STACKLEAK_ERASE_NOCLOBBER 218 219 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 220 221 popq %rdi 222 popq %rsp 223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 224 ANNOTATE_NOENDBR 225 swapgs 226 sysretq 227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 228 ANNOTATE_NOENDBR 229 int3 230SYM_CODE_END(entry_SYSCALL_64) 231 232/* 233 * %rdi: prev task 234 * %rsi: next task 235 */ 236.pushsection .text, "ax" 237SYM_FUNC_START(__switch_to_asm) 238 /* 239 * Save callee-saved registers 240 * This must match the order in inactive_task_frame 241 */ 242 pushq %rbp 243 pushq %rbx 244 pushq %r12 245 pushq %r13 246 pushq %r14 247 pushq %r15 248 249 /* switch stack */ 250 movq %rsp, TASK_threadsp(%rdi) 251 movq TASK_threadsp(%rsi), %rsp 252 253#ifdef CONFIG_STACKPROTECTOR 254 movq TASK_stack_canary(%rsi), %rbx 255 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary 256#endif 257 258 /* 259 * When switching from a shallower to a deeper call stack 260 * the RSB may either underflow or use entries populated 261 * with userspace addresses. On CPUs where those concerns 262 * exist, overwrite the RSB with entries which capture 263 * speculative execution to prevent attack. 264 */ 265 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 266 267 /* restore callee-saved registers */ 268 popq %r15 269 popq %r14 270 popq %r13 271 popq %r12 272 popq %rbx 273 popq %rbp 274 275 jmp __switch_to 276SYM_FUNC_END(__switch_to_asm) 277.popsection 278 279/* 280 * A newly forked process directly context switches into this address. 281 * 282 * rax: prev task we switched from 283 * rbx: kernel thread func (NULL for user thread) 284 * r12: kernel thread arg 285 */ 286.pushsection .text, "ax" 287SYM_CODE_START(ret_from_fork_asm) 288 UNWIND_HINT_REGS 289 ANNOTATE_NOENDBR // copy_thread 290 CALL_DEPTH_ACCOUNT 291 292 movq %rax, %rdi /* prev */ 293 movq %rsp, %rsi /* regs */ 294 movq %rbx, %rdx /* fn */ 295 movq %r12, %rcx /* fn_arg */ 296 call ret_from_fork 297 298 jmp swapgs_restore_regs_and_return_to_usermode 299SYM_CODE_END(ret_from_fork_asm) 300.popsection 301 302.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 303#ifdef CONFIG_DEBUG_ENTRY 304 pushq %rax 305 SAVE_FLAGS 306 testl $X86_EFLAGS_IF, %eax 307 jz .Lokay_\@ 308 ud2 309.Lokay_\@: 310 popq %rax 311#endif 312.endm 313 314SYM_CODE_START(xen_error_entry) 315 ANNOTATE_NOENDBR 316 UNWIND_HINT_FUNC 317 PUSH_AND_CLEAR_REGS save_ret=1 318 ENCODE_FRAME_POINTER 8 319 UNTRAIN_RET_FROM_CALL 320 RET 321SYM_CODE_END(xen_error_entry) 322 323/** 324 * idtentry_body - Macro to emit code calling the C function 325 * @cfunc: C function to be called 326 * @has_error_code: Hardware pushed error code on stack 327 */ 328.macro idtentry_body cfunc has_error_code:req 329 330 /* 331 * Call error_entry() and switch to the task stack if from userspace. 332 * 333 * When in XENPV, it is already in the task stack, and it can't fault 334 * for native_iret() nor native_load_gs_index() since XENPV uses its 335 * own pvops for IRET and load_gs_index(). And it doesn't need to 336 * switch the CR3. So it can skip invoking error_entry(). 337 */ 338 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 339 "call xen_error_entry", X86_FEATURE_XENPV 340 341 ENCODE_FRAME_POINTER 342 UNWIND_HINT_REGS 343 344 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 345 346 .if \has_error_code == 1 347 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 348 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 349 .endif 350 351 call \cfunc 352 353 /* For some configurations \cfunc ends up being a noreturn. */ 354 REACHABLE 355 356 jmp error_return 357.endm 358 359/** 360 * idtentry - Macro to generate entry stubs for simple IDT entries 361 * @vector: Vector number 362 * @asmsym: ASM symbol for the entry point 363 * @cfunc: C function to be called 364 * @has_error_code: Hardware pushed error code on stack 365 * 366 * The macro emits code to set up the kernel context for straight forward 367 * and simple IDT entries. No IST stack, no paranoid entry checks. 368 */ 369.macro idtentry vector asmsym cfunc has_error_code:req 370SYM_CODE_START(\asmsym) 371 372 .if \vector == X86_TRAP_BP 373 /* #BP advances %rip to the next instruction */ 374 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 375 .else 376 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 377 .endif 378 379 ENDBR 380 ASM_CLAC 381 cld 382 383 .if \has_error_code == 0 384 pushq $-1 /* ORIG_RAX: no syscall to restart */ 385 .endif 386 387 .if \vector == X86_TRAP_BP 388 /* 389 * If coming from kernel space, create a 6-word gap to allow the 390 * int3 handler to emulate a call instruction. 391 */ 392 testb $3, CS-ORIG_RAX(%rsp) 393 jnz .Lfrom_usermode_no_gap_\@ 394 .rept 6 395 pushq 5*8(%rsp) 396 .endr 397 UNWIND_HINT_IRET_REGS offset=8 398.Lfrom_usermode_no_gap_\@: 399 .endif 400 401 idtentry_body \cfunc \has_error_code 402 403_ASM_NOKPROBE(\asmsym) 404SYM_CODE_END(\asmsym) 405.endm 406 407/* 408 * Interrupt entry/exit. 409 * 410 + The interrupt stubs push (vector) onto the stack, which is the error_code 411 * position of idtentry exceptions, and jump to one of the two idtentry points 412 * (common/spurious). 413 * 414 * common_interrupt is a hotpath, align it to a cache line 415 */ 416.macro idtentry_irq vector cfunc 417 .p2align CONFIG_X86_L1_CACHE_SHIFT 418 idtentry \vector asm_\cfunc \cfunc has_error_code=1 419.endm 420 421/* 422 * System vectors which invoke their handlers directly and are not 423 * going through the regular common device interrupt handling code. 424 */ 425.macro idtentry_sysvec vector cfunc 426 idtentry \vector asm_\cfunc \cfunc has_error_code=0 427.endm 428 429/** 430 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 431 * @vector: Vector number 432 * @asmsym: ASM symbol for the entry point 433 * @cfunc: C function to be called 434 * 435 * The macro emits code to set up the kernel context for #MC and #DB 436 * 437 * If the entry comes from user space it uses the normal entry path 438 * including the return to user space work and preemption checks on 439 * exit. 440 * 441 * If hits in kernel mode then it needs to go through the paranoid 442 * entry as the exception can hit any random state. No preemption 443 * check on exit to keep the paranoid path simple. 444 */ 445.macro idtentry_mce_db vector asmsym cfunc 446SYM_CODE_START(\asmsym) 447 UNWIND_HINT_IRET_ENTRY 448 ENDBR 449 ASM_CLAC 450 cld 451 452 pushq $-1 /* ORIG_RAX: no syscall to restart */ 453 454 /* 455 * If the entry is from userspace, switch stacks and treat it as 456 * a normal entry. 457 */ 458 testb $3, CS-ORIG_RAX(%rsp) 459 jnz .Lfrom_usermode_switch_stack_\@ 460 461 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 462 call paranoid_entry 463 464 UNWIND_HINT_REGS 465 466 movq %rsp, %rdi /* pt_regs pointer */ 467 468 call \cfunc 469 470 jmp paranoid_exit 471 472 /* Switch to the regular task stack and use the noist entry point */ 473.Lfrom_usermode_switch_stack_\@: 474 idtentry_body noist_\cfunc, has_error_code=0 475 476_ASM_NOKPROBE(\asmsym) 477SYM_CODE_END(\asmsym) 478.endm 479 480#ifdef CONFIG_AMD_MEM_ENCRYPT 481/** 482 * idtentry_vc - Macro to generate entry stub for #VC 483 * @vector: Vector number 484 * @asmsym: ASM symbol for the entry point 485 * @cfunc: C function to be called 486 * 487 * The macro emits code to set up the kernel context for #VC. The #VC handler 488 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 489 * 490 * To make this work the #VC entry code tries its best to pretend it doesn't use 491 * an IST stack by switching to the task stack if coming from user-space (which 492 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 493 * entered from kernel-mode. 494 * 495 * If entered from kernel-mode the return stack is validated first, and if it is 496 * not safe to use (e.g. because it points to the entry stack) the #VC handler 497 * will switch to a fall-back stack (VC2) and call a special handler function. 498 * 499 * The macro is only used for one vector, but it is planned to be extended in 500 * the future for the #HV exception. 501 */ 502.macro idtentry_vc vector asmsym cfunc 503SYM_CODE_START(\asmsym) 504 UNWIND_HINT_IRET_ENTRY 505 ENDBR 506 ASM_CLAC 507 cld 508 509 /* 510 * If the entry is from userspace, switch stacks and treat it as 511 * a normal entry. 512 */ 513 testb $3, CS-ORIG_RAX(%rsp) 514 jnz .Lfrom_usermode_switch_stack_\@ 515 516 /* 517 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 518 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 519 */ 520 call paranoid_entry 521 522 UNWIND_HINT_REGS 523 524 /* 525 * Switch off the IST stack to make it free for nested exceptions. The 526 * vc_switch_off_ist() function will switch back to the interrupted 527 * stack if it is safe to do so. If not it switches to the VC fall-back 528 * stack. 529 */ 530 movq %rsp, %rdi /* pt_regs pointer */ 531 call vc_switch_off_ist 532 movq %rax, %rsp /* Switch to new stack */ 533 534 ENCODE_FRAME_POINTER 535 UNWIND_HINT_REGS 536 537 /* Update pt_regs */ 538 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 539 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 540 541 movq %rsp, %rdi /* pt_regs pointer */ 542 543 call kernel_\cfunc 544 545 /* 546 * No need to switch back to the IST stack. The current stack is either 547 * identical to the stack in the IRET frame or the VC fall-back stack, 548 * so it is definitely mapped even with PTI enabled. 549 */ 550 jmp paranoid_exit 551 552 /* Switch to the regular task stack */ 553.Lfrom_usermode_switch_stack_\@: 554 idtentry_body user_\cfunc, has_error_code=1 555 556_ASM_NOKPROBE(\asmsym) 557SYM_CODE_END(\asmsym) 558.endm 559#endif 560 561/* 562 * Double fault entry. Straight paranoid. No checks from which context 563 * this comes because for the espfix induced #DF this would do the wrong 564 * thing. 565 */ 566.macro idtentry_df vector asmsym cfunc 567SYM_CODE_START(\asmsym) 568 UNWIND_HINT_IRET_ENTRY offset=8 569 ENDBR 570 ASM_CLAC 571 cld 572 573 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 574 call paranoid_entry 575 UNWIND_HINT_REGS 576 577 movq %rsp, %rdi /* pt_regs pointer into first argument */ 578 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 579 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 580 call \cfunc 581 582 /* For some configurations \cfunc ends up being a noreturn. */ 583 REACHABLE 584 585 jmp paranoid_exit 586 587_ASM_NOKPROBE(\asmsym) 588SYM_CODE_END(\asmsym) 589.endm 590 591/* 592 * Include the defines which emit the idt entries which are shared 593 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 594 * so the stacktrace boundary checks work. 595 */ 596 __ALIGN 597 .globl __irqentry_text_start 598__irqentry_text_start: 599 600#include <asm/idtentry.h> 601 602 __ALIGN 603 .globl __irqentry_text_end 604__irqentry_text_end: 605 ANNOTATE_NOENDBR 606 607SYM_CODE_START_LOCAL(common_interrupt_return) 608SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 609 IBRS_EXIT 610#ifdef CONFIG_DEBUG_ENTRY 611 /* Assert that pt_regs indicates user mode. */ 612 testb $3, CS(%rsp) 613 jnz 1f 614 ud2 6151: 616#endif 617#ifdef CONFIG_XEN_PV 618 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 619#endif 620 621 POP_REGS pop_rdi=0 622 623 /* 624 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 625 * Save old stack pointer and switch to trampoline stack. 626 */ 627 movq %rsp, %rdi 628 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 629 UNWIND_HINT_END_OF_STACK 630 631 /* Copy the IRET frame to the trampoline stack. */ 632 pushq 6*8(%rdi) /* SS */ 633 pushq 5*8(%rdi) /* RSP */ 634 pushq 4*8(%rdi) /* EFLAGS */ 635 pushq 3*8(%rdi) /* CS */ 636 pushq 2*8(%rdi) /* RIP */ 637 638 /* Push user RDI on the trampoline stack. */ 639 pushq (%rdi) 640 641 /* 642 * We are on the trampoline stack. All regs except RDI are live. 643 * We can do future final exit work right here. 644 */ 645 STACKLEAK_ERASE_NOCLOBBER 646 647 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 648 649 /* Restore RDI. */ 650 popq %rdi 651 swapgs 652 jmp .Lnative_iret 653 654 655SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 656#ifdef CONFIG_DEBUG_ENTRY 657 /* Assert that pt_regs indicates kernel mode. */ 658 testb $3, CS(%rsp) 659 jz 1f 660 ud2 6611: 662#endif 663 POP_REGS 664 addq $8, %rsp /* skip regs->orig_ax */ 665 /* 666 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 667 * when returning from IPI handler. 668 */ 669#ifdef CONFIG_XEN_PV 670SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 671 ANNOTATE_NOENDBR 672 .byte 0xe9 673 .long .Lnative_iret - (. + 4) 674#endif 675 676.Lnative_iret: 677 UNWIND_HINT_IRET_REGS 678 /* 679 * Are we returning to a stack segment from the LDT? Note: in 680 * 64-bit mode SS:RSP on the exception stack is always valid. 681 */ 682#ifdef CONFIG_X86_ESPFIX64 683 testb $4, (SS-RIP)(%rsp) 684 jnz native_irq_return_ldt 685#endif 686 687SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 688 ANNOTATE_NOENDBR // exc_double_fault 689 /* 690 * This may fault. Non-paranoid faults on return to userspace are 691 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 692 * Double-faults due to espfix64 are handled in exc_double_fault. 693 * Other faults here are fatal. 694 */ 695 iretq 696 697#ifdef CONFIG_X86_ESPFIX64 698native_irq_return_ldt: 699 /* 700 * We are running with user GSBASE. All GPRs contain their user 701 * values. We have a percpu ESPFIX stack that is eight slots 702 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 703 * of the ESPFIX stack. 704 * 705 * We clobber RAX and RDI in this code. We stash RDI on the 706 * normal stack and RAX on the ESPFIX stack. 707 * 708 * The ESPFIX stack layout we set up looks like this: 709 * 710 * --- top of ESPFIX stack --- 711 * SS 712 * RSP 713 * RFLAGS 714 * CS 715 * RIP <-- RSP points here when we're done 716 * RAX <-- espfix_waddr points here 717 * --- bottom of ESPFIX stack --- 718 */ 719 720 pushq %rdi /* Stash user RDI */ 721 swapgs /* to kernel GS */ 722 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 723 724 movq PER_CPU_VAR(espfix_waddr), %rdi 725 movq %rax, (0*8)(%rdi) /* user RAX */ 726 movq (1*8)(%rsp), %rax /* user RIP */ 727 movq %rax, (1*8)(%rdi) 728 movq (2*8)(%rsp), %rax /* user CS */ 729 movq %rax, (2*8)(%rdi) 730 movq (3*8)(%rsp), %rax /* user RFLAGS */ 731 movq %rax, (3*8)(%rdi) 732 movq (5*8)(%rsp), %rax /* user SS */ 733 movq %rax, (5*8)(%rdi) 734 movq (4*8)(%rsp), %rax /* user RSP */ 735 movq %rax, (4*8)(%rdi) 736 /* Now RAX == RSP. */ 737 738 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 739 740 /* 741 * espfix_stack[31:16] == 0. The page tables are set up such that 742 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 743 * espfix_waddr for any X. That is, there are 65536 RO aliases of 744 * the same page. Set up RSP so that RSP[31:16] contains the 745 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 746 * still points to an RO alias of the ESPFIX stack. 747 */ 748 orq PER_CPU_VAR(espfix_stack), %rax 749 750 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 751 swapgs /* to user GS */ 752 popq %rdi /* Restore user RDI */ 753 754 movq %rax, %rsp 755 UNWIND_HINT_IRET_REGS offset=8 756 757 /* 758 * At this point, we cannot write to the stack any more, but we can 759 * still read. 760 */ 761 popq %rax /* Restore user RAX */ 762 763 /* 764 * RSP now points to an ordinary IRET frame, except that the page 765 * is read-only and RSP[31:16] are preloaded with the userspace 766 * values. We can now IRET back to userspace. 767 */ 768 jmp native_irq_return_iret 769#endif 770SYM_CODE_END(common_interrupt_return) 771_ASM_NOKPROBE(common_interrupt_return) 772 773/* 774 * Reload gs selector with exception handling 775 * di: new selector 776 * 777 * Is in entry.text as it shouldn't be instrumented. 778 */ 779SYM_FUNC_START(asm_load_gs_index) 780 FRAME_BEGIN 781 swapgs 782.Lgs_change: 783 ANNOTATE_NOENDBR // error_entry 784 movl %edi, %gs 7852: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 786 swapgs 787 FRAME_END 788 RET 789 790 /* running with kernelgs */ 791.Lbad_gs: 792 swapgs /* switch back to user gs */ 793.macro ZAP_GS 794 /* This can't be a string because the preprocessor needs to see it. */ 795 movl $__USER_DS, %eax 796 movl %eax, %gs 797.endm 798 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 799 xorl %eax, %eax 800 movl %eax, %gs 801 jmp 2b 802 803 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 804 805SYM_FUNC_END(asm_load_gs_index) 806EXPORT_SYMBOL(asm_load_gs_index) 807 808#ifdef CONFIG_XEN_PV 809/* 810 * A note on the "critical region" in our callback handler. 811 * We want to avoid stacking callback handlers due to events occurring 812 * during handling of the last event. To do this, we keep events disabled 813 * until we've done all processing. HOWEVER, we must enable events before 814 * popping the stack frame (can't be done atomically) and so it would still 815 * be possible to get enough handler activations to overflow the stack. 816 * Although unlikely, bugs of that kind are hard to track down, so we'd 817 * like to avoid the possibility. 818 * So, on entry to the handler we detect whether we interrupted an 819 * existing activation in its critical region -- if so, we pop the current 820 * activation and restart the handler using the previous one. 821 * 822 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 823 */ 824 __FUNC_ALIGN 825SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 826 827/* 828 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 829 * see the correct pointer to the pt_regs 830 */ 831 UNWIND_HINT_FUNC 832 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 833 UNWIND_HINT_REGS 834 835 call xen_pv_evtchn_do_upcall 836 837 jmp error_return 838SYM_CODE_END(exc_xen_hypervisor_callback) 839 840/* 841 * Hypervisor uses this for application faults while it executes. 842 * We get here for two reasons: 843 * 1. Fault while reloading DS, ES, FS or GS 844 * 2. Fault while executing IRET 845 * Category 1 we do not need to fix up as Xen has already reloaded all segment 846 * registers that could be reloaded and zeroed the others. 847 * Category 2 we fix up by killing the current process. We cannot use the 848 * normal Linux return path in this case because if we use the IRET hypercall 849 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 850 * We distinguish between categories by comparing each saved segment register 851 * with its current contents: any discrepancy means we in category 1. 852 */ 853 __FUNC_ALIGN 854SYM_CODE_START_NOALIGN(xen_failsafe_callback) 855 UNWIND_HINT_UNDEFINED 856 ENDBR 857 movl %ds, %ecx 858 cmpw %cx, 0x10(%rsp) 859 jne 1f 860 movl %es, %ecx 861 cmpw %cx, 0x18(%rsp) 862 jne 1f 863 movl %fs, %ecx 864 cmpw %cx, 0x20(%rsp) 865 jne 1f 866 movl %gs, %ecx 867 cmpw %cx, 0x28(%rsp) 868 jne 1f 869 /* All segments match their saved values => Category 2 (Bad IRET). */ 870 movq (%rsp), %rcx 871 movq 8(%rsp), %r11 872 addq $0x30, %rsp 873 pushq $0 /* RIP */ 874 UNWIND_HINT_IRET_REGS offset=8 875 jmp asm_exc_general_protection 8761: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 877 movq (%rsp), %rcx 878 movq 8(%rsp), %r11 879 addq $0x30, %rsp 880 UNWIND_HINT_IRET_REGS 881 pushq $-1 /* orig_ax = -1 => not a system call */ 882 PUSH_AND_CLEAR_REGS 883 ENCODE_FRAME_POINTER 884 jmp error_return 885SYM_CODE_END(xen_failsafe_callback) 886#endif /* CONFIG_XEN_PV */ 887 888/* 889 * Save all registers in pt_regs. Return GSBASE related information 890 * in EBX depending on the availability of the FSGSBASE instructions: 891 * 892 * FSGSBASE R/EBX 893 * N 0 -> SWAPGS on exit 894 * 1 -> no SWAPGS on exit 895 * 896 * Y GSBASE value at entry, must be restored in paranoid_exit 897 * 898 * R14 - old CR3 899 * R15 - old SPEC_CTRL 900 */ 901SYM_CODE_START(paranoid_entry) 902 ANNOTATE_NOENDBR 903 UNWIND_HINT_FUNC 904 PUSH_AND_CLEAR_REGS save_ret=1 905 ENCODE_FRAME_POINTER 8 906 907 /* 908 * Always stash CR3 in %r14. This value will be restored, 909 * verbatim, at exit. Needed if paranoid_entry interrupted 910 * another entry that already switched to the user CR3 value 911 * but has not yet returned to userspace. 912 * 913 * This is also why CS (stashed in the "iret frame" by the 914 * hardware at entry) can not be used: this may be a return 915 * to kernel code, but with a user CR3 value. 916 * 917 * Switching CR3 does not depend on kernel GSBASE so it can 918 * be done before switching to the kernel GSBASE. This is 919 * required for FSGSBASE because the kernel GSBASE has to 920 * be retrieved from a kernel internal table. 921 */ 922 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 923 924 /* 925 * Handling GSBASE depends on the availability of FSGSBASE. 926 * 927 * Without FSGSBASE the kernel enforces that negative GSBASE 928 * values indicate kernel GSBASE. With FSGSBASE no assumptions 929 * can be made about the GSBASE value when entering from user 930 * space. 931 */ 932 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 933 934 /* 935 * Read the current GSBASE and store it in %rbx unconditionally, 936 * retrieve and set the current CPUs kernel GSBASE. The stored value 937 * has to be restored in paranoid_exit unconditionally. 938 * 939 * The unconditional write to GS base below ensures that no subsequent 940 * loads based on a mispredicted GS base can happen, therefore no LFENCE 941 * is needed here. 942 */ 943 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 944 jmp .Lparanoid_gsbase_done 945 946.Lparanoid_entry_checkgs: 947 /* EBX = 1 -> kernel GSBASE active, no restore required */ 948 movl $1, %ebx 949 950 /* 951 * The kernel-enforced convention is a negative GSBASE indicates 952 * a kernel value. No SWAPGS needed on entry and exit. 953 */ 954 movl $MSR_GS_BASE, %ecx 955 rdmsr 956 testl %edx, %edx 957 js .Lparanoid_kernel_gsbase 958 959 /* EBX = 0 -> SWAPGS required on exit */ 960 xorl %ebx, %ebx 961 swapgs 962.Lparanoid_kernel_gsbase: 963 FENCE_SWAPGS_KERNEL_ENTRY 964.Lparanoid_gsbase_done: 965 966 /* 967 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 968 * CR3 above, keep the old value in a callee saved register. 969 */ 970 IBRS_ENTER save_reg=%r15 971 UNTRAIN_RET_FROM_CALL 972 973 RET 974SYM_CODE_END(paranoid_entry) 975 976/* 977 * "Paranoid" exit path from exception stack. This is invoked 978 * only on return from non-NMI IST interrupts that came 979 * from kernel space. 980 * 981 * We may be returning to very strange contexts (e.g. very early 982 * in syscall entry), so checking for preemption here would 983 * be complicated. Fortunately, there's no good reason to try 984 * to handle preemption here. 985 * 986 * R/EBX contains the GSBASE related information depending on the 987 * availability of the FSGSBASE instructions: 988 * 989 * FSGSBASE R/EBX 990 * N 0 -> SWAPGS on exit 991 * 1 -> no SWAPGS on exit 992 * 993 * Y User space GSBASE, must be restored unconditionally 994 * 995 * R14 - old CR3 996 * R15 - old SPEC_CTRL 997 */ 998SYM_CODE_START_LOCAL(paranoid_exit) 999 UNWIND_HINT_REGS 1000 1001 /* 1002 * Must restore IBRS state before both CR3 and %GS since we need access 1003 * to the per-CPU x86_spec_ctrl_shadow variable. 1004 */ 1005 IBRS_EXIT save_reg=%r15 1006 1007 /* 1008 * The order of operations is important. RESTORE_CR3 requires 1009 * kernel GSBASE. 1010 * 1011 * NB to anyone to try to optimize this code: this code does 1012 * not execute at all for exceptions from user mode. Those 1013 * exceptions go through error_return instead. 1014 */ 1015 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1016 1017 /* Handle the three GSBASE cases */ 1018 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1019 1020 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1021 wrgsbase %rbx 1022 jmp restore_regs_and_return_to_kernel 1023 1024.Lparanoid_exit_checkgs: 1025 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1026 testl %ebx, %ebx 1027 jnz restore_regs_and_return_to_kernel 1028 1029 /* We are returning to a context with user GSBASE */ 1030 swapgs 1031 jmp restore_regs_and_return_to_kernel 1032SYM_CODE_END(paranoid_exit) 1033 1034/* 1035 * Switch GS and CR3 if needed. 1036 */ 1037SYM_CODE_START(error_entry) 1038 ANNOTATE_NOENDBR 1039 UNWIND_HINT_FUNC 1040 1041 PUSH_AND_CLEAR_REGS save_ret=1 1042 ENCODE_FRAME_POINTER 8 1043 1044 testb $3, CS+8(%rsp) 1045 jz .Lerror_kernelspace 1046 1047 /* 1048 * We entered from user mode or we're pretending to have entered 1049 * from user mode due to an IRET fault. 1050 */ 1051 swapgs 1052 FENCE_SWAPGS_USER_ENTRY 1053 /* We have user CR3. Change to kernel CR3. */ 1054 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1055 IBRS_ENTER 1056 UNTRAIN_RET_FROM_CALL 1057 1058 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1059 /* Put us onto the real thread stack. */ 1060 jmp sync_regs 1061 1062 /* 1063 * There are two places in the kernel that can potentially fault with 1064 * usergs. Handle them here. B stepping K8s sometimes report a 1065 * truncated RIP for IRET exceptions returning to compat mode. Check 1066 * for these here too. 1067 */ 1068.Lerror_kernelspace: 1069 leaq native_irq_return_iret(%rip), %rcx 1070 cmpq %rcx, RIP+8(%rsp) 1071 je .Lerror_bad_iret 1072 movl %ecx, %eax /* zero extend */ 1073 cmpq %rax, RIP+8(%rsp) 1074 je .Lbstep_iret 1075 cmpq $.Lgs_change, RIP+8(%rsp) 1076 jne .Lerror_entry_done_lfence 1077 1078 /* 1079 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1080 * gsbase and proceed. We'll fix up the exception and land in 1081 * .Lgs_change's error handler with kernel gsbase. 1082 */ 1083 swapgs 1084 1085 /* 1086 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1087 * kernel or user gsbase. 1088 */ 1089.Lerror_entry_done_lfence: 1090 FENCE_SWAPGS_KERNEL_ENTRY 1091 CALL_DEPTH_ACCOUNT 1092 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1093 VALIDATE_UNRET_END 1094 RET 1095 1096.Lbstep_iret: 1097 /* Fix truncated RIP */ 1098 movq %rcx, RIP+8(%rsp) 1099 /* fall through */ 1100 1101.Lerror_bad_iret: 1102 /* 1103 * We came from an IRET to user mode, so we have user 1104 * gsbase and CR3. Switch to kernel gsbase and CR3: 1105 */ 1106 swapgs 1107 FENCE_SWAPGS_USER_ENTRY 1108 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1109 IBRS_ENTER 1110 UNTRAIN_RET_FROM_CALL 1111 1112 /* 1113 * Pretend that the exception came from user mode: set up pt_regs 1114 * as if we faulted immediately after IRET. 1115 */ 1116 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1117 call fixup_bad_iret 1118 mov %rax, %rdi 1119 jmp sync_regs 1120SYM_CODE_END(error_entry) 1121 1122SYM_CODE_START_LOCAL(error_return) 1123 UNWIND_HINT_REGS 1124 DEBUG_ENTRY_ASSERT_IRQS_OFF 1125 testb $3, CS(%rsp) 1126 jz restore_regs_and_return_to_kernel 1127 jmp swapgs_restore_regs_and_return_to_usermode 1128SYM_CODE_END(error_return) 1129 1130/* 1131 * Runs on exception stack. Xen PV does not go through this path at all, 1132 * so we can use real assembly here. 1133 * 1134 * Registers: 1135 * %r14: Used to save/restore the CR3 of the interrupted context 1136 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1137 */ 1138SYM_CODE_START(asm_exc_nmi) 1139 UNWIND_HINT_IRET_ENTRY 1140 ENDBR 1141 1142 /* 1143 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1144 * the iretq it performs will take us out of NMI context. 1145 * This means that we can have nested NMIs where the next 1146 * NMI is using the top of the stack of the previous NMI. We 1147 * can't let it execute because the nested NMI will corrupt the 1148 * stack of the previous NMI. NMI handlers are not re-entrant 1149 * anyway. 1150 * 1151 * To handle this case we do the following: 1152 * Check the a special location on the stack that contains 1153 * a variable that is set when NMIs are executing. 1154 * The interrupted task's stack is also checked to see if it 1155 * is an NMI stack. 1156 * If the variable is not set and the stack is not the NMI 1157 * stack then: 1158 * o Set the special variable on the stack 1159 * o Copy the interrupt frame into an "outermost" location on the 1160 * stack 1161 * o Copy the interrupt frame into an "iret" location on the stack 1162 * o Continue processing the NMI 1163 * If the variable is set or the previous stack is the NMI stack: 1164 * o Modify the "iret" location to jump to the repeat_nmi 1165 * o return back to the first NMI 1166 * 1167 * Now on exit of the first NMI, we first clear the stack variable 1168 * The NMI stack will tell any nested NMIs at that point that it is 1169 * nested. Then we pop the stack normally with iret, and if there was 1170 * a nested NMI that updated the copy interrupt stack frame, a 1171 * jump will be made to the repeat_nmi code that will handle the second 1172 * NMI. 1173 * 1174 * However, espfix prevents us from directly returning to userspace 1175 * with a single IRET instruction. Similarly, IRET to user mode 1176 * can fault. We therefore handle NMIs from user space like 1177 * other IST entries. 1178 */ 1179 1180 ASM_CLAC 1181 cld 1182 1183 /* Use %rdx as our temp variable throughout */ 1184 pushq %rdx 1185 1186 testb $3, CS-RIP+8(%rsp) 1187 jz .Lnmi_from_kernel 1188 1189 /* 1190 * NMI from user mode. We need to run on the thread stack, but we 1191 * can't go through the normal entry paths: NMIs are masked, and 1192 * we don't want to enable interrupts, because then we'll end 1193 * up in an awkward situation in which IRQs are on but NMIs 1194 * are off. 1195 * 1196 * We also must not push anything to the stack before switching 1197 * stacks lest we corrupt the "NMI executing" variable. 1198 */ 1199 1200 swapgs 1201 FENCE_SWAPGS_USER_ENTRY 1202 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1203 movq %rsp, %rdx 1204 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1205 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1206 pushq 5*8(%rdx) /* pt_regs->ss */ 1207 pushq 4*8(%rdx) /* pt_regs->rsp */ 1208 pushq 3*8(%rdx) /* pt_regs->flags */ 1209 pushq 2*8(%rdx) /* pt_regs->cs */ 1210 pushq 1*8(%rdx) /* pt_regs->rip */ 1211 UNWIND_HINT_IRET_REGS 1212 pushq $-1 /* pt_regs->orig_ax */ 1213 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1214 ENCODE_FRAME_POINTER 1215 1216 IBRS_ENTER 1217 UNTRAIN_RET 1218 1219 /* 1220 * At this point we no longer need to worry about stack damage 1221 * due to nesting -- we're on the normal thread stack and we're 1222 * done with the NMI stack. 1223 */ 1224 1225 movq %rsp, %rdi 1226 movq $-1, %rsi 1227 call exc_nmi 1228 1229 /* 1230 * Return back to user mode. We must *not* do the normal exit 1231 * work, because we don't want to enable interrupts. 1232 */ 1233 jmp swapgs_restore_regs_and_return_to_usermode 1234 1235.Lnmi_from_kernel: 1236 /* 1237 * Here's what our stack frame will look like: 1238 * +---------------------------------------------------------+ 1239 * | original SS | 1240 * | original Return RSP | 1241 * | original RFLAGS | 1242 * | original CS | 1243 * | original RIP | 1244 * +---------------------------------------------------------+ 1245 * | temp storage for rdx | 1246 * +---------------------------------------------------------+ 1247 * | "NMI executing" variable | 1248 * +---------------------------------------------------------+ 1249 * | iret SS } Copied from "outermost" frame | 1250 * | iret Return RSP } on each loop iteration; overwritten | 1251 * | iret RFLAGS } by a nested NMI to force another | 1252 * | iret CS } iteration if needed. | 1253 * | iret RIP } | 1254 * +---------------------------------------------------------+ 1255 * | outermost SS } initialized in first_nmi; | 1256 * | outermost Return RSP } will not be changed before | 1257 * | outermost RFLAGS } NMI processing is done. | 1258 * | outermost CS } Copied to "iret" frame on each | 1259 * | outermost RIP } iteration. | 1260 * +---------------------------------------------------------+ 1261 * | pt_regs | 1262 * +---------------------------------------------------------+ 1263 * 1264 * The "original" frame is used by hardware. Before re-enabling 1265 * NMIs, we need to be done with it, and we need to leave enough 1266 * space for the asm code here. 1267 * 1268 * We return by executing IRET while RSP points to the "iret" frame. 1269 * That will either return for real or it will loop back into NMI 1270 * processing. 1271 * 1272 * The "outermost" frame is copied to the "iret" frame on each 1273 * iteration of the loop, so each iteration starts with the "iret" 1274 * frame pointing to the final return target. 1275 */ 1276 1277 /* 1278 * Determine whether we're a nested NMI. 1279 * 1280 * If we interrupted kernel code between repeat_nmi and 1281 * end_repeat_nmi, then we are a nested NMI. We must not 1282 * modify the "iret" frame because it's being written by 1283 * the outer NMI. That's okay; the outer NMI handler is 1284 * about to about to call exc_nmi() anyway, so we can just 1285 * resume the outer NMI. 1286 */ 1287 1288 movq $repeat_nmi, %rdx 1289 cmpq 8(%rsp), %rdx 1290 ja 1f 1291 movq $end_repeat_nmi, %rdx 1292 cmpq 8(%rsp), %rdx 1293 ja nested_nmi_out 12941: 1295 1296 /* 1297 * Now check "NMI executing". If it's set, then we're nested. 1298 * This will not detect if we interrupted an outer NMI just 1299 * before IRET. 1300 */ 1301 cmpl $1, -8(%rsp) 1302 je nested_nmi 1303 1304 /* 1305 * Now test if the previous stack was an NMI stack. This covers 1306 * the case where we interrupt an outer NMI after it clears 1307 * "NMI executing" but before IRET. We need to be careful, though: 1308 * there is one case in which RSP could point to the NMI stack 1309 * despite there being no NMI active: naughty userspace controls 1310 * RSP at the very beginning of the SYSCALL targets. We can 1311 * pull a fast one on naughty userspace, though: we program 1312 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1313 * if it controls the kernel's RSP. We set DF before we clear 1314 * "NMI executing". 1315 */ 1316 lea 6*8(%rsp), %rdx 1317 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1318 cmpq %rdx, 4*8(%rsp) 1319 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1320 ja first_nmi 1321 1322 subq $EXCEPTION_STKSZ, %rdx 1323 cmpq %rdx, 4*8(%rsp) 1324 /* If it is below the NMI stack, it is a normal NMI */ 1325 jb first_nmi 1326 1327 /* Ah, it is within the NMI stack. */ 1328 1329 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1330 jz first_nmi /* RSP was user controlled. */ 1331 1332 /* This is a nested NMI. */ 1333 1334nested_nmi: 1335 /* 1336 * Modify the "iret" frame to point to repeat_nmi, forcing another 1337 * iteration of NMI handling. 1338 */ 1339 subq $8, %rsp 1340 leaq -10*8(%rsp), %rdx 1341 pushq $__KERNEL_DS 1342 pushq %rdx 1343 pushfq 1344 pushq $__KERNEL_CS 1345 pushq $repeat_nmi 1346 1347 /* Put stack back */ 1348 addq $(6*8), %rsp 1349 1350nested_nmi_out: 1351 popq %rdx 1352 1353 /* We are returning to kernel mode, so this cannot result in a fault. */ 1354 iretq 1355 1356first_nmi: 1357 /* Restore rdx. */ 1358 movq (%rsp), %rdx 1359 1360 /* Make room for "NMI executing". */ 1361 pushq $0 1362 1363 /* Leave room for the "iret" frame */ 1364 subq $(5*8), %rsp 1365 1366 /* Copy the "original" frame to the "outermost" frame */ 1367 .rept 5 1368 pushq 11*8(%rsp) 1369 .endr 1370 UNWIND_HINT_IRET_REGS 1371 1372 /* Everything up to here is safe from nested NMIs */ 1373 1374#ifdef CONFIG_DEBUG_ENTRY 1375 /* 1376 * For ease of testing, unmask NMIs right away. Disabled by 1377 * default because IRET is very expensive. 1378 */ 1379 pushq $0 /* SS */ 1380 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1381 addq $8, (%rsp) /* Fix up RSP */ 1382 pushfq /* RFLAGS */ 1383 pushq $__KERNEL_CS /* CS */ 1384 pushq $1f /* RIP */ 1385 iretq /* continues at repeat_nmi below */ 1386 UNWIND_HINT_IRET_REGS 13871: 1388#endif 1389 1390repeat_nmi: 1391 ANNOTATE_NOENDBR // this code 1392 /* 1393 * If there was a nested NMI, the first NMI's iret will return 1394 * here. But NMIs are still enabled and we can take another 1395 * nested NMI. The nested NMI checks the interrupted RIP to see 1396 * if it is between repeat_nmi and end_repeat_nmi, and if so 1397 * it will just return, as we are about to repeat an NMI anyway. 1398 * This makes it safe to copy to the stack frame that a nested 1399 * NMI will update. 1400 * 1401 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1402 * we're repeating an NMI, gsbase has the same value that it had on 1403 * the first iteration. paranoid_entry will load the kernel 1404 * gsbase if needed before we call exc_nmi(). "NMI executing" 1405 * is zero. 1406 */ 1407 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1408 1409 /* 1410 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1411 * here must not modify the "iret" frame while we're writing to 1412 * it or it will end up containing garbage. 1413 */ 1414 addq $(10*8), %rsp 1415 .rept 5 1416 pushq -6*8(%rsp) 1417 .endr 1418 subq $(5*8), %rsp 1419end_repeat_nmi: 1420 ANNOTATE_NOENDBR // this code 1421 1422 /* 1423 * Everything below this point can be preempted by a nested NMI. 1424 * If this happens, then the inner NMI will change the "iret" 1425 * frame to point back to repeat_nmi. 1426 */ 1427 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1428 1429 /* 1430 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1431 * as we should not be calling schedule in NMI context. 1432 * Even with normal interrupts enabled. An NMI should not be 1433 * setting NEED_RESCHED or anything that normal interrupts and 1434 * exceptions might do. 1435 */ 1436 call paranoid_entry 1437 UNWIND_HINT_REGS 1438 1439 movq %rsp, %rdi 1440 movq $-1, %rsi 1441 call exc_nmi 1442 1443 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1444 IBRS_EXIT save_reg=%r15 1445 1446 /* Always restore stashed CR3 value (see paranoid_entry) */ 1447 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1448 1449 /* 1450 * The above invocation of paranoid_entry stored the GSBASE 1451 * related information in R/EBX depending on the availability 1452 * of FSGSBASE. 1453 * 1454 * If FSGSBASE is enabled, restore the saved GSBASE value 1455 * unconditionally, otherwise take the conditional SWAPGS path. 1456 */ 1457 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1458 1459 wrgsbase %rbx 1460 jmp nmi_restore 1461 1462nmi_no_fsgsbase: 1463 /* EBX == 0 -> invoke SWAPGS */ 1464 testl %ebx, %ebx 1465 jnz nmi_restore 1466 1467nmi_swapgs: 1468 swapgs 1469 1470nmi_restore: 1471 POP_REGS 1472 1473 /* 1474 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1475 * at the "iret" frame. 1476 */ 1477 addq $6*8, %rsp 1478 1479 /* 1480 * Clear "NMI executing". Set DF first so that we can easily 1481 * distinguish the remaining code between here and IRET from 1482 * the SYSCALL entry and exit paths. 1483 * 1484 * We arguably should just inspect RIP instead, but I (Andy) wrote 1485 * this code when I had the misapprehension that Xen PV supported 1486 * NMIs, and Xen PV would break that approach. 1487 */ 1488 std 1489 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1490 1491 /* 1492 * iretq reads the "iret" frame and exits the NMI stack in a 1493 * single instruction. We are returning to kernel mode, so this 1494 * cannot result in a fault. Similarly, we don't need to worry 1495 * about espfix64 on the way back to kernel mode. 1496 */ 1497 iretq 1498SYM_CODE_END(asm_exc_nmi) 1499 1500#ifndef CONFIG_IA32_EMULATION 1501/* 1502 * This handles SYSCALL from 32-bit code. There is no way to program 1503 * MSRs to fully disable 32-bit SYSCALL. 1504 */ 1505SYM_CODE_START(ignore_sysret) 1506 UNWIND_HINT_END_OF_STACK 1507 ENDBR 1508 mov $-ENOSYS, %eax 1509 sysretl 1510SYM_CODE_END(ignore_sysret) 1511#endif 1512 1513.pushsection .text, "ax" 1514 __FUNC_ALIGN 1515SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1516 UNWIND_HINT_FUNC 1517 /* Prevent any naive code from trying to unwind to our caller. */ 1518 xorl %ebp, %ebp 1519 1520 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1521 leaq -PTREGS_SIZE(%rax), %rsp 1522 UNWIND_HINT_REGS 1523 1524 call make_task_dead 1525SYM_CODE_END(rewind_stack_and_make_dead) 1526.popsection 1527