xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 7a2f6f61)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_EMPTY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115	call	do_syscall_64		/* returns with IRQs disabled */
116
117	/*
118	 * Try to use SYSRET instead of IRET if we're returning to
119	 * a completely clean 64-bit userspace context.  If we're not,
120	 * go to the slow exit path.
121	 * In the Xen PV case we must use iret anyway.
122	 */
123
124	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
125		X86_FEATURE_XENPV
126
127	movq	RCX(%rsp), %rcx
128	movq	RIP(%rsp), %r11
129
130	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
131	jne	swapgs_restore_regs_and_return_to_usermode
132
133	/*
134	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
135	 * in kernel space.  This essentially lets the user take over
136	 * the kernel, since userspace controls RSP.
137	 *
138	 * If width of "canonical tail" ever becomes variable, this will need
139	 * to be updated to remain correct on both old and new CPUs.
140	 *
141	 * Change top bits to match most significant bit (47th or 56th bit
142	 * depending on paging mode) in the address.
143	 */
144#ifdef CONFIG_X86_5LEVEL
145	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
146		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
147#else
148	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
149	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
150#endif
151
152	/* If this changed %rcx, it was not canonical */
153	cmpq	%rcx, %r11
154	jne	swapgs_restore_regs_and_return_to_usermode
155
156	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
157	jne	swapgs_restore_regs_and_return_to_usermode
158
159	movq	R11(%rsp), %r11
160	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
161	jne	swapgs_restore_regs_and_return_to_usermode
162
163	/*
164	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
165	 * restore RF properly. If the slowpath sets it for whatever reason, we
166	 * need to restore it correctly.
167	 *
168	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
169	 * trap from userspace immediately after SYSRET.  This would cause an
170	 * infinite loop whenever #DB happens with register state that satisfies
171	 * the opportunistic SYSRET conditions.  For example, single-stepping
172	 * this user code:
173	 *
174	 *           movq	$stuck_here, %rcx
175	 *           pushfq
176	 *           popq %r11
177	 *   stuck_here:
178	 *
179	 * would never get past 'stuck_here'.
180	 */
181	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
182	jnz	swapgs_restore_regs_and_return_to_usermode
183
184	/* nothing to check for RSP */
185
186	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
187	jne	swapgs_restore_regs_and_return_to_usermode
188
189	/*
190	 * We win! This label is here just for ease of understanding
191	 * perf profiles. Nothing jumps here.
192	 */
193syscall_return_via_sysret:
194	/* rcx and r11 are already restored (see code above) */
195	POP_REGS pop_rdi=0 skip_r11rcx=1
196
197	/*
198	 * Now all regs are restored except RSP and RDI.
199	 * Save old stack pointer and switch to trampoline stack.
200	 */
201	movq	%rsp, %rdi
202	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
203	UNWIND_HINT_EMPTY
204
205	pushq	RSP-RDI(%rdi)	/* RSP */
206	pushq	(%rdi)		/* RDI */
207
208	/*
209	 * We are on the trampoline stack.  All regs except RDI are live.
210	 * We can do future final exit work right here.
211	 */
212	STACKLEAK_ERASE_NOCLOBBER
213
214	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
215
216	popq	%rdi
217	popq	%rsp
218	swapgs
219	sysretq
220SYM_CODE_END(entry_SYSCALL_64)
221
222/*
223 * %rdi: prev task
224 * %rsi: next task
225 */
226.pushsection .text, "ax"
227SYM_FUNC_START(__switch_to_asm)
228	/*
229	 * Save callee-saved registers
230	 * This must match the order in inactive_task_frame
231	 */
232	pushq	%rbp
233	pushq	%rbx
234	pushq	%r12
235	pushq	%r13
236	pushq	%r14
237	pushq	%r15
238
239	/* switch stack */
240	movq	%rsp, TASK_threadsp(%rdi)
241	movq	TASK_threadsp(%rsi), %rsp
242
243#ifdef CONFIG_STACKPROTECTOR
244	movq	TASK_stack_canary(%rsi), %rbx
245	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
246#endif
247
248#ifdef CONFIG_RETPOLINE
249	/*
250	 * When switching from a shallower to a deeper call stack
251	 * the RSB may either underflow or use entries populated
252	 * with userspace addresses. On CPUs where those concerns
253	 * exist, overwrite the RSB with entries which capture
254	 * speculative execution to prevent attack.
255	 */
256	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
257#endif
258
259	/* restore callee-saved registers */
260	popq	%r15
261	popq	%r14
262	popq	%r13
263	popq	%r12
264	popq	%rbx
265	popq	%rbp
266
267	jmp	__switch_to
268SYM_FUNC_END(__switch_to_asm)
269.popsection
270
271/*
272 * A newly forked process directly context switches into this address.
273 *
274 * rax: prev task we switched from
275 * rbx: kernel thread func (NULL for user thread)
276 * r12: kernel thread arg
277 */
278.pushsection .text, "ax"
279SYM_CODE_START(ret_from_fork)
280	UNWIND_HINT_EMPTY
281	ANNOTATE_NOENDBR // copy_thread
282	movq	%rax, %rdi
283	call	schedule_tail			/* rdi: 'prev' task parameter */
284
285	testq	%rbx, %rbx			/* from kernel_thread? */
286	jnz	1f				/* kernel threads are uncommon */
287
2882:
289	UNWIND_HINT_REGS
290	movq	%rsp, %rdi
291	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
292	jmp	swapgs_restore_regs_and_return_to_usermode
293
2941:
295	/* kernel thread */
296	UNWIND_HINT_EMPTY
297	movq	%r12, %rdi
298	CALL_NOSPEC rbx
299	/*
300	 * A kernel thread is allowed to return here after successfully
301	 * calling kernel_execve().  Exit to userspace to complete the execve()
302	 * syscall.
303	 */
304	movq	$0, RAX(%rsp)
305	jmp	2b
306SYM_CODE_END(ret_from_fork)
307.popsection
308
309.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
310#ifdef CONFIG_DEBUG_ENTRY
311	pushq %rax
312	SAVE_FLAGS
313	testl $X86_EFLAGS_IF, %eax
314	jz .Lokay_\@
315	ud2
316.Lokay_\@:
317	popq %rax
318#endif
319.endm
320
321/**
322 * idtentry_body - Macro to emit code calling the C function
323 * @cfunc:		C function to be called
324 * @has_error_code:	Hardware pushed error code on stack
325 */
326.macro idtentry_body cfunc has_error_code:req
327
328	call	error_entry
329	UNWIND_HINT_REGS
330
331	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
332
333	.if \has_error_code == 1
334		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
335		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
336	.endif
337
338	call	\cfunc
339
340	jmp	error_return
341.endm
342
343/**
344 * idtentry - Macro to generate entry stubs for simple IDT entries
345 * @vector:		Vector number
346 * @asmsym:		ASM symbol for the entry point
347 * @cfunc:		C function to be called
348 * @has_error_code:	Hardware pushed error code on stack
349 *
350 * The macro emits code to set up the kernel context for straight forward
351 * and simple IDT entries. No IST stack, no paranoid entry checks.
352 */
353.macro idtentry vector asmsym cfunc has_error_code:req
354SYM_CODE_START(\asmsym)
355	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
356	ENDBR
357	ASM_CLAC
358
359	.if \has_error_code == 0
360		pushq	$-1			/* ORIG_RAX: no syscall to restart */
361	.endif
362
363	.if \vector == X86_TRAP_BP
364		/*
365		 * If coming from kernel space, create a 6-word gap to allow the
366		 * int3 handler to emulate a call instruction.
367		 */
368		testb	$3, CS-ORIG_RAX(%rsp)
369		jnz	.Lfrom_usermode_no_gap_\@
370		.rept	6
371		pushq	5*8(%rsp)
372		.endr
373		UNWIND_HINT_IRET_REGS offset=8
374.Lfrom_usermode_no_gap_\@:
375	.endif
376
377	idtentry_body \cfunc \has_error_code
378
379_ASM_NOKPROBE(\asmsym)
380SYM_CODE_END(\asmsym)
381.endm
382
383/*
384 * Interrupt entry/exit.
385 *
386 + The interrupt stubs push (vector) onto the stack, which is the error_code
387 * position of idtentry exceptions, and jump to one of the two idtentry points
388 * (common/spurious).
389 *
390 * common_interrupt is a hotpath, align it to a cache line
391 */
392.macro idtentry_irq vector cfunc
393	.p2align CONFIG_X86_L1_CACHE_SHIFT
394	idtentry \vector asm_\cfunc \cfunc has_error_code=1
395.endm
396
397/*
398 * System vectors which invoke their handlers directly and are not
399 * going through the regular common device interrupt handling code.
400 */
401.macro idtentry_sysvec vector cfunc
402	idtentry \vector asm_\cfunc \cfunc has_error_code=0
403.endm
404
405/**
406 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
407 * @vector:		Vector number
408 * @asmsym:		ASM symbol for the entry point
409 * @cfunc:		C function to be called
410 *
411 * The macro emits code to set up the kernel context for #MC and #DB
412 *
413 * If the entry comes from user space it uses the normal entry path
414 * including the return to user space work and preemption checks on
415 * exit.
416 *
417 * If hits in kernel mode then it needs to go through the paranoid
418 * entry as the exception can hit any random state. No preemption
419 * check on exit to keep the paranoid path simple.
420 */
421.macro idtentry_mce_db vector asmsym cfunc
422SYM_CODE_START(\asmsym)
423	UNWIND_HINT_IRET_REGS
424	ENDBR
425	ASM_CLAC
426
427	pushq	$-1			/* ORIG_RAX: no syscall to restart */
428
429	/*
430	 * If the entry is from userspace, switch stacks and treat it as
431	 * a normal entry.
432	 */
433	testb	$3, CS-ORIG_RAX(%rsp)
434	jnz	.Lfrom_usermode_switch_stack_\@
435
436	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
437	call	paranoid_entry
438
439	UNWIND_HINT_REGS
440
441	movq	%rsp, %rdi		/* pt_regs pointer */
442
443	call	\cfunc
444
445	jmp	paranoid_exit
446
447	/* Switch to the regular task stack and use the noist entry point */
448.Lfrom_usermode_switch_stack_\@:
449	idtentry_body noist_\cfunc, has_error_code=0
450
451_ASM_NOKPROBE(\asmsym)
452SYM_CODE_END(\asmsym)
453.endm
454
455#ifdef CONFIG_AMD_MEM_ENCRYPT
456/**
457 * idtentry_vc - Macro to generate entry stub for #VC
458 * @vector:		Vector number
459 * @asmsym:		ASM symbol for the entry point
460 * @cfunc:		C function to be called
461 *
462 * The macro emits code to set up the kernel context for #VC. The #VC handler
463 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
464 *
465 * To make this work the #VC entry code tries its best to pretend it doesn't use
466 * an IST stack by switching to the task stack if coming from user-space (which
467 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
468 * entered from kernel-mode.
469 *
470 * If entered from kernel-mode the return stack is validated first, and if it is
471 * not safe to use (e.g. because it points to the entry stack) the #VC handler
472 * will switch to a fall-back stack (VC2) and call a special handler function.
473 *
474 * The macro is only used for one vector, but it is planned to be extended in
475 * the future for the #HV exception.
476 */
477.macro idtentry_vc vector asmsym cfunc
478SYM_CODE_START(\asmsym)
479	UNWIND_HINT_IRET_REGS
480	ENDBR
481	ASM_CLAC
482
483	/*
484	 * If the entry is from userspace, switch stacks and treat it as
485	 * a normal entry.
486	 */
487	testb	$3, CS-ORIG_RAX(%rsp)
488	jnz	.Lfrom_usermode_switch_stack_\@
489
490	/*
491	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
492	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
493	 */
494	call	paranoid_entry
495
496	UNWIND_HINT_REGS
497
498	/*
499	 * Switch off the IST stack to make it free for nested exceptions. The
500	 * vc_switch_off_ist() function will switch back to the interrupted
501	 * stack if it is safe to do so. If not it switches to the VC fall-back
502	 * stack.
503	 */
504	movq	%rsp, %rdi		/* pt_regs pointer */
505	call	vc_switch_off_ist
506	movq	%rax, %rsp		/* Switch to new stack */
507
508	UNWIND_HINT_REGS
509
510	/* Update pt_regs */
511	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
512	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
513
514	movq	%rsp, %rdi		/* pt_regs pointer */
515
516	call	kernel_\cfunc
517
518	/*
519	 * No need to switch back to the IST stack. The current stack is either
520	 * identical to the stack in the IRET frame or the VC fall-back stack,
521	 * so it is definitely mapped even with PTI enabled.
522	 */
523	jmp	paranoid_exit
524
525	/* Switch to the regular task stack */
526.Lfrom_usermode_switch_stack_\@:
527	idtentry_body user_\cfunc, has_error_code=1
528
529_ASM_NOKPROBE(\asmsym)
530SYM_CODE_END(\asmsym)
531.endm
532#endif
533
534/*
535 * Double fault entry. Straight paranoid. No checks from which context
536 * this comes because for the espfix induced #DF this would do the wrong
537 * thing.
538 */
539.macro idtentry_df vector asmsym cfunc
540SYM_CODE_START(\asmsym)
541	UNWIND_HINT_IRET_REGS offset=8
542	ENDBR
543	ASM_CLAC
544
545	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
546	call	paranoid_entry
547	UNWIND_HINT_REGS
548
549	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
550	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
551	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
552	call	\cfunc
553
554	/* For some configurations \cfunc ends up being a noreturn. */
555	REACHABLE
556
557	jmp	paranoid_exit
558
559_ASM_NOKPROBE(\asmsym)
560SYM_CODE_END(\asmsym)
561.endm
562
563/*
564 * Include the defines which emit the idt entries which are shared
565 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
566 * so the stacktrace boundary checks work.
567 */
568	.align 16
569	.globl __irqentry_text_start
570__irqentry_text_start:
571
572#include <asm/idtentry.h>
573
574	.align 16
575	.globl __irqentry_text_end
576__irqentry_text_end:
577	ANNOTATE_NOENDBR
578
579SYM_CODE_START_LOCAL(common_interrupt_return)
580SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
581#ifdef CONFIG_DEBUG_ENTRY
582	/* Assert that pt_regs indicates user mode. */
583	testb	$3, CS(%rsp)
584	jnz	1f
585	ud2
5861:
587#endif
588#ifdef CONFIG_XEN_PV
589	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
590#endif
591
592	POP_REGS pop_rdi=0
593
594	/*
595	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
596	 * Save old stack pointer and switch to trampoline stack.
597	 */
598	movq	%rsp, %rdi
599	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
600	UNWIND_HINT_EMPTY
601
602	/* Copy the IRET frame to the trampoline stack. */
603	pushq	6*8(%rdi)	/* SS */
604	pushq	5*8(%rdi)	/* RSP */
605	pushq	4*8(%rdi)	/* EFLAGS */
606	pushq	3*8(%rdi)	/* CS */
607	pushq	2*8(%rdi)	/* RIP */
608
609	/* Push user RDI on the trampoline stack. */
610	pushq	(%rdi)
611
612	/*
613	 * We are on the trampoline stack.  All regs except RDI are live.
614	 * We can do future final exit work right here.
615	 */
616	STACKLEAK_ERASE_NOCLOBBER
617
618	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
619
620	/* Restore RDI. */
621	popq	%rdi
622	swapgs
623	jmp	.Lnative_iret
624
625
626SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
627#ifdef CONFIG_DEBUG_ENTRY
628	/* Assert that pt_regs indicates kernel mode. */
629	testb	$3, CS(%rsp)
630	jz	1f
631	ud2
6321:
633#endif
634	POP_REGS
635	addq	$8, %rsp	/* skip regs->orig_ax */
636	/*
637	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
638	 * when returning from IPI handler.
639	 */
640#ifdef CONFIG_XEN_PV
641SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
642	ANNOTATE_NOENDBR
643	.byte 0xe9
644	.long .Lnative_iret - (. + 4)
645#endif
646
647.Lnative_iret:
648	UNWIND_HINT_IRET_REGS
649	/*
650	 * Are we returning to a stack segment from the LDT?  Note: in
651	 * 64-bit mode SS:RSP on the exception stack is always valid.
652	 */
653#ifdef CONFIG_X86_ESPFIX64
654	testb	$4, (SS-RIP)(%rsp)
655	jnz	native_irq_return_ldt
656#endif
657
658SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
659	ANNOTATE_NOENDBR // exc_double_fault
660	/*
661	 * This may fault.  Non-paranoid faults on return to userspace are
662	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
663	 * Double-faults due to espfix64 are handled in exc_double_fault.
664	 * Other faults here are fatal.
665	 */
666	iretq
667
668#ifdef CONFIG_X86_ESPFIX64
669native_irq_return_ldt:
670	/*
671	 * We are running with user GSBASE.  All GPRs contain their user
672	 * values.  We have a percpu ESPFIX stack that is eight slots
673	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
674	 * of the ESPFIX stack.
675	 *
676	 * We clobber RAX and RDI in this code.  We stash RDI on the
677	 * normal stack and RAX on the ESPFIX stack.
678	 *
679	 * The ESPFIX stack layout we set up looks like this:
680	 *
681	 * --- top of ESPFIX stack ---
682	 * SS
683	 * RSP
684	 * RFLAGS
685	 * CS
686	 * RIP  <-- RSP points here when we're done
687	 * RAX  <-- espfix_waddr points here
688	 * --- bottom of ESPFIX stack ---
689	 */
690
691	pushq	%rdi				/* Stash user RDI */
692	swapgs					/* to kernel GS */
693	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
694
695	movq	PER_CPU_VAR(espfix_waddr), %rdi
696	movq	%rax, (0*8)(%rdi)		/* user RAX */
697	movq	(1*8)(%rsp), %rax		/* user RIP */
698	movq	%rax, (1*8)(%rdi)
699	movq	(2*8)(%rsp), %rax		/* user CS */
700	movq	%rax, (2*8)(%rdi)
701	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
702	movq	%rax, (3*8)(%rdi)
703	movq	(5*8)(%rsp), %rax		/* user SS */
704	movq	%rax, (5*8)(%rdi)
705	movq	(4*8)(%rsp), %rax		/* user RSP */
706	movq	%rax, (4*8)(%rdi)
707	/* Now RAX == RSP. */
708
709	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
710
711	/*
712	 * espfix_stack[31:16] == 0.  The page tables are set up such that
713	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
714	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
715	 * the same page.  Set up RSP so that RSP[31:16] contains the
716	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
717	 * still points to an RO alias of the ESPFIX stack.
718	 */
719	orq	PER_CPU_VAR(espfix_stack), %rax
720
721	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
722	swapgs					/* to user GS */
723	popq	%rdi				/* Restore user RDI */
724
725	movq	%rax, %rsp
726	UNWIND_HINT_IRET_REGS offset=8
727
728	/*
729	 * At this point, we cannot write to the stack any more, but we can
730	 * still read.
731	 */
732	popq	%rax				/* Restore user RAX */
733
734	/*
735	 * RSP now points to an ordinary IRET frame, except that the page
736	 * is read-only and RSP[31:16] are preloaded with the userspace
737	 * values.  We can now IRET back to userspace.
738	 */
739	jmp	native_irq_return_iret
740#endif
741SYM_CODE_END(common_interrupt_return)
742_ASM_NOKPROBE(common_interrupt_return)
743
744/*
745 * Reload gs selector with exception handling
746 * edi:  new selector
747 *
748 * Is in entry.text as it shouldn't be instrumented.
749 */
750SYM_FUNC_START(asm_load_gs_index)
751	FRAME_BEGIN
752	swapgs
753.Lgs_change:
754	ANNOTATE_NOENDBR // error_entry
755	movl	%edi, %gs
7562:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
757	swapgs
758	FRAME_END
759	RET
760
761	/* running with kernelgs */
762.Lbad_gs:
763	swapgs					/* switch back to user gs */
764.macro ZAP_GS
765	/* This can't be a string because the preprocessor needs to see it. */
766	movl $__USER_DS, %eax
767	movl %eax, %gs
768.endm
769	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
770	xorl	%eax, %eax
771	movl	%eax, %gs
772	jmp	2b
773
774	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
775
776SYM_FUNC_END(asm_load_gs_index)
777EXPORT_SYMBOL(asm_load_gs_index)
778
779#ifdef CONFIG_XEN_PV
780/*
781 * A note on the "critical region" in our callback handler.
782 * We want to avoid stacking callback handlers due to events occurring
783 * during handling of the last event. To do this, we keep events disabled
784 * until we've done all processing. HOWEVER, we must enable events before
785 * popping the stack frame (can't be done atomically) and so it would still
786 * be possible to get enough handler activations to overflow the stack.
787 * Although unlikely, bugs of that kind are hard to track down, so we'd
788 * like to avoid the possibility.
789 * So, on entry to the handler we detect whether we interrupted an
790 * existing activation in its critical region -- if so, we pop the current
791 * activation and restart the handler using the previous one.
792 *
793 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
794 */
795SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
796
797/*
798 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
799 * see the correct pointer to the pt_regs
800 */
801	UNWIND_HINT_FUNC
802	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
803	UNWIND_HINT_REGS
804
805	call	xen_pv_evtchn_do_upcall
806
807	jmp	error_return
808SYM_CODE_END(exc_xen_hypervisor_callback)
809
810/*
811 * Hypervisor uses this for application faults while it executes.
812 * We get here for two reasons:
813 *  1. Fault while reloading DS, ES, FS or GS
814 *  2. Fault while executing IRET
815 * Category 1 we do not need to fix up as Xen has already reloaded all segment
816 * registers that could be reloaded and zeroed the others.
817 * Category 2 we fix up by killing the current process. We cannot use the
818 * normal Linux return path in this case because if we use the IRET hypercall
819 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
820 * We distinguish between categories by comparing each saved segment register
821 * with its current contents: any discrepancy means we in category 1.
822 */
823SYM_CODE_START(xen_failsafe_callback)
824	UNWIND_HINT_EMPTY
825	ENDBR
826	movl	%ds, %ecx
827	cmpw	%cx, 0x10(%rsp)
828	jne	1f
829	movl	%es, %ecx
830	cmpw	%cx, 0x18(%rsp)
831	jne	1f
832	movl	%fs, %ecx
833	cmpw	%cx, 0x20(%rsp)
834	jne	1f
835	movl	%gs, %ecx
836	cmpw	%cx, 0x28(%rsp)
837	jne	1f
838	/* All segments match their saved values => Category 2 (Bad IRET). */
839	movq	(%rsp), %rcx
840	movq	8(%rsp), %r11
841	addq	$0x30, %rsp
842	pushq	$0				/* RIP */
843	UNWIND_HINT_IRET_REGS offset=8
844	jmp	asm_exc_general_protection
8451:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
846	movq	(%rsp), %rcx
847	movq	8(%rsp), %r11
848	addq	$0x30, %rsp
849	UNWIND_HINT_IRET_REGS
850	pushq	$-1 /* orig_ax = -1 => not a system call */
851	PUSH_AND_CLEAR_REGS
852	ENCODE_FRAME_POINTER
853	jmp	error_return
854SYM_CODE_END(xen_failsafe_callback)
855#endif /* CONFIG_XEN_PV */
856
857/*
858 * Save all registers in pt_regs. Return GSBASE related information
859 * in EBX depending on the availability of the FSGSBASE instructions:
860 *
861 * FSGSBASE	R/EBX
862 *     N        0 -> SWAPGS on exit
863 *              1 -> no SWAPGS on exit
864 *
865 *     Y        GSBASE value at entry, must be restored in paranoid_exit
866 */
867SYM_CODE_START_LOCAL(paranoid_entry)
868	UNWIND_HINT_FUNC
869	cld
870	PUSH_AND_CLEAR_REGS save_ret=1
871	ENCODE_FRAME_POINTER 8
872
873	/*
874	 * Always stash CR3 in %r14.  This value will be restored,
875	 * verbatim, at exit.  Needed if paranoid_entry interrupted
876	 * another entry that already switched to the user CR3 value
877	 * but has not yet returned to userspace.
878	 *
879	 * This is also why CS (stashed in the "iret frame" by the
880	 * hardware at entry) can not be used: this may be a return
881	 * to kernel code, but with a user CR3 value.
882	 *
883	 * Switching CR3 does not depend on kernel GSBASE so it can
884	 * be done before switching to the kernel GSBASE. This is
885	 * required for FSGSBASE because the kernel GSBASE has to
886	 * be retrieved from a kernel internal table.
887	 */
888	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
889
890	/*
891	 * Handling GSBASE depends on the availability of FSGSBASE.
892	 *
893	 * Without FSGSBASE the kernel enforces that negative GSBASE
894	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
895	 * can be made about the GSBASE value when entering from user
896	 * space.
897	 */
898	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
899
900	/*
901	 * Read the current GSBASE and store it in %rbx unconditionally,
902	 * retrieve and set the current CPUs kernel GSBASE. The stored value
903	 * has to be restored in paranoid_exit unconditionally.
904	 *
905	 * The unconditional write to GS base below ensures that no subsequent
906	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
907	 * is needed here.
908	 */
909	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
910	RET
911
912.Lparanoid_entry_checkgs:
913	/* EBX = 1 -> kernel GSBASE active, no restore required */
914	movl	$1, %ebx
915
916	/*
917	 * The kernel-enforced convention is a negative GSBASE indicates
918	 * a kernel value. No SWAPGS needed on entry and exit.
919	 */
920	movl	$MSR_GS_BASE, %ecx
921	rdmsr
922	testl	%edx, %edx
923	js	.Lparanoid_kernel_gsbase
924
925	/* EBX = 0 -> SWAPGS required on exit */
926	xorl	%ebx, %ebx
927	swapgs
928.Lparanoid_kernel_gsbase:
929
930	FENCE_SWAPGS_KERNEL_ENTRY
931	RET
932SYM_CODE_END(paranoid_entry)
933
934/*
935 * "Paranoid" exit path from exception stack.  This is invoked
936 * only on return from non-NMI IST interrupts that came
937 * from kernel space.
938 *
939 * We may be returning to very strange contexts (e.g. very early
940 * in syscall entry), so checking for preemption here would
941 * be complicated.  Fortunately, there's no good reason to try
942 * to handle preemption here.
943 *
944 * R/EBX contains the GSBASE related information depending on the
945 * availability of the FSGSBASE instructions:
946 *
947 * FSGSBASE	R/EBX
948 *     N        0 -> SWAPGS on exit
949 *              1 -> no SWAPGS on exit
950 *
951 *     Y        User space GSBASE, must be restored unconditionally
952 */
953SYM_CODE_START_LOCAL(paranoid_exit)
954	UNWIND_HINT_REGS
955	/*
956	 * The order of operations is important. RESTORE_CR3 requires
957	 * kernel GSBASE.
958	 *
959	 * NB to anyone to try to optimize this code: this code does
960	 * not execute at all for exceptions from user mode. Those
961	 * exceptions go through error_exit instead.
962	 */
963	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
964
965	/* Handle the three GSBASE cases */
966	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
967
968	/* With FSGSBASE enabled, unconditionally restore GSBASE */
969	wrgsbase	%rbx
970	jmp		restore_regs_and_return_to_kernel
971
972.Lparanoid_exit_checkgs:
973	/* On non-FSGSBASE systems, conditionally do SWAPGS */
974	testl		%ebx, %ebx
975	jnz		restore_regs_and_return_to_kernel
976
977	/* We are returning to a context with user GSBASE */
978	swapgs
979	jmp		restore_regs_and_return_to_kernel
980SYM_CODE_END(paranoid_exit)
981
982/*
983 * Save all registers in pt_regs, and switch GS if needed.
984 */
985SYM_CODE_START_LOCAL(error_entry)
986	UNWIND_HINT_FUNC
987	cld
988	PUSH_AND_CLEAR_REGS save_ret=1
989	ENCODE_FRAME_POINTER 8
990	testb	$3, CS+8(%rsp)
991	jz	.Lerror_kernelspace
992
993	/*
994	 * We entered from user mode or we're pretending to have entered
995	 * from user mode due to an IRET fault.
996	 */
997	SWAPGS
998	FENCE_SWAPGS_USER_ENTRY
999	/* We have user CR3.  Change to kernel CR3. */
1000	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1001
1002.Lerror_entry_from_usermode_after_swapgs:
1003	/* Put us onto the real thread stack. */
1004	popq	%r12				/* save return addr in %12 */
1005	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1006	call	sync_regs
1007	movq	%rax, %rsp			/* switch stack */
1008	ENCODE_FRAME_POINTER
1009	pushq	%r12
1010	RET
1011
1012	/*
1013	 * There are two places in the kernel that can potentially fault with
1014	 * usergs. Handle them here.  B stepping K8s sometimes report a
1015	 * truncated RIP for IRET exceptions returning to compat mode. Check
1016	 * for these here too.
1017	 */
1018.Lerror_kernelspace:
1019	leaq	native_irq_return_iret(%rip), %rcx
1020	cmpq	%rcx, RIP+8(%rsp)
1021	je	.Lerror_bad_iret
1022	movl	%ecx, %eax			/* zero extend */
1023	cmpq	%rax, RIP+8(%rsp)
1024	je	.Lbstep_iret
1025	cmpq	$.Lgs_change, RIP+8(%rsp)
1026	jne	.Lerror_entry_done_lfence
1027
1028	/*
1029	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1030	 * gsbase and proceed.  We'll fix up the exception and land in
1031	 * .Lgs_change's error handler with kernel gsbase.
1032	 */
1033	SWAPGS
1034
1035	/*
1036	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1037	 * kernel or user gsbase.
1038	 */
1039.Lerror_entry_done_lfence:
1040	FENCE_SWAPGS_KERNEL_ENTRY
1041	RET
1042
1043.Lbstep_iret:
1044	/* Fix truncated RIP */
1045	movq	%rcx, RIP+8(%rsp)
1046	/* fall through */
1047
1048.Lerror_bad_iret:
1049	/*
1050	 * We came from an IRET to user mode, so we have user
1051	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1052	 */
1053	SWAPGS
1054	FENCE_SWAPGS_USER_ENTRY
1055	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1056
1057	/*
1058	 * Pretend that the exception came from user mode: set up pt_regs
1059	 * as if we faulted immediately after IRET.
1060	 */
1061	mov	%rsp, %rdi
1062	call	fixup_bad_iret
1063	mov	%rax, %rsp
1064	jmp	.Lerror_entry_from_usermode_after_swapgs
1065SYM_CODE_END(error_entry)
1066
1067SYM_CODE_START_LOCAL(error_return)
1068	UNWIND_HINT_REGS
1069	DEBUG_ENTRY_ASSERT_IRQS_OFF
1070	testb	$3, CS(%rsp)
1071	jz	restore_regs_and_return_to_kernel
1072	jmp	swapgs_restore_regs_and_return_to_usermode
1073SYM_CODE_END(error_return)
1074
1075/*
1076 * Runs on exception stack.  Xen PV does not go through this path at all,
1077 * so we can use real assembly here.
1078 *
1079 * Registers:
1080 *	%r14: Used to save/restore the CR3 of the interrupted context
1081 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1082 */
1083SYM_CODE_START(asm_exc_nmi)
1084	UNWIND_HINT_IRET_REGS
1085	ENDBR
1086
1087	/*
1088	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1089	 * the iretq it performs will take us out of NMI context.
1090	 * This means that we can have nested NMIs where the next
1091	 * NMI is using the top of the stack of the previous NMI. We
1092	 * can't let it execute because the nested NMI will corrupt the
1093	 * stack of the previous NMI. NMI handlers are not re-entrant
1094	 * anyway.
1095	 *
1096	 * To handle this case we do the following:
1097	 *  Check the a special location on the stack that contains
1098	 *  a variable that is set when NMIs are executing.
1099	 *  The interrupted task's stack is also checked to see if it
1100	 *  is an NMI stack.
1101	 *  If the variable is not set and the stack is not the NMI
1102	 *  stack then:
1103	 *    o Set the special variable on the stack
1104	 *    o Copy the interrupt frame into an "outermost" location on the
1105	 *      stack
1106	 *    o Copy the interrupt frame into an "iret" location on the stack
1107	 *    o Continue processing the NMI
1108	 *  If the variable is set or the previous stack is the NMI stack:
1109	 *    o Modify the "iret" location to jump to the repeat_nmi
1110	 *    o return back to the first NMI
1111	 *
1112	 * Now on exit of the first NMI, we first clear the stack variable
1113	 * The NMI stack will tell any nested NMIs at that point that it is
1114	 * nested. Then we pop the stack normally with iret, and if there was
1115	 * a nested NMI that updated the copy interrupt stack frame, a
1116	 * jump will be made to the repeat_nmi code that will handle the second
1117	 * NMI.
1118	 *
1119	 * However, espfix prevents us from directly returning to userspace
1120	 * with a single IRET instruction.  Similarly, IRET to user mode
1121	 * can fault.  We therefore handle NMIs from user space like
1122	 * other IST entries.
1123	 */
1124
1125	ASM_CLAC
1126
1127	/* Use %rdx as our temp variable throughout */
1128	pushq	%rdx
1129
1130	testb	$3, CS-RIP+8(%rsp)
1131	jz	.Lnmi_from_kernel
1132
1133	/*
1134	 * NMI from user mode.  We need to run on the thread stack, but we
1135	 * can't go through the normal entry paths: NMIs are masked, and
1136	 * we don't want to enable interrupts, because then we'll end
1137	 * up in an awkward situation in which IRQs are on but NMIs
1138	 * are off.
1139	 *
1140	 * We also must not push anything to the stack before switching
1141	 * stacks lest we corrupt the "NMI executing" variable.
1142	 */
1143
1144	swapgs
1145	cld
1146	FENCE_SWAPGS_USER_ENTRY
1147	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1148	movq	%rsp, %rdx
1149	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1150	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1151	pushq	5*8(%rdx)	/* pt_regs->ss */
1152	pushq	4*8(%rdx)	/* pt_regs->rsp */
1153	pushq	3*8(%rdx)	/* pt_regs->flags */
1154	pushq	2*8(%rdx)	/* pt_regs->cs */
1155	pushq	1*8(%rdx)	/* pt_regs->rip */
1156	UNWIND_HINT_IRET_REGS
1157	pushq   $-1		/* pt_regs->orig_ax */
1158	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1159	ENCODE_FRAME_POINTER
1160
1161	/*
1162	 * At this point we no longer need to worry about stack damage
1163	 * due to nesting -- we're on the normal thread stack and we're
1164	 * done with the NMI stack.
1165	 */
1166
1167	movq	%rsp, %rdi
1168	movq	$-1, %rsi
1169	call	exc_nmi
1170
1171	/*
1172	 * Return back to user mode.  We must *not* do the normal exit
1173	 * work, because we don't want to enable interrupts.
1174	 */
1175	jmp	swapgs_restore_regs_and_return_to_usermode
1176
1177.Lnmi_from_kernel:
1178	/*
1179	 * Here's what our stack frame will look like:
1180	 * +---------------------------------------------------------+
1181	 * | original SS                                             |
1182	 * | original Return RSP                                     |
1183	 * | original RFLAGS                                         |
1184	 * | original CS                                             |
1185	 * | original RIP                                            |
1186	 * +---------------------------------------------------------+
1187	 * | temp storage for rdx                                    |
1188	 * +---------------------------------------------------------+
1189	 * | "NMI executing" variable                                |
1190	 * +---------------------------------------------------------+
1191	 * | iret SS          } Copied from "outermost" frame        |
1192	 * | iret Return RSP  } on each loop iteration; overwritten  |
1193	 * | iret RFLAGS      } by a nested NMI to force another     |
1194	 * | iret CS          } iteration if needed.                 |
1195	 * | iret RIP         }                                      |
1196	 * +---------------------------------------------------------+
1197	 * | outermost SS          } initialized in first_nmi;       |
1198	 * | outermost Return RSP  } will not be changed before      |
1199	 * | outermost RFLAGS      } NMI processing is done.         |
1200	 * | outermost CS          } Copied to "iret" frame on each  |
1201	 * | outermost RIP         } iteration.                      |
1202	 * +---------------------------------------------------------+
1203	 * | pt_regs                                                 |
1204	 * +---------------------------------------------------------+
1205	 *
1206	 * The "original" frame is used by hardware.  Before re-enabling
1207	 * NMIs, we need to be done with it, and we need to leave enough
1208	 * space for the asm code here.
1209	 *
1210	 * We return by executing IRET while RSP points to the "iret" frame.
1211	 * That will either return for real or it will loop back into NMI
1212	 * processing.
1213	 *
1214	 * The "outermost" frame is copied to the "iret" frame on each
1215	 * iteration of the loop, so each iteration starts with the "iret"
1216	 * frame pointing to the final return target.
1217	 */
1218
1219	/*
1220	 * Determine whether we're a nested NMI.
1221	 *
1222	 * If we interrupted kernel code between repeat_nmi and
1223	 * end_repeat_nmi, then we are a nested NMI.  We must not
1224	 * modify the "iret" frame because it's being written by
1225	 * the outer NMI.  That's okay; the outer NMI handler is
1226	 * about to about to call exc_nmi() anyway, so we can just
1227	 * resume the outer NMI.
1228	 */
1229
1230	movq	$repeat_nmi, %rdx
1231	cmpq	8(%rsp), %rdx
1232	ja	1f
1233	movq	$end_repeat_nmi, %rdx
1234	cmpq	8(%rsp), %rdx
1235	ja	nested_nmi_out
12361:
1237
1238	/*
1239	 * Now check "NMI executing".  If it's set, then we're nested.
1240	 * This will not detect if we interrupted an outer NMI just
1241	 * before IRET.
1242	 */
1243	cmpl	$1, -8(%rsp)
1244	je	nested_nmi
1245
1246	/*
1247	 * Now test if the previous stack was an NMI stack.  This covers
1248	 * the case where we interrupt an outer NMI after it clears
1249	 * "NMI executing" but before IRET.  We need to be careful, though:
1250	 * there is one case in which RSP could point to the NMI stack
1251	 * despite there being no NMI active: naughty userspace controls
1252	 * RSP at the very beginning of the SYSCALL targets.  We can
1253	 * pull a fast one on naughty userspace, though: we program
1254	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1255	 * if it controls the kernel's RSP.  We set DF before we clear
1256	 * "NMI executing".
1257	 */
1258	lea	6*8(%rsp), %rdx
1259	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1260	cmpq	%rdx, 4*8(%rsp)
1261	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1262	ja	first_nmi
1263
1264	subq	$EXCEPTION_STKSZ, %rdx
1265	cmpq	%rdx, 4*8(%rsp)
1266	/* If it is below the NMI stack, it is a normal NMI */
1267	jb	first_nmi
1268
1269	/* Ah, it is within the NMI stack. */
1270
1271	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1272	jz	first_nmi	/* RSP was user controlled. */
1273
1274	/* This is a nested NMI. */
1275
1276nested_nmi:
1277	/*
1278	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1279	 * iteration of NMI handling.
1280	 */
1281	subq	$8, %rsp
1282	leaq	-10*8(%rsp), %rdx
1283	pushq	$__KERNEL_DS
1284	pushq	%rdx
1285	pushfq
1286	pushq	$__KERNEL_CS
1287	pushq	$repeat_nmi
1288
1289	/* Put stack back */
1290	addq	$(6*8), %rsp
1291
1292nested_nmi_out:
1293	popq	%rdx
1294
1295	/* We are returning to kernel mode, so this cannot result in a fault. */
1296	iretq
1297
1298first_nmi:
1299	/* Restore rdx. */
1300	movq	(%rsp), %rdx
1301
1302	/* Make room for "NMI executing". */
1303	pushq	$0
1304
1305	/* Leave room for the "iret" frame */
1306	subq	$(5*8), %rsp
1307
1308	/* Copy the "original" frame to the "outermost" frame */
1309	.rept 5
1310	pushq	11*8(%rsp)
1311	.endr
1312	UNWIND_HINT_IRET_REGS
1313
1314	/* Everything up to here is safe from nested NMIs */
1315
1316#ifdef CONFIG_DEBUG_ENTRY
1317	/*
1318	 * For ease of testing, unmask NMIs right away.  Disabled by
1319	 * default because IRET is very expensive.
1320	 */
1321	pushq	$0		/* SS */
1322	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1323	addq	$8, (%rsp)	/* Fix up RSP */
1324	pushfq			/* RFLAGS */
1325	pushq	$__KERNEL_CS	/* CS */
1326	pushq	$1f		/* RIP */
1327	iretq			/* continues at repeat_nmi below */
1328	UNWIND_HINT_IRET_REGS
13291:
1330#endif
1331
1332repeat_nmi:
1333	ANNOTATE_NOENDBR // this code
1334	/*
1335	 * If there was a nested NMI, the first NMI's iret will return
1336	 * here. But NMIs are still enabled and we can take another
1337	 * nested NMI. The nested NMI checks the interrupted RIP to see
1338	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1339	 * it will just return, as we are about to repeat an NMI anyway.
1340	 * This makes it safe to copy to the stack frame that a nested
1341	 * NMI will update.
1342	 *
1343	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1344	 * we're repeating an NMI, gsbase has the same value that it had on
1345	 * the first iteration.  paranoid_entry will load the kernel
1346	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1347	 * is zero.
1348	 */
1349	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1350
1351	/*
1352	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1353	 * here must not modify the "iret" frame while we're writing to
1354	 * it or it will end up containing garbage.
1355	 */
1356	addq	$(10*8), %rsp
1357	.rept 5
1358	pushq	-6*8(%rsp)
1359	.endr
1360	subq	$(5*8), %rsp
1361end_repeat_nmi:
1362	ANNOTATE_NOENDBR // this code
1363
1364	/*
1365	 * Everything below this point can be preempted by a nested NMI.
1366	 * If this happens, then the inner NMI will change the "iret"
1367	 * frame to point back to repeat_nmi.
1368	 */
1369	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1370
1371	/*
1372	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1373	 * as we should not be calling schedule in NMI context.
1374	 * Even with normal interrupts enabled. An NMI should not be
1375	 * setting NEED_RESCHED or anything that normal interrupts and
1376	 * exceptions might do.
1377	 */
1378	call	paranoid_entry
1379	UNWIND_HINT_REGS
1380
1381	movq	%rsp, %rdi
1382	movq	$-1, %rsi
1383	call	exc_nmi
1384
1385	/* Always restore stashed CR3 value (see paranoid_entry) */
1386	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1387
1388	/*
1389	 * The above invocation of paranoid_entry stored the GSBASE
1390	 * related information in R/EBX depending on the availability
1391	 * of FSGSBASE.
1392	 *
1393	 * If FSGSBASE is enabled, restore the saved GSBASE value
1394	 * unconditionally, otherwise take the conditional SWAPGS path.
1395	 */
1396	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1397
1398	wrgsbase	%rbx
1399	jmp	nmi_restore
1400
1401nmi_no_fsgsbase:
1402	/* EBX == 0 -> invoke SWAPGS */
1403	testl	%ebx, %ebx
1404	jnz	nmi_restore
1405
1406nmi_swapgs:
1407	swapgs
1408
1409nmi_restore:
1410	POP_REGS
1411
1412	/*
1413	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1414	 * at the "iret" frame.
1415	 */
1416	addq	$6*8, %rsp
1417
1418	/*
1419	 * Clear "NMI executing".  Set DF first so that we can easily
1420	 * distinguish the remaining code between here and IRET from
1421	 * the SYSCALL entry and exit paths.
1422	 *
1423	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1424	 * this code when I had the misapprehension that Xen PV supported
1425	 * NMIs, and Xen PV would break that approach.
1426	 */
1427	std
1428	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1429
1430	/*
1431	 * iretq reads the "iret" frame and exits the NMI stack in a
1432	 * single instruction.  We are returning to kernel mode, so this
1433	 * cannot result in a fault.  Similarly, we don't need to worry
1434	 * about espfix64 on the way back to kernel mode.
1435	 */
1436	iretq
1437SYM_CODE_END(asm_exc_nmi)
1438
1439#ifndef CONFIG_IA32_EMULATION
1440/*
1441 * This handles SYSCALL from 32-bit code.  There is no way to program
1442 * MSRs to fully disable 32-bit SYSCALL.
1443 */
1444SYM_CODE_START(ignore_sysret)
1445	UNWIND_HINT_EMPTY
1446	ENDBR
1447	mov	$-ENOSYS, %eax
1448	sysretl
1449SYM_CODE_END(ignore_sysret)
1450#endif
1451
1452.pushsection .text, "ax"
1453SYM_CODE_START(rewind_stack_and_make_dead)
1454	UNWIND_HINT_FUNC
1455	/* Prevent any naive code from trying to unwind to our caller. */
1456	xorl	%ebp, %ebp
1457
1458	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1459	leaq	-PTREGS_SIZE(%rax), %rsp
1460	UNWIND_HINT_REGS
1461
1462	call	make_task_dead
1463SYM_CODE_END(rewind_stack_and_make_dead)
1464.popsection
1465