xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 6aa7de05)
1/*
2 *  linux/arch/x86_64/entry.S
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame:	Architecture defined interrupt frame from SS to RIP
14 *			at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END:		Define functions in the symbol table.
18 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <linux/err.h>
41
42.code64
43.section .entry.text, "ax"
44
45#ifdef CONFIG_PARAVIRT
46ENTRY(native_usergs_sysret64)
47	UNWIND_HINT_EMPTY
48	swapgs
49	sysretq
50END(native_usergs_sysret64)
51#endif /* CONFIG_PARAVIRT */
52
53.macro TRACE_IRQS_IRETQ
54#ifdef CONFIG_TRACE_IRQFLAGS
55	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
56	jnc	1f
57	TRACE_IRQS_ON
581:
59#endif
60.endm
61
62/*
63 * When dynamic function tracer is enabled it will add a breakpoint
64 * to all locations that it is about to modify, sync CPUs, update
65 * all the code, sync CPUs, then remove the breakpoints. In this time
66 * if lockdep is enabled, it might jump back into the debug handler
67 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 *
69 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
70 * make sure the stack pointer does not get reset back to the top
71 * of the debug stack, and instead just reuses the current stack.
72 */
73#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74
75.macro TRACE_IRQS_OFF_DEBUG
76	call	debug_stack_set_zero
77	TRACE_IRQS_OFF
78	call	debug_stack_reset
79.endm
80
81.macro TRACE_IRQS_ON_DEBUG
82	call	debug_stack_set_zero
83	TRACE_IRQS_ON
84	call	debug_stack_reset
85.endm
86
87.macro TRACE_IRQS_IRETQ_DEBUG
88	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
89	jnc	1f
90	TRACE_IRQS_ON_DEBUG
911:
92.endm
93
94#else
95# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
96# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
97# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
98#endif
99
100/*
101 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
102 *
103 * This is the only entry point used for 64-bit system calls.  The
104 * hardware interface is reasonably well designed and the register to
105 * argument mapping Linux uses fits well with the registers that are
106 * available when SYSCALL is used.
107 *
108 * SYSCALL instructions can be found inlined in libc implementations as
109 * well as some other programs and libraries.  There are also a handful
110 * of SYSCALL instructions in the vDSO used, for example, as a
111 * clock_gettimeofday fallback.
112 *
113 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 * then loads new ss, cs, and rip from previously programmed MSRs.
115 * rflags gets masked by a value from another MSR (so CLD and CLAC
116 * are not needed). SYSCALL does not save anything on the stack
117 * and does not change rsp.
118 *
119 * Registers on entry:
120 * rax  system call number
121 * rcx  return address
122 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
123 * rdi  arg0
124 * rsi  arg1
125 * rdx  arg2
126 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
127 * r8   arg4
128 * r9   arg5
129 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130 *
131 * Only called from user space.
132 *
133 * When user can change pt_regs->foo always force IRET. That is because
134 * it deals with uncanonical addresses better. SYSRET has trouble
135 * with them due to bugs in both AMD and Intel CPUs.
136 */
137
138ENTRY(entry_SYSCALL_64)
139	UNWIND_HINT_EMPTY
140	/*
141	 * Interrupts are off on entry.
142	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
143	 * it is too small to ever cause noticeable irq latency.
144	 */
145
146	swapgs
147	movq	%rsp, PER_CPU_VAR(rsp_scratch)
148	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149
150	TRACE_IRQS_OFF
151
152	/* Construct struct pt_regs on stack */
153	pushq	$__USER_DS			/* pt_regs->ss */
154	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
155	pushq	%r11				/* pt_regs->flags */
156	pushq	$__USER_CS			/* pt_regs->cs */
157	pushq	%rcx				/* pt_regs->ip */
158GLOBAL(entry_SYSCALL_64_after_hwframe)
159	pushq	%rax				/* pt_regs->orig_ax */
160	pushq	%rdi				/* pt_regs->di */
161	pushq	%rsi				/* pt_regs->si */
162	pushq	%rdx				/* pt_regs->dx */
163	pushq	%rcx				/* pt_regs->cx */
164	pushq	$-ENOSYS			/* pt_regs->ax */
165	pushq	%r8				/* pt_regs->r8 */
166	pushq	%r9				/* pt_regs->r9 */
167	pushq	%r10				/* pt_regs->r10 */
168	pushq	%r11				/* pt_regs->r11 */
169	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
170	UNWIND_HINT_REGS extra=0
171
172	/*
173	 * If we need to do entry work or if we guess we'll need to do
174	 * exit work, go straight to the slow path.
175	 */
176	movq	PER_CPU_VAR(current_task), %r11
177	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178	jnz	entry_SYSCALL64_slow_path
179
180entry_SYSCALL_64_fastpath:
181	/*
182	 * Easy case: enable interrupts and issue the syscall.  If the syscall
183	 * needs pt_regs, we'll call a stub that disables interrupts again
184	 * and jumps to the slow path.
185	 */
186	TRACE_IRQS_ON
187	ENABLE_INTERRUPTS(CLBR_NONE)
188#if __SYSCALL_MASK == ~0
189	cmpq	$__NR_syscall_max, %rax
190#else
191	andl	$__SYSCALL_MASK, %eax
192	cmpl	$__NR_syscall_max, %eax
193#endif
194	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
195	movq	%r10, %rcx
196
197	/*
198	 * This call instruction is handled specially in stub_ptregs_64.
199	 * It might end up jumping to the slow path.  If it jumps, RAX
200	 * and all argument registers are clobbered.
201	 */
202	call	*sys_call_table(, %rax, 8)
203.Lentry_SYSCALL_64_after_fastpath_call:
204
205	movq	%rax, RAX(%rsp)
2061:
207
208	/*
209	 * If we get here, then we know that pt_regs is clean for SYSRET64.
210	 * If we see that no exit work is required (which we are required
211	 * to check with IRQs off), then we can go straight to SYSRET64.
212	 */
213	DISABLE_INTERRUPTS(CLBR_ANY)
214	TRACE_IRQS_OFF
215	movq	PER_CPU_VAR(current_task), %r11
216	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217	jnz	1f
218
219	LOCKDEP_SYS_EXIT
220	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
221	movq	RIP(%rsp), %rcx
222	movq	EFLAGS(%rsp), %r11
223	RESTORE_C_REGS_EXCEPT_RCX_R11
224	movq	RSP(%rsp), %rsp
225	UNWIND_HINT_EMPTY
226	USERGS_SYSRET64
227
2281:
229	/*
230	 * The fast path looked good when we started, but something changed
231	 * along the way and we need to switch to the slow path.  Calling
232	 * raise(3) will trigger this, for example.  IRQs are off.
233	 */
234	TRACE_IRQS_ON
235	ENABLE_INTERRUPTS(CLBR_ANY)
236	SAVE_EXTRA_REGS
237	movq	%rsp, %rdi
238	call	syscall_return_slowpath	/* returns with IRQs disabled */
239	jmp	return_from_SYSCALL_64
240
241entry_SYSCALL64_slow_path:
242	/* IRQs are off. */
243	SAVE_EXTRA_REGS
244	movq	%rsp, %rdi
245	call	do_syscall_64		/* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
248	RESTORE_EXTRA_REGS
249	TRACE_IRQS_IRETQ		/* we're about to change IF */
250
251	/*
252	 * Try to use SYSRET instead of IRET if we're returning to
253	 * a completely clean 64-bit userspace context.
254	 */
255	movq	RCX(%rsp), %rcx
256	movq	RIP(%rsp), %r11
257	cmpq	%rcx, %r11			/* RCX == RIP */
258	jne	opportunistic_sysret_failed
259
260	/*
261	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262	 * in kernel space.  This essentially lets the user take over
263	 * the kernel, since userspace controls RSP.
264	 *
265	 * If width of "canonical tail" ever becomes variable, this will need
266	 * to be updated to remain correct on both old and new CPUs.
267	 *
268	 * Change top bits to match most significant bit (47th or 56th bit
269	 * depending on paging mode) in the address.
270	 */
271	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273
274	/* If this changed %rcx, it was not canonical */
275	cmpq	%rcx, %r11
276	jne	opportunistic_sysret_failed
277
278	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
279	jne	opportunistic_sysret_failed
280
281	movq	R11(%rsp), %r11
282	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
283	jne	opportunistic_sysret_failed
284
285	/*
286	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287	 * restore RF properly. If the slowpath sets it for whatever reason, we
288	 * need to restore it correctly.
289	 *
290	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291	 * trap from userspace immediately after SYSRET.  This would cause an
292	 * infinite loop whenever #DB happens with register state that satisfies
293	 * the opportunistic SYSRET conditions.  For example, single-stepping
294	 * this user code:
295	 *
296	 *           movq	$stuck_here, %rcx
297	 *           pushfq
298	 *           popq %r11
299	 *   stuck_here:
300	 *
301	 * would never get past 'stuck_here'.
302	 */
303	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304	jnz	opportunistic_sysret_failed
305
306	/* nothing to check for RSP */
307
308	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
309	jne	opportunistic_sysret_failed
310
311	/*
312	 * We win! This label is here just for ease of understanding
313	 * perf profiles. Nothing jumps here.
314	 */
315syscall_return_via_sysret:
316	/* rcx and r11 are already restored (see code above) */
317	RESTORE_C_REGS_EXCEPT_RCX_R11
318	movq	RSP(%rsp), %rsp
319	UNWIND_HINT_EMPTY
320	USERGS_SYSRET64
321
322opportunistic_sysret_failed:
323	SWAPGS
324	jmp	restore_c_regs_and_iret
325END(entry_SYSCALL_64)
326
327ENTRY(stub_ptregs_64)
328	/*
329	 * Syscalls marked as needing ptregs land here.
330	 * If we are on the fast path, we need to save the extra regs,
331	 * which we achieve by trying again on the slow path.  If we are on
332	 * the slow path, the extra regs are already saved.
333	 *
334	 * RAX stores a pointer to the C function implementing the syscall.
335	 * IRQs are on.
336	 */
337	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338	jne	1f
339
340	/*
341	 * Called from fast path -- disable IRQs again, pop return address
342	 * and jump to slow path
343	 */
344	DISABLE_INTERRUPTS(CLBR_ANY)
345	TRACE_IRQS_OFF
346	popq	%rax
347	UNWIND_HINT_REGS extra=0
348	jmp	entry_SYSCALL64_slow_path
349
3501:
351	jmp	*%rax				/* Called from C */
352END(stub_ptregs_64)
353
354.macro ptregs_stub func
355ENTRY(ptregs_\func)
356	UNWIND_HINT_FUNC
357	leaq	\func(%rip), %rax
358	jmp	stub_ptregs_64
359END(ptregs_\func)
360.endm
361
362/* Instantiate ptregs_stub for each ptregs-using syscall */
363#define __SYSCALL_64_QUAL_(sym)
364#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366#include <asm/syscalls_64.h>
367
368/*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372ENTRY(__switch_to_asm)
373	UNWIND_HINT_FUNC
374	/*
375	 * Save callee-saved registers
376	 * This must match the order in inactive_task_frame
377	 */
378	pushq	%rbp
379	pushq	%rbx
380	pushq	%r12
381	pushq	%r13
382	pushq	%r14
383	pushq	%r15
384
385	/* switch stack */
386	movq	%rsp, TASK_threadsp(%rdi)
387	movq	TASK_threadsp(%rsi), %rsp
388
389#ifdef CONFIG_CC_STACKPROTECTOR
390	movq	TASK_stack_canary(%rsi), %rbx
391	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392#endif
393
394	/* restore callee-saved registers */
395	popq	%r15
396	popq	%r14
397	popq	%r13
398	popq	%r12
399	popq	%rbx
400	popq	%rbp
401
402	jmp	__switch_to
403END(__switch_to_asm)
404
405/*
406 * A newly forked process directly context switches into this address.
407 *
408 * rax: prev task we switched from
409 * rbx: kernel thread func (NULL for user thread)
410 * r12: kernel thread arg
411 */
412ENTRY(ret_from_fork)
413	UNWIND_HINT_EMPTY
414	movq	%rax, %rdi
415	call	schedule_tail			/* rdi: 'prev' task parameter */
416
417	testq	%rbx, %rbx			/* from kernel_thread? */
418	jnz	1f				/* kernel threads are uncommon */
419
4202:
421	UNWIND_HINT_REGS
422	movq	%rsp, %rdi
423	call	syscall_return_slowpath	/* returns with IRQs disabled */
424	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
425	SWAPGS
426	jmp	restore_regs_and_iret
427
4281:
429	/* kernel thread */
430	movq	%r12, %rdi
431	call	*%rbx
432	/*
433	 * A kernel thread is allowed to return here after successfully
434	 * calling do_execve().  Exit to userspace to complete the execve()
435	 * syscall.
436	 */
437	movq	$0, RAX(%rsp)
438	jmp	2b
439END(ret_from_fork)
440
441/*
442 * Build the entry stubs with some assembler magic.
443 * We pack 1 stub into every 8-byte block.
444 */
445	.align 8
446ENTRY(irq_entries_start)
447    vector=FIRST_EXTERNAL_VECTOR
448    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
449	UNWIND_HINT_IRET_REGS
450	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
451	jmp	common_interrupt
452	.align	8
453	vector=vector+1
454    .endr
455END(irq_entries_start)
456
457.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
458#ifdef CONFIG_DEBUG_ENTRY
459	pushfq
460	testl $X86_EFLAGS_IF, (%rsp)
461	jz .Lokay_\@
462	ud2
463.Lokay_\@:
464	addq $8, %rsp
465#endif
466.endm
467
468/*
469 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
470 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
471 * Requires kernel GSBASE.
472 *
473 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
474 */
475.macro ENTER_IRQ_STACK regs=1 old_rsp
476	DEBUG_ENTRY_ASSERT_IRQS_OFF
477	movq	%rsp, \old_rsp
478
479	.if \regs
480	UNWIND_HINT_REGS base=\old_rsp
481	.endif
482
483	incl	PER_CPU_VAR(irq_count)
484	jnz	.Lirq_stack_push_old_rsp_\@
485
486	/*
487	 * Right now, if we just incremented irq_count to zero, we've
488	 * claimed the IRQ stack but we haven't switched to it yet.
489	 *
490	 * If anything is added that can interrupt us here without using IST,
491	 * it must be *extremely* careful to limit its stack usage.  This
492	 * could include kprobes and a hypothetical future IST-less #DB
493	 * handler.
494	 *
495	 * The OOPS unwinder relies on the word at the top of the IRQ
496	 * stack linking back to the previous RSP for the entire time we're
497	 * on the IRQ stack.  For this to work reliably, we need to write
498	 * it before we actually move ourselves to the IRQ stack.
499	 */
500
501	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
502	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
503
504#ifdef CONFIG_DEBUG_ENTRY
505	/*
506	 * If the first movq above becomes wrong due to IRQ stack layout
507	 * changes, the only way we'll notice is if we try to unwind right
508	 * here.  Assert that we set up the stack right to catch this type
509	 * of bug quickly.
510	 */
511	cmpq	-8(%rsp), \old_rsp
512	je	.Lirq_stack_okay\@
513	ud2
514	.Lirq_stack_okay\@:
515#endif
516
517.Lirq_stack_push_old_rsp_\@:
518	pushq	\old_rsp
519
520	.if \regs
521	UNWIND_HINT_REGS indirect=1
522	.endif
523.endm
524
525/*
526 * Undoes ENTER_IRQ_STACK.
527 */
528.macro LEAVE_IRQ_STACK regs=1
529	DEBUG_ENTRY_ASSERT_IRQS_OFF
530	/* We need to be off the IRQ stack before decrementing irq_count. */
531	popq	%rsp
532
533	.if \regs
534	UNWIND_HINT_REGS
535	.endif
536
537	/*
538	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
539	 * the irq stack but we're not on it.
540	 */
541
542	decl	PER_CPU_VAR(irq_count)
543.endm
544
545/*
546 * Interrupt entry/exit.
547 *
548 * Interrupt entry points save only callee clobbered registers in fast path.
549 *
550 * Entry runs with interrupts off.
551 */
552
553/* 0(%rsp): ~(interrupt number) */
554	.macro interrupt func
555	cld
556	ALLOC_PT_GPREGS_ON_STACK
557	SAVE_C_REGS
558	SAVE_EXTRA_REGS
559	ENCODE_FRAME_POINTER
560
561	testb	$3, CS(%rsp)
562	jz	1f
563
564	/*
565	 * IRQ from user mode.  Switch to kernel gsbase and inform context
566	 * tracking that we're in kernel mode.
567	 */
568	SWAPGS
569
570	/*
571	 * We need to tell lockdep that IRQs are off.  We can't do this until
572	 * we fix gsbase, and we should do it before enter_from_user_mode
573	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
574	 * the simplest way to handle it is to just call it twice if
575	 * we enter from user mode.  There's no reason to optimize this since
576	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
577	 */
578	TRACE_IRQS_OFF
579
580	CALL_enter_from_user_mode
581
5821:
583	ENTER_IRQ_STACK old_rsp=%rdi
584	/* We entered an interrupt context - irqs are off: */
585	TRACE_IRQS_OFF
586
587	call	\func	/* rdi points to pt_regs */
588	.endm
589
590	/*
591	 * The interrupt stubs push (~vector+0x80) onto the stack and
592	 * then jump to common_interrupt.
593	 */
594	.p2align CONFIG_X86_L1_CACHE_SHIFT
595common_interrupt:
596	ASM_CLAC
597	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
598	interrupt do_IRQ
599	/* 0(%rsp): old RSP */
600ret_from_intr:
601	DISABLE_INTERRUPTS(CLBR_ANY)
602	TRACE_IRQS_OFF
603
604	LEAVE_IRQ_STACK
605
606	testb	$3, CS(%rsp)
607	jz	retint_kernel
608
609	/* Interrupt came from user space */
610GLOBAL(retint_user)
611	mov	%rsp,%rdi
612	call	prepare_exit_to_usermode
613	TRACE_IRQS_IRETQ
614	SWAPGS
615	jmp	restore_regs_and_iret
616
617/* Returning to kernel space */
618retint_kernel:
619#ifdef CONFIG_PREEMPT
620	/* Interrupts are off */
621	/* Check if we need preemption */
622	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
623	jnc	1f
6240:	cmpl	$0, PER_CPU_VAR(__preempt_count)
625	jnz	1f
626	call	preempt_schedule_irq
627	jmp	0b
6281:
629#endif
630	/*
631	 * The iretq could re-enable interrupts:
632	 */
633	TRACE_IRQS_IRETQ
634
635/*
636 * At this label, code paths which return to kernel and to user,
637 * which come from interrupts/exception and from syscalls, merge.
638 */
639GLOBAL(restore_regs_and_iret)
640	RESTORE_EXTRA_REGS
641restore_c_regs_and_iret:
642	RESTORE_C_REGS
643	REMOVE_PT_GPREGS_FROM_STACK 8
644	INTERRUPT_RETURN
645
646ENTRY(native_iret)
647	UNWIND_HINT_IRET_REGS
648	/*
649	 * Are we returning to a stack segment from the LDT?  Note: in
650	 * 64-bit mode SS:RSP on the exception stack is always valid.
651	 */
652#ifdef CONFIG_X86_ESPFIX64
653	testb	$4, (SS-RIP)(%rsp)
654	jnz	native_irq_return_ldt
655#endif
656
657.global native_irq_return_iret
658native_irq_return_iret:
659	/*
660	 * This may fault.  Non-paranoid faults on return to userspace are
661	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
662	 * Double-faults due to espfix64 are handled in do_double_fault.
663	 * Other faults here are fatal.
664	 */
665	iretq
666
667#ifdef CONFIG_X86_ESPFIX64
668native_irq_return_ldt:
669	/*
670	 * We are running with user GSBASE.  All GPRs contain their user
671	 * values.  We have a percpu ESPFIX stack that is eight slots
672	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
673	 * of the ESPFIX stack.
674	 *
675	 * We clobber RAX and RDI in this code.  We stash RDI on the
676	 * normal stack and RAX on the ESPFIX stack.
677	 *
678	 * The ESPFIX stack layout we set up looks like this:
679	 *
680	 * --- top of ESPFIX stack ---
681	 * SS
682	 * RSP
683	 * RFLAGS
684	 * CS
685	 * RIP  <-- RSP points here when we're done
686	 * RAX  <-- espfix_waddr points here
687	 * --- bottom of ESPFIX stack ---
688	 */
689
690	pushq	%rdi				/* Stash user RDI */
691	SWAPGS
692	movq	PER_CPU_VAR(espfix_waddr), %rdi
693	movq	%rax, (0*8)(%rdi)		/* user RAX */
694	movq	(1*8)(%rsp), %rax		/* user RIP */
695	movq	%rax, (1*8)(%rdi)
696	movq	(2*8)(%rsp), %rax		/* user CS */
697	movq	%rax, (2*8)(%rdi)
698	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
699	movq	%rax, (3*8)(%rdi)
700	movq	(5*8)(%rsp), %rax		/* user SS */
701	movq	%rax, (5*8)(%rdi)
702	movq	(4*8)(%rsp), %rax		/* user RSP */
703	movq	%rax, (4*8)(%rdi)
704	/* Now RAX == RSP. */
705
706	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
707	popq	%rdi				/* Restore user RDI */
708
709	/*
710	 * espfix_stack[31:16] == 0.  The page tables are set up such that
711	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
712	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
713	 * the same page.  Set up RSP so that RSP[31:16] contains the
714	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
715	 * still points to an RO alias of the ESPFIX stack.
716	 */
717	orq	PER_CPU_VAR(espfix_stack), %rax
718	SWAPGS
719	movq	%rax, %rsp
720	UNWIND_HINT_IRET_REGS offset=8
721
722	/*
723	 * At this point, we cannot write to the stack any more, but we can
724	 * still read.
725	 */
726	popq	%rax				/* Restore user RAX */
727
728	/*
729	 * RSP now points to an ordinary IRET frame, except that the page
730	 * is read-only and RSP[31:16] are preloaded with the userspace
731	 * values.  We can now IRET back to userspace.
732	 */
733	jmp	native_irq_return_iret
734#endif
735END(common_interrupt)
736
737/*
738 * APIC interrupts.
739 */
740.macro apicinterrupt3 num sym do_sym
741ENTRY(\sym)
742	UNWIND_HINT_IRET_REGS
743	ASM_CLAC
744	pushq	$~(\num)
745.Lcommon_\sym:
746	interrupt \do_sym
747	jmp	ret_from_intr
748END(\sym)
749.endm
750
751/* Make sure APIC interrupt handlers end up in the irqentry section: */
752#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
753#define POP_SECTION_IRQENTRY	.popsection
754
755.macro apicinterrupt num sym do_sym
756PUSH_SECTION_IRQENTRY
757apicinterrupt3 \num \sym \do_sym
758POP_SECTION_IRQENTRY
759.endm
760
761#ifdef CONFIG_SMP
762apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
763apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
764#endif
765
766#ifdef CONFIG_X86_UV
767apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
768#endif
769
770apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
771apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
772
773#ifdef CONFIG_HAVE_KVM
774apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
775apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
776apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
777#endif
778
779#ifdef CONFIG_X86_MCE_THRESHOLD
780apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
781#endif
782
783#ifdef CONFIG_X86_MCE_AMD
784apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
785#endif
786
787#ifdef CONFIG_X86_THERMAL_VECTOR
788apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
789#endif
790
791#ifdef CONFIG_SMP
792apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
793apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
794apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
795#endif
796
797apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
798apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
799
800#ifdef CONFIG_IRQ_WORK
801apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
802#endif
803
804/*
805 * Exception entry points.
806 */
807#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
808
809.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
810ENTRY(\sym)
811	UNWIND_HINT_IRET_REGS offset=8
812
813	/* Sanity check */
814	.if \shift_ist != -1 && \paranoid == 0
815	.error "using shift_ist requires paranoid=1"
816	.endif
817
818	ASM_CLAC
819
820	.ifeq \has_error_code
821	pushq	$-1				/* ORIG_RAX: no syscall to restart */
822	.endif
823
824	ALLOC_PT_GPREGS_ON_STACK
825
826	.if \paranoid
827	.if \paranoid == 1
828	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
829	jnz	1f
830	.endif
831	call	paranoid_entry
832	.else
833	call	error_entry
834	.endif
835	UNWIND_HINT_REGS
836	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
837
838	.if \paranoid
839	.if \shift_ist != -1
840	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
841	.else
842	TRACE_IRQS_OFF
843	.endif
844	.endif
845
846	movq	%rsp, %rdi			/* pt_regs pointer */
847
848	.if \has_error_code
849	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
850	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
851	.else
852	xorl	%esi, %esi			/* no error code */
853	.endif
854
855	.if \shift_ist != -1
856	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
857	.endif
858
859	call	\do_sym
860
861	.if \shift_ist != -1
862	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
863	.endif
864
865	/* these procedures expect "no swapgs" flag in ebx */
866	.if \paranoid
867	jmp	paranoid_exit
868	.else
869	jmp	error_exit
870	.endif
871
872	.if \paranoid == 1
873	/*
874	 * Paranoid entry from userspace.  Switch stacks and treat it
875	 * as a normal entry.  This means that paranoid handlers
876	 * run in real process context if user_mode(regs).
877	 */
8781:
879	call	error_entry
880
881
882	movq	%rsp, %rdi			/* pt_regs pointer */
883	call	sync_regs
884	movq	%rax, %rsp			/* switch stack */
885
886	movq	%rsp, %rdi			/* pt_regs pointer */
887
888	.if \has_error_code
889	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
890	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
891	.else
892	xorl	%esi, %esi			/* no error code */
893	.endif
894
895	call	\do_sym
896
897	jmp	error_exit			/* %ebx: no swapgs flag */
898	.endif
899END(\sym)
900.endm
901
902idtentry divide_error			do_divide_error			has_error_code=0
903idtentry overflow			do_overflow			has_error_code=0
904idtentry bounds				do_bounds			has_error_code=0
905idtentry invalid_op			do_invalid_op			has_error_code=0
906idtentry device_not_available		do_device_not_available		has_error_code=0
907idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
908idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
909idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
910idtentry segment_not_present		do_segment_not_present		has_error_code=1
911idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
912idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
913idtentry alignment_check		do_alignment_check		has_error_code=1
914idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
915
916
917	/*
918	 * Reload gs selector with exception handling
919	 * edi:  new selector
920	 */
921ENTRY(native_load_gs_index)
922	FRAME_BEGIN
923	pushfq
924	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
925	SWAPGS
926.Lgs_change:
927	movl	%edi, %gs
9282:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
929	SWAPGS
930	popfq
931	FRAME_END
932	ret
933ENDPROC(native_load_gs_index)
934EXPORT_SYMBOL(native_load_gs_index)
935
936	_ASM_EXTABLE(.Lgs_change, bad_gs)
937	.section .fixup, "ax"
938	/* running with kernelgs */
939bad_gs:
940	SWAPGS					/* switch back to user gs */
941.macro ZAP_GS
942	/* This can't be a string because the preprocessor needs to see it. */
943	movl $__USER_DS, %eax
944	movl %eax, %gs
945.endm
946	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
947	xorl	%eax, %eax
948	movl	%eax, %gs
949	jmp	2b
950	.previous
951
952/* Call softirq on interrupt stack. Interrupts are off. */
953ENTRY(do_softirq_own_stack)
954	pushq	%rbp
955	mov	%rsp, %rbp
956	ENTER_IRQ_STACK regs=0 old_rsp=%r11
957	call	__do_softirq
958	LEAVE_IRQ_STACK regs=0
959	leaveq
960	ret
961ENDPROC(do_softirq_own_stack)
962
963#ifdef CONFIG_XEN
964idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
965
966/*
967 * A note on the "critical region" in our callback handler.
968 * We want to avoid stacking callback handlers due to events occurring
969 * during handling of the last event. To do this, we keep events disabled
970 * until we've done all processing. HOWEVER, we must enable events before
971 * popping the stack frame (can't be done atomically) and so it would still
972 * be possible to get enough handler activations to overflow the stack.
973 * Although unlikely, bugs of that kind are hard to track down, so we'd
974 * like to avoid the possibility.
975 * So, on entry to the handler we detect whether we interrupted an
976 * existing activation in its critical region -- if so, we pop the current
977 * activation and restart the handler using the previous one.
978 */
979ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
980
981/*
982 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
983 * see the correct pointer to the pt_regs
984 */
985	UNWIND_HINT_FUNC
986	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
987	UNWIND_HINT_REGS
988
989	ENTER_IRQ_STACK old_rsp=%r10
990	call	xen_evtchn_do_upcall
991	LEAVE_IRQ_STACK
992
993#ifndef CONFIG_PREEMPT
994	call	xen_maybe_preempt_hcall
995#endif
996	jmp	error_exit
997END(xen_do_hypervisor_callback)
998
999/*
1000 * Hypervisor uses this for application faults while it executes.
1001 * We get here for two reasons:
1002 *  1. Fault while reloading DS, ES, FS or GS
1003 *  2. Fault while executing IRET
1004 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1005 * registers that could be reloaded and zeroed the others.
1006 * Category 2 we fix up by killing the current process. We cannot use the
1007 * normal Linux return path in this case because if we use the IRET hypercall
1008 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1009 * We distinguish between categories by comparing each saved segment register
1010 * with its current contents: any discrepancy means we in category 1.
1011 */
1012ENTRY(xen_failsafe_callback)
1013	UNWIND_HINT_EMPTY
1014	movl	%ds, %ecx
1015	cmpw	%cx, 0x10(%rsp)
1016	jne	1f
1017	movl	%es, %ecx
1018	cmpw	%cx, 0x18(%rsp)
1019	jne	1f
1020	movl	%fs, %ecx
1021	cmpw	%cx, 0x20(%rsp)
1022	jne	1f
1023	movl	%gs, %ecx
1024	cmpw	%cx, 0x28(%rsp)
1025	jne	1f
1026	/* All segments match their saved values => Category 2 (Bad IRET). */
1027	movq	(%rsp), %rcx
1028	movq	8(%rsp), %r11
1029	addq	$0x30, %rsp
1030	pushq	$0				/* RIP */
1031	UNWIND_HINT_IRET_REGS offset=8
1032	jmp	general_protection
10331:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1034	movq	(%rsp), %rcx
1035	movq	8(%rsp), %r11
1036	addq	$0x30, %rsp
1037	UNWIND_HINT_IRET_REGS
1038	pushq	$-1 /* orig_ax = -1 => not a system call */
1039	ALLOC_PT_GPREGS_ON_STACK
1040	SAVE_C_REGS
1041	SAVE_EXTRA_REGS
1042	ENCODE_FRAME_POINTER
1043	jmp	error_exit
1044END(xen_failsafe_callback)
1045
1046apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1047	xen_hvm_callback_vector xen_evtchn_do_upcall
1048
1049#endif /* CONFIG_XEN */
1050
1051#if IS_ENABLED(CONFIG_HYPERV)
1052apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1053	hyperv_callback_vector hyperv_vector_handler
1054#endif /* CONFIG_HYPERV */
1055
1056idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1057idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1058idtentry stack_segment		do_stack_segment	has_error_code=1
1059
1060#ifdef CONFIG_XEN
1061idtentry xendebug		do_debug		has_error_code=0
1062idtentry xenint3		do_int3			has_error_code=0
1063#endif
1064
1065idtentry general_protection	do_general_protection	has_error_code=1
1066idtentry page_fault		do_page_fault		has_error_code=1
1067
1068#ifdef CONFIG_KVM_GUEST
1069idtentry async_page_fault	do_async_page_fault	has_error_code=1
1070#endif
1071
1072#ifdef CONFIG_X86_MCE
1073idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1074#endif
1075
1076/*
1077 * Save all registers in pt_regs, and switch gs if needed.
1078 * Use slow, but surefire "are we in kernel?" check.
1079 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1080 */
1081ENTRY(paranoid_entry)
1082	UNWIND_HINT_FUNC
1083	cld
1084	SAVE_C_REGS 8
1085	SAVE_EXTRA_REGS 8
1086	ENCODE_FRAME_POINTER 8
1087	movl	$1, %ebx
1088	movl	$MSR_GS_BASE, %ecx
1089	rdmsr
1090	testl	%edx, %edx
1091	js	1f				/* negative -> in kernel */
1092	SWAPGS
1093	xorl	%ebx, %ebx
10941:	ret
1095END(paranoid_entry)
1096
1097/*
1098 * "Paranoid" exit path from exception stack.  This is invoked
1099 * only on return from non-NMI IST interrupts that came
1100 * from kernel space.
1101 *
1102 * We may be returning to very strange contexts (e.g. very early
1103 * in syscall entry), so checking for preemption here would
1104 * be complicated.  Fortunately, we there's no good reason
1105 * to try to handle preemption here.
1106 *
1107 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1108 */
1109ENTRY(paranoid_exit)
1110	UNWIND_HINT_REGS
1111	DISABLE_INTERRUPTS(CLBR_ANY)
1112	TRACE_IRQS_OFF_DEBUG
1113	testl	%ebx, %ebx			/* swapgs needed? */
1114	jnz	paranoid_exit_no_swapgs
1115	TRACE_IRQS_IRETQ
1116	SWAPGS_UNSAFE_STACK
1117	jmp	paranoid_exit_restore
1118paranoid_exit_no_swapgs:
1119	TRACE_IRQS_IRETQ_DEBUG
1120paranoid_exit_restore:
1121	RESTORE_EXTRA_REGS
1122	RESTORE_C_REGS
1123	REMOVE_PT_GPREGS_FROM_STACK 8
1124	INTERRUPT_RETURN
1125END(paranoid_exit)
1126
1127/*
1128 * Save all registers in pt_regs, and switch gs if needed.
1129 * Return: EBX=0: came from user mode; EBX=1: otherwise
1130 */
1131ENTRY(error_entry)
1132	UNWIND_HINT_FUNC
1133	cld
1134	SAVE_C_REGS 8
1135	SAVE_EXTRA_REGS 8
1136	ENCODE_FRAME_POINTER 8
1137	xorl	%ebx, %ebx
1138	testb	$3, CS+8(%rsp)
1139	jz	.Lerror_kernelspace
1140
1141	/*
1142	 * We entered from user mode or we're pretending to have entered
1143	 * from user mode due to an IRET fault.
1144	 */
1145	SWAPGS
1146
1147.Lerror_entry_from_usermode_after_swapgs:
1148	/*
1149	 * We need to tell lockdep that IRQs are off.  We can't do this until
1150	 * we fix gsbase, and we should do it before enter_from_user_mode
1151	 * (which can take locks).
1152	 */
1153	TRACE_IRQS_OFF
1154	CALL_enter_from_user_mode
1155	ret
1156
1157.Lerror_entry_done:
1158	TRACE_IRQS_OFF
1159	ret
1160
1161	/*
1162	 * There are two places in the kernel that can potentially fault with
1163	 * usergs. Handle them here.  B stepping K8s sometimes report a
1164	 * truncated RIP for IRET exceptions returning to compat mode. Check
1165	 * for these here too.
1166	 */
1167.Lerror_kernelspace:
1168	incl	%ebx
1169	leaq	native_irq_return_iret(%rip), %rcx
1170	cmpq	%rcx, RIP+8(%rsp)
1171	je	.Lerror_bad_iret
1172	movl	%ecx, %eax			/* zero extend */
1173	cmpq	%rax, RIP+8(%rsp)
1174	je	.Lbstep_iret
1175	cmpq	$.Lgs_change, RIP+8(%rsp)
1176	jne	.Lerror_entry_done
1177
1178	/*
1179	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1180	 * gsbase and proceed.  We'll fix up the exception and land in
1181	 * .Lgs_change's error handler with kernel gsbase.
1182	 */
1183	SWAPGS
1184	jmp .Lerror_entry_done
1185
1186.Lbstep_iret:
1187	/* Fix truncated RIP */
1188	movq	%rcx, RIP+8(%rsp)
1189	/* fall through */
1190
1191.Lerror_bad_iret:
1192	/*
1193	 * We came from an IRET to user mode, so we have user gsbase.
1194	 * Switch to kernel gsbase:
1195	 */
1196	SWAPGS
1197
1198	/*
1199	 * Pretend that the exception came from user mode: set up pt_regs
1200	 * as if we faulted immediately after IRET and clear EBX so that
1201	 * error_exit knows that we will be returning to user mode.
1202	 */
1203	mov	%rsp, %rdi
1204	call	fixup_bad_iret
1205	mov	%rax, %rsp
1206	decl	%ebx
1207	jmp	.Lerror_entry_from_usermode_after_swapgs
1208END(error_entry)
1209
1210
1211/*
1212 * On entry, EBX is a "return to kernel mode" flag:
1213 *   1: already in kernel mode, don't need SWAPGS
1214 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1215 */
1216ENTRY(error_exit)
1217	UNWIND_HINT_REGS
1218	DISABLE_INTERRUPTS(CLBR_ANY)
1219	TRACE_IRQS_OFF
1220	testl	%ebx, %ebx
1221	jnz	retint_kernel
1222	jmp	retint_user
1223END(error_exit)
1224
1225/* Runs on exception stack */
1226/* XXX: broken on Xen PV */
1227ENTRY(nmi)
1228	UNWIND_HINT_IRET_REGS
1229	/*
1230	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1231	 * the iretq it performs will take us out of NMI context.
1232	 * This means that we can have nested NMIs where the next
1233	 * NMI is using the top of the stack of the previous NMI. We
1234	 * can't let it execute because the nested NMI will corrupt the
1235	 * stack of the previous NMI. NMI handlers are not re-entrant
1236	 * anyway.
1237	 *
1238	 * To handle this case we do the following:
1239	 *  Check the a special location on the stack that contains
1240	 *  a variable that is set when NMIs are executing.
1241	 *  The interrupted task's stack is also checked to see if it
1242	 *  is an NMI stack.
1243	 *  If the variable is not set and the stack is not the NMI
1244	 *  stack then:
1245	 *    o Set the special variable on the stack
1246	 *    o Copy the interrupt frame into an "outermost" location on the
1247	 *      stack
1248	 *    o Copy the interrupt frame into an "iret" location on the stack
1249	 *    o Continue processing the NMI
1250	 *  If the variable is set or the previous stack is the NMI stack:
1251	 *    o Modify the "iret" location to jump to the repeat_nmi
1252	 *    o return back to the first NMI
1253	 *
1254	 * Now on exit of the first NMI, we first clear the stack variable
1255	 * The NMI stack will tell any nested NMIs at that point that it is
1256	 * nested. Then we pop the stack normally with iret, and if there was
1257	 * a nested NMI that updated the copy interrupt stack frame, a
1258	 * jump will be made to the repeat_nmi code that will handle the second
1259	 * NMI.
1260	 *
1261	 * However, espfix prevents us from directly returning to userspace
1262	 * with a single IRET instruction.  Similarly, IRET to user mode
1263	 * can fault.  We therefore handle NMIs from user space like
1264	 * other IST entries.
1265	 */
1266
1267	ASM_CLAC
1268
1269	/* Use %rdx as our temp variable throughout */
1270	pushq	%rdx
1271
1272	testb	$3, CS-RIP+8(%rsp)
1273	jz	.Lnmi_from_kernel
1274
1275	/*
1276	 * NMI from user mode.  We need to run on the thread stack, but we
1277	 * can't go through the normal entry paths: NMIs are masked, and
1278	 * we don't want to enable interrupts, because then we'll end
1279	 * up in an awkward situation in which IRQs are on but NMIs
1280	 * are off.
1281	 *
1282	 * We also must not push anything to the stack before switching
1283	 * stacks lest we corrupt the "NMI executing" variable.
1284	 */
1285
1286	SWAPGS_UNSAFE_STACK
1287	cld
1288	movq	%rsp, %rdx
1289	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1290	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1291	pushq	5*8(%rdx)	/* pt_regs->ss */
1292	pushq	4*8(%rdx)	/* pt_regs->rsp */
1293	pushq	3*8(%rdx)	/* pt_regs->flags */
1294	pushq	2*8(%rdx)	/* pt_regs->cs */
1295	pushq	1*8(%rdx)	/* pt_regs->rip */
1296	UNWIND_HINT_IRET_REGS
1297	pushq   $-1		/* pt_regs->orig_ax */
1298	pushq   %rdi		/* pt_regs->di */
1299	pushq   %rsi		/* pt_regs->si */
1300	pushq   (%rdx)		/* pt_regs->dx */
1301	pushq   %rcx		/* pt_regs->cx */
1302	pushq   %rax		/* pt_regs->ax */
1303	pushq   %r8		/* pt_regs->r8 */
1304	pushq   %r9		/* pt_regs->r9 */
1305	pushq   %r10		/* pt_regs->r10 */
1306	pushq   %r11		/* pt_regs->r11 */
1307	pushq	%rbx		/* pt_regs->rbx */
1308	pushq	%rbp		/* pt_regs->rbp */
1309	pushq	%r12		/* pt_regs->r12 */
1310	pushq	%r13		/* pt_regs->r13 */
1311	pushq	%r14		/* pt_regs->r14 */
1312	pushq	%r15		/* pt_regs->r15 */
1313	UNWIND_HINT_REGS
1314	ENCODE_FRAME_POINTER
1315
1316	/*
1317	 * At this point we no longer need to worry about stack damage
1318	 * due to nesting -- we're on the normal thread stack and we're
1319	 * done with the NMI stack.
1320	 */
1321
1322	movq	%rsp, %rdi
1323	movq	$-1, %rsi
1324	call	do_nmi
1325
1326	/*
1327	 * Return back to user mode.  We must *not* do the normal exit
1328	 * work, because we don't want to enable interrupts.
1329	 */
1330	SWAPGS
1331	jmp	restore_regs_and_iret
1332
1333.Lnmi_from_kernel:
1334	/*
1335	 * Here's what our stack frame will look like:
1336	 * +---------------------------------------------------------+
1337	 * | original SS                                             |
1338	 * | original Return RSP                                     |
1339	 * | original RFLAGS                                         |
1340	 * | original CS                                             |
1341	 * | original RIP                                            |
1342	 * +---------------------------------------------------------+
1343	 * | temp storage for rdx                                    |
1344	 * +---------------------------------------------------------+
1345	 * | "NMI executing" variable                                |
1346	 * +---------------------------------------------------------+
1347	 * | iret SS          } Copied from "outermost" frame        |
1348	 * | iret Return RSP  } on each loop iteration; overwritten  |
1349	 * | iret RFLAGS      } by a nested NMI to force another     |
1350	 * | iret CS          } iteration if needed.                 |
1351	 * | iret RIP         }                                      |
1352	 * +---------------------------------------------------------+
1353	 * | outermost SS          } initialized in first_nmi;       |
1354	 * | outermost Return RSP  } will not be changed before      |
1355	 * | outermost RFLAGS      } NMI processing is done.         |
1356	 * | outermost CS          } Copied to "iret" frame on each  |
1357	 * | outermost RIP         } iteration.                      |
1358	 * +---------------------------------------------------------+
1359	 * | pt_regs                                                 |
1360	 * +---------------------------------------------------------+
1361	 *
1362	 * The "original" frame is used by hardware.  Before re-enabling
1363	 * NMIs, we need to be done with it, and we need to leave enough
1364	 * space for the asm code here.
1365	 *
1366	 * We return by executing IRET while RSP points to the "iret" frame.
1367	 * That will either return for real or it will loop back into NMI
1368	 * processing.
1369	 *
1370	 * The "outermost" frame is copied to the "iret" frame on each
1371	 * iteration of the loop, so each iteration starts with the "iret"
1372	 * frame pointing to the final return target.
1373	 */
1374
1375	/*
1376	 * Determine whether we're a nested NMI.
1377	 *
1378	 * If we interrupted kernel code between repeat_nmi and
1379	 * end_repeat_nmi, then we are a nested NMI.  We must not
1380	 * modify the "iret" frame because it's being written by
1381	 * the outer NMI.  That's okay; the outer NMI handler is
1382	 * about to about to call do_nmi anyway, so we can just
1383	 * resume the outer NMI.
1384	 */
1385
1386	movq	$repeat_nmi, %rdx
1387	cmpq	8(%rsp), %rdx
1388	ja	1f
1389	movq	$end_repeat_nmi, %rdx
1390	cmpq	8(%rsp), %rdx
1391	ja	nested_nmi_out
13921:
1393
1394	/*
1395	 * Now check "NMI executing".  If it's set, then we're nested.
1396	 * This will not detect if we interrupted an outer NMI just
1397	 * before IRET.
1398	 */
1399	cmpl	$1, -8(%rsp)
1400	je	nested_nmi
1401
1402	/*
1403	 * Now test if the previous stack was an NMI stack.  This covers
1404	 * the case where we interrupt an outer NMI after it clears
1405	 * "NMI executing" but before IRET.  We need to be careful, though:
1406	 * there is one case in which RSP could point to the NMI stack
1407	 * despite there being no NMI active: naughty userspace controls
1408	 * RSP at the very beginning of the SYSCALL targets.  We can
1409	 * pull a fast one on naughty userspace, though: we program
1410	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1411	 * if it controls the kernel's RSP.  We set DF before we clear
1412	 * "NMI executing".
1413	 */
1414	lea	6*8(%rsp), %rdx
1415	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1416	cmpq	%rdx, 4*8(%rsp)
1417	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1418	ja	first_nmi
1419
1420	subq	$EXCEPTION_STKSZ, %rdx
1421	cmpq	%rdx, 4*8(%rsp)
1422	/* If it is below the NMI stack, it is a normal NMI */
1423	jb	first_nmi
1424
1425	/* Ah, it is within the NMI stack. */
1426
1427	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1428	jz	first_nmi	/* RSP was user controlled. */
1429
1430	/* This is a nested NMI. */
1431
1432nested_nmi:
1433	/*
1434	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1435	 * iteration of NMI handling.
1436	 */
1437	subq	$8, %rsp
1438	leaq	-10*8(%rsp), %rdx
1439	pushq	$__KERNEL_DS
1440	pushq	%rdx
1441	pushfq
1442	pushq	$__KERNEL_CS
1443	pushq	$repeat_nmi
1444
1445	/* Put stack back */
1446	addq	$(6*8), %rsp
1447
1448nested_nmi_out:
1449	popq	%rdx
1450
1451	/* We are returning to kernel mode, so this cannot result in a fault. */
1452	INTERRUPT_RETURN
1453
1454first_nmi:
1455	/* Restore rdx. */
1456	movq	(%rsp), %rdx
1457
1458	/* Make room for "NMI executing". */
1459	pushq	$0
1460
1461	/* Leave room for the "iret" frame */
1462	subq	$(5*8), %rsp
1463
1464	/* Copy the "original" frame to the "outermost" frame */
1465	.rept 5
1466	pushq	11*8(%rsp)
1467	.endr
1468	UNWIND_HINT_IRET_REGS
1469
1470	/* Everything up to here is safe from nested NMIs */
1471
1472#ifdef CONFIG_DEBUG_ENTRY
1473	/*
1474	 * For ease of testing, unmask NMIs right away.  Disabled by
1475	 * default because IRET is very expensive.
1476	 */
1477	pushq	$0		/* SS */
1478	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1479	addq	$8, (%rsp)	/* Fix up RSP */
1480	pushfq			/* RFLAGS */
1481	pushq	$__KERNEL_CS	/* CS */
1482	pushq	$1f		/* RIP */
1483	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1484	UNWIND_HINT_IRET_REGS
14851:
1486#endif
1487
1488repeat_nmi:
1489	/*
1490	 * If there was a nested NMI, the first NMI's iret will return
1491	 * here. But NMIs are still enabled and we can take another
1492	 * nested NMI. The nested NMI checks the interrupted RIP to see
1493	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1494	 * it will just return, as we are about to repeat an NMI anyway.
1495	 * This makes it safe to copy to the stack frame that a nested
1496	 * NMI will update.
1497	 *
1498	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1499	 * we're repeating an NMI, gsbase has the same value that it had on
1500	 * the first iteration.  paranoid_entry will load the kernel
1501	 * gsbase if needed before we call do_nmi.  "NMI executing"
1502	 * is zero.
1503	 */
1504	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1505
1506	/*
1507	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1508	 * here must not modify the "iret" frame while we're writing to
1509	 * it or it will end up containing garbage.
1510	 */
1511	addq	$(10*8), %rsp
1512	.rept 5
1513	pushq	-6*8(%rsp)
1514	.endr
1515	subq	$(5*8), %rsp
1516end_repeat_nmi:
1517
1518	/*
1519	 * Everything below this point can be preempted by a nested NMI.
1520	 * If this happens, then the inner NMI will change the "iret"
1521	 * frame to point back to repeat_nmi.
1522	 */
1523	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1524	ALLOC_PT_GPREGS_ON_STACK
1525
1526	/*
1527	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1528	 * as we should not be calling schedule in NMI context.
1529	 * Even with normal interrupts enabled. An NMI should not be
1530	 * setting NEED_RESCHED or anything that normal interrupts and
1531	 * exceptions might do.
1532	 */
1533	call	paranoid_entry
1534	UNWIND_HINT_REGS
1535
1536	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1537	movq	%rsp, %rdi
1538	movq	$-1, %rsi
1539	call	do_nmi
1540
1541	testl	%ebx, %ebx			/* swapgs needed? */
1542	jnz	nmi_restore
1543nmi_swapgs:
1544	SWAPGS_UNSAFE_STACK
1545nmi_restore:
1546	RESTORE_EXTRA_REGS
1547	RESTORE_C_REGS
1548
1549	/* Point RSP at the "iret" frame. */
1550	REMOVE_PT_GPREGS_FROM_STACK 6*8
1551
1552	/*
1553	 * Clear "NMI executing".  Set DF first so that we can easily
1554	 * distinguish the remaining code between here and IRET from
1555	 * the SYSCALL entry and exit paths.  On a native kernel, we
1556	 * could just inspect RIP, but, on paravirt kernels,
1557	 * INTERRUPT_RETURN can translate into a jump into a
1558	 * hypercall page.
1559	 */
1560	std
1561	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1562
1563	/*
1564	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1565	 * stack in a single instruction.  We are returning to kernel
1566	 * mode, so this cannot result in a fault.
1567	 */
1568	INTERRUPT_RETURN
1569END(nmi)
1570
1571ENTRY(ignore_sysret)
1572	UNWIND_HINT_EMPTY
1573	mov	$-ENOSYS, %eax
1574	sysret
1575END(ignore_sysret)
1576
1577ENTRY(rewind_stack_do_exit)
1578	UNWIND_HINT_FUNC
1579	/* Prevent any naive code from trying to unwind to our caller. */
1580	xorl	%ebp, %ebp
1581
1582	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1583	leaq	-PTREGS_SIZE(%rax), %rsp
1584	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1585
1586	call	do_exit
1587END(rewind_stack_do_exit)
1588