xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 52cdded0)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT
50SYM_CODE_START(native_usergs_sysret64)
51	UNWIND_HINT_EMPTY
52	swapgs
53	sysretq
54SYM_CODE_END(native_usergs_sysret64)
55#endif /* CONFIG_PARAVIRT */
56
57/*
58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
59 *
60 * This is the only entry point used for 64-bit system calls.  The
61 * hardware interface is reasonably well designed and the register to
62 * argument mapping Linux uses fits well with the registers that are
63 * available when SYSCALL is used.
64 *
65 * SYSCALL instructions can be found inlined in libc implementations as
66 * well as some other programs and libraries.  There are also a handful
67 * of SYSCALL instructions in the vDSO used, for example, as a
68 * clock_gettimeofday fallback.
69 *
70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
71 * then loads new ss, cs, and rip from previously programmed MSRs.
72 * rflags gets masked by a value from another MSR (so CLD and CLAC
73 * are not needed). SYSCALL does not save anything on the stack
74 * and does not change rsp.
75 *
76 * Registers on entry:
77 * rax  system call number
78 * rcx  return address
79 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
80 * rdi  arg0
81 * rsi  arg1
82 * rdx  arg2
83 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
84 * r8   arg4
85 * r9   arg5
86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
87 *
88 * Only called from user space.
89 *
90 * When user can change pt_regs->foo always force IRET. That is because
91 * it deals with uncanonical addresses better. SYSRET has trouble
92 * with them due to bugs in both AMD and Intel CPUs.
93 */
94
95SYM_CODE_START(entry_SYSCALL_64)
96	UNWIND_HINT_EMPTY
97
98	swapgs
99	/* tss.sp2 is scratch space. */
100	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
101	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
102	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
103
104	/* Construct struct pt_regs on stack */
105	pushq	$__USER_DS				/* pt_regs->ss */
106	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
107	pushq	%r11					/* pt_regs->flags */
108	pushq	$__USER_CS				/* pt_regs->cs */
109	pushq	%rcx					/* pt_regs->ip */
110SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
111	pushq	%rax					/* pt_regs->orig_ax */
112
113	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
114
115	/* IRQs are off. */
116	movq	%rax, %rdi
117	movq	%rsp, %rsi
118	call	do_syscall_64		/* returns with IRQs disabled */
119
120	/*
121	 * Try to use SYSRET instead of IRET if we're returning to
122	 * a completely clean 64-bit userspace context.  If we're not,
123	 * go to the slow exit path.
124	 */
125	movq	RCX(%rsp), %rcx
126	movq	RIP(%rsp), %r11
127
128	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
129	jne	swapgs_restore_regs_and_return_to_usermode
130
131	/*
132	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
133	 * in kernel space.  This essentially lets the user take over
134	 * the kernel, since userspace controls RSP.
135	 *
136	 * If width of "canonical tail" ever becomes variable, this will need
137	 * to be updated to remain correct on both old and new CPUs.
138	 *
139	 * Change top bits to match most significant bit (47th or 56th bit
140	 * depending on paging mode) in the address.
141	 */
142#ifdef CONFIG_X86_5LEVEL
143	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
144		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
145#else
146	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
147	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
148#endif
149
150	/* If this changed %rcx, it was not canonical */
151	cmpq	%rcx, %r11
152	jne	swapgs_restore_regs_and_return_to_usermode
153
154	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
155	jne	swapgs_restore_regs_and_return_to_usermode
156
157	movq	R11(%rsp), %r11
158	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	/*
162	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
163	 * restore RF properly. If the slowpath sets it for whatever reason, we
164	 * need to restore it correctly.
165	 *
166	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
167	 * trap from userspace immediately after SYSRET.  This would cause an
168	 * infinite loop whenever #DB happens with register state that satisfies
169	 * the opportunistic SYSRET conditions.  For example, single-stepping
170	 * this user code:
171	 *
172	 *           movq	$stuck_here, %rcx
173	 *           pushfq
174	 *           popq %r11
175	 *   stuck_here:
176	 *
177	 * would never get past 'stuck_here'.
178	 */
179	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
180	jnz	swapgs_restore_regs_and_return_to_usermode
181
182	/* nothing to check for RSP */
183
184	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
185	jne	swapgs_restore_regs_and_return_to_usermode
186
187	/*
188	 * We win! This label is here just for ease of understanding
189	 * perf profiles. Nothing jumps here.
190	 */
191syscall_return_via_sysret:
192	/* rcx and r11 are already restored (see code above) */
193	POP_REGS pop_rdi=0 skip_r11rcx=1
194
195	/*
196	 * Now all regs are restored except RSP and RDI.
197	 * Save old stack pointer and switch to trampoline stack.
198	 */
199	movq	%rsp, %rdi
200	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
201	UNWIND_HINT_EMPTY
202
203	pushq	RSP-RDI(%rdi)	/* RSP */
204	pushq	(%rdi)		/* RDI */
205
206	/*
207	 * We are on the trampoline stack.  All regs except RDI are live.
208	 * We can do future final exit work right here.
209	 */
210	STACKLEAK_ERASE_NOCLOBBER
211
212	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
213
214	popq	%rdi
215	popq	%rsp
216	USERGS_SYSRET64
217SYM_CODE_END(entry_SYSCALL_64)
218
219/*
220 * %rdi: prev task
221 * %rsi: next task
222 */
223.pushsection .text, "ax"
224SYM_FUNC_START(__switch_to_asm)
225	/*
226	 * Save callee-saved registers
227	 * This must match the order in inactive_task_frame
228	 */
229	pushq	%rbp
230	pushq	%rbx
231	pushq	%r12
232	pushq	%r13
233	pushq	%r14
234	pushq	%r15
235
236	/* switch stack */
237	movq	%rsp, TASK_threadsp(%rdi)
238	movq	TASK_threadsp(%rsi), %rsp
239
240#ifdef CONFIG_STACKPROTECTOR
241	movq	TASK_stack_canary(%rsi), %rbx
242	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
243#endif
244
245#ifdef CONFIG_RETPOLINE
246	/*
247	 * When switching from a shallower to a deeper call stack
248	 * the RSB may either underflow or use entries populated
249	 * with userspace addresses. On CPUs where those concerns
250	 * exist, overwrite the RSB with entries which capture
251	 * speculative execution to prevent attack.
252	 */
253	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
254#endif
255
256	/* restore callee-saved registers */
257	popq	%r15
258	popq	%r14
259	popq	%r13
260	popq	%r12
261	popq	%rbx
262	popq	%rbp
263
264	jmp	__switch_to
265SYM_FUNC_END(__switch_to_asm)
266.popsection
267
268/*
269 * A newly forked process directly context switches into this address.
270 *
271 * rax: prev task we switched from
272 * rbx: kernel thread func (NULL for user thread)
273 * r12: kernel thread arg
274 */
275.pushsection .text, "ax"
276SYM_CODE_START(ret_from_fork)
277	UNWIND_HINT_EMPTY
278	movq	%rax, %rdi
279	call	schedule_tail			/* rdi: 'prev' task parameter */
280
281	testq	%rbx, %rbx			/* from kernel_thread? */
282	jnz	1f				/* kernel threads are uncommon */
283
2842:
285	UNWIND_HINT_REGS
286	movq	%rsp, %rdi
287	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
288	jmp	swapgs_restore_regs_and_return_to_usermode
289
2901:
291	/* kernel thread */
292	UNWIND_HINT_EMPTY
293	movq	%r12, %rdi
294	CALL_NOSPEC rbx
295	/*
296	 * A kernel thread is allowed to return here after successfully
297	 * calling kernel_execve().  Exit to userspace to complete the execve()
298	 * syscall.
299	 */
300	movq	$0, RAX(%rsp)
301	jmp	2b
302SYM_CODE_END(ret_from_fork)
303.popsection
304
305.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
306#ifdef CONFIG_DEBUG_ENTRY
307	pushq %rax
308	SAVE_FLAGS(CLBR_RAX)
309	testl $X86_EFLAGS_IF, %eax
310	jz .Lokay_\@
311	ud2
312.Lokay_\@:
313	popq %rax
314#endif
315.endm
316
317/**
318 * idtentry_body - Macro to emit code calling the C function
319 * @cfunc:		C function to be called
320 * @has_error_code:	Hardware pushed error code on stack
321 */
322.macro idtentry_body cfunc has_error_code:req
323
324	call	error_entry
325	UNWIND_HINT_REGS
326
327	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
328
329	.if \has_error_code == 1
330		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
331		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
332	.endif
333
334	call	\cfunc
335
336	jmp	error_return
337.endm
338
339/**
340 * idtentry - Macro to generate entry stubs for simple IDT entries
341 * @vector:		Vector number
342 * @asmsym:		ASM symbol for the entry point
343 * @cfunc:		C function to be called
344 * @has_error_code:	Hardware pushed error code on stack
345 *
346 * The macro emits code to set up the kernel context for straight forward
347 * and simple IDT entries. No IST stack, no paranoid entry checks.
348 */
349.macro idtentry vector asmsym cfunc has_error_code:req
350SYM_CODE_START(\asmsym)
351	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
352	ASM_CLAC
353
354	.if \has_error_code == 0
355		pushq	$-1			/* ORIG_RAX: no syscall to restart */
356	.endif
357
358	.if \vector == X86_TRAP_BP
359		/*
360		 * If coming from kernel space, create a 6-word gap to allow the
361		 * int3 handler to emulate a call instruction.
362		 */
363		testb	$3, CS-ORIG_RAX(%rsp)
364		jnz	.Lfrom_usermode_no_gap_\@
365		.rept	6
366		pushq	5*8(%rsp)
367		.endr
368		UNWIND_HINT_IRET_REGS offset=8
369.Lfrom_usermode_no_gap_\@:
370	.endif
371
372	idtentry_body \cfunc \has_error_code
373
374_ASM_NOKPROBE(\asmsym)
375SYM_CODE_END(\asmsym)
376.endm
377
378/*
379 * Interrupt entry/exit.
380 *
381 + The interrupt stubs push (vector) onto the stack, which is the error_code
382 * position of idtentry exceptions, and jump to one of the two idtentry points
383 * (common/spurious).
384 *
385 * common_interrupt is a hotpath, align it to a cache line
386 */
387.macro idtentry_irq vector cfunc
388	.p2align CONFIG_X86_L1_CACHE_SHIFT
389	idtentry \vector asm_\cfunc \cfunc has_error_code=1
390.endm
391
392/*
393 * System vectors which invoke their handlers directly and are not
394 * going through the regular common device interrupt handling code.
395 */
396.macro idtentry_sysvec vector cfunc
397	idtentry \vector asm_\cfunc \cfunc has_error_code=0
398.endm
399
400/**
401 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
402 * @vector:		Vector number
403 * @asmsym:		ASM symbol for the entry point
404 * @cfunc:		C function to be called
405 *
406 * The macro emits code to set up the kernel context for #MC and #DB
407 *
408 * If the entry comes from user space it uses the normal entry path
409 * including the return to user space work and preemption checks on
410 * exit.
411 *
412 * If hits in kernel mode then it needs to go through the paranoid
413 * entry as the exception can hit any random state. No preemption
414 * check on exit to keep the paranoid path simple.
415 */
416.macro idtentry_mce_db vector asmsym cfunc
417SYM_CODE_START(\asmsym)
418	UNWIND_HINT_IRET_REGS
419	ASM_CLAC
420
421	pushq	$-1			/* ORIG_RAX: no syscall to restart */
422
423	/*
424	 * If the entry is from userspace, switch stacks and treat it as
425	 * a normal entry.
426	 */
427	testb	$3, CS-ORIG_RAX(%rsp)
428	jnz	.Lfrom_usermode_switch_stack_\@
429
430	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
431	call	paranoid_entry
432
433	UNWIND_HINT_REGS
434
435	movq	%rsp, %rdi		/* pt_regs pointer */
436
437	call	\cfunc
438
439	jmp	paranoid_exit
440
441	/* Switch to the regular task stack and use the noist entry point */
442.Lfrom_usermode_switch_stack_\@:
443	idtentry_body noist_\cfunc, has_error_code=0
444
445_ASM_NOKPROBE(\asmsym)
446SYM_CODE_END(\asmsym)
447.endm
448
449/*
450 * Double fault entry. Straight paranoid. No checks from which context
451 * this comes because for the espfix induced #DF this would do the wrong
452 * thing.
453 */
454.macro idtentry_df vector asmsym cfunc
455SYM_CODE_START(\asmsym)
456	UNWIND_HINT_IRET_REGS offset=8
457	ASM_CLAC
458
459	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
460	call	paranoid_entry
461	UNWIND_HINT_REGS
462
463	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
464	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
465	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
466	call	\cfunc
467
468	jmp	paranoid_exit
469
470_ASM_NOKPROBE(\asmsym)
471SYM_CODE_END(\asmsym)
472.endm
473
474/*
475 * Include the defines which emit the idt entries which are shared
476 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
477 * so the stacktrace boundary checks work.
478 */
479	.align 16
480	.globl __irqentry_text_start
481__irqentry_text_start:
482
483#include <asm/idtentry.h>
484
485	.align 16
486	.globl __irqentry_text_end
487__irqentry_text_end:
488
489SYM_CODE_START_LOCAL(common_interrupt_return)
490SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
491#ifdef CONFIG_DEBUG_ENTRY
492	/* Assert that pt_regs indicates user mode. */
493	testb	$3, CS(%rsp)
494	jnz	1f
495	ud2
4961:
497#endif
498	POP_REGS pop_rdi=0
499
500	/*
501	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
502	 * Save old stack pointer and switch to trampoline stack.
503	 */
504	movq	%rsp, %rdi
505	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
506	UNWIND_HINT_EMPTY
507
508	/* Copy the IRET frame to the trampoline stack. */
509	pushq	6*8(%rdi)	/* SS */
510	pushq	5*8(%rdi)	/* RSP */
511	pushq	4*8(%rdi)	/* EFLAGS */
512	pushq	3*8(%rdi)	/* CS */
513	pushq	2*8(%rdi)	/* RIP */
514
515	/* Push user RDI on the trampoline stack. */
516	pushq	(%rdi)
517
518	/*
519	 * We are on the trampoline stack.  All regs except RDI are live.
520	 * We can do future final exit work right here.
521	 */
522	STACKLEAK_ERASE_NOCLOBBER
523
524	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
525
526	/* Restore RDI. */
527	popq	%rdi
528	SWAPGS
529	INTERRUPT_RETURN
530
531
532SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
533#ifdef CONFIG_DEBUG_ENTRY
534	/* Assert that pt_regs indicates kernel mode. */
535	testb	$3, CS(%rsp)
536	jz	1f
537	ud2
5381:
539#endif
540	POP_REGS
541	addq	$8, %rsp	/* skip regs->orig_ax */
542	/*
543	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
544	 * when returning from IPI handler.
545	 */
546	INTERRUPT_RETURN
547
548SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
549	UNWIND_HINT_IRET_REGS
550	/*
551	 * Are we returning to a stack segment from the LDT?  Note: in
552	 * 64-bit mode SS:RSP on the exception stack is always valid.
553	 */
554#ifdef CONFIG_X86_ESPFIX64
555	testb	$4, (SS-RIP)(%rsp)
556	jnz	native_irq_return_ldt
557#endif
558
559SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
560	/*
561	 * This may fault.  Non-paranoid faults on return to userspace are
562	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
563	 * Double-faults due to espfix64 are handled in exc_double_fault.
564	 * Other faults here are fatal.
565	 */
566	iretq
567
568#ifdef CONFIG_X86_ESPFIX64
569native_irq_return_ldt:
570	/*
571	 * We are running with user GSBASE.  All GPRs contain their user
572	 * values.  We have a percpu ESPFIX stack that is eight slots
573	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
574	 * of the ESPFIX stack.
575	 *
576	 * We clobber RAX and RDI in this code.  We stash RDI on the
577	 * normal stack and RAX on the ESPFIX stack.
578	 *
579	 * The ESPFIX stack layout we set up looks like this:
580	 *
581	 * --- top of ESPFIX stack ---
582	 * SS
583	 * RSP
584	 * RFLAGS
585	 * CS
586	 * RIP  <-- RSP points here when we're done
587	 * RAX  <-- espfix_waddr points here
588	 * --- bottom of ESPFIX stack ---
589	 */
590
591	pushq	%rdi				/* Stash user RDI */
592	SWAPGS					/* to kernel GS */
593	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
594
595	movq	PER_CPU_VAR(espfix_waddr), %rdi
596	movq	%rax, (0*8)(%rdi)		/* user RAX */
597	movq	(1*8)(%rsp), %rax		/* user RIP */
598	movq	%rax, (1*8)(%rdi)
599	movq	(2*8)(%rsp), %rax		/* user CS */
600	movq	%rax, (2*8)(%rdi)
601	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
602	movq	%rax, (3*8)(%rdi)
603	movq	(5*8)(%rsp), %rax		/* user SS */
604	movq	%rax, (5*8)(%rdi)
605	movq	(4*8)(%rsp), %rax		/* user RSP */
606	movq	%rax, (4*8)(%rdi)
607	/* Now RAX == RSP. */
608
609	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
610
611	/*
612	 * espfix_stack[31:16] == 0.  The page tables are set up such that
613	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
614	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
615	 * the same page.  Set up RSP so that RSP[31:16] contains the
616	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
617	 * still points to an RO alias of the ESPFIX stack.
618	 */
619	orq	PER_CPU_VAR(espfix_stack), %rax
620
621	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
622	SWAPGS					/* to user GS */
623	popq	%rdi				/* Restore user RDI */
624
625	movq	%rax, %rsp
626	UNWIND_HINT_IRET_REGS offset=8
627
628	/*
629	 * At this point, we cannot write to the stack any more, but we can
630	 * still read.
631	 */
632	popq	%rax				/* Restore user RAX */
633
634	/*
635	 * RSP now points to an ordinary IRET frame, except that the page
636	 * is read-only and RSP[31:16] are preloaded with the userspace
637	 * values.  We can now IRET back to userspace.
638	 */
639	jmp	native_irq_return_iret
640#endif
641SYM_CODE_END(common_interrupt_return)
642_ASM_NOKPROBE(common_interrupt_return)
643
644/*
645 * Reload gs selector with exception handling
646 * edi:  new selector
647 *
648 * Is in entry.text as it shouldn't be instrumented.
649 */
650SYM_FUNC_START(asm_load_gs_index)
651	FRAME_BEGIN
652	swapgs
653.Lgs_change:
654	movl	%edi, %gs
6552:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
656	swapgs
657	FRAME_END
658	ret
659SYM_FUNC_END(asm_load_gs_index)
660EXPORT_SYMBOL(asm_load_gs_index)
661
662	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
663	.section .fixup, "ax"
664	/* running with kernelgs */
665SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
666	swapgs					/* switch back to user gs */
667.macro ZAP_GS
668	/* This can't be a string because the preprocessor needs to see it. */
669	movl $__USER_DS, %eax
670	movl %eax, %gs
671.endm
672	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
673	xorl	%eax, %eax
674	movl	%eax, %gs
675	jmp	2b
676SYM_CODE_END(.Lbad_gs)
677	.previous
678
679/*
680 * rdi: New stack pointer points to the top word of the stack
681 * rsi: Function pointer
682 * rdx: Function argument (can be NULL if none)
683 */
684SYM_FUNC_START(asm_call_on_stack)
685	/*
686	 * Save the frame pointer unconditionally. This allows the ORC
687	 * unwinder to handle the stack switch.
688	 */
689	pushq		%rbp
690	mov		%rsp, %rbp
691
692	/*
693	 * The unwinder relies on the word at the top of the new stack
694	 * page linking back to the previous RSP.
695	 */
696	mov		%rsp, (%rdi)
697	mov		%rdi, %rsp
698	/* Move the argument to the right place */
699	mov		%rdx, %rdi
700
7011:
702	.pushsection .discard.instr_begin
703	.long 1b - .
704	.popsection
705
706	CALL_NOSPEC	rsi
707
7082:
709	.pushsection .discard.instr_end
710	.long 2b - .
711	.popsection
712
713	/* Restore the previous stack pointer from RBP. */
714	leaveq
715	ret
716SYM_FUNC_END(asm_call_on_stack)
717
718#ifdef CONFIG_XEN_PV
719/*
720 * A note on the "critical region" in our callback handler.
721 * We want to avoid stacking callback handlers due to events occurring
722 * during handling of the last event. To do this, we keep events disabled
723 * until we've done all processing. HOWEVER, we must enable events before
724 * popping the stack frame (can't be done atomically) and so it would still
725 * be possible to get enough handler activations to overflow the stack.
726 * Although unlikely, bugs of that kind are hard to track down, so we'd
727 * like to avoid the possibility.
728 * So, on entry to the handler we detect whether we interrupted an
729 * existing activation in its critical region -- if so, we pop the current
730 * activation and restart the handler using the previous one.
731 *
732 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
733 */
734SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
735
736/*
737 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
738 * see the correct pointer to the pt_regs
739 */
740	UNWIND_HINT_FUNC
741	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
742	UNWIND_HINT_REGS
743
744	call	xen_pv_evtchn_do_upcall
745
746	jmp	error_return
747SYM_CODE_END(exc_xen_hypervisor_callback)
748
749/*
750 * Hypervisor uses this for application faults while it executes.
751 * We get here for two reasons:
752 *  1. Fault while reloading DS, ES, FS or GS
753 *  2. Fault while executing IRET
754 * Category 1 we do not need to fix up as Xen has already reloaded all segment
755 * registers that could be reloaded and zeroed the others.
756 * Category 2 we fix up by killing the current process. We cannot use the
757 * normal Linux return path in this case because if we use the IRET hypercall
758 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
759 * We distinguish between categories by comparing each saved segment register
760 * with its current contents: any discrepancy means we in category 1.
761 */
762SYM_CODE_START(xen_failsafe_callback)
763	UNWIND_HINT_EMPTY
764	movl	%ds, %ecx
765	cmpw	%cx, 0x10(%rsp)
766	jne	1f
767	movl	%es, %ecx
768	cmpw	%cx, 0x18(%rsp)
769	jne	1f
770	movl	%fs, %ecx
771	cmpw	%cx, 0x20(%rsp)
772	jne	1f
773	movl	%gs, %ecx
774	cmpw	%cx, 0x28(%rsp)
775	jne	1f
776	/* All segments match their saved values => Category 2 (Bad IRET). */
777	movq	(%rsp), %rcx
778	movq	8(%rsp), %r11
779	addq	$0x30, %rsp
780	pushq	$0				/* RIP */
781	UNWIND_HINT_IRET_REGS offset=8
782	jmp	asm_exc_general_protection
7831:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
784	movq	(%rsp), %rcx
785	movq	8(%rsp), %r11
786	addq	$0x30, %rsp
787	UNWIND_HINT_IRET_REGS
788	pushq	$-1 /* orig_ax = -1 => not a system call */
789	PUSH_AND_CLEAR_REGS
790	ENCODE_FRAME_POINTER
791	jmp	error_return
792SYM_CODE_END(xen_failsafe_callback)
793#endif /* CONFIG_XEN_PV */
794
795/*
796 * Save all registers in pt_regs. Return GSBASE related information
797 * in EBX depending on the availability of the FSGSBASE instructions:
798 *
799 * FSGSBASE	R/EBX
800 *     N        0 -> SWAPGS on exit
801 *              1 -> no SWAPGS on exit
802 *
803 *     Y        GSBASE value at entry, must be restored in paranoid_exit
804 */
805SYM_CODE_START_LOCAL(paranoid_entry)
806	UNWIND_HINT_FUNC
807	cld
808	PUSH_AND_CLEAR_REGS save_ret=1
809	ENCODE_FRAME_POINTER 8
810
811	/*
812	 * Always stash CR3 in %r14.  This value will be restored,
813	 * verbatim, at exit.  Needed if paranoid_entry interrupted
814	 * another entry that already switched to the user CR3 value
815	 * but has not yet returned to userspace.
816	 *
817	 * This is also why CS (stashed in the "iret frame" by the
818	 * hardware at entry) can not be used: this may be a return
819	 * to kernel code, but with a user CR3 value.
820	 *
821	 * Switching CR3 does not depend on kernel GSBASE so it can
822	 * be done before switching to the kernel GSBASE. This is
823	 * required for FSGSBASE because the kernel GSBASE has to
824	 * be retrieved from a kernel internal table.
825	 */
826	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
827
828	/*
829	 * Handling GSBASE depends on the availability of FSGSBASE.
830	 *
831	 * Without FSGSBASE the kernel enforces that negative GSBASE
832	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
833	 * can be made about the GSBASE value when entering from user
834	 * space.
835	 */
836	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
837
838	/*
839	 * Read the current GSBASE and store it in %rbx unconditionally,
840	 * retrieve and set the current CPUs kernel GSBASE. The stored value
841	 * has to be restored in paranoid_exit unconditionally.
842	 *
843	 * The MSR write ensures that no subsequent load is based on a
844	 * mispredicted GSBASE. No extra FENCE required.
845	 */
846	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
847	ret
848
849.Lparanoid_entry_checkgs:
850	/* EBX = 1 -> kernel GSBASE active, no restore required */
851	movl	$1, %ebx
852	/*
853	 * The kernel-enforced convention is a negative GSBASE indicates
854	 * a kernel value. No SWAPGS needed on entry and exit.
855	 */
856	movl	$MSR_GS_BASE, %ecx
857	rdmsr
858	testl	%edx, %edx
859	jns	.Lparanoid_entry_swapgs
860	ret
861
862.Lparanoid_entry_swapgs:
863	SWAPGS
864
865	/*
866	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
867	 * unconditional CR3 write, even in the PTI case.  So do an lfence
868	 * to prevent GS speculation, regardless of whether PTI is enabled.
869	 */
870	FENCE_SWAPGS_KERNEL_ENTRY
871
872	/* EBX = 0 -> SWAPGS required on exit */
873	xorl	%ebx, %ebx
874	ret
875SYM_CODE_END(paranoid_entry)
876
877/*
878 * "Paranoid" exit path from exception stack.  This is invoked
879 * only on return from non-NMI IST interrupts that came
880 * from kernel space.
881 *
882 * We may be returning to very strange contexts (e.g. very early
883 * in syscall entry), so checking for preemption here would
884 * be complicated.  Fortunately, there's no good reason to try
885 * to handle preemption here.
886 *
887 * R/EBX contains the GSBASE related information depending on the
888 * availability of the FSGSBASE instructions:
889 *
890 * FSGSBASE	R/EBX
891 *     N        0 -> SWAPGS on exit
892 *              1 -> no SWAPGS on exit
893 *
894 *     Y        User space GSBASE, must be restored unconditionally
895 */
896SYM_CODE_START_LOCAL(paranoid_exit)
897	UNWIND_HINT_REGS
898	/*
899	 * The order of operations is important. RESTORE_CR3 requires
900	 * kernel GSBASE.
901	 *
902	 * NB to anyone to try to optimize this code: this code does
903	 * not execute at all for exceptions from user mode. Those
904	 * exceptions go through error_exit instead.
905	 */
906	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
907
908	/* Handle the three GSBASE cases */
909	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
910
911	/* With FSGSBASE enabled, unconditionally restore GSBASE */
912	wrgsbase	%rbx
913	jmp		restore_regs_and_return_to_kernel
914
915.Lparanoid_exit_checkgs:
916	/* On non-FSGSBASE systems, conditionally do SWAPGS */
917	testl		%ebx, %ebx
918	jnz		restore_regs_and_return_to_kernel
919
920	/* We are returning to a context with user GSBASE */
921	SWAPGS_UNSAFE_STACK
922	jmp		restore_regs_and_return_to_kernel
923SYM_CODE_END(paranoid_exit)
924
925/*
926 * Save all registers in pt_regs, and switch GS if needed.
927 */
928SYM_CODE_START_LOCAL(error_entry)
929	UNWIND_HINT_FUNC
930	cld
931	PUSH_AND_CLEAR_REGS save_ret=1
932	ENCODE_FRAME_POINTER 8
933	testb	$3, CS+8(%rsp)
934	jz	.Lerror_kernelspace
935
936	/*
937	 * We entered from user mode or we're pretending to have entered
938	 * from user mode due to an IRET fault.
939	 */
940	SWAPGS
941	FENCE_SWAPGS_USER_ENTRY
942	/* We have user CR3.  Change to kernel CR3. */
943	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
944
945.Lerror_entry_from_usermode_after_swapgs:
946	/* Put us onto the real thread stack. */
947	popq	%r12				/* save return addr in %12 */
948	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
949	call	sync_regs
950	movq	%rax, %rsp			/* switch stack */
951	ENCODE_FRAME_POINTER
952	pushq	%r12
953	ret
954
955.Lerror_entry_done_lfence:
956	FENCE_SWAPGS_KERNEL_ENTRY
957.Lerror_entry_done:
958	ret
959
960	/*
961	 * There are two places in the kernel that can potentially fault with
962	 * usergs. Handle them here.  B stepping K8s sometimes report a
963	 * truncated RIP for IRET exceptions returning to compat mode. Check
964	 * for these here too.
965	 */
966.Lerror_kernelspace:
967	leaq	native_irq_return_iret(%rip), %rcx
968	cmpq	%rcx, RIP+8(%rsp)
969	je	.Lerror_bad_iret
970	movl	%ecx, %eax			/* zero extend */
971	cmpq	%rax, RIP+8(%rsp)
972	je	.Lbstep_iret
973	cmpq	$.Lgs_change, RIP+8(%rsp)
974	jne	.Lerror_entry_done_lfence
975
976	/*
977	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
978	 * gsbase and proceed.  We'll fix up the exception and land in
979	 * .Lgs_change's error handler with kernel gsbase.
980	 */
981	SWAPGS
982	FENCE_SWAPGS_USER_ENTRY
983	jmp .Lerror_entry_done
984
985.Lbstep_iret:
986	/* Fix truncated RIP */
987	movq	%rcx, RIP+8(%rsp)
988	/* fall through */
989
990.Lerror_bad_iret:
991	/*
992	 * We came from an IRET to user mode, so we have user
993	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
994	 */
995	SWAPGS
996	FENCE_SWAPGS_USER_ENTRY
997	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
998
999	/*
1000	 * Pretend that the exception came from user mode: set up pt_regs
1001	 * as if we faulted immediately after IRET.
1002	 */
1003	mov	%rsp, %rdi
1004	call	fixup_bad_iret
1005	mov	%rax, %rsp
1006	jmp	.Lerror_entry_from_usermode_after_swapgs
1007SYM_CODE_END(error_entry)
1008
1009SYM_CODE_START_LOCAL(error_return)
1010	UNWIND_HINT_REGS
1011	DEBUG_ENTRY_ASSERT_IRQS_OFF
1012	testb	$3, CS(%rsp)
1013	jz	restore_regs_and_return_to_kernel
1014	jmp	swapgs_restore_regs_and_return_to_usermode
1015SYM_CODE_END(error_return)
1016
1017/*
1018 * Runs on exception stack.  Xen PV does not go through this path at all,
1019 * so we can use real assembly here.
1020 *
1021 * Registers:
1022 *	%r14: Used to save/restore the CR3 of the interrupted context
1023 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1024 */
1025SYM_CODE_START(asm_exc_nmi)
1026	UNWIND_HINT_IRET_REGS
1027
1028	/*
1029	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1030	 * the iretq it performs will take us out of NMI context.
1031	 * This means that we can have nested NMIs where the next
1032	 * NMI is using the top of the stack of the previous NMI. We
1033	 * can't let it execute because the nested NMI will corrupt the
1034	 * stack of the previous NMI. NMI handlers are not re-entrant
1035	 * anyway.
1036	 *
1037	 * To handle this case we do the following:
1038	 *  Check the a special location on the stack that contains
1039	 *  a variable that is set when NMIs are executing.
1040	 *  The interrupted task's stack is also checked to see if it
1041	 *  is an NMI stack.
1042	 *  If the variable is not set and the stack is not the NMI
1043	 *  stack then:
1044	 *    o Set the special variable on the stack
1045	 *    o Copy the interrupt frame into an "outermost" location on the
1046	 *      stack
1047	 *    o Copy the interrupt frame into an "iret" location on the stack
1048	 *    o Continue processing the NMI
1049	 *  If the variable is set or the previous stack is the NMI stack:
1050	 *    o Modify the "iret" location to jump to the repeat_nmi
1051	 *    o return back to the first NMI
1052	 *
1053	 * Now on exit of the first NMI, we first clear the stack variable
1054	 * The NMI stack will tell any nested NMIs at that point that it is
1055	 * nested. Then we pop the stack normally with iret, and if there was
1056	 * a nested NMI that updated the copy interrupt stack frame, a
1057	 * jump will be made to the repeat_nmi code that will handle the second
1058	 * NMI.
1059	 *
1060	 * However, espfix prevents us from directly returning to userspace
1061	 * with a single IRET instruction.  Similarly, IRET to user mode
1062	 * can fault.  We therefore handle NMIs from user space like
1063	 * other IST entries.
1064	 */
1065
1066	ASM_CLAC
1067
1068	/* Use %rdx as our temp variable throughout */
1069	pushq	%rdx
1070
1071	testb	$3, CS-RIP+8(%rsp)
1072	jz	.Lnmi_from_kernel
1073
1074	/*
1075	 * NMI from user mode.  We need to run on the thread stack, but we
1076	 * can't go through the normal entry paths: NMIs are masked, and
1077	 * we don't want to enable interrupts, because then we'll end
1078	 * up in an awkward situation in which IRQs are on but NMIs
1079	 * are off.
1080	 *
1081	 * We also must not push anything to the stack before switching
1082	 * stacks lest we corrupt the "NMI executing" variable.
1083	 */
1084
1085	swapgs
1086	cld
1087	FENCE_SWAPGS_USER_ENTRY
1088	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1089	movq	%rsp, %rdx
1090	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1091	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1092	pushq	5*8(%rdx)	/* pt_regs->ss */
1093	pushq	4*8(%rdx)	/* pt_regs->rsp */
1094	pushq	3*8(%rdx)	/* pt_regs->flags */
1095	pushq	2*8(%rdx)	/* pt_regs->cs */
1096	pushq	1*8(%rdx)	/* pt_regs->rip */
1097	UNWIND_HINT_IRET_REGS
1098	pushq   $-1		/* pt_regs->orig_ax */
1099	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1100	ENCODE_FRAME_POINTER
1101
1102	/*
1103	 * At this point we no longer need to worry about stack damage
1104	 * due to nesting -- we're on the normal thread stack and we're
1105	 * done with the NMI stack.
1106	 */
1107
1108	movq	%rsp, %rdi
1109	movq	$-1, %rsi
1110	call	exc_nmi
1111
1112	/*
1113	 * Return back to user mode.  We must *not* do the normal exit
1114	 * work, because we don't want to enable interrupts.
1115	 */
1116	jmp	swapgs_restore_regs_and_return_to_usermode
1117
1118.Lnmi_from_kernel:
1119	/*
1120	 * Here's what our stack frame will look like:
1121	 * +---------------------------------------------------------+
1122	 * | original SS                                             |
1123	 * | original Return RSP                                     |
1124	 * | original RFLAGS                                         |
1125	 * | original CS                                             |
1126	 * | original RIP                                            |
1127	 * +---------------------------------------------------------+
1128	 * | temp storage for rdx                                    |
1129	 * +---------------------------------------------------------+
1130	 * | "NMI executing" variable                                |
1131	 * +---------------------------------------------------------+
1132	 * | iret SS          } Copied from "outermost" frame        |
1133	 * | iret Return RSP  } on each loop iteration; overwritten  |
1134	 * | iret RFLAGS      } by a nested NMI to force another     |
1135	 * | iret CS          } iteration if needed.                 |
1136	 * | iret RIP         }                                      |
1137	 * +---------------------------------------------------------+
1138	 * | outermost SS          } initialized in first_nmi;       |
1139	 * | outermost Return RSP  } will not be changed before      |
1140	 * | outermost RFLAGS      } NMI processing is done.         |
1141	 * | outermost CS          } Copied to "iret" frame on each  |
1142	 * | outermost RIP         } iteration.                      |
1143	 * +---------------------------------------------------------+
1144	 * | pt_regs                                                 |
1145	 * +---------------------------------------------------------+
1146	 *
1147	 * The "original" frame is used by hardware.  Before re-enabling
1148	 * NMIs, we need to be done with it, and we need to leave enough
1149	 * space for the asm code here.
1150	 *
1151	 * We return by executing IRET while RSP points to the "iret" frame.
1152	 * That will either return for real or it will loop back into NMI
1153	 * processing.
1154	 *
1155	 * The "outermost" frame is copied to the "iret" frame on each
1156	 * iteration of the loop, so each iteration starts with the "iret"
1157	 * frame pointing to the final return target.
1158	 */
1159
1160	/*
1161	 * Determine whether we're a nested NMI.
1162	 *
1163	 * If we interrupted kernel code between repeat_nmi and
1164	 * end_repeat_nmi, then we are a nested NMI.  We must not
1165	 * modify the "iret" frame because it's being written by
1166	 * the outer NMI.  That's okay; the outer NMI handler is
1167	 * about to about to call exc_nmi() anyway, so we can just
1168	 * resume the outer NMI.
1169	 */
1170
1171	movq	$repeat_nmi, %rdx
1172	cmpq	8(%rsp), %rdx
1173	ja	1f
1174	movq	$end_repeat_nmi, %rdx
1175	cmpq	8(%rsp), %rdx
1176	ja	nested_nmi_out
11771:
1178
1179	/*
1180	 * Now check "NMI executing".  If it's set, then we're nested.
1181	 * This will not detect if we interrupted an outer NMI just
1182	 * before IRET.
1183	 */
1184	cmpl	$1, -8(%rsp)
1185	je	nested_nmi
1186
1187	/*
1188	 * Now test if the previous stack was an NMI stack.  This covers
1189	 * the case where we interrupt an outer NMI after it clears
1190	 * "NMI executing" but before IRET.  We need to be careful, though:
1191	 * there is one case in which RSP could point to the NMI stack
1192	 * despite there being no NMI active: naughty userspace controls
1193	 * RSP at the very beginning of the SYSCALL targets.  We can
1194	 * pull a fast one on naughty userspace, though: we program
1195	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1196	 * if it controls the kernel's RSP.  We set DF before we clear
1197	 * "NMI executing".
1198	 */
1199	lea	6*8(%rsp), %rdx
1200	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1201	cmpq	%rdx, 4*8(%rsp)
1202	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1203	ja	first_nmi
1204
1205	subq	$EXCEPTION_STKSZ, %rdx
1206	cmpq	%rdx, 4*8(%rsp)
1207	/* If it is below the NMI stack, it is a normal NMI */
1208	jb	first_nmi
1209
1210	/* Ah, it is within the NMI stack. */
1211
1212	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1213	jz	first_nmi	/* RSP was user controlled. */
1214
1215	/* This is a nested NMI. */
1216
1217nested_nmi:
1218	/*
1219	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1220	 * iteration of NMI handling.
1221	 */
1222	subq	$8, %rsp
1223	leaq	-10*8(%rsp), %rdx
1224	pushq	$__KERNEL_DS
1225	pushq	%rdx
1226	pushfq
1227	pushq	$__KERNEL_CS
1228	pushq	$repeat_nmi
1229
1230	/* Put stack back */
1231	addq	$(6*8), %rsp
1232
1233nested_nmi_out:
1234	popq	%rdx
1235
1236	/* We are returning to kernel mode, so this cannot result in a fault. */
1237	iretq
1238
1239first_nmi:
1240	/* Restore rdx. */
1241	movq	(%rsp), %rdx
1242
1243	/* Make room for "NMI executing". */
1244	pushq	$0
1245
1246	/* Leave room for the "iret" frame */
1247	subq	$(5*8), %rsp
1248
1249	/* Copy the "original" frame to the "outermost" frame */
1250	.rept 5
1251	pushq	11*8(%rsp)
1252	.endr
1253	UNWIND_HINT_IRET_REGS
1254
1255	/* Everything up to here is safe from nested NMIs */
1256
1257#ifdef CONFIG_DEBUG_ENTRY
1258	/*
1259	 * For ease of testing, unmask NMIs right away.  Disabled by
1260	 * default because IRET is very expensive.
1261	 */
1262	pushq	$0		/* SS */
1263	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1264	addq	$8, (%rsp)	/* Fix up RSP */
1265	pushfq			/* RFLAGS */
1266	pushq	$__KERNEL_CS	/* CS */
1267	pushq	$1f		/* RIP */
1268	iretq			/* continues at repeat_nmi below */
1269	UNWIND_HINT_IRET_REGS
12701:
1271#endif
1272
1273repeat_nmi:
1274	/*
1275	 * If there was a nested NMI, the first NMI's iret will return
1276	 * here. But NMIs are still enabled and we can take another
1277	 * nested NMI. The nested NMI checks the interrupted RIP to see
1278	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1279	 * it will just return, as we are about to repeat an NMI anyway.
1280	 * This makes it safe to copy to the stack frame that a nested
1281	 * NMI will update.
1282	 *
1283	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1284	 * we're repeating an NMI, gsbase has the same value that it had on
1285	 * the first iteration.  paranoid_entry will load the kernel
1286	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1287	 * is zero.
1288	 */
1289	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1290
1291	/*
1292	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1293	 * here must not modify the "iret" frame while we're writing to
1294	 * it or it will end up containing garbage.
1295	 */
1296	addq	$(10*8), %rsp
1297	.rept 5
1298	pushq	-6*8(%rsp)
1299	.endr
1300	subq	$(5*8), %rsp
1301end_repeat_nmi:
1302
1303	/*
1304	 * Everything below this point can be preempted by a nested NMI.
1305	 * If this happens, then the inner NMI will change the "iret"
1306	 * frame to point back to repeat_nmi.
1307	 */
1308	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1309
1310	/*
1311	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1312	 * as we should not be calling schedule in NMI context.
1313	 * Even with normal interrupts enabled. An NMI should not be
1314	 * setting NEED_RESCHED or anything that normal interrupts and
1315	 * exceptions might do.
1316	 */
1317	call	paranoid_entry
1318	UNWIND_HINT_REGS
1319
1320	movq	%rsp, %rdi
1321	movq	$-1, %rsi
1322	call	exc_nmi
1323
1324	/* Always restore stashed CR3 value (see paranoid_entry) */
1325	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1326
1327	/*
1328	 * The above invocation of paranoid_entry stored the GSBASE
1329	 * related information in R/EBX depending on the availability
1330	 * of FSGSBASE.
1331	 *
1332	 * If FSGSBASE is enabled, restore the saved GSBASE value
1333	 * unconditionally, otherwise take the conditional SWAPGS path.
1334	 */
1335	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1336
1337	wrgsbase	%rbx
1338	jmp	nmi_restore
1339
1340nmi_no_fsgsbase:
1341	/* EBX == 0 -> invoke SWAPGS */
1342	testl	%ebx, %ebx
1343	jnz	nmi_restore
1344
1345nmi_swapgs:
1346	SWAPGS_UNSAFE_STACK
1347
1348nmi_restore:
1349	POP_REGS
1350
1351	/*
1352	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1353	 * at the "iret" frame.
1354	 */
1355	addq	$6*8, %rsp
1356
1357	/*
1358	 * Clear "NMI executing".  Set DF first so that we can easily
1359	 * distinguish the remaining code between here and IRET from
1360	 * the SYSCALL entry and exit paths.
1361	 *
1362	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1363	 * this code when I had the misapprehension that Xen PV supported
1364	 * NMIs, and Xen PV would break that approach.
1365	 */
1366	std
1367	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1368
1369	/*
1370	 * iretq reads the "iret" frame and exits the NMI stack in a
1371	 * single instruction.  We are returning to kernel mode, so this
1372	 * cannot result in a fault.  Similarly, we don't need to worry
1373	 * about espfix64 on the way back to kernel mode.
1374	 */
1375	iretq
1376SYM_CODE_END(asm_exc_nmi)
1377
1378#ifndef CONFIG_IA32_EMULATION
1379/*
1380 * This handles SYSCALL from 32-bit code.  There is no way to program
1381 * MSRs to fully disable 32-bit SYSCALL.
1382 */
1383SYM_CODE_START(ignore_sysret)
1384	UNWIND_HINT_EMPTY
1385	mov	$-ENOSYS, %eax
1386	sysretl
1387SYM_CODE_END(ignore_sysret)
1388#endif
1389
1390.pushsection .text, "ax"
1391SYM_CODE_START(rewind_stack_do_exit)
1392	UNWIND_HINT_FUNC
1393	/* Prevent any naive code from trying to unwind to our caller. */
1394	xorl	%ebp, %ebp
1395
1396	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1397	leaq	-PTREGS_SIZE(%rax), %rsp
1398	UNWIND_HINT_REGS
1399
1400	call	do_exit
1401SYM_CODE_END(rewind_stack_do_exit)
1402.popsection
1403