1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_EMPTY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 call do_syscall_64 /* returns with IRQs disabled */ 116 117 /* 118 * Try to use SYSRET instead of IRET if we're returning to 119 * a completely clean 64-bit userspace context. If we're not, 120 * go to the slow exit path. 121 * In the Xen PV case we must use iret anyway. 122 */ 123 124 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 125 X86_FEATURE_XENPV 126 127 movq RCX(%rsp), %rcx 128 movq RIP(%rsp), %r11 129 130 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 131 jne swapgs_restore_regs_and_return_to_usermode 132 133 /* 134 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 135 * in kernel space. This essentially lets the user take over 136 * the kernel, since userspace controls RSP. 137 * 138 * If width of "canonical tail" ever becomes variable, this will need 139 * to be updated to remain correct on both old and new CPUs. 140 * 141 * Change top bits to match most significant bit (47th or 56th bit 142 * depending on paging mode) in the address. 143 */ 144#ifdef CONFIG_X86_5LEVEL 145 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 146 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 147#else 148 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 149 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 150#endif 151 152 /* If this changed %rcx, it was not canonical */ 153 cmpq %rcx, %r11 154 jne swapgs_restore_regs_and_return_to_usermode 155 156 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 157 jne swapgs_restore_regs_and_return_to_usermode 158 159 movq R11(%rsp), %r11 160 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 161 jne swapgs_restore_regs_and_return_to_usermode 162 163 /* 164 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 165 * restore RF properly. If the slowpath sets it for whatever reason, we 166 * need to restore it correctly. 167 * 168 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 169 * trap from userspace immediately after SYSRET. This would cause an 170 * infinite loop whenever #DB happens with register state that satisfies 171 * the opportunistic SYSRET conditions. For example, single-stepping 172 * this user code: 173 * 174 * movq $stuck_here, %rcx 175 * pushfq 176 * popq %r11 177 * stuck_here: 178 * 179 * would never get past 'stuck_here'. 180 */ 181 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 182 jnz swapgs_restore_regs_and_return_to_usermode 183 184 /* nothing to check for RSP */ 185 186 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 187 jne swapgs_restore_regs_and_return_to_usermode 188 189 /* 190 * We win! This label is here just for ease of understanding 191 * perf profiles. Nothing jumps here. 192 */ 193syscall_return_via_sysret: 194 /* rcx and r11 are already restored (see code above) */ 195 POP_REGS pop_rdi=0 skip_r11rcx=1 196 197 /* 198 * Now all regs are restored except RSP and RDI. 199 * Save old stack pointer and switch to trampoline stack. 200 */ 201 movq %rsp, %rdi 202 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 203 UNWIND_HINT_EMPTY 204 205 pushq RSP-RDI(%rdi) /* RSP */ 206 pushq (%rdi) /* RDI */ 207 208 /* 209 * We are on the trampoline stack. All regs except RDI are live. 210 * We can do future final exit work right here. 211 */ 212 STACKLEAK_ERASE_NOCLOBBER 213 214 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 215 216 popq %rdi 217 popq %rsp 218 swapgs 219 sysretq 220SYM_CODE_END(entry_SYSCALL_64) 221 222/* 223 * %rdi: prev task 224 * %rsi: next task 225 */ 226.pushsection .text, "ax" 227SYM_FUNC_START(__switch_to_asm) 228 /* 229 * Save callee-saved registers 230 * This must match the order in inactive_task_frame 231 */ 232 pushq %rbp 233 pushq %rbx 234 pushq %r12 235 pushq %r13 236 pushq %r14 237 pushq %r15 238 239 /* switch stack */ 240 movq %rsp, TASK_threadsp(%rdi) 241 movq TASK_threadsp(%rsi), %rsp 242 243#ifdef CONFIG_STACKPROTECTOR 244 movq TASK_stack_canary(%rsi), %rbx 245 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 246#endif 247 248#ifdef CONFIG_RETPOLINE 249 /* 250 * When switching from a shallower to a deeper call stack 251 * the RSB may either underflow or use entries populated 252 * with userspace addresses. On CPUs where those concerns 253 * exist, overwrite the RSB with entries which capture 254 * speculative execution to prevent attack. 255 */ 256 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 257#endif 258 259 /* restore callee-saved registers */ 260 popq %r15 261 popq %r14 262 popq %r13 263 popq %r12 264 popq %rbx 265 popq %rbp 266 267 jmp __switch_to 268SYM_FUNC_END(__switch_to_asm) 269.popsection 270 271/* 272 * A newly forked process directly context switches into this address. 273 * 274 * rax: prev task we switched from 275 * rbx: kernel thread func (NULL for user thread) 276 * r12: kernel thread arg 277 */ 278.pushsection .text, "ax" 279SYM_CODE_START(ret_from_fork) 280 UNWIND_HINT_EMPTY 281 ANNOTATE_NOENDBR // copy_thread 282 movq %rax, %rdi 283 call schedule_tail /* rdi: 'prev' task parameter */ 284 285 testq %rbx, %rbx /* from kernel_thread? */ 286 jnz 1f /* kernel threads are uncommon */ 287 2882: 289 UNWIND_HINT_REGS 290 movq %rsp, %rdi 291 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 292 jmp swapgs_restore_regs_and_return_to_usermode 293 2941: 295 /* kernel thread */ 296 UNWIND_HINT_EMPTY 297 movq %r12, %rdi 298 CALL_NOSPEC rbx 299 /* 300 * A kernel thread is allowed to return here after successfully 301 * calling kernel_execve(). Exit to userspace to complete the execve() 302 * syscall. 303 */ 304 movq $0, RAX(%rsp) 305 jmp 2b 306SYM_CODE_END(ret_from_fork) 307.popsection 308 309.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 310#ifdef CONFIG_DEBUG_ENTRY 311 pushq %rax 312 SAVE_FLAGS 313 testl $X86_EFLAGS_IF, %eax 314 jz .Lokay_\@ 315 ud2 316.Lokay_\@: 317 popq %rax 318#endif 319.endm 320 321/** 322 * idtentry_body - Macro to emit code calling the C function 323 * @cfunc: C function to be called 324 * @has_error_code: Hardware pushed error code on stack 325 */ 326.macro idtentry_body cfunc has_error_code:req 327 328 call error_entry 329 UNWIND_HINT_REGS 330 331 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 332 333 .if \has_error_code == 1 334 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 335 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 336 .endif 337 338 call \cfunc 339 340 jmp error_return 341.endm 342 343/** 344 * idtentry - Macro to generate entry stubs for simple IDT entries 345 * @vector: Vector number 346 * @asmsym: ASM symbol for the entry point 347 * @cfunc: C function to be called 348 * @has_error_code: Hardware pushed error code on stack 349 * 350 * The macro emits code to set up the kernel context for straight forward 351 * and simple IDT entries. No IST stack, no paranoid entry checks. 352 */ 353.macro idtentry vector asmsym cfunc has_error_code:req 354SYM_CODE_START(\asmsym) 355 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 356 ENDBR 357 ASM_CLAC 358 359 .if \has_error_code == 0 360 pushq $-1 /* ORIG_RAX: no syscall to restart */ 361 .endif 362 363 .if \vector == X86_TRAP_BP 364 /* 365 * If coming from kernel space, create a 6-word gap to allow the 366 * int3 handler to emulate a call instruction. 367 */ 368 testb $3, CS-ORIG_RAX(%rsp) 369 jnz .Lfrom_usermode_no_gap_\@ 370 .rept 6 371 pushq 5*8(%rsp) 372 .endr 373 UNWIND_HINT_IRET_REGS offset=8 374.Lfrom_usermode_no_gap_\@: 375 .endif 376 377 idtentry_body \cfunc \has_error_code 378 379_ASM_NOKPROBE(\asmsym) 380SYM_CODE_END(\asmsym) 381.endm 382 383/* 384 * Interrupt entry/exit. 385 * 386 + The interrupt stubs push (vector) onto the stack, which is the error_code 387 * position of idtentry exceptions, and jump to one of the two idtentry points 388 * (common/spurious). 389 * 390 * common_interrupt is a hotpath, align it to a cache line 391 */ 392.macro idtentry_irq vector cfunc 393 .p2align CONFIG_X86_L1_CACHE_SHIFT 394 idtentry \vector asm_\cfunc \cfunc has_error_code=1 395.endm 396 397/* 398 * System vectors which invoke their handlers directly and are not 399 * going through the regular common device interrupt handling code. 400 */ 401.macro idtentry_sysvec vector cfunc 402 idtentry \vector asm_\cfunc \cfunc has_error_code=0 403.endm 404 405/** 406 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 407 * @vector: Vector number 408 * @asmsym: ASM symbol for the entry point 409 * @cfunc: C function to be called 410 * 411 * The macro emits code to set up the kernel context for #MC and #DB 412 * 413 * If the entry comes from user space it uses the normal entry path 414 * including the return to user space work and preemption checks on 415 * exit. 416 * 417 * If hits in kernel mode then it needs to go through the paranoid 418 * entry as the exception can hit any random state. No preemption 419 * check on exit to keep the paranoid path simple. 420 */ 421.macro idtentry_mce_db vector asmsym cfunc 422SYM_CODE_START(\asmsym) 423 UNWIND_HINT_IRET_REGS 424 ENDBR 425 ASM_CLAC 426 427 pushq $-1 /* ORIG_RAX: no syscall to restart */ 428 429 /* 430 * If the entry is from userspace, switch stacks and treat it as 431 * a normal entry. 432 */ 433 testb $3, CS-ORIG_RAX(%rsp) 434 jnz .Lfrom_usermode_switch_stack_\@ 435 436 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 437 call paranoid_entry 438 439 UNWIND_HINT_REGS 440 441 movq %rsp, %rdi /* pt_regs pointer */ 442 443 call \cfunc 444 445 jmp paranoid_exit 446 447 /* Switch to the regular task stack and use the noist entry point */ 448.Lfrom_usermode_switch_stack_\@: 449 idtentry_body noist_\cfunc, has_error_code=0 450 451_ASM_NOKPROBE(\asmsym) 452SYM_CODE_END(\asmsym) 453.endm 454 455#ifdef CONFIG_AMD_MEM_ENCRYPT 456/** 457 * idtentry_vc - Macro to generate entry stub for #VC 458 * @vector: Vector number 459 * @asmsym: ASM symbol for the entry point 460 * @cfunc: C function to be called 461 * 462 * The macro emits code to set up the kernel context for #VC. The #VC handler 463 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 464 * 465 * To make this work the #VC entry code tries its best to pretend it doesn't use 466 * an IST stack by switching to the task stack if coming from user-space (which 467 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 468 * entered from kernel-mode. 469 * 470 * If entered from kernel-mode the return stack is validated first, and if it is 471 * not safe to use (e.g. because it points to the entry stack) the #VC handler 472 * will switch to a fall-back stack (VC2) and call a special handler function. 473 * 474 * The macro is only used for one vector, but it is planned to be extended in 475 * the future for the #HV exception. 476 */ 477.macro idtentry_vc vector asmsym cfunc 478SYM_CODE_START(\asmsym) 479 UNWIND_HINT_IRET_REGS 480 ENDBR 481 ASM_CLAC 482 483 /* 484 * If the entry is from userspace, switch stacks and treat it as 485 * a normal entry. 486 */ 487 testb $3, CS-ORIG_RAX(%rsp) 488 jnz .Lfrom_usermode_switch_stack_\@ 489 490 /* 491 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 492 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 493 */ 494 call paranoid_entry 495 496 UNWIND_HINT_REGS 497 498 /* 499 * Switch off the IST stack to make it free for nested exceptions. The 500 * vc_switch_off_ist() function will switch back to the interrupted 501 * stack if it is safe to do so. If not it switches to the VC fall-back 502 * stack. 503 */ 504 movq %rsp, %rdi /* pt_regs pointer */ 505 call vc_switch_off_ist 506 movq %rax, %rsp /* Switch to new stack */ 507 508 UNWIND_HINT_REGS 509 510 /* Update pt_regs */ 511 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 512 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 513 514 movq %rsp, %rdi /* pt_regs pointer */ 515 516 call kernel_\cfunc 517 518 /* 519 * No need to switch back to the IST stack. The current stack is either 520 * identical to the stack in the IRET frame or the VC fall-back stack, 521 * so it is definitely mapped even with PTI enabled. 522 */ 523 jmp paranoid_exit 524 525 /* Switch to the regular task stack */ 526.Lfrom_usermode_switch_stack_\@: 527 idtentry_body user_\cfunc, has_error_code=1 528 529_ASM_NOKPROBE(\asmsym) 530SYM_CODE_END(\asmsym) 531.endm 532#endif 533 534/* 535 * Double fault entry. Straight paranoid. No checks from which context 536 * this comes because for the espfix induced #DF this would do the wrong 537 * thing. 538 */ 539.macro idtentry_df vector asmsym cfunc 540SYM_CODE_START(\asmsym) 541 UNWIND_HINT_IRET_REGS offset=8 542 ENDBR 543 ASM_CLAC 544 545 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 546 call paranoid_entry 547 UNWIND_HINT_REGS 548 549 movq %rsp, %rdi /* pt_regs pointer into first argument */ 550 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 551 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 552 call \cfunc 553 554 /* For some configurations \cfunc ends up being a noreturn. */ 555 REACHABLE 556 557 jmp paranoid_exit 558 559_ASM_NOKPROBE(\asmsym) 560SYM_CODE_END(\asmsym) 561.endm 562 563/* 564 * Include the defines which emit the idt entries which are shared 565 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 566 * so the stacktrace boundary checks work. 567 */ 568 .align 16 569 .globl __irqentry_text_start 570__irqentry_text_start: 571 572#include <asm/idtentry.h> 573 574 .align 16 575 .globl __irqentry_text_end 576__irqentry_text_end: 577 ANNOTATE_NOENDBR 578 579SYM_CODE_START_LOCAL(common_interrupt_return) 580SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 581#ifdef CONFIG_DEBUG_ENTRY 582 /* Assert that pt_regs indicates user mode. */ 583 testb $3, CS(%rsp) 584 jnz 1f 585 ud2 5861: 587#endif 588#ifdef CONFIG_XEN_PV 589 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 590#endif 591 592 POP_REGS pop_rdi=0 593 594 /* 595 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 596 * Save old stack pointer and switch to trampoline stack. 597 */ 598 movq %rsp, %rdi 599 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 600 UNWIND_HINT_EMPTY 601 602 /* Copy the IRET frame to the trampoline stack. */ 603 pushq 6*8(%rdi) /* SS */ 604 pushq 5*8(%rdi) /* RSP */ 605 pushq 4*8(%rdi) /* EFLAGS */ 606 pushq 3*8(%rdi) /* CS */ 607 pushq 2*8(%rdi) /* RIP */ 608 609 /* Push user RDI on the trampoline stack. */ 610 pushq (%rdi) 611 612 /* 613 * We are on the trampoline stack. All regs except RDI are live. 614 * We can do future final exit work right here. 615 */ 616 STACKLEAK_ERASE_NOCLOBBER 617 618 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 619 620 /* Restore RDI. */ 621 popq %rdi 622 swapgs 623 jmp .Lnative_iret 624 625 626SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 627#ifdef CONFIG_DEBUG_ENTRY 628 /* Assert that pt_regs indicates kernel mode. */ 629 testb $3, CS(%rsp) 630 jz 1f 631 ud2 6321: 633#endif 634 POP_REGS 635 addq $8, %rsp /* skip regs->orig_ax */ 636 /* 637 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 638 * when returning from IPI handler. 639 */ 640#ifdef CONFIG_XEN_PV 641SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 642 ANNOTATE_NOENDBR 643 .byte 0xe9 644 .long .Lnative_iret - (. + 4) 645#endif 646 647.Lnative_iret: 648 UNWIND_HINT_IRET_REGS 649 /* 650 * Are we returning to a stack segment from the LDT? Note: in 651 * 64-bit mode SS:RSP on the exception stack is always valid. 652 */ 653#ifdef CONFIG_X86_ESPFIX64 654 testb $4, (SS-RIP)(%rsp) 655 jnz native_irq_return_ldt 656#endif 657 658SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 659 ANNOTATE_NOENDBR // exc_double_fault 660 /* 661 * This may fault. Non-paranoid faults on return to userspace are 662 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 663 * Double-faults due to espfix64 are handled in exc_double_fault. 664 * Other faults here are fatal. 665 */ 666 iretq 667 668#ifdef CONFIG_X86_ESPFIX64 669native_irq_return_ldt: 670 /* 671 * We are running with user GSBASE. All GPRs contain their user 672 * values. We have a percpu ESPFIX stack that is eight slots 673 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 674 * of the ESPFIX stack. 675 * 676 * We clobber RAX and RDI in this code. We stash RDI on the 677 * normal stack and RAX on the ESPFIX stack. 678 * 679 * The ESPFIX stack layout we set up looks like this: 680 * 681 * --- top of ESPFIX stack --- 682 * SS 683 * RSP 684 * RFLAGS 685 * CS 686 * RIP <-- RSP points here when we're done 687 * RAX <-- espfix_waddr points here 688 * --- bottom of ESPFIX stack --- 689 */ 690 691 pushq %rdi /* Stash user RDI */ 692 swapgs /* to kernel GS */ 693 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 694 695 movq PER_CPU_VAR(espfix_waddr), %rdi 696 movq %rax, (0*8)(%rdi) /* user RAX */ 697 movq (1*8)(%rsp), %rax /* user RIP */ 698 movq %rax, (1*8)(%rdi) 699 movq (2*8)(%rsp), %rax /* user CS */ 700 movq %rax, (2*8)(%rdi) 701 movq (3*8)(%rsp), %rax /* user RFLAGS */ 702 movq %rax, (3*8)(%rdi) 703 movq (5*8)(%rsp), %rax /* user SS */ 704 movq %rax, (5*8)(%rdi) 705 movq (4*8)(%rsp), %rax /* user RSP */ 706 movq %rax, (4*8)(%rdi) 707 /* Now RAX == RSP. */ 708 709 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 710 711 /* 712 * espfix_stack[31:16] == 0. The page tables are set up such that 713 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 714 * espfix_waddr for any X. That is, there are 65536 RO aliases of 715 * the same page. Set up RSP so that RSP[31:16] contains the 716 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 717 * still points to an RO alias of the ESPFIX stack. 718 */ 719 orq PER_CPU_VAR(espfix_stack), %rax 720 721 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 722 swapgs /* to user GS */ 723 popq %rdi /* Restore user RDI */ 724 725 movq %rax, %rsp 726 UNWIND_HINT_IRET_REGS offset=8 727 728 /* 729 * At this point, we cannot write to the stack any more, but we can 730 * still read. 731 */ 732 popq %rax /* Restore user RAX */ 733 734 /* 735 * RSP now points to an ordinary IRET frame, except that the page 736 * is read-only and RSP[31:16] are preloaded with the userspace 737 * values. We can now IRET back to userspace. 738 */ 739 jmp native_irq_return_iret 740#endif 741SYM_CODE_END(common_interrupt_return) 742_ASM_NOKPROBE(common_interrupt_return) 743 744/* 745 * Reload gs selector with exception handling 746 * edi: new selector 747 * 748 * Is in entry.text as it shouldn't be instrumented. 749 */ 750SYM_FUNC_START(asm_load_gs_index) 751 FRAME_BEGIN 752 swapgs 753.Lgs_change: 754 ANNOTATE_NOENDBR // error_entry 755 movl %edi, %gs 7562: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 757 swapgs 758 FRAME_END 759 RET 760 761 /* running with kernelgs */ 762.Lbad_gs: 763 swapgs /* switch back to user gs */ 764.macro ZAP_GS 765 /* This can't be a string because the preprocessor needs to see it. */ 766 movl $__USER_DS, %eax 767 movl %eax, %gs 768.endm 769 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 770 xorl %eax, %eax 771 movl %eax, %gs 772 jmp 2b 773 774 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 775 776SYM_FUNC_END(asm_load_gs_index) 777EXPORT_SYMBOL(asm_load_gs_index) 778 779#ifdef CONFIG_XEN_PV 780/* 781 * A note on the "critical region" in our callback handler. 782 * We want to avoid stacking callback handlers due to events occurring 783 * during handling of the last event. To do this, we keep events disabled 784 * until we've done all processing. HOWEVER, we must enable events before 785 * popping the stack frame (can't be done atomically) and so it would still 786 * be possible to get enough handler activations to overflow the stack. 787 * Although unlikely, bugs of that kind are hard to track down, so we'd 788 * like to avoid the possibility. 789 * So, on entry to the handler we detect whether we interrupted an 790 * existing activation in its critical region -- if so, we pop the current 791 * activation and restart the handler using the previous one. 792 * 793 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 794 */ 795SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 796 797/* 798 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 799 * see the correct pointer to the pt_regs 800 */ 801 UNWIND_HINT_FUNC 802 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 803 UNWIND_HINT_REGS 804 805 call xen_pv_evtchn_do_upcall 806 807 jmp error_return 808SYM_CODE_END(exc_xen_hypervisor_callback) 809 810/* 811 * Hypervisor uses this for application faults while it executes. 812 * We get here for two reasons: 813 * 1. Fault while reloading DS, ES, FS or GS 814 * 2. Fault while executing IRET 815 * Category 1 we do not need to fix up as Xen has already reloaded all segment 816 * registers that could be reloaded and zeroed the others. 817 * Category 2 we fix up by killing the current process. We cannot use the 818 * normal Linux return path in this case because if we use the IRET hypercall 819 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 820 * We distinguish between categories by comparing each saved segment register 821 * with its current contents: any discrepancy means we in category 1. 822 */ 823SYM_CODE_START(xen_failsafe_callback) 824 UNWIND_HINT_EMPTY 825 ENDBR 826 movl %ds, %ecx 827 cmpw %cx, 0x10(%rsp) 828 jne 1f 829 movl %es, %ecx 830 cmpw %cx, 0x18(%rsp) 831 jne 1f 832 movl %fs, %ecx 833 cmpw %cx, 0x20(%rsp) 834 jne 1f 835 movl %gs, %ecx 836 cmpw %cx, 0x28(%rsp) 837 jne 1f 838 /* All segments match their saved values => Category 2 (Bad IRET). */ 839 movq (%rsp), %rcx 840 movq 8(%rsp), %r11 841 addq $0x30, %rsp 842 pushq $0 /* RIP */ 843 UNWIND_HINT_IRET_REGS offset=8 844 jmp asm_exc_general_protection 8451: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 846 movq (%rsp), %rcx 847 movq 8(%rsp), %r11 848 addq $0x30, %rsp 849 UNWIND_HINT_IRET_REGS 850 pushq $-1 /* orig_ax = -1 => not a system call */ 851 PUSH_AND_CLEAR_REGS 852 ENCODE_FRAME_POINTER 853 jmp error_return 854SYM_CODE_END(xen_failsafe_callback) 855#endif /* CONFIG_XEN_PV */ 856 857/* 858 * Save all registers in pt_regs. Return GSBASE related information 859 * in EBX depending on the availability of the FSGSBASE instructions: 860 * 861 * FSGSBASE R/EBX 862 * N 0 -> SWAPGS on exit 863 * 1 -> no SWAPGS on exit 864 * 865 * Y GSBASE value at entry, must be restored in paranoid_exit 866 */ 867SYM_CODE_START_LOCAL(paranoid_entry) 868 UNWIND_HINT_FUNC 869 cld 870 PUSH_AND_CLEAR_REGS save_ret=1 871 ENCODE_FRAME_POINTER 8 872 873 /* 874 * Always stash CR3 in %r14. This value will be restored, 875 * verbatim, at exit. Needed if paranoid_entry interrupted 876 * another entry that already switched to the user CR3 value 877 * but has not yet returned to userspace. 878 * 879 * This is also why CS (stashed in the "iret frame" by the 880 * hardware at entry) can not be used: this may be a return 881 * to kernel code, but with a user CR3 value. 882 * 883 * Switching CR3 does not depend on kernel GSBASE so it can 884 * be done before switching to the kernel GSBASE. This is 885 * required for FSGSBASE because the kernel GSBASE has to 886 * be retrieved from a kernel internal table. 887 */ 888 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 889 890 /* 891 * Handling GSBASE depends on the availability of FSGSBASE. 892 * 893 * Without FSGSBASE the kernel enforces that negative GSBASE 894 * values indicate kernel GSBASE. With FSGSBASE no assumptions 895 * can be made about the GSBASE value when entering from user 896 * space. 897 */ 898 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 899 900 /* 901 * Read the current GSBASE and store it in %rbx unconditionally, 902 * retrieve and set the current CPUs kernel GSBASE. The stored value 903 * has to be restored in paranoid_exit unconditionally. 904 * 905 * The unconditional write to GS base below ensures that no subsequent 906 * loads based on a mispredicted GS base can happen, therefore no LFENCE 907 * is needed here. 908 */ 909 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 910 RET 911 912.Lparanoid_entry_checkgs: 913 /* EBX = 1 -> kernel GSBASE active, no restore required */ 914 movl $1, %ebx 915 916 /* 917 * The kernel-enforced convention is a negative GSBASE indicates 918 * a kernel value. No SWAPGS needed on entry and exit. 919 */ 920 movl $MSR_GS_BASE, %ecx 921 rdmsr 922 testl %edx, %edx 923 js .Lparanoid_kernel_gsbase 924 925 /* EBX = 0 -> SWAPGS required on exit */ 926 xorl %ebx, %ebx 927 swapgs 928.Lparanoid_kernel_gsbase: 929 930 FENCE_SWAPGS_KERNEL_ENTRY 931 RET 932SYM_CODE_END(paranoid_entry) 933 934/* 935 * "Paranoid" exit path from exception stack. This is invoked 936 * only on return from non-NMI IST interrupts that came 937 * from kernel space. 938 * 939 * We may be returning to very strange contexts (e.g. very early 940 * in syscall entry), so checking for preemption here would 941 * be complicated. Fortunately, there's no good reason to try 942 * to handle preemption here. 943 * 944 * R/EBX contains the GSBASE related information depending on the 945 * availability of the FSGSBASE instructions: 946 * 947 * FSGSBASE R/EBX 948 * N 0 -> SWAPGS on exit 949 * 1 -> no SWAPGS on exit 950 * 951 * Y User space GSBASE, must be restored unconditionally 952 */ 953SYM_CODE_START_LOCAL(paranoid_exit) 954 UNWIND_HINT_REGS 955 /* 956 * The order of operations is important. RESTORE_CR3 requires 957 * kernel GSBASE. 958 * 959 * NB to anyone to try to optimize this code: this code does 960 * not execute at all for exceptions from user mode. Those 961 * exceptions go through error_exit instead. 962 */ 963 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 964 965 /* Handle the three GSBASE cases */ 966 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 967 968 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 969 wrgsbase %rbx 970 jmp restore_regs_and_return_to_kernel 971 972.Lparanoid_exit_checkgs: 973 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 974 testl %ebx, %ebx 975 jnz restore_regs_and_return_to_kernel 976 977 /* We are returning to a context with user GSBASE */ 978 swapgs 979 jmp restore_regs_and_return_to_kernel 980SYM_CODE_END(paranoid_exit) 981 982/* 983 * Save all registers in pt_regs, and switch GS if needed. 984 */ 985SYM_CODE_START_LOCAL(error_entry) 986 UNWIND_HINT_FUNC 987 cld 988 PUSH_AND_CLEAR_REGS save_ret=1 989 ENCODE_FRAME_POINTER 8 990 testb $3, CS+8(%rsp) 991 jz .Lerror_kernelspace 992 993 /* 994 * We entered from user mode or we're pretending to have entered 995 * from user mode due to an IRET fault. 996 */ 997 SWAPGS 998 FENCE_SWAPGS_USER_ENTRY 999 /* We have user CR3. Change to kernel CR3. */ 1000 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1001 1002.Lerror_entry_from_usermode_after_swapgs: 1003 /* Put us onto the real thread stack. */ 1004 popq %r12 /* save return addr in %12 */ 1005 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1006 call sync_regs 1007 movq %rax, %rsp /* switch stack */ 1008 ENCODE_FRAME_POINTER 1009 pushq %r12 1010 RET 1011 1012 /* 1013 * There are two places in the kernel that can potentially fault with 1014 * usergs. Handle them here. B stepping K8s sometimes report a 1015 * truncated RIP for IRET exceptions returning to compat mode. Check 1016 * for these here too. 1017 */ 1018.Lerror_kernelspace: 1019 leaq native_irq_return_iret(%rip), %rcx 1020 cmpq %rcx, RIP+8(%rsp) 1021 je .Lerror_bad_iret 1022 movl %ecx, %eax /* zero extend */ 1023 cmpq %rax, RIP+8(%rsp) 1024 je .Lbstep_iret 1025 cmpq $.Lgs_change, RIP+8(%rsp) 1026 jne .Lerror_entry_done_lfence 1027 1028 /* 1029 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1030 * gsbase and proceed. We'll fix up the exception and land in 1031 * .Lgs_change's error handler with kernel gsbase. 1032 */ 1033 SWAPGS 1034 1035 /* 1036 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1037 * kernel or user gsbase. 1038 */ 1039.Lerror_entry_done_lfence: 1040 FENCE_SWAPGS_KERNEL_ENTRY 1041 RET 1042 1043.Lbstep_iret: 1044 /* Fix truncated RIP */ 1045 movq %rcx, RIP+8(%rsp) 1046 /* fall through */ 1047 1048.Lerror_bad_iret: 1049 /* 1050 * We came from an IRET to user mode, so we have user 1051 * gsbase and CR3. Switch to kernel gsbase and CR3: 1052 */ 1053 SWAPGS 1054 FENCE_SWAPGS_USER_ENTRY 1055 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1056 1057 /* 1058 * Pretend that the exception came from user mode: set up pt_regs 1059 * as if we faulted immediately after IRET. 1060 */ 1061 mov %rsp, %rdi 1062 call fixup_bad_iret 1063 mov %rax, %rsp 1064 jmp .Lerror_entry_from_usermode_after_swapgs 1065SYM_CODE_END(error_entry) 1066 1067SYM_CODE_START_LOCAL(error_return) 1068 UNWIND_HINT_REGS 1069 DEBUG_ENTRY_ASSERT_IRQS_OFF 1070 testb $3, CS(%rsp) 1071 jz restore_regs_and_return_to_kernel 1072 jmp swapgs_restore_regs_and_return_to_usermode 1073SYM_CODE_END(error_return) 1074 1075/* 1076 * Runs on exception stack. Xen PV does not go through this path at all, 1077 * so we can use real assembly here. 1078 * 1079 * Registers: 1080 * %r14: Used to save/restore the CR3 of the interrupted context 1081 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1082 */ 1083SYM_CODE_START(asm_exc_nmi) 1084 UNWIND_HINT_IRET_REGS 1085 ENDBR 1086 1087 /* 1088 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1089 * the iretq it performs will take us out of NMI context. 1090 * This means that we can have nested NMIs where the next 1091 * NMI is using the top of the stack of the previous NMI. We 1092 * can't let it execute because the nested NMI will corrupt the 1093 * stack of the previous NMI. NMI handlers are not re-entrant 1094 * anyway. 1095 * 1096 * To handle this case we do the following: 1097 * Check the a special location on the stack that contains 1098 * a variable that is set when NMIs are executing. 1099 * The interrupted task's stack is also checked to see if it 1100 * is an NMI stack. 1101 * If the variable is not set and the stack is not the NMI 1102 * stack then: 1103 * o Set the special variable on the stack 1104 * o Copy the interrupt frame into an "outermost" location on the 1105 * stack 1106 * o Copy the interrupt frame into an "iret" location on the stack 1107 * o Continue processing the NMI 1108 * If the variable is set or the previous stack is the NMI stack: 1109 * o Modify the "iret" location to jump to the repeat_nmi 1110 * o return back to the first NMI 1111 * 1112 * Now on exit of the first NMI, we first clear the stack variable 1113 * The NMI stack will tell any nested NMIs at that point that it is 1114 * nested. Then we pop the stack normally with iret, and if there was 1115 * a nested NMI that updated the copy interrupt stack frame, a 1116 * jump will be made to the repeat_nmi code that will handle the second 1117 * NMI. 1118 * 1119 * However, espfix prevents us from directly returning to userspace 1120 * with a single IRET instruction. Similarly, IRET to user mode 1121 * can fault. We therefore handle NMIs from user space like 1122 * other IST entries. 1123 */ 1124 1125 ASM_CLAC 1126 1127 /* Use %rdx as our temp variable throughout */ 1128 pushq %rdx 1129 1130 testb $3, CS-RIP+8(%rsp) 1131 jz .Lnmi_from_kernel 1132 1133 /* 1134 * NMI from user mode. We need to run on the thread stack, but we 1135 * can't go through the normal entry paths: NMIs are masked, and 1136 * we don't want to enable interrupts, because then we'll end 1137 * up in an awkward situation in which IRQs are on but NMIs 1138 * are off. 1139 * 1140 * We also must not push anything to the stack before switching 1141 * stacks lest we corrupt the "NMI executing" variable. 1142 */ 1143 1144 swapgs 1145 cld 1146 FENCE_SWAPGS_USER_ENTRY 1147 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1148 movq %rsp, %rdx 1149 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1150 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1151 pushq 5*8(%rdx) /* pt_regs->ss */ 1152 pushq 4*8(%rdx) /* pt_regs->rsp */ 1153 pushq 3*8(%rdx) /* pt_regs->flags */ 1154 pushq 2*8(%rdx) /* pt_regs->cs */ 1155 pushq 1*8(%rdx) /* pt_regs->rip */ 1156 UNWIND_HINT_IRET_REGS 1157 pushq $-1 /* pt_regs->orig_ax */ 1158 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1159 ENCODE_FRAME_POINTER 1160 1161 /* 1162 * At this point we no longer need to worry about stack damage 1163 * due to nesting -- we're on the normal thread stack and we're 1164 * done with the NMI stack. 1165 */ 1166 1167 movq %rsp, %rdi 1168 movq $-1, %rsi 1169 call exc_nmi 1170 1171 /* 1172 * Return back to user mode. We must *not* do the normal exit 1173 * work, because we don't want to enable interrupts. 1174 */ 1175 jmp swapgs_restore_regs_and_return_to_usermode 1176 1177.Lnmi_from_kernel: 1178 /* 1179 * Here's what our stack frame will look like: 1180 * +---------------------------------------------------------+ 1181 * | original SS | 1182 * | original Return RSP | 1183 * | original RFLAGS | 1184 * | original CS | 1185 * | original RIP | 1186 * +---------------------------------------------------------+ 1187 * | temp storage for rdx | 1188 * +---------------------------------------------------------+ 1189 * | "NMI executing" variable | 1190 * +---------------------------------------------------------+ 1191 * | iret SS } Copied from "outermost" frame | 1192 * | iret Return RSP } on each loop iteration; overwritten | 1193 * | iret RFLAGS } by a nested NMI to force another | 1194 * | iret CS } iteration if needed. | 1195 * | iret RIP } | 1196 * +---------------------------------------------------------+ 1197 * | outermost SS } initialized in first_nmi; | 1198 * | outermost Return RSP } will not be changed before | 1199 * | outermost RFLAGS } NMI processing is done. | 1200 * | outermost CS } Copied to "iret" frame on each | 1201 * | outermost RIP } iteration. | 1202 * +---------------------------------------------------------+ 1203 * | pt_regs | 1204 * +---------------------------------------------------------+ 1205 * 1206 * The "original" frame is used by hardware. Before re-enabling 1207 * NMIs, we need to be done with it, and we need to leave enough 1208 * space for the asm code here. 1209 * 1210 * We return by executing IRET while RSP points to the "iret" frame. 1211 * That will either return for real or it will loop back into NMI 1212 * processing. 1213 * 1214 * The "outermost" frame is copied to the "iret" frame on each 1215 * iteration of the loop, so each iteration starts with the "iret" 1216 * frame pointing to the final return target. 1217 */ 1218 1219 /* 1220 * Determine whether we're a nested NMI. 1221 * 1222 * If we interrupted kernel code between repeat_nmi and 1223 * end_repeat_nmi, then we are a nested NMI. We must not 1224 * modify the "iret" frame because it's being written by 1225 * the outer NMI. That's okay; the outer NMI handler is 1226 * about to about to call exc_nmi() anyway, so we can just 1227 * resume the outer NMI. 1228 */ 1229 1230 movq $repeat_nmi, %rdx 1231 cmpq 8(%rsp), %rdx 1232 ja 1f 1233 movq $end_repeat_nmi, %rdx 1234 cmpq 8(%rsp), %rdx 1235 ja nested_nmi_out 12361: 1237 1238 /* 1239 * Now check "NMI executing". If it's set, then we're nested. 1240 * This will not detect if we interrupted an outer NMI just 1241 * before IRET. 1242 */ 1243 cmpl $1, -8(%rsp) 1244 je nested_nmi 1245 1246 /* 1247 * Now test if the previous stack was an NMI stack. This covers 1248 * the case where we interrupt an outer NMI after it clears 1249 * "NMI executing" but before IRET. We need to be careful, though: 1250 * there is one case in which RSP could point to the NMI stack 1251 * despite there being no NMI active: naughty userspace controls 1252 * RSP at the very beginning of the SYSCALL targets. We can 1253 * pull a fast one on naughty userspace, though: we program 1254 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1255 * if it controls the kernel's RSP. We set DF before we clear 1256 * "NMI executing". 1257 */ 1258 lea 6*8(%rsp), %rdx 1259 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1260 cmpq %rdx, 4*8(%rsp) 1261 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1262 ja first_nmi 1263 1264 subq $EXCEPTION_STKSZ, %rdx 1265 cmpq %rdx, 4*8(%rsp) 1266 /* If it is below the NMI stack, it is a normal NMI */ 1267 jb first_nmi 1268 1269 /* Ah, it is within the NMI stack. */ 1270 1271 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1272 jz first_nmi /* RSP was user controlled. */ 1273 1274 /* This is a nested NMI. */ 1275 1276nested_nmi: 1277 /* 1278 * Modify the "iret" frame to point to repeat_nmi, forcing another 1279 * iteration of NMI handling. 1280 */ 1281 subq $8, %rsp 1282 leaq -10*8(%rsp), %rdx 1283 pushq $__KERNEL_DS 1284 pushq %rdx 1285 pushfq 1286 pushq $__KERNEL_CS 1287 pushq $repeat_nmi 1288 1289 /* Put stack back */ 1290 addq $(6*8), %rsp 1291 1292nested_nmi_out: 1293 popq %rdx 1294 1295 /* We are returning to kernel mode, so this cannot result in a fault. */ 1296 iretq 1297 1298first_nmi: 1299 /* Restore rdx. */ 1300 movq (%rsp), %rdx 1301 1302 /* Make room for "NMI executing". */ 1303 pushq $0 1304 1305 /* Leave room for the "iret" frame */ 1306 subq $(5*8), %rsp 1307 1308 /* Copy the "original" frame to the "outermost" frame */ 1309 .rept 5 1310 pushq 11*8(%rsp) 1311 .endr 1312 UNWIND_HINT_IRET_REGS 1313 1314 /* Everything up to here is safe from nested NMIs */ 1315 1316#ifdef CONFIG_DEBUG_ENTRY 1317 /* 1318 * For ease of testing, unmask NMIs right away. Disabled by 1319 * default because IRET is very expensive. 1320 */ 1321 pushq $0 /* SS */ 1322 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1323 addq $8, (%rsp) /* Fix up RSP */ 1324 pushfq /* RFLAGS */ 1325 pushq $__KERNEL_CS /* CS */ 1326 pushq $1f /* RIP */ 1327 iretq /* continues at repeat_nmi below */ 1328 UNWIND_HINT_IRET_REGS 13291: 1330#endif 1331 1332repeat_nmi: 1333 ANNOTATE_NOENDBR // this code 1334 /* 1335 * If there was a nested NMI, the first NMI's iret will return 1336 * here. But NMIs are still enabled and we can take another 1337 * nested NMI. The nested NMI checks the interrupted RIP to see 1338 * if it is between repeat_nmi and end_repeat_nmi, and if so 1339 * it will just return, as we are about to repeat an NMI anyway. 1340 * This makes it safe to copy to the stack frame that a nested 1341 * NMI will update. 1342 * 1343 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1344 * we're repeating an NMI, gsbase has the same value that it had on 1345 * the first iteration. paranoid_entry will load the kernel 1346 * gsbase if needed before we call exc_nmi(). "NMI executing" 1347 * is zero. 1348 */ 1349 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1350 1351 /* 1352 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1353 * here must not modify the "iret" frame while we're writing to 1354 * it or it will end up containing garbage. 1355 */ 1356 addq $(10*8), %rsp 1357 .rept 5 1358 pushq -6*8(%rsp) 1359 .endr 1360 subq $(5*8), %rsp 1361end_repeat_nmi: 1362 ANNOTATE_NOENDBR // this code 1363 1364 /* 1365 * Everything below this point can be preempted by a nested NMI. 1366 * If this happens, then the inner NMI will change the "iret" 1367 * frame to point back to repeat_nmi. 1368 */ 1369 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1370 1371 /* 1372 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1373 * as we should not be calling schedule in NMI context. 1374 * Even with normal interrupts enabled. An NMI should not be 1375 * setting NEED_RESCHED or anything that normal interrupts and 1376 * exceptions might do. 1377 */ 1378 call paranoid_entry 1379 UNWIND_HINT_REGS 1380 1381 movq %rsp, %rdi 1382 movq $-1, %rsi 1383 call exc_nmi 1384 1385 /* Always restore stashed CR3 value (see paranoid_entry) */ 1386 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1387 1388 /* 1389 * The above invocation of paranoid_entry stored the GSBASE 1390 * related information in R/EBX depending on the availability 1391 * of FSGSBASE. 1392 * 1393 * If FSGSBASE is enabled, restore the saved GSBASE value 1394 * unconditionally, otherwise take the conditional SWAPGS path. 1395 */ 1396 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1397 1398 wrgsbase %rbx 1399 jmp nmi_restore 1400 1401nmi_no_fsgsbase: 1402 /* EBX == 0 -> invoke SWAPGS */ 1403 testl %ebx, %ebx 1404 jnz nmi_restore 1405 1406nmi_swapgs: 1407 swapgs 1408 1409nmi_restore: 1410 POP_REGS 1411 1412 /* 1413 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1414 * at the "iret" frame. 1415 */ 1416 addq $6*8, %rsp 1417 1418 /* 1419 * Clear "NMI executing". Set DF first so that we can easily 1420 * distinguish the remaining code between here and IRET from 1421 * the SYSCALL entry and exit paths. 1422 * 1423 * We arguably should just inspect RIP instead, but I (Andy) wrote 1424 * this code when I had the misapprehension that Xen PV supported 1425 * NMIs, and Xen PV would break that approach. 1426 */ 1427 std 1428 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1429 1430 /* 1431 * iretq reads the "iret" frame and exits the NMI stack in a 1432 * single instruction. We are returning to kernel mode, so this 1433 * cannot result in a fault. Similarly, we don't need to worry 1434 * about espfix64 on the way back to kernel mode. 1435 */ 1436 iretq 1437SYM_CODE_END(asm_exc_nmi) 1438 1439#ifndef CONFIG_IA32_EMULATION 1440/* 1441 * This handles SYSCALL from 32-bit code. There is no way to program 1442 * MSRs to fully disable 32-bit SYSCALL. 1443 */ 1444SYM_CODE_START(ignore_sysret) 1445 UNWIND_HINT_EMPTY 1446 ENDBR 1447 mov $-ENOSYS, %eax 1448 sysretl 1449SYM_CODE_END(ignore_sysret) 1450#endif 1451 1452.pushsection .text, "ax" 1453SYM_CODE_START(rewind_stack_and_make_dead) 1454 UNWIND_HINT_FUNC 1455 /* Prevent any naive code from trying to unwind to our caller. */ 1456 xorl %ebp, %ebp 1457 1458 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1459 leaq -PTREGS_SIZE(%rax), %rsp 1460 UNWIND_HINT_REGS 1461 1462 call make_task_dead 1463SYM_CODE_END(rewind_stack_and_make_dead) 1464.popsection 1465