1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging. 20 * - idtentry: Define exception entry points. 21 */ 22#include <linux/linkage.h> 23#include <asm/segment.h> 24#include <asm/cache.h> 25#include <asm/errno.h> 26#include <asm/asm-offsets.h> 27#include <asm/msr.h> 28#include <asm/unistd.h> 29#include <asm/thread_info.h> 30#include <asm/hw_irq.h> 31#include <asm/page_types.h> 32#include <asm/irqflags.h> 33#include <asm/paravirt.h> 34#include <asm/percpu.h> 35#include <asm/asm.h> 36#include <asm/smap.h> 37#include <asm/pgtable_types.h> 38#include <asm/export.h> 39#include <asm/frame.h> 40#include <asm/nospec-branch.h> 41#include <linux/err.h> 42 43#include "calling.h" 44 45.code64 46.section .entry.text, "ax" 47 48#ifdef CONFIG_PARAVIRT 49SYM_CODE_START(native_usergs_sysret64) 50 UNWIND_HINT_EMPTY 51 swapgs 52 sysretq 53SYM_CODE_END(native_usergs_sysret64) 54#endif /* CONFIG_PARAVIRT */ 55 56.macro TRACE_IRQS_FLAGS flags:req 57#ifdef CONFIG_TRACE_IRQFLAGS 58 btl $9, \flags /* interrupts off? */ 59 jnc 1f 60 TRACE_IRQS_ON 611: 62#endif 63.endm 64 65.macro TRACE_IRQS_IRETQ 66 TRACE_IRQS_FLAGS EFLAGS(%rsp) 67.endm 68 69/* 70 * When dynamic function tracer is enabled it will add a breakpoint 71 * to all locations that it is about to modify, sync CPUs, update 72 * all the code, sync CPUs, then remove the breakpoints. In this time 73 * if lockdep is enabled, it might jump back into the debug handler 74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). 75 * 76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to 77 * make sure the stack pointer does not get reset back to the top 78 * of the debug stack, and instead just reuses the current stack. 79 */ 80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) 81 82.macro TRACE_IRQS_OFF_DEBUG 83 call debug_stack_set_zero 84 TRACE_IRQS_OFF 85 call debug_stack_reset 86.endm 87 88.macro TRACE_IRQS_ON_DEBUG 89 call debug_stack_set_zero 90 TRACE_IRQS_ON 91 call debug_stack_reset 92.endm 93 94.macro TRACE_IRQS_IRETQ_DEBUG 95 btl $9, EFLAGS(%rsp) /* interrupts off? */ 96 jnc 1f 97 TRACE_IRQS_ON_DEBUG 981: 99.endm 100 101#else 102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF 103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON 104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ 105#endif 106 107/* 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 109 * 110 * This is the only entry point used for 64-bit system calls. The 111 * hardware interface is reasonably well designed and the register to 112 * argument mapping Linux uses fits well with the registers that are 113 * available when SYSCALL is used. 114 * 115 * SYSCALL instructions can be found inlined in libc implementations as 116 * well as some other programs and libraries. There are also a handful 117 * of SYSCALL instructions in the vDSO used, for example, as a 118 * clock_gettimeofday fallback. 119 * 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 121 * then loads new ss, cs, and rip from previously programmed MSRs. 122 * rflags gets masked by a value from another MSR (so CLD and CLAC 123 * are not needed). SYSCALL does not save anything on the stack 124 * and does not change rsp. 125 * 126 * Registers on entry: 127 * rax system call number 128 * rcx return address 129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 130 * rdi arg0 131 * rsi arg1 132 * rdx arg2 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 134 * r8 arg4 135 * r9 arg5 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 137 * 138 * Only called from user space. 139 * 140 * When user can change pt_regs->foo always force IRET. That is because 141 * it deals with uncanonical addresses better. SYSRET has trouble 142 * with them due to bugs in both AMD and Intel CPUs. 143 */ 144 145SYM_CODE_START(entry_SYSCALL_64) 146 UNWIND_HINT_EMPTY 147 /* 148 * Interrupts are off on entry. 149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, 150 * it is too small to ever cause noticeable irq latency. 151 */ 152 153 swapgs 154 /* tss.sp2 is scratch space. */ 155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 158 159 /* Construct struct pt_regs on stack */ 160 pushq $__USER_DS /* pt_regs->ss */ 161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 162 pushq %r11 /* pt_regs->flags */ 163 pushq $__USER_CS /* pt_regs->cs */ 164 pushq %rcx /* pt_regs->ip */ 165SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 166 pushq %rax /* pt_regs->orig_ax */ 167 168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 169 170 TRACE_IRQS_OFF 171 172 /* IRQs are off. */ 173 movq %rax, %rdi 174 movq %rsp, %rsi 175 call do_syscall_64 /* returns with IRQs disabled */ 176 177 TRACE_IRQS_ON /* return enables interrupts */ 178 179 /* 180 * Try to use SYSRET instead of IRET if we're returning to 181 * a completely clean 64-bit userspace context. If we're not, 182 * go to the slow exit path. 183 */ 184 movq RCX(%rsp), %rcx 185 movq RIP(%rsp), %r11 186 187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 188 jne swapgs_restore_regs_and_return_to_usermode 189 190 /* 191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 192 * in kernel space. This essentially lets the user take over 193 * the kernel, since userspace controls RSP. 194 * 195 * If width of "canonical tail" ever becomes variable, this will need 196 * to be updated to remain correct on both old and new CPUs. 197 * 198 * Change top bits to match most significant bit (47th or 56th bit 199 * depending on paging mode) in the address. 200 */ 201#ifdef CONFIG_X86_5LEVEL 202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 204#else 205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 207#endif 208 209 /* If this changed %rcx, it was not canonical */ 210 cmpq %rcx, %r11 211 jne swapgs_restore_regs_and_return_to_usermode 212 213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 214 jne swapgs_restore_regs_and_return_to_usermode 215 216 movq R11(%rsp), %r11 217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 218 jne swapgs_restore_regs_and_return_to_usermode 219 220 /* 221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 222 * restore RF properly. If the slowpath sets it for whatever reason, we 223 * need to restore it correctly. 224 * 225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 226 * trap from userspace immediately after SYSRET. This would cause an 227 * infinite loop whenever #DB happens with register state that satisfies 228 * the opportunistic SYSRET conditions. For example, single-stepping 229 * this user code: 230 * 231 * movq $stuck_here, %rcx 232 * pushfq 233 * popq %r11 234 * stuck_here: 235 * 236 * would never get past 'stuck_here'. 237 */ 238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 239 jnz swapgs_restore_regs_and_return_to_usermode 240 241 /* nothing to check for RSP */ 242 243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 244 jne swapgs_restore_regs_and_return_to_usermode 245 246 /* 247 * We win! This label is here just for ease of understanding 248 * perf profiles. Nothing jumps here. 249 */ 250syscall_return_via_sysret: 251 /* rcx and r11 are already restored (see code above) */ 252 POP_REGS pop_rdi=0 skip_r11rcx=1 253 254 /* 255 * Now all regs are restored except RSP and RDI. 256 * Save old stack pointer and switch to trampoline stack. 257 */ 258 movq %rsp, %rdi 259 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 260 UNWIND_HINT_EMPTY 261 262 pushq RSP-RDI(%rdi) /* RSP */ 263 pushq (%rdi) /* RDI */ 264 265 /* 266 * We are on the trampoline stack. All regs except RDI are live. 267 * We can do future final exit work right here. 268 */ 269 STACKLEAK_ERASE_NOCLOBBER 270 271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 272 273 popq %rdi 274 popq %rsp 275 USERGS_SYSRET64 276SYM_CODE_END(entry_SYSCALL_64) 277 278/* 279 * %rdi: prev task 280 * %rsi: next task 281 */ 282SYM_FUNC_START(__switch_to_asm) 283 /* 284 * Save callee-saved registers 285 * This must match the order in inactive_task_frame 286 */ 287 pushq %rbp 288 pushq %rbx 289 pushq %r12 290 pushq %r13 291 pushq %r14 292 pushq %r15 293 294 /* switch stack */ 295 movq %rsp, TASK_threadsp(%rdi) 296 movq TASK_threadsp(%rsi), %rsp 297 298#ifdef CONFIG_STACKPROTECTOR 299 movq TASK_stack_canary(%rsi), %rbx 300 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 301#endif 302 303#ifdef CONFIG_RETPOLINE 304 /* 305 * When switching from a shallower to a deeper call stack 306 * the RSB may either underflow or use entries populated 307 * with userspace addresses. On CPUs where those concerns 308 * exist, overwrite the RSB with entries which capture 309 * speculative execution to prevent attack. 310 */ 311 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 312#endif 313 314 /* restore callee-saved registers */ 315 popq %r15 316 popq %r14 317 popq %r13 318 popq %r12 319 popq %rbx 320 popq %rbp 321 322 jmp __switch_to 323SYM_FUNC_END(__switch_to_asm) 324 325/* 326 * A newly forked process directly context switches into this address. 327 * 328 * rax: prev task we switched from 329 * rbx: kernel thread func (NULL for user thread) 330 * r12: kernel thread arg 331 */ 332SYM_CODE_START(ret_from_fork) 333 UNWIND_HINT_EMPTY 334 movq %rax, %rdi 335 call schedule_tail /* rdi: 'prev' task parameter */ 336 337 testq %rbx, %rbx /* from kernel_thread? */ 338 jnz 1f /* kernel threads are uncommon */ 339 3402: 341 UNWIND_HINT_REGS 342 movq %rsp, %rdi 343 call syscall_return_slowpath /* returns with IRQs disabled */ 344 TRACE_IRQS_ON /* user mode is traced as IRQS on */ 345 jmp swapgs_restore_regs_and_return_to_usermode 346 3471: 348 /* kernel thread */ 349 UNWIND_HINT_EMPTY 350 movq %r12, %rdi 351 CALL_NOSPEC %rbx 352 /* 353 * A kernel thread is allowed to return here after successfully 354 * calling do_execve(). Exit to userspace to complete the execve() 355 * syscall. 356 */ 357 movq $0, RAX(%rsp) 358 jmp 2b 359SYM_CODE_END(ret_from_fork) 360 361/* 362 * Build the entry stubs with some assembler magic. 363 * We pack 1 stub into every 8-byte block. 364 */ 365 .align 8 366SYM_CODE_START(irq_entries_start) 367 vector=FIRST_EXTERNAL_VECTOR 368 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) 369 UNWIND_HINT_IRET_REGS 370 pushq $(~vector+0x80) /* Note: always in signed byte range */ 371 jmp common_interrupt 372 .align 8 373 vector=vector+1 374 .endr 375SYM_CODE_END(irq_entries_start) 376 377 .align 8 378SYM_CODE_START(spurious_entries_start) 379 vector=FIRST_SYSTEM_VECTOR 380 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR) 381 UNWIND_HINT_IRET_REGS 382 pushq $(~vector+0x80) /* Note: always in signed byte range */ 383 jmp common_spurious 384 .align 8 385 vector=vector+1 386 .endr 387SYM_CODE_END(spurious_entries_start) 388 389.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 390#ifdef CONFIG_DEBUG_ENTRY 391 pushq %rax 392 SAVE_FLAGS(CLBR_RAX) 393 testl $X86_EFLAGS_IF, %eax 394 jz .Lokay_\@ 395 ud2 396.Lokay_\@: 397 popq %rax 398#endif 399.endm 400 401/* 402 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers 403 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone. 404 * Requires kernel GSBASE. 405 * 406 * The invariant is that, if irq_count != -1, then the IRQ stack is in use. 407 */ 408.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0 409 DEBUG_ENTRY_ASSERT_IRQS_OFF 410 411 .if \save_ret 412 /* 413 * If save_ret is set, the original stack contains one additional 414 * entry -- the return address. Therefore, move the address one 415 * entry below %rsp to \old_rsp. 416 */ 417 leaq 8(%rsp), \old_rsp 418 .else 419 movq %rsp, \old_rsp 420 .endif 421 422 .if \regs 423 UNWIND_HINT_REGS base=\old_rsp 424 .endif 425 426 incl PER_CPU_VAR(irq_count) 427 jnz .Lirq_stack_push_old_rsp_\@ 428 429 /* 430 * Right now, if we just incremented irq_count to zero, we've 431 * claimed the IRQ stack but we haven't switched to it yet. 432 * 433 * If anything is added that can interrupt us here without using IST, 434 * it must be *extremely* careful to limit its stack usage. This 435 * could include kprobes and a hypothetical future IST-less #DB 436 * handler. 437 * 438 * The OOPS unwinder relies on the word at the top of the IRQ 439 * stack linking back to the previous RSP for the entire time we're 440 * on the IRQ stack. For this to work reliably, we need to write 441 * it before we actually move ourselves to the IRQ stack. 442 */ 443 444 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8) 445 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp 446 447#ifdef CONFIG_DEBUG_ENTRY 448 /* 449 * If the first movq above becomes wrong due to IRQ stack layout 450 * changes, the only way we'll notice is if we try to unwind right 451 * here. Assert that we set up the stack right to catch this type 452 * of bug quickly. 453 */ 454 cmpq -8(%rsp), \old_rsp 455 je .Lirq_stack_okay\@ 456 ud2 457 .Lirq_stack_okay\@: 458#endif 459 460.Lirq_stack_push_old_rsp_\@: 461 pushq \old_rsp 462 463 .if \regs 464 UNWIND_HINT_REGS indirect=1 465 .endif 466 467 .if \save_ret 468 /* 469 * Push the return address to the stack. This return address can 470 * be found at the "real" original RSP, which was offset by 8 at 471 * the beginning of this macro. 472 */ 473 pushq -8(\old_rsp) 474 .endif 475.endm 476 477/* 478 * Undoes ENTER_IRQ_STACK. 479 */ 480.macro LEAVE_IRQ_STACK regs=1 481 DEBUG_ENTRY_ASSERT_IRQS_OFF 482 /* We need to be off the IRQ stack before decrementing irq_count. */ 483 popq %rsp 484 485 .if \regs 486 UNWIND_HINT_REGS 487 .endif 488 489 /* 490 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming 491 * the irq stack but we're not on it. 492 */ 493 494 decl PER_CPU_VAR(irq_count) 495.endm 496 497/* 498 * Interrupt entry helper function. 499 * 500 * Entry runs with interrupts off. Stack layout at entry: 501 * +----------------------------------------------------+ 502 * | regs->ss | 503 * | regs->rsp | 504 * | regs->eflags | 505 * | regs->cs | 506 * | regs->ip | 507 * +----------------------------------------------------+ 508 * | regs->orig_ax = ~(interrupt number) | 509 * +----------------------------------------------------+ 510 * | return address | 511 * +----------------------------------------------------+ 512 */ 513SYM_CODE_START(interrupt_entry) 514 UNWIND_HINT_IRET_REGS offset=16 515 ASM_CLAC 516 cld 517 518 testb $3, CS-ORIG_RAX+8(%rsp) 519 jz 1f 520 SWAPGS 521 FENCE_SWAPGS_USER_ENTRY 522 /* 523 * Switch to the thread stack. The IRET frame and orig_ax are 524 * on the stack, as well as the return address. RDI..R12 are 525 * not (yet) on the stack and space has not (yet) been 526 * allocated for them. 527 */ 528 pushq %rdi 529 530 /* Need to switch before accessing the thread stack. */ 531 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi 532 movq %rsp, %rdi 533 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 534 535 /* 536 * We have RDI, return address, and orig_ax on the stack on 537 * top of the IRET frame. That means offset=24 538 */ 539 UNWIND_HINT_IRET_REGS base=%rdi offset=24 540 541 pushq 7*8(%rdi) /* regs->ss */ 542 pushq 6*8(%rdi) /* regs->rsp */ 543 pushq 5*8(%rdi) /* regs->eflags */ 544 pushq 4*8(%rdi) /* regs->cs */ 545 pushq 3*8(%rdi) /* regs->ip */ 546 UNWIND_HINT_IRET_REGS 547 pushq 2*8(%rdi) /* regs->orig_ax */ 548 pushq 8(%rdi) /* return address */ 549 550 movq (%rdi), %rdi 551 jmp 2f 5521: 553 FENCE_SWAPGS_KERNEL_ENTRY 5542: 555 PUSH_AND_CLEAR_REGS save_ret=1 556 ENCODE_FRAME_POINTER 8 557 558 testb $3, CS+8(%rsp) 559 jz 1f 560 561 /* 562 * IRQ from user mode. 563 * 564 * We need to tell lockdep that IRQs are off. We can't do this until 565 * we fix gsbase, and we should do it before enter_from_user_mode 566 * (which can take locks). Since TRACE_IRQS_OFF is idempotent, 567 * the simplest way to handle it is to just call it twice if 568 * we enter from user mode. There's no reason to optimize this since 569 * TRACE_IRQS_OFF is a no-op if lockdep is off. 570 */ 571 TRACE_IRQS_OFF 572 573 CALL_enter_from_user_mode 574 5751: 576 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1 577 /* We entered an interrupt context - irqs are off: */ 578 TRACE_IRQS_OFF 579 580 ret 581SYM_CODE_END(interrupt_entry) 582_ASM_NOKPROBE(interrupt_entry) 583 584 585/* Interrupt entry/exit. */ 586 587/* 588 * The interrupt stubs push (~vector+0x80) onto the stack and 589 * then jump to common_spurious/interrupt. 590 */ 591SYM_CODE_START_LOCAL(common_spurious) 592 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ 593 call interrupt_entry 594 UNWIND_HINT_REGS indirect=1 595 call smp_spurious_interrupt /* rdi points to pt_regs */ 596 jmp ret_from_intr 597SYM_CODE_END(common_spurious) 598_ASM_NOKPROBE(common_spurious) 599 600/* common_interrupt is a hotpath. Align it */ 601 .p2align CONFIG_X86_L1_CACHE_SHIFT 602SYM_CODE_START_LOCAL(common_interrupt) 603 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ 604 call interrupt_entry 605 UNWIND_HINT_REGS indirect=1 606 call do_IRQ /* rdi points to pt_regs */ 607 /* 0(%rsp): old RSP */ 608ret_from_intr: 609 DISABLE_INTERRUPTS(CLBR_ANY) 610 TRACE_IRQS_OFF 611 612 LEAVE_IRQ_STACK 613 614 testb $3, CS(%rsp) 615 jz retint_kernel 616 617 /* Interrupt came from user space */ 618.Lretint_user: 619 mov %rsp,%rdi 620 call prepare_exit_to_usermode 621 TRACE_IRQS_ON 622 623SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 624#ifdef CONFIG_DEBUG_ENTRY 625 /* Assert that pt_regs indicates user mode. */ 626 testb $3, CS(%rsp) 627 jnz 1f 628 ud2 6291: 630#endif 631 POP_REGS pop_rdi=0 632 633 /* 634 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 635 * Save old stack pointer and switch to trampoline stack. 636 */ 637 movq %rsp, %rdi 638 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 639 UNWIND_HINT_EMPTY 640 641 /* Copy the IRET frame to the trampoline stack. */ 642 pushq 6*8(%rdi) /* SS */ 643 pushq 5*8(%rdi) /* RSP */ 644 pushq 4*8(%rdi) /* EFLAGS */ 645 pushq 3*8(%rdi) /* CS */ 646 pushq 2*8(%rdi) /* RIP */ 647 648 /* Push user RDI on the trampoline stack. */ 649 pushq (%rdi) 650 651 /* 652 * We are on the trampoline stack. All regs except RDI are live. 653 * We can do future final exit work right here. 654 */ 655 STACKLEAK_ERASE_NOCLOBBER 656 657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 658 659 /* Restore RDI. */ 660 popq %rdi 661 SWAPGS 662 INTERRUPT_RETURN 663 664 665/* Returning to kernel space */ 666retint_kernel: 667#ifdef CONFIG_PREEMPTION 668 /* Interrupts are off */ 669 /* Check if we need preemption */ 670 btl $9, EFLAGS(%rsp) /* were interrupts off? */ 671 jnc 1f 672 cmpl $0, PER_CPU_VAR(__preempt_count) 673 jnz 1f 674 call preempt_schedule_irq 6751: 676#endif 677 /* 678 * The iretq could re-enable interrupts: 679 */ 680 TRACE_IRQS_IRETQ 681 682SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 683#ifdef CONFIG_DEBUG_ENTRY 684 /* Assert that pt_regs indicates kernel mode. */ 685 testb $3, CS(%rsp) 686 jz 1f 687 ud2 6881: 689#endif 690 POP_REGS 691 addq $8, %rsp /* skip regs->orig_ax */ 692 /* 693 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 694 * when returning from IPI handler. 695 */ 696 INTERRUPT_RETURN 697 698SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 699 UNWIND_HINT_IRET_REGS 700 /* 701 * Are we returning to a stack segment from the LDT? Note: in 702 * 64-bit mode SS:RSP on the exception stack is always valid. 703 */ 704#ifdef CONFIG_X86_ESPFIX64 705 testb $4, (SS-RIP)(%rsp) 706 jnz native_irq_return_ldt 707#endif 708 709SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 710 /* 711 * This may fault. Non-paranoid faults on return to userspace are 712 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 713 * Double-faults due to espfix64 are handled in do_double_fault. 714 * Other faults here are fatal. 715 */ 716 iretq 717 718#ifdef CONFIG_X86_ESPFIX64 719native_irq_return_ldt: 720 /* 721 * We are running with user GSBASE. All GPRs contain their user 722 * values. We have a percpu ESPFIX stack that is eight slots 723 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 724 * of the ESPFIX stack. 725 * 726 * We clobber RAX and RDI in this code. We stash RDI on the 727 * normal stack and RAX on the ESPFIX stack. 728 * 729 * The ESPFIX stack layout we set up looks like this: 730 * 731 * --- top of ESPFIX stack --- 732 * SS 733 * RSP 734 * RFLAGS 735 * CS 736 * RIP <-- RSP points here when we're done 737 * RAX <-- espfix_waddr points here 738 * --- bottom of ESPFIX stack --- 739 */ 740 741 pushq %rdi /* Stash user RDI */ 742 SWAPGS /* to kernel GS */ 743 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 744 745 movq PER_CPU_VAR(espfix_waddr), %rdi 746 movq %rax, (0*8)(%rdi) /* user RAX */ 747 movq (1*8)(%rsp), %rax /* user RIP */ 748 movq %rax, (1*8)(%rdi) 749 movq (2*8)(%rsp), %rax /* user CS */ 750 movq %rax, (2*8)(%rdi) 751 movq (3*8)(%rsp), %rax /* user RFLAGS */ 752 movq %rax, (3*8)(%rdi) 753 movq (5*8)(%rsp), %rax /* user SS */ 754 movq %rax, (5*8)(%rdi) 755 movq (4*8)(%rsp), %rax /* user RSP */ 756 movq %rax, (4*8)(%rdi) 757 /* Now RAX == RSP. */ 758 759 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 760 761 /* 762 * espfix_stack[31:16] == 0. The page tables are set up such that 763 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 764 * espfix_waddr for any X. That is, there are 65536 RO aliases of 765 * the same page. Set up RSP so that RSP[31:16] contains the 766 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 767 * still points to an RO alias of the ESPFIX stack. 768 */ 769 orq PER_CPU_VAR(espfix_stack), %rax 770 771 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 772 SWAPGS /* to user GS */ 773 popq %rdi /* Restore user RDI */ 774 775 movq %rax, %rsp 776 UNWIND_HINT_IRET_REGS offset=8 777 778 /* 779 * At this point, we cannot write to the stack any more, but we can 780 * still read. 781 */ 782 popq %rax /* Restore user RAX */ 783 784 /* 785 * RSP now points to an ordinary IRET frame, except that the page 786 * is read-only and RSP[31:16] are preloaded with the userspace 787 * values. We can now IRET back to userspace. 788 */ 789 jmp native_irq_return_iret 790#endif 791SYM_CODE_END(common_interrupt) 792_ASM_NOKPROBE(common_interrupt) 793 794/* 795 * APIC interrupts. 796 */ 797.macro apicinterrupt3 num sym do_sym 798SYM_CODE_START(\sym) 799 UNWIND_HINT_IRET_REGS 800 pushq $~(\num) 801.Lcommon_\sym: 802 call interrupt_entry 803 UNWIND_HINT_REGS indirect=1 804 call \do_sym /* rdi points to pt_regs */ 805 jmp ret_from_intr 806SYM_CODE_END(\sym) 807_ASM_NOKPROBE(\sym) 808.endm 809 810/* Make sure APIC interrupt handlers end up in the irqentry section: */ 811#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax" 812#define POP_SECTION_IRQENTRY .popsection 813 814.macro apicinterrupt num sym do_sym 815PUSH_SECTION_IRQENTRY 816apicinterrupt3 \num \sym \do_sym 817POP_SECTION_IRQENTRY 818.endm 819 820#ifdef CONFIG_SMP 821apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt 822apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt 823#endif 824 825#ifdef CONFIG_X86_UV 826apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt 827#endif 828 829apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt 830apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi 831 832#ifdef CONFIG_HAVE_KVM 833apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi 834apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi 835apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi 836#endif 837 838#ifdef CONFIG_X86_MCE_THRESHOLD 839apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt 840#endif 841 842#ifdef CONFIG_X86_MCE_AMD 843apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt 844#endif 845 846#ifdef CONFIG_X86_THERMAL_VECTOR 847apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt 848#endif 849 850#ifdef CONFIG_SMP 851apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt 852apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt 853apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt 854#endif 855 856apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt 857apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt 858 859#ifdef CONFIG_IRQ_WORK 860apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt 861#endif 862 863/* 864 * Exception entry points. 865 */ 866#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8) 867 868.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0 869 870 .if \paranoid 871 call paranoid_entry 872 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ 873 .else 874 call error_entry 875 .endif 876 UNWIND_HINT_REGS 877 878 .if \read_cr2 879 /* 880 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as 881 * intermediate storage as RDX can be clobbered in enter_from_user_mode(). 882 * GET_CR2_INTO can clobber RAX. 883 */ 884 GET_CR2_INTO(%r12); 885 .endif 886 887 .if \shift_ist != -1 888 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ 889 .else 890 TRACE_IRQS_OFF 891 .endif 892 893 .if \paranoid == 0 894 testb $3, CS(%rsp) 895 jz .Lfrom_kernel_no_context_tracking_\@ 896 CALL_enter_from_user_mode 897.Lfrom_kernel_no_context_tracking_\@: 898 .endif 899 900 movq %rsp, %rdi /* pt_regs pointer */ 901 902 .if \has_error_code 903 movq ORIG_RAX(%rsp), %rsi /* get error code */ 904 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 905 .else 906 xorl %esi, %esi /* no error code */ 907 .endif 908 909 .if \shift_ist != -1 910 subq $\ist_offset, CPU_TSS_IST(\shift_ist) 911 .endif 912 913 .if \read_cr2 914 movq %r12, %rdx /* Move CR2 into 3rd argument */ 915 .endif 916 917 call \do_sym 918 919 .if \shift_ist != -1 920 addq $\ist_offset, CPU_TSS_IST(\shift_ist) 921 .endif 922 923 .if \paranoid 924 /* this procedure expect "no swapgs" flag in ebx */ 925 jmp paranoid_exit 926 .else 927 jmp error_exit 928 .endif 929 930.endm 931 932/** 933 * idtentry - Generate an IDT entry stub 934 * @sym: Name of the generated entry point 935 * @do_sym: C function to be called 936 * @has_error_code: True if this IDT vector has an error code on the stack 937 * @paranoid: non-zero means that this vector may be invoked from 938 * kernel mode with user GSBASE and/or user CR3. 939 * 2 is special -- see below. 940 * @shift_ist: Set to an IST index if entries from kernel mode should 941 * decrement the IST stack so that nested entries get a 942 * fresh stack. (This is for #DB, which has a nasty habit 943 * of recursing.) 944 * @create_gap: create a 6-word stack gap when coming from kernel mode. 945 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code 946 * 947 * idtentry generates an IDT stub that sets up a usable kernel context, 948 * creates struct pt_regs, and calls @do_sym. The stub has the following 949 * special behaviors: 950 * 951 * On an entry from user mode, the stub switches from the trampoline or 952 * IST stack to the normal thread stack. On an exit to user mode, the 953 * normal exit-to-usermode path is invoked. 954 * 955 * On an exit to kernel mode, if @paranoid == 0, we check for preemption, 956 * whereas we omit the preemption check if @paranoid != 0. This is purely 957 * because the implementation is simpler this way. The kernel only needs 958 * to check for asynchronous kernel preemption when IRQ handlers return. 959 * 960 * If @paranoid == 0, then the stub will handle IRET faults by pretending 961 * that the fault came from user mode. It will handle gs_change faults by 962 * pretending that the fault happened with kernel GSBASE. Since this handling 963 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have 964 * @paranoid == 0. This special handling will do the wrong thing for 965 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0. 966 * 967 * @paranoid == 2 is special: the stub will never switch stacks. This is for 968 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS. 969 */ 970.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0 971SYM_CODE_START(\sym) 972 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 973 974 /* Sanity check */ 975 .if \shift_ist != -1 && \paranoid != 1 976 .error "using shift_ist requires paranoid=1" 977 .endif 978 979 .if \create_gap && \paranoid 980 .error "using create_gap requires paranoid=0" 981 .endif 982 983 ASM_CLAC 984 985 .if \has_error_code == 0 986 pushq $-1 /* ORIG_RAX: no syscall to restart */ 987 .endif 988 989 .if \paranoid == 1 990 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */ 991 jnz .Lfrom_usermode_switch_stack_\@ 992 .endif 993 994 .if \create_gap == 1 995 /* 996 * If coming from kernel space, create a 6-word gap to allow the 997 * int3 handler to emulate a call instruction. 998 */ 999 testb $3, CS-ORIG_RAX(%rsp) 1000 jnz .Lfrom_usermode_no_gap_\@ 1001 .rept 6 1002 pushq 5*8(%rsp) 1003 .endr 1004 UNWIND_HINT_IRET_REGS offset=8 1005.Lfrom_usermode_no_gap_\@: 1006 .endif 1007 1008 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset 1009 1010 .if \paranoid == 1 1011 /* 1012 * Entry from userspace. Switch stacks and treat it 1013 * as a normal entry. This means that paranoid handlers 1014 * run in real process context if user_mode(regs). 1015 */ 1016.Lfrom_usermode_switch_stack_\@: 1017 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0 1018 .endif 1019 1020_ASM_NOKPROBE(\sym) 1021SYM_CODE_END(\sym) 1022.endm 1023 1024idtentry divide_error do_divide_error has_error_code=0 1025idtentry overflow do_overflow has_error_code=0 1026idtentry bounds do_bounds has_error_code=0 1027idtentry invalid_op do_invalid_op has_error_code=0 1028idtentry device_not_available do_device_not_available has_error_code=0 1029idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1 1030idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 1031idtentry invalid_TSS do_invalid_TSS has_error_code=1 1032idtentry segment_not_present do_segment_not_present has_error_code=1 1033idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 1034idtentry coprocessor_error do_coprocessor_error has_error_code=0 1035idtentry alignment_check do_alignment_check has_error_code=1 1036idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 1037 1038 1039 /* 1040 * Reload gs selector with exception handling 1041 * edi: new selector 1042 */ 1043SYM_FUNC_START(native_load_gs_index) 1044 FRAME_BEGIN 1045 pushfq 1046 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) 1047 TRACE_IRQS_OFF 1048 SWAPGS 1049.Lgs_change: 1050 movl %edi, %gs 10512: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 1052 SWAPGS 1053 TRACE_IRQS_FLAGS (%rsp) 1054 popfq 1055 FRAME_END 1056 ret 1057SYM_FUNC_END(native_load_gs_index) 1058EXPORT_SYMBOL(native_load_gs_index) 1059 1060 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 1061 .section .fixup, "ax" 1062 /* running with kernelgs */ 1063SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 1064 SWAPGS /* switch back to user gs */ 1065.macro ZAP_GS 1066 /* This can't be a string because the preprocessor needs to see it. */ 1067 movl $__USER_DS, %eax 1068 movl %eax, %gs 1069.endm 1070 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 1071 xorl %eax, %eax 1072 movl %eax, %gs 1073 jmp 2b 1074SYM_CODE_END(.Lbad_gs) 1075 .previous 1076 1077/* Call softirq on interrupt stack. Interrupts are off. */ 1078SYM_FUNC_START(do_softirq_own_stack) 1079 pushq %rbp 1080 mov %rsp, %rbp 1081 ENTER_IRQ_STACK regs=0 old_rsp=%r11 1082 call __do_softirq 1083 LEAVE_IRQ_STACK regs=0 1084 leaveq 1085 ret 1086SYM_FUNC_END(do_softirq_own_stack) 1087 1088#ifdef CONFIG_XEN_PV 1089idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0 1090 1091/* 1092 * A note on the "critical region" in our callback handler. 1093 * We want to avoid stacking callback handlers due to events occurring 1094 * during handling of the last event. To do this, we keep events disabled 1095 * until we've done all processing. HOWEVER, we must enable events before 1096 * popping the stack frame (can't be done atomically) and so it would still 1097 * be possible to get enough handler activations to overflow the stack. 1098 * Although unlikely, bugs of that kind are hard to track down, so we'd 1099 * like to avoid the possibility. 1100 * So, on entry to the handler we detect whether we interrupted an 1101 * existing activation in its critical region -- if so, we pop the current 1102 * activation and restart the handler using the previous one. 1103 */ 1104/* do_hypervisor_callback(struct *pt_regs) */ 1105SYM_CODE_START_LOCAL(xen_do_hypervisor_callback) 1106 1107/* 1108 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 1109 * see the correct pointer to the pt_regs 1110 */ 1111 UNWIND_HINT_FUNC 1112 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 1113 UNWIND_HINT_REGS 1114 1115 ENTER_IRQ_STACK old_rsp=%r10 1116 call xen_evtchn_do_upcall 1117 LEAVE_IRQ_STACK 1118 1119#ifndef CONFIG_PREEMPTION 1120 call xen_maybe_preempt_hcall 1121#endif 1122 jmp error_exit 1123SYM_CODE_END(xen_do_hypervisor_callback) 1124 1125/* 1126 * Hypervisor uses this for application faults while it executes. 1127 * We get here for two reasons: 1128 * 1. Fault while reloading DS, ES, FS or GS 1129 * 2. Fault while executing IRET 1130 * Category 1 we do not need to fix up as Xen has already reloaded all segment 1131 * registers that could be reloaded and zeroed the others. 1132 * Category 2 we fix up by killing the current process. We cannot use the 1133 * normal Linux return path in this case because if we use the IRET hypercall 1134 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 1135 * We distinguish between categories by comparing each saved segment register 1136 * with its current contents: any discrepancy means we in category 1. 1137 */ 1138SYM_CODE_START(xen_failsafe_callback) 1139 UNWIND_HINT_EMPTY 1140 movl %ds, %ecx 1141 cmpw %cx, 0x10(%rsp) 1142 jne 1f 1143 movl %es, %ecx 1144 cmpw %cx, 0x18(%rsp) 1145 jne 1f 1146 movl %fs, %ecx 1147 cmpw %cx, 0x20(%rsp) 1148 jne 1f 1149 movl %gs, %ecx 1150 cmpw %cx, 0x28(%rsp) 1151 jne 1f 1152 /* All segments match their saved values => Category 2 (Bad IRET). */ 1153 movq (%rsp), %rcx 1154 movq 8(%rsp), %r11 1155 addq $0x30, %rsp 1156 pushq $0 /* RIP */ 1157 UNWIND_HINT_IRET_REGS offset=8 1158 jmp general_protection 11591: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 1160 movq (%rsp), %rcx 1161 movq 8(%rsp), %r11 1162 addq $0x30, %rsp 1163 UNWIND_HINT_IRET_REGS 1164 pushq $-1 /* orig_ax = -1 => not a system call */ 1165 PUSH_AND_CLEAR_REGS 1166 ENCODE_FRAME_POINTER 1167 jmp error_exit 1168SYM_CODE_END(xen_failsafe_callback) 1169#endif /* CONFIG_XEN_PV */ 1170 1171#ifdef CONFIG_XEN_PVHVM 1172apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 1173 xen_hvm_callback_vector xen_evtchn_do_upcall 1174#endif 1175 1176 1177#if IS_ENABLED(CONFIG_HYPERV) 1178apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 1179 hyperv_callback_vector hyperv_vector_handler 1180 1181apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \ 1182 hyperv_reenlightenment_vector hyperv_reenlightenment_intr 1183 1184apicinterrupt3 HYPERV_STIMER0_VECTOR \ 1185 hv_stimer0_callback_vector hv_stimer0_vector_handler 1186#endif /* CONFIG_HYPERV */ 1187 1188#if IS_ENABLED(CONFIG_ACRN_GUEST) 1189apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 1190 acrn_hv_callback_vector acrn_hv_vector_handler 1191#endif 1192 1193idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET 1194idtentry int3 do_int3 has_error_code=0 create_gap=1 1195idtentry stack_segment do_stack_segment has_error_code=1 1196 1197#ifdef CONFIG_XEN_PV 1198idtentry xennmi do_nmi has_error_code=0 1199idtentry xendebug do_debug has_error_code=0 1200#endif 1201 1202idtentry general_protection do_general_protection has_error_code=1 1203idtentry page_fault do_page_fault has_error_code=1 read_cr2=1 1204 1205#ifdef CONFIG_KVM_GUEST 1206idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1 1207#endif 1208 1209#ifdef CONFIG_X86_MCE 1210idtentry machine_check do_mce has_error_code=0 paranoid=1 1211#endif 1212 1213/* 1214 * Save all registers in pt_regs, and switch gs if needed. 1215 * Use slow, but surefire "are we in kernel?" check. 1216 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 1217 */ 1218SYM_CODE_START_LOCAL(paranoid_entry) 1219 UNWIND_HINT_FUNC 1220 cld 1221 PUSH_AND_CLEAR_REGS save_ret=1 1222 ENCODE_FRAME_POINTER 8 1223 movl $1, %ebx 1224 movl $MSR_GS_BASE, %ecx 1225 rdmsr 1226 testl %edx, %edx 1227 js 1f /* negative -> in kernel */ 1228 SWAPGS 1229 xorl %ebx, %ebx 1230 12311: 1232 /* 1233 * Always stash CR3 in %r14. This value will be restored, 1234 * verbatim, at exit. Needed if paranoid_entry interrupted 1235 * another entry that already switched to the user CR3 value 1236 * but has not yet returned to userspace. 1237 * 1238 * This is also why CS (stashed in the "iret frame" by the 1239 * hardware at entry) can not be used: this may be a return 1240 * to kernel code, but with a user CR3 value. 1241 */ 1242 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 1243 1244 /* 1245 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an 1246 * unconditional CR3 write, even in the PTI case. So do an lfence 1247 * to prevent GS speculation, regardless of whether PTI is enabled. 1248 */ 1249 FENCE_SWAPGS_KERNEL_ENTRY 1250 1251 ret 1252SYM_CODE_END(paranoid_entry) 1253 1254/* 1255 * "Paranoid" exit path from exception stack. This is invoked 1256 * only on return from non-NMI IST interrupts that came 1257 * from kernel space. 1258 * 1259 * We may be returning to very strange contexts (e.g. very early 1260 * in syscall entry), so checking for preemption here would 1261 * be complicated. Fortunately, we there's no good reason 1262 * to try to handle preemption here. 1263 * 1264 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) 1265 */ 1266SYM_CODE_START_LOCAL(paranoid_exit) 1267 UNWIND_HINT_REGS 1268 DISABLE_INTERRUPTS(CLBR_ANY) 1269 TRACE_IRQS_OFF_DEBUG 1270 testl %ebx, %ebx /* swapgs needed? */ 1271 jnz .Lparanoid_exit_no_swapgs 1272 TRACE_IRQS_IRETQ 1273 /* Always restore stashed CR3 value (see paranoid_entry) */ 1274 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14 1275 SWAPGS_UNSAFE_STACK 1276 jmp restore_regs_and_return_to_kernel 1277.Lparanoid_exit_no_swapgs: 1278 TRACE_IRQS_IRETQ_DEBUG 1279 /* Always restore stashed CR3 value (see paranoid_entry) */ 1280 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14 1281 jmp restore_regs_and_return_to_kernel 1282SYM_CODE_END(paranoid_exit) 1283 1284/* 1285 * Save all registers in pt_regs, and switch GS if needed. 1286 */ 1287SYM_CODE_START_LOCAL(error_entry) 1288 UNWIND_HINT_FUNC 1289 cld 1290 PUSH_AND_CLEAR_REGS save_ret=1 1291 ENCODE_FRAME_POINTER 8 1292 testb $3, CS+8(%rsp) 1293 jz .Lerror_kernelspace 1294 1295 /* 1296 * We entered from user mode or we're pretending to have entered 1297 * from user mode due to an IRET fault. 1298 */ 1299 SWAPGS 1300 FENCE_SWAPGS_USER_ENTRY 1301 /* We have user CR3. Change to kernel CR3. */ 1302 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1303 1304.Lerror_entry_from_usermode_after_swapgs: 1305 /* Put us onto the real thread stack. */ 1306 popq %r12 /* save return addr in %12 */ 1307 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1308 call sync_regs 1309 movq %rax, %rsp /* switch stack */ 1310 ENCODE_FRAME_POINTER 1311 pushq %r12 1312 ret 1313 1314.Lerror_entry_done_lfence: 1315 FENCE_SWAPGS_KERNEL_ENTRY 1316.Lerror_entry_done: 1317 ret 1318 1319 /* 1320 * There are two places in the kernel that can potentially fault with 1321 * usergs. Handle them here. B stepping K8s sometimes report a 1322 * truncated RIP for IRET exceptions returning to compat mode. Check 1323 * for these here too. 1324 */ 1325.Lerror_kernelspace: 1326 leaq native_irq_return_iret(%rip), %rcx 1327 cmpq %rcx, RIP+8(%rsp) 1328 je .Lerror_bad_iret 1329 movl %ecx, %eax /* zero extend */ 1330 cmpq %rax, RIP+8(%rsp) 1331 je .Lbstep_iret 1332 cmpq $.Lgs_change, RIP+8(%rsp) 1333 jne .Lerror_entry_done_lfence 1334 1335 /* 1336 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1337 * gsbase and proceed. We'll fix up the exception and land in 1338 * .Lgs_change's error handler with kernel gsbase. 1339 */ 1340 SWAPGS 1341 FENCE_SWAPGS_USER_ENTRY 1342 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1343 jmp .Lerror_entry_done 1344 1345.Lbstep_iret: 1346 /* Fix truncated RIP */ 1347 movq %rcx, RIP+8(%rsp) 1348 /* fall through */ 1349 1350.Lerror_bad_iret: 1351 /* 1352 * We came from an IRET to user mode, so we have user 1353 * gsbase and CR3. Switch to kernel gsbase and CR3: 1354 */ 1355 SWAPGS 1356 FENCE_SWAPGS_USER_ENTRY 1357 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1358 1359 /* 1360 * Pretend that the exception came from user mode: set up pt_regs 1361 * as if we faulted immediately after IRET. 1362 */ 1363 mov %rsp, %rdi 1364 call fixup_bad_iret 1365 mov %rax, %rsp 1366 jmp .Lerror_entry_from_usermode_after_swapgs 1367SYM_CODE_END(error_entry) 1368 1369SYM_CODE_START_LOCAL(error_exit) 1370 UNWIND_HINT_REGS 1371 DISABLE_INTERRUPTS(CLBR_ANY) 1372 TRACE_IRQS_OFF 1373 testb $3, CS(%rsp) 1374 jz retint_kernel 1375 jmp .Lretint_user 1376SYM_CODE_END(error_exit) 1377 1378/* 1379 * Runs on exception stack. Xen PV does not go through this path at all, 1380 * so we can use real assembly here. 1381 * 1382 * Registers: 1383 * %r14: Used to save/restore the CR3 of the interrupted context 1384 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1385 */ 1386SYM_CODE_START(nmi) 1387 UNWIND_HINT_IRET_REGS 1388 1389 /* 1390 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1391 * the iretq it performs will take us out of NMI context. 1392 * This means that we can have nested NMIs where the next 1393 * NMI is using the top of the stack of the previous NMI. We 1394 * can't let it execute because the nested NMI will corrupt the 1395 * stack of the previous NMI. NMI handlers are not re-entrant 1396 * anyway. 1397 * 1398 * To handle this case we do the following: 1399 * Check the a special location on the stack that contains 1400 * a variable that is set when NMIs are executing. 1401 * The interrupted task's stack is also checked to see if it 1402 * is an NMI stack. 1403 * If the variable is not set and the stack is not the NMI 1404 * stack then: 1405 * o Set the special variable on the stack 1406 * o Copy the interrupt frame into an "outermost" location on the 1407 * stack 1408 * o Copy the interrupt frame into an "iret" location on the stack 1409 * o Continue processing the NMI 1410 * If the variable is set or the previous stack is the NMI stack: 1411 * o Modify the "iret" location to jump to the repeat_nmi 1412 * o return back to the first NMI 1413 * 1414 * Now on exit of the first NMI, we first clear the stack variable 1415 * The NMI stack will tell any nested NMIs at that point that it is 1416 * nested. Then we pop the stack normally with iret, and if there was 1417 * a nested NMI that updated the copy interrupt stack frame, a 1418 * jump will be made to the repeat_nmi code that will handle the second 1419 * NMI. 1420 * 1421 * However, espfix prevents us from directly returning to userspace 1422 * with a single IRET instruction. Similarly, IRET to user mode 1423 * can fault. We therefore handle NMIs from user space like 1424 * other IST entries. 1425 */ 1426 1427 ASM_CLAC 1428 1429 /* Use %rdx as our temp variable throughout */ 1430 pushq %rdx 1431 1432 testb $3, CS-RIP+8(%rsp) 1433 jz .Lnmi_from_kernel 1434 1435 /* 1436 * NMI from user mode. We need to run on the thread stack, but we 1437 * can't go through the normal entry paths: NMIs are masked, and 1438 * we don't want to enable interrupts, because then we'll end 1439 * up in an awkward situation in which IRQs are on but NMIs 1440 * are off. 1441 * 1442 * We also must not push anything to the stack before switching 1443 * stacks lest we corrupt the "NMI executing" variable. 1444 */ 1445 1446 swapgs 1447 cld 1448 FENCE_SWAPGS_USER_ENTRY 1449 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1450 movq %rsp, %rdx 1451 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1452 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1453 pushq 5*8(%rdx) /* pt_regs->ss */ 1454 pushq 4*8(%rdx) /* pt_regs->rsp */ 1455 pushq 3*8(%rdx) /* pt_regs->flags */ 1456 pushq 2*8(%rdx) /* pt_regs->cs */ 1457 pushq 1*8(%rdx) /* pt_regs->rip */ 1458 UNWIND_HINT_IRET_REGS 1459 pushq $-1 /* pt_regs->orig_ax */ 1460 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1461 ENCODE_FRAME_POINTER 1462 1463 /* 1464 * At this point we no longer need to worry about stack damage 1465 * due to nesting -- we're on the normal thread stack and we're 1466 * done with the NMI stack. 1467 */ 1468 1469 movq %rsp, %rdi 1470 movq $-1, %rsi 1471 call do_nmi 1472 1473 /* 1474 * Return back to user mode. We must *not* do the normal exit 1475 * work, because we don't want to enable interrupts. 1476 */ 1477 jmp swapgs_restore_regs_and_return_to_usermode 1478 1479.Lnmi_from_kernel: 1480 /* 1481 * Here's what our stack frame will look like: 1482 * +---------------------------------------------------------+ 1483 * | original SS | 1484 * | original Return RSP | 1485 * | original RFLAGS | 1486 * | original CS | 1487 * | original RIP | 1488 * +---------------------------------------------------------+ 1489 * | temp storage for rdx | 1490 * +---------------------------------------------------------+ 1491 * | "NMI executing" variable | 1492 * +---------------------------------------------------------+ 1493 * | iret SS } Copied from "outermost" frame | 1494 * | iret Return RSP } on each loop iteration; overwritten | 1495 * | iret RFLAGS } by a nested NMI to force another | 1496 * | iret CS } iteration if needed. | 1497 * | iret RIP } | 1498 * +---------------------------------------------------------+ 1499 * | outermost SS } initialized in first_nmi; | 1500 * | outermost Return RSP } will not be changed before | 1501 * | outermost RFLAGS } NMI processing is done. | 1502 * | outermost CS } Copied to "iret" frame on each | 1503 * | outermost RIP } iteration. | 1504 * +---------------------------------------------------------+ 1505 * | pt_regs | 1506 * +---------------------------------------------------------+ 1507 * 1508 * The "original" frame is used by hardware. Before re-enabling 1509 * NMIs, we need to be done with it, and we need to leave enough 1510 * space for the asm code here. 1511 * 1512 * We return by executing IRET while RSP points to the "iret" frame. 1513 * That will either return for real or it will loop back into NMI 1514 * processing. 1515 * 1516 * The "outermost" frame is copied to the "iret" frame on each 1517 * iteration of the loop, so each iteration starts with the "iret" 1518 * frame pointing to the final return target. 1519 */ 1520 1521 /* 1522 * Determine whether we're a nested NMI. 1523 * 1524 * If we interrupted kernel code between repeat_nmi and 1525 * end_repeat_nmi, then we are a nested NMI. We must not 1526 * modify the "iret" frame because it's being written by 1527 * the outer NMI. That's okay; the outer NMI handler is 1528 * about to about to call do_nmi anyway, so we can just 1529 * resume the outer NMI. 1530 */ 1531 1532 movq $repeat_nmi, %rdx 1533 cmpq 8(%rsp), %rdx 1534 ja 1f 1535 movq $end_repeat_nmi, %rdx 1536 cmpq 8(%rsp), %rdx 1537 ja nested_nmi_out 15381: 1539 1540 /* 1541 * Now check "NMI executing". If it's set, then we're nested. 1542 * This will not detect if we interrupted an outer NMI just 1543 * before IRET. 1544 */ 1545 cmpl $1, -8(%rsp) 1546 je nested_nmi 1547 1548 /* 1549 * Now test if the previous stack was an NMI stack. This covers 1550 * the case where we interrupt an outer NMI after it clears 1551 * "NMI executing" but before IRET. We need to be careful, though: 1552 * there is one case in which RSP could point to the NMI stack 1553 * despite there being no NMI active: naughty userspace controls 1554 * RSP at the very beginning of the SYSCALL targets. We can 1555 * pull a fast one on naughty userspace, though: we program 1556 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1557 * if it controls the kernel's RSP. We set DF before we clear 1558 * "NMI executing". 1559 */ 1560 lea 6*8(%rsp), %rdx 1561 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1562 cmpq %rdx, 4*8(%rsp) 1563 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1564 ja first_nmi 1565 1566 subq $EXCEPTION_STKSZ, %rdx 1567 cmpq %rdx, 4*8(%rsp) 1568 /* If it is below the NMI stack, it is a normal NMI */ 1569 jb first_nmi 1570 1571 /* Ah, it is within the NMI stack. */ 1572 1573 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1574 jz first_nmi /* RSP was user controlled. */ 1575 1576 /* This is a nested NMI. */ 1577 1578nested_nmi: 1579 /* 1580 * Modify the "iret" frame to point to repeat_nmi, forcing another 1581 * iteration of NMI handling. 1582 */ 1583 subq $8, %rsp 1584 leaq -10*8(%rsp), %rdx 1585 pushq $__KERNEL_DS 1586 pushq %rdx 1587 pushfq 1588 pushq $__KERNEL_CS 1589 pushq $repeat_nmi 1590 1591 /* Put stack back */ 1592 addq $(6*8), %rsp 1593 1594nested_nmi_out: 1595 popq %rdx 1596 1597 /* We are returning to kernel mode, so this cannot result in a fault. */ 1598 iretq 1599 1600first_nmi: 1601 /* Restore rdx. */ 1602 movq (%rsp), %rdx 1603 1604 /* Make room for "NMI executing". */ 1605 pushq $0 1606 1607 /* Leave room for the "iret" frame */ 1608 subq $(5*8), %rsp 1609 1610 /* Copy the "original" frame to the "outermost" frame */ 1611 .rept 5 1612 pushq 11*8(%rsp) 1613 .endr 1614 UNWIND_HINT_IRET_REGS 1615 1616 /* Everything up to here is safe from nested NMIs */ 1617 1618#ifdef CONFIG_DEBUG_ENTRY 1619 /* 1620 * For ease of testing, unmask NMIs right away. Disabled by 1621 * default because IRET is very expensive. 1622 */ 1623 pushq $0 /* SS */ 1624 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1625 addq $8, (%rsp) /* Fix up RSP */ 1626 pushfq /* RFLAGS */ 1627 pushq $__KERNEL_CS /* CS */ 1628 pushq $1f /* RIP */ 1629 iretq /* continues at repeat_nmi below */ 1630 UNWIND_HINT_IRET_REGS 16311: 1632#endif 1633 1634repeat_nmi: 1635 /* 1636 * If there was a nested NMI, the first NMI's iret will return 1637 * here. But NMIs are still enabled and we can take another 1638 * nested NMI. The nested NMI checks the interrupted RIP to see 1639 * if it is between repeat_nmi and end_repeat_nmi, and if so 1640 * it will just return, as we are about to repeat an NMI anyway. 1641 * This makes it safe to copy to the stack frame that a nested 1642 * NMI will update. 1643 * 1644 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1645 * we're repeating an NMI, gsbase has the same value that it had on 1646 * the first iteration. paranoid_entry will load the kernel 1647 * gsbase if needed before we call do_nmi. "NMI executing" 1648 * is zero. 1649 */ 1650 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1651 1652 /* 1653 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1654 * here must not modify the "iret" frame while we're writing to 1655 * it or it will end up containing garbage. 1656 */ 1657 addq $(10*8), %rsp 1658 .rept 5 1659 pushq -6*8(%rsp) 1660 .endr 1661 subq $(5*8), %rsp 1662end_repeat_nmi: 1663 1664 /* 1665 * Everything below this point can be preempted by a nested NMI. 1666 * If this happens, then the inner NMI will change the "iret" 1667 * frame to point back to repeat_nmi. 1668 */ 1669 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1670 1671 /* 1672 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1673 * as we should not be calling schedule in NMI context. 1674 * Even with normal interrupts enabled. An NMI should not be 1675 * setting NEED_RESCHED or anything that normal interrupts and 1676 * exceptions might do. 1677 */ 1678 call paranoid_entry 1679 UNWIND_HINT_REGS 1680 1681 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ 1682 movq %rsp, %rdi 1683 movq $-1, %rsi 1684 call do_nmi 1685 1686 /* Always restore stashed CR3 value (see paranoid_entry) */ 1687 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1688 1689 testl %ebx, %ebx /* swapgs needed? */ 1690 jnz nmi_restore 1691nmi_swapgs: 1692 SWAPGS_UNSAFE_STACK 1693nmi_restore: 1694 POP_REGS 1695 1696 /* 1697 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1698 * at the "iret" frame. 1699 */ 1700 addq $6*8, %rsp 1701 1702 /* 1703 * Clear "NMI executing". Set DF first so that we can easily 1704 * distinguish the remaining code between here and IRET from 1705 * the SYSCALL entry and exit paths. 1706 * 1707 * We arguably should just inspect RIP instead, but I (Andy) wrote 1708 * this code when I had the misapprehension that Xen PV supported 1709 * NMIs, and Xen PV would break that approach. 1710 */ 1711 std 1712 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1713 1714 /* 1715 * iretq reads the "iret" frame and exits the NMI stack in a 1716 * single instruction. We are returning to kernel mode, so this 1717 * cannot result in a fault. Similarly, we don't need to worry 1718 * about espfix64 on the way back to kernel mode. 1719 */ 1720 iretq 1721SYM_CODE_END(nmi) 1722 1723#ifndef CONFIG_IA32_EMULATION 1724/* 1725 * This handles SYSCALL from 32-bit code. There is no way to program 1726 * MSRs to fully disable 32-bit SYSCALL. 1727 */ 1728SYM_CODE_START(ignore_sysret) 1729 UNWIND_HINT_EMPTY 1730 mov $-ENOSYS, %eax 1731 sysretl 1732SYM_CODE_END(ignore_sysret) 1733#endif 1734 1735SYM_CODE_START(rewind_stack_do_exit) 1736 UNWIND_HINT_FUNC 1737 /* Prevent any naive code from trying to unwind to our caller. */ 1738 xorl %ebp, %ebp 1739 1740 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1741 leaq -PTREGS_SIZE(%rax), %rsp 1742 UNWIND_HINT_REGS 1743 1744 call do_exit 1745SYM_CODE_END(rewind_stack_do_exit) 1746