xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <asm/nospec-branch.h>
41#include <linux/err.h>
42
43#include "calling.h"
44
45.code64
46.section .entry.text, "ax"
47
48#ifdef CONFIG_PARAVIRT
49ENTRY(native_usergs_sysret64)
50	UNWIND_HINT_EMPTY
51	swapgs
52	sysretq
53END(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_FLAGS flags:req
57#ifdef CONFIG_TRACE_IRQFLAGS
58	bt	$9, \flags		/* interrupts off? */
59	jnc	1f
60	TRACE_IRQS_ON
611:
62#endif
63.endm
64
65.macro TRACE_IRQS_IRETQ
66	TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
83	call	debug_stack_set_zero
84	TRACE_IRQS_OFF
85	call	debug_stack_reset
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
89	call	debug_stack_set_zero
90	TRACE_IRQS_ON
91	call	debug_stack_reset
92.endm
93
94.macro TRACE_IRQS_IRETQ_DEBUG
95	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
96	jnc	1f
97	TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
102# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105#endif
106
107/*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls.  The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries.  There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax  system call number
128 * rcx  return address
129 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi  arg0
131 * rsi  arg1
132 * rdx  arg2
133 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8   arg4
135 * r9   arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145	.pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address).  So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline.  We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
164			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165
166ENTRY(entry_SYSCALL_64_trampoline)
167	UNWIND_HINT_EMPTY
168	swapgs
169
170	/* Stash the user RSP. */
171	movq	%rsp, RSP_SCRATCH
172
173	/* Note: using %rsp as a scratch reg. */
174	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
176	/* Load the top of the task stack into RSP */
177	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179	/* Start building the simulated IRET frame. */
180	pushq	$__USER_DS			/* pt_regs->ss */
181	pushq	RSP_SCRATCH			/* pt_regs->sp */
182	pushq	%r11				/* pt_regs->flags */
183	pushq	$__USER_CS			/* pt_regs->cs */
184	pushq	%rcx				/* pt_regs->ip */
185
186	/*
187	 * x86 lacks a near absolute jump, and we can't jump to the real
188	 * entry text with a relative jump.  We could push the target
189	 * address and then use retq, but this destroys the pipeline on
190	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
191	 * spill RDI and restore it in a second-stage trampoline.
192	 */
193	pushq	%rdi
194	movq	$entry_SYSCALL_64_stage2, %rdi
195	JMP_NOSPEC %rdi
196END(entry_SYSCALL_64_trampoline)
197
198	.popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201	UNWIND_HINT_EMPTY
202	popq	%rdi
203	jmp	entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
206ENTRY(entry_SYSCALL_64)
207	UNWIND_HINT_EMPTY
208	/*
209	 * Interrupts are off on entry.
210	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211	 * it is too small to ever cause noticeable irq latency.
212	 */
213
214	swapgs
215	/*
216	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
217	 * is not required to switch CR3.
218	 */
219	movq	%rsp, PER_CPU_VAR(rsp_scratch)
220	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221
222	/* Construct struct pt_regs on stack */
223	pushq	$__USER_DS			/* pt_regs->ss */
224	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
225	pushq	%r11				/* pt_regs->flags */
226	pushq	$__USER_CS			/* pt_regs->cs */
227	pushq	%rcx				/* pt_regs->ip */
228GLOBAL(entry_SYSCALL_64_after_hwframe)
229	pushq	%rax				/* pt_regs->orig_ax */
230	pushq	%rdi				/* pt_regs->di */
231	pushq	%rsi				/* pt_regs->si */
232	pushq	%rdx				/* pt_regs->dx */
233	pushq	%rcx				/* pt_regs->cx */
234	pushq	$-ENOSYS			/* pt_regs->ax */
235	pushq	%r8				/* pt_regs->r8 */
236	pushq	%r9				/* pt_regs->r9 */
237	pushq	%r10				/* pt_regs->r10 */
238	pushq	%r11				/* pt_regs->r11 */
239	pushq	%rbx				/* pt_regs->rbx */
240	pushq	%rbp				/* pt_regs->rbp */
241	pushq	%r12				/* pt_regs->r12 */
242	pushq	%r13				/* pt_regs->r13 */
243	pushq	%r14				/* pt_regs->r14 */
244	pushq	%r15				/* pt_regs->r15 */
245	UNWIND_HINT_REGS
246
247	TRACE_IRQS_OFF
248
249	/* IRQs are off. */
250	movq	%rsp, %rdi
251	call	do_syscall_64		/* returns with IRQs disabled */
252
253	TRACE_IRQS_IRETQ		/* we're about to change IF */
254
255	/*
256	 * Try to use SYSRET instead of IRET if we're returning to
257	 * a completely clean 64-bit userspace context.  If we're not,
258	 * go to the slow exit path.
259	 */
260	movq	RCX(%rsp), %rcx
261	movq	RIP(%rsp), %r11
262
263	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
264	jne	swapgs_restore_regs_and_return_to_usermode
265
266	/*
267	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
268	 * in kernel space.  This essentially lets the user take over
269	 * the kernel, since userspace controls RSP.
270	 *
271	 * If width of "canonical tail" ever becomes variable, this will need
272	 * to be updated to remain correct on both old and new CPUs.
273	 *
274	 * Change top bits to match most significant bit (47th or 56th bit
275	 * depending on paging mode) in the address.
276	 */
277	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
279
280	/* If this changed %rcx, it was not canonical */
281	cmpq	%rcx, %r11
282	jne	swapgs_restore_regs_and_return_to_usermode
283
284	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
285	jne	swapgs_restore_regs_and_return_to_usermode
286
287	movq	R11(%rsp), %r11
288	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
289	jne	swapgs_restore_regs_and_return_to_usermode
290
291	/*
292	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
293	 * restore RF properly. If the slowpath sets it for whatever reason, we
294	 * need to restore it correctly.
295	 *
296	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
297	 * trap from userspace immediately after SYSRET.  This would cause an
298	 * infinite loop whenever #DB happens with register state that satisfies
299	 * the opportunistic SYSRET conditions.  For example, single-stepping
300	 * this user code:
301	 *
302	 *           movq	$stuck_here, %rcx
303	 *           pushfq
304	 *           popq %r11
305	 *   stuck_here:
306	 *
307	 * would never get past 'stuck_here'.
308	 */
309	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
310	jnz	swapgs_restore_regs_and_return_to_usermode
311
312	/* nothing to check for RSP */
313
314	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
315	jne	swapgs_restore_regs_and_return_to_usermode
316
317	/*
318	 * We win! This label is here just for ease of understanding
319	 * perf profiles. Nothing jumps here.
320	 */
321syscall_return_via_sysret:
322	/* rcx and r11 are already restored (see code above) */
323	UNWIND_HINT_EMPTY
324	POP_EXTRA_REGS
325	popq	%rsi	/* skip r11 */
326	popq	%r10
327	popq	%r9
328	popq	%r8
329	popq	%rax
330	popq	%rsi	/* skip rcx */
331	popq	%rdx
332	popq	%rsi
333
334	/*
335	 * Now all regs are restored except RSP and RDI.
336	 * Save old stack pointer and switch to trampoline stack.
337	 */
338	movq	%rsp, %rdi
339	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
340
341	pushq	RSP-RDI(%rdi)	/* RSP */
342	pushq	(%rdi)		/* RDI */
343
344	/*
345	 * We are on the trampoline stack.  All regs except RDI are live.
346	 * We can do future final exit work right here.
347	 */
348	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
349
350	popq	%rdi
351	popq	%rsp
352	USERGS_SYSRET64
353END(entry_SYSCALL_64)
354
355/*
356 * %rdi: prev task
357 * %rsi: next task
358 */
359ENTRY(__switch_to_asm)
360	UNWIND_HINT_FUNC
361	/*
362	 * Save callee-saved registers
363	 * This must match the order in inactive_task_frame
364	 */
365	pushq	%rbp
366	pushq	%rbx
367	pushq	%r12
368	pushq	%r13
369	pushq	%r14
370	pushq	%r15
371
372	/* switch stack */
373	movq	%rsp, TASK_threadsp(%rdi)
374	movq	TASK_threadsp(%rsi), %rsp
375
376#ifdef CONFIG_CC_STACKPROTECTOR
377	movq	TASK_stack_canary(%rsi), %rbx
378	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
379#endif
380
381#ifdef CONFIG_RETPOLINE
382	/*
383	 * When switching from a shallower to a deeper call stack
384	 * the RSB may either underflow or use entries populated
385	 * with userspace addresses. On CPUs where those concerns
386	 * exist, overwrite the RSB with entries which capture
387	 * speculative execution to prevent attack.
388	 */
389	/* Clobbers %rbx */
390	FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
391#endif
392
393	/* restore callee-saved registers */
394	popq	%r15
395	popq	%r14
396	popq	%r13
397	popq	%r12
398	popq	%rbx
399	popq	%rbp
400
401	jmp	__switch_to
402END(__switch_to_asm)
403
404/*
405 * A newly forked process directly context switches into this address.
406 *
407 * rax: prev task we switched from
408 * rbx: kernel thread func (NULL for user thread)
409 * r12: kernel thread arg
410 */
411ENTRY(ret_from_fork)
412	UNWIND_HINT_EMPTY
413	movq	%rax, %rdi
414	call	schedule_tail			/* rdi: 'prev' task parameter */
415
416	testq	%rbx, %rbx			/* from kernel_thread? */
417	jnz	1f				/* kernel threads are uncommon */
418
4192:
420	UNWIND_HINT_REGS
421	movq	%rsp, %rdi
422	call	syscall_return_slowpath	/* returns with IRQs disabled */
423	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
424	jmp	swapgs_restore_regs_and_return_to_usermode
425
4261:
427	/* kernel thread */
428	movq	%r12, %rdi
429	CALL_NOSPEC %rbx
430	/*
431	 * A kernel thread is allowed to return here after successfully
432	 * calling do_execve().  Exit to userspace to complete the execve()
433	 * syscall.
434	 */
435	movq	$0, RAX(%rsp)
436	jmp	2b
437END(ret_from_fork)
438
439/*
440 * Build the entry stubs with some assembler magic.
441 * We pack 1 stub into every 8-byte block.
442 */
443	.align 8
444ENTRY(irq_entries_start)
445    vector=FIRST_EXTERNAL_VECTOR
446    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
447	UNWIND_HINT_IRET_REGS
448	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
449	jmp	common_interrupt
450	.align	8
451	vector=vector+1
452    .endr
453END(irq_entries_start)
454
455.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
456#ifdef CONFIG_DEBUG_ENTRY
457	pushq %rax
458	SAVE_FLAGS(CLBR_RAX)
459	testl $X86_EFLAGS_IF, %eax
460	jz .Lokay_\@
461	ud2
462.Lokay_\@:
463	popq %rax
464#endif
465.endm
466
467/*
468 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
469 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
470 * Requires kernel GSBASE.
471 *
472 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
473 */
474.macro ENTER_IRQ_STACK regs=1 old_rsp
475	DEBUG_ENTRY_ASSERT_IRQS_OFF
476	movq	%rsp, \old_rsp
477
478	.if \regs
479	UNWIND_HINT_REGS base=\old_rsp
480	.endif
481
482	incl	PER_CPU_VAR(irq_count)
483	jnz	.Lirq_stack_push_old_rsp_\@
484
485	/*
486	 * Right now, if we just incremented irq_count to zero, we've
487	 * claimed the IRQ stack but we haven't switched to it yet.
488	 *
489	 * If anything is added that can interrupt us here without using IST,
490	 * it must be *extremely* careful to limit its stack usage.  This
491	 * could include kprobes and a hypothetical future IST-less #DB
492	 * handler.
493	 *
494	 * The OOPS unwinder relies on the word at the top of the IRQ
495	 * stack linking back to the previous RSP for the entire time we're
496	 * on the IRQ stack.  For this to work reliably, we need to write
497	 * it before we actually move ourselves to the IRQ stack.
498	 */
499
500	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
501	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
502
503#ifdef CONFIG_DEBUG_ENTRY
504	/*
505	 * If the first movq above becomes wrong due to IRQ stack layout
506	 * changes, the only way we'll notice is if we try to unwind right
507	 * here.  Assert that we set up the stack right to catch this type
508	 * of bug quickly.
509	 */
510	cmpq	-8(%rsp), \old_rsp
511	je	.Lirq_stack_okay\@
512	ud2
513	.Lirq_stack_okay\@:
514#endif
515
516.Lirq_stack_push_old_rsp_\@:
517	pushq	\old_rsp
518
519	.if \regs
520	UNWIND_HINT_REGS indirect=1
521	.endif
522.endm
523
524/*
525 * Undoes ENTER_IRQ_STACK.
526 */
527.macro LEAVE_IRQ_STACK regs=1
528	DEBUG_ENTRY_ASSERT_IRQS_OFF
529	/* We need to be off the IRQ stack before decrementing irq_count. */
530	popq	%rsp
531
532	.if \regs
533	UNWIND_HINT_REGS
534	.endif
535
536	/*
537	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
538	 * the irq stack but we're not on it.
539	 */
540
541	decl	PER_CPU_VAR(irq_count)
542.endm
543
544/*
545 * Interrupt entry/exit.
546 *
547 * Interrupt entry points save only callee clobbered registers in fast path.
548 *
549 * Entry runs with interrupts off.
550 */
551
552/* 0(%rsp): ~(interrupt number) */
553	.macro interrupt func
554	cld
555
556	testb	$3, CS-ORIG_RAX(%rsp)
557	jz	1f
558	SWAPGS
559	call	switch_to_thread_stack
5601:
561
562	ALLOC_PT_GPREGS_ON_STACK
563	SAVE_C_REGS
564	SAVE_EXTRA_REGS
565	ENCODE_FRAME_POINTER
566
567	testb	$3, CS(%rsp)
568	jz	1f
569
570	/*
571	 * IRQ from user mode.
572	 *
573	 * We need to tell lockdep that IRQs are off.  We can't do this until
574	 * we fix gsbase, and we should do it before enter_from_user_mode
575	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
576	 * the simplest way to handle it is to just call it twice if
577	 * we enter from user mode.  There's no reason to optimize this since
578	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
579	 */
580	TRACE_IRQS_OFF
581
582	CALL_enter_from_user_mode
583
5841:
585	ENTER_IRQ_STACK old_rsp=%rdi
586	/* We entered an interrupt context - irqs are off: */
587	TRACE_IRQS_OFF
588
589	call	\func	/* rdi points to pt_regs */
590	.endm
591
592	/*
593	 * The interrupt stubs push (~vector+0x80) onto the stack and
594	 * then jump to common_interrupt.
595	 */
596	.p2align CONFIG_X86_L1_CACHE_SHIFT
597common_interrupt:
598	ASM_CLAC
599	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
600	interrupt do_IRQ
601	/* 0(%rsp): old RSP */
602ret_from_intr:
603	DISABLE_INTERRUPTS(CLBR_ANY)
604	TRACE_IRQS_OFF
605
606	LEAVE_IRQ_STACK
607
608	testb	$3, CS(%rsp)
609	jz	retint_kernel
610
611	/* Interrupt came from user space */
612GLOBAL(retint_user)
613	mov	%rsp,%rdi
614	call	prepare_exit_to_usermode
615	TRACE_IRQS_IRETQ
616
617GLOBAL(swapgs_restore_regs_and_return_to_usermode)
618#ifdef CONFIG_DEBUG_ENTRY
619	/* Assert that pt_regs indicates user mode. */
620	testb	$3, CS(%rsp)
621	jnz	1f
622	ud2
6231:
624#endif
625	POP_EXTRA_REGS
626	popq	%r11
627	popq	%r10
628	popq	%r9
629	popq	%r8
630	popq	%rax
631	popq	%rcx
632	popq	%rdx
633	popq	%rsi
634
635	/*
636	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
637	 * Save old stack pointer and switch to trampoline stack.
638	 */
639	movq	%rsp, %rdi
640	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
641
642	/* Copy the IRET frame to the trampoline stack. */
643	pushq	6*8(%rdi)	/* SS */
644	pushq	5*8(%rdi)	/* RSP */
645	pushq	4*8(%rdi)	/* EFLAGS */
646	pushq	3*8(%rdi)	/* CS */
647	pushq	2*8(%rdi)	/* RIP */
648
649	/* Push user RDI on the trampoline stack. */
650	pushq	(%rdi)
651
652	/*
653	 * We are on the trampoline stack.  All regs except RDI are live.
654	 * We can do future final exit work right here.
655	 */
656
657	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658
659	/* Restore RDI. */
660	popq	%rdi
661	SWAPGS
662	INTERRUPT_RETURN
663
664
665/* Returning to kernel space */
666retint_kernel:
667#ifdef CONFIG_PREEMPT
668	/* Interrupts are off */
669	/* Check if we need preemption */
670	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
671	jnc	1f
6720:	cmpl	$0, PER_CPU_VAR(__preempt_count)
673	jnz	1f
674	call	preempt_schedule_irq
675	jmp	0b
6761:
677#endif
678	/*
679	 * The iretq could re-enable interrupts:
680	 */
681	TRACE_IRQS_IRETQ
682
683GLOBAL(restore_regs_and_return_to_kernel)
684#ifdef CONFIG_DEBUG_ENTRY
685	/* Assert that pt_regs indicates kernel mode. */
686	testb	$3, CS(%rsp)
687	jz	1f
688	ud2
6891:
690#endif
691	POP_EXTRA_REGS
692	POP_C_REGS
693	addq	$8, %rsp	/* skip regs->orig_ax */
694	/*
695	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
696	 * when returning from IPI handler.
697	 */
698	INTERRUPT_RETURN
699
700ENTRY(native_iret)
701	UNWIND_HINT_IRET_REGS
702	/*
703	 * Are we returning to a stack segment from the LDT?  Note: in
704	 * 64-bit mode SS:RSP on the exception stack is always valid.
705	 */
706#ifdef CONFIG_X86_ESPFIX64
707	testb	$4, (SS-RIP)(%rsp)
708	jnz	native_irq_return_ldt
709#endif
710
711.global native_irq_return_iret
712native_irq_return_iret:
713	/*
714	 * This may fault.  Non-paranoid faults on return to userspace are
715	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
716	 * Double-faults due to espfix64 are handled in do_double_fault.
717	 * Other faults here are fatal.
718	 */
719	iretq
720
721#ifdef CONFIG_X86_ESPFIX64
722native_irq_return_ldt:
723	/*
724	 * We are running with user GSBASE.  All GPRs contain their user
725	 * values.  We have a percpu ESPFIX stack that is eight slots
726	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
727	 * of the ESPFIX stack.
728	 *
729	 * We clobber RAX and RDI in this code.  We stash RDI on the
730	 * normal stack and RAX on the ESPFIX stack.
731	 *
732	 * The ESPFIX stack layout we set up looks like this:
733	 *
734	 * --- top of ESPFIX stack ---
735	 * SS
736	 * RSP
737	 * RFLAGS
738	 * CS
739	 * RIP  <-- RSP points here when we're done
740	 * RAX  <-- espfix_waddr points here
741	 * --- bottom of ESPFIX stack ---
742	 */
743
744	pushq	%rdi				/* Stash user RDI */
745	SWAPGS					/* to kernel GS */
746	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
747
748	movq	PER_CPU_VAR(espfix_waddr), %rdi
749	movq	%rax, (0*8)(%rdi)		/* user RAX */
750	movq	(1*8)(%rsp), %rax		/* user RIP */
751	movq	%rax, (1*8)(%rdi)
752	movq	(2*8)(%rsp), %rax		/* user CS */
753	movq	%rax, (2*8)(%rdi)
754	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
755	movq	%rax, (3*8)(%rdi)
756	movq	(5*8)(%rsp), %rax		/* user SS */
757	movq	%rax, (5*8)(%rdi)
758	movq	(4*8)(%rsp), %rax		/* user RSP */
759	movq	%rax, (4*8)(%rdi)
760	/* Now RAX == RSP. */
761
762	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
763
764	/*
765	 * espfix_stack[31:16] == 0.  The page tables are set up such that
766	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
767	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
768	 * the same page.  Set up RSP so that RSP[31:16] contains the
769	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
770	 * still points to an RO alias of the ESPFIX stack.
771	 */
772	orq	PER_CPU_VAR(espfix_stack), %rax
773
774	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
775	SWAPGS					/* to user GS */
776	popq	%rdi				/* Restore user RDI */
777
778	movq	%rax, %rsp
779	UNWIND_HINT_IRET_REGS offset=8
780
781	/*
782	 * At this point, we cannot write to the stack any more, but we can
783	 * still read.
784	 */
785	popq	%rax				/* Restore user RAX */
786
787	/*
788	 * RSP now points to an ordinary IRET frame, except that the page
789	 * is read-only and RSP[31:16] are preloaded with the userspace
790	 * values.  We can now IRET back to userspace.
791	 */
792	jmp	native_irq_return_iret
793#endif
794END(common_interrupt)
795
796/*
797 * APIC interrupts.
798 */
799.macro apicinterrupt3 num sym do_sym
800ENTRY(\sym)
801	UNWIND_HINT_IRET_REGS
802	ASM_CLAC
803	pushq	$~(\num)
804.Lcommon_\sym:
805	interrupt \do_sym
806	jmp	ret_from_intr
807END(\sym)
808.endm
809
810/* Make sure APIC interrupt handlers end up in the irqentry section: */
811#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
812#define POP_SECTION_IRQENTRY	.popsection
813
814.macro apicinterrupt num sym do_sym
815PUSH_SECTION_IRQENTRY
816apicinterrupt3 \num \sym \do_sym
817POP_SECTION_IRQENTRY
818.endm
819
820#ifdef CONFIG_SMP
821apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
822apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
823#endif
824
825#ifdef CONFIG_X86_UV
826apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
827#endif
828
829apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
830apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
831
832#ifdef CONFIG_HAVE_KVM
833apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
834apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
835apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
836#endif
837
838#ifdef CONFIG_X86_MCE_THRESHOLD
839apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
840#endif
841
842#ifdef CONFIG_X86_MCE_AMD
843apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
844#endif
845
846#ifdef CONFIG_X86_THERMAL_VECTOR
847apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
848#endif
849
850#ifdef CONFIG_SMP
851apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
852apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
853apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
854#endif
855
856apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
857apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
858
859#ifdef CONFIG_IRQ_WORK
860apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
861#endif
862
863/*
864 * Exception entry points.
865 */
866#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
867
868/*
869 * Switch to the thread stack.  This is called with the IRET frame and
870 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
871 * space has not been allocated for them.)
872 */
873ENTRY(switch_to_thread_stack)
874	UNWIND_HINT_FUNC
875
876	pushq	%rdi
877	/* Need to switch before accessing the thread stack. */
878	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
879	movq	%rsp, %rdi
880	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
881	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
882
883	pushq	7*8(%rdi)		/* regs->ss */
884	pushq	6*8(%rdi)		/* regs->rsp */
885	pushq	5*8(%rdi)		/* regs->eflags */
886	pushq	4*8(%rdi)		/* regs->cs */
887	pushq	3*8(%rdi)		/* regs->ip */
888	pushq	2*8(%rdi)		/* regs->orig_ax */
889	pushq	8(%rdi)			/* return address */
890	UNWIND_HINT_FUNC
891
892	movq	(%rdi), %rdi
893	ret
894END(switch_to_thread_stack)
895
896.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
897ENTRY(\sym)
898	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
899
900	/* Sanity check */
901	.if \shift_ist != -1 && \paranoid == 0
902	.error "using shift_ist requires paranoid=1"
903	.endif
904
905	ASM_CLAC
906
907	.if \has_error_code == 0
908	pushq	$-1				/* ORIG_RAX: no syscall to restart */
909	.endif
910
911	ALLOC_PT_GPREGS_ON_STACK
912
913	.if \paranoid < 2
914	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
915	jnz	.Lfrom_usermode_switch_stack_\@
916	.endif
917
918	.if \paranoid
919	call	paranoid_entry
920	.else
921	call	error_entry
922	.endif
923	UNWIND_HINT_REGS
924	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
925
926	.if \paranoid
927	.if \shift_ist != -1
928	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
929	.else
930	TRACE_IRQS_OFF
931	.endif
932	.endif
933
934	movq	%rsp, %rdi			/* pt_regs pointer */
935
936	.if \has_error_code
937	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
938	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
939	.else
940	xorl	%esi, %esi			/* no error code */
941	.endif
942
943	.if \shift_ist != -1
944	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
945	.endif
946
947	call	\do_sym
948
949	.if \shift_ist != -1
950	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
951	.endif
952
953	/* these procedures expect "no swapgs" flag in ebx */
954	.if \paranoid
955	jmp	paranoid_exit
956	.else
957	jmp	error_exit
958	.endif
959
960	.if \paranoid < 2
961	/*
962	 * Entry from userspace.  Switch stacks and treat it
963	 * as a normal entry.  This means that paranoid handlers
964	 * run in real process context if user_mode(regs).
965	 */
966.Lfrom_usermode_switch_stack_\@:
967	call	error_entry
968
969	movq	%rsp, %rdi			/* pt_regs pointer */
970
971	.if \has_error_code
972	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
973	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
974	.else
975	xorl	%esi, %esi			/* no error code */
976	.endif
977
978	call	\do_sym
979
980	jmp	error_exit			/* %ebx: no swapgs flag */
981	.endif
982END(\sym)
983.endm
984
985idtentry divide_error			do_divide_error			has_error_code=0
986idtentry overflow			do_overflow			has_error_code=0
987idtentry bounds				do_bounds			has_error_code=0
988idtentry invalid_op			do_invalid_op			has_error_code=0
989idtentry device_not_available		do_device_not_available		has_error_code=0
990idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
991idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
992idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
993idtentry segment_not_present		do_segment_not_present		has_error_code=1
994idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
995idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
996idtentry alignment_check		do_alignment_check		has_error_code=1
997idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
998
999
1000	/*
1001	 * Reload gs selector with exception handling
1002	 * edi:  new selector
1003	 */
1004ENTRY(native_load_gs_index)
1005	FRAME_BEGIN
1006	pushfq
1007	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1008	TRACE_IRQS_OFF
1009	SWAPGS
1010.Lgs_change:
1011	movl	%edi, %gs
10122:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1013	SWAPGS
1014	TRACE_IRQS_FLAGS (%rsp)
1015	popfq
1016	FRAME_END
1017	ret
1018ENDPROC(native_load_gs_index)
1019EXPORT_SYMBOL(native_load_gs_index)
1020
1021	_ASM_EXTABLE(.Lgs_change, bad_gs)
1022	.section .fixup, "ax"
1023	/* running with kernelgs */
1024bad_gs:
1025	SWAPGS					/* switch back to user gs */
1026.macro ZAP_GS
1027	/* This can't be a string because the preprocessor needs to see it. */
1028	movl $__USER_DS, %eax
1029	movl %eax, %gs
1030.endm
1031	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1032	xorl	%eax, %eax
1033	movl	%eax, %gs
1034	jmp	2b
1035	.previous
1036
1037/* Call softirq on interrupt stack. Interrupts are off. */
1038ENTRY(do_softirq_own_stack)
1039	pushq	%rbp
1040	mov	%rsp, %rbp
1041	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1042	call	__do_softirq
1043	LEAVE_IRQ_STACK regs=0
1044	leaveq
1045	ret
1046ENDPROC(do_softirq_own_stack)
1047
1048#ifdef CONFIG_XEN
1049idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1050
1051/*
1052 * A note on the "critical region" in our callback handler.
1053 * We want to avoid stacking callback handlers due to events occurring
1054 * during handling of the last event. To do this, we keep events disabled
1055 * until we've done all processing. HOWEVER, we must enable events before
1056 * popping the stack frame (can't be done atomically) and so it would still
1057 * be possible to get enough handler activations to overflow the stack.
1058 * Although unlikely, bugs of that kind are hard to track down, so we'd
1059 * like to avoid the possibility.
1060 * So, on entry to the handler we detect whether we interrupted an
1061 * existing activation in its critical region -- if so, we pop the current
1062 * activation and restart the handler using the previous one.
1063 */
1064ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1065
1066/*
1067 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1068 * see the correct pointer to the pt_regs
1069 */
1070	UNWIND_HINT_FUNC
1071	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1072	UNWIND_HINT_REGS
1073
1074	ENTER_IRQ_STACK old_rsp=%r10
1075	call	xen_evtchn_do_upcall
1076	LEAVE_IRQ_STACK
1077
1078#ifndef CONFIG_PREEMPT
1079	call	xen_maybe_preempt_hcall
1080#endif
1081	jmp	error_exit
1082END(xen_do_hypervisor_callback)
1083
1084/*
1085 * Hypervisor uses this for application faults while it executes.
1086 * We get here for two reasons:
1087 *  1. Fault while reloading DS, ES, FS or GS
1088 *  2. Fault while executing IRET
1089 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1090 * registers that could be reloaded and zeroed the others.
1091 * Category 2 we fix up by killing the current process. We cannot use the
1092 * normal Linux return path in this case because if we use the IRET hypercall
1093 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1094 * We distinguish between categories by comparing each saved segment register
1095 * with its current contents: any discrepancy means we in category 1.
1096 */
1097ENTRY(xen_failsafe_callback)
1098	UNWIND_HINT_EMPTY
1099	movl	%ds, %ecx
1100	cmpw	%cx, 0x10(%rsp)
1101	jne	1f
1102	movl	%es, %ecx
1103	cmpw	%cx, 0x18(%rsp)
1104	jne	1f
1105	movl	%fs, %ecx
1106	cmpw	%cx, 0x20(%rsp)
1107	jne	1f
1108	movl	%gs, %ecx
1109	cmpw	%cx, 0x28(%rsp)
1110	jne	1f
1111	/* All segments match their saved values => Category 2 (Bad IRET). */
1112	movq	(%rsp), %rcx
1113	movq	8(%rsp), %r11
1114	addq	$0x30, %rsp
1115	pushq	$0				/* RIP */
1116	UNWIND_HINT_IRET_REGS offset=8
1117	jmp	general_protection
11181:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1119	movq	(%rsp), %rcx
1120	movq	8(%rsp), %r11
1121	addq	$0x30, %rsp
1122	UNWIND_HINT_IRET_REGS
1123	pushq	$-1 /* orig_ax = -1 => not a system call */
1124	ALLOC_PT_GPREGS_ON_STACK
1125	SAVE_C_REGS
1126	SAVE_EXTRA_REGS
1127	ENCODE_FRAME_POINTER
1128	jmp	error_exit
1129END(xen_failsafe_callback)
1130
1131apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1132	xen_hvm_callback_vector xen_evtchn_do_upcall
1133
1134#endif /* CONFIG_XEN */
1135
1136#if IS_ENABLED(CONFIG_HYPERV)
1137apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1138	hyperv_callback_vector hyperv_vector_handler
1139
1140apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1141	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1142#endif /* CONFIG_HYPERV */
1143
1144idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1145idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1146idtentry stack_segment		do_stack_segment	has_error_code=1
1147
1148#ifdef CONFIG_XEN
1149idtentry xennmi			do_nmi			has_error_code=0
1150idtentry xendebug		do_debug		has_error_code=0
1151idtentry xenint3		do_int3			has_error_code=0
1152#endif
1153
1154idtentry general_protection	do_general_protection	has_error_code=1
1155idtentry page_fault		do_page_fault		has_error_code=1
1156
1157#ifdef CONFIG_KVM_GUEST
1158idtentry async_page_fault	do_async_page_fault	has_error_code=1
1159#endif
1160
1161#ifdef CONFIG_X86_MCE
1162idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1163#endif
1164
1165/*
1166 * Save all registers in pt_regs, and switch gs if needed.
1167 * Use slow, but surefire "are we in kernel?" check.
1168 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1169 */
1170ENTRY(paranoid_entry)
1171	UNWIND_HINT_FUNC
1172	cld
1173	SAVE_C_REGS 8
1174	SAVE_EXTRA_REGS 8
1175	ENCODE_FRAME_POINTER 8
1176	movl	$1, %ebx
1177	movl	$MSR_GS_BASE, %ecx
1178	rdmsr
1179	testl	%edx, %edx
1180	js	1f				/* negative -> in kernel */
1181	SWAPGS
1182	xorl	%ebx, %ebx
1183
11841:
1185	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1186
1187	ret
1188END(paranoid_entry)
1189
1190/*
1191 * "Paranoid" exit path from exception stack.  This is invoked
1192 * only on return from non-NMI IST interrupts that came
1193 * from kernel space.
1194 *
1195 * We may be returning to very strange contexts (e.g. very early
1196 * in syscall entry), so checking for preemption here would
1197 * be complicated.  Fortunately, we there's no good reason
1198 * to try to handle preemption here.
1199 *
1200 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1201 */
1202ENTRY(paranoid_exit)
1203	UNWIND_HINT_REGS
1204	DISABLE_INTERRUPTS(CLBR_ANY)
1205	TRACE_IRQS_OFF_DEBUG
1206	testl	%ebx, %ebx			/* swapgs needed? */
1207	jnz	.Lparanoid_exit_no_swapgs
1208	TRACE_IRQS_IRETQ
1209	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1210	SWAPGS_UNSAFE_STACK
1211	jmp	.Lparanoid_exit_restore
1212.Lparanoid_exit_no_swapgs:
1213	TRACE_IRQS_IRETQ_DEBUG
1214.Lparanoid_exit_restore:
1215	jmp restore_regs_and_return_to_kernel
1216END(paranoid_exit)
1217
1218/*
1219 * Save all registers in pt_regs, and switch gs if needed.
1220 * Return: EBX=0: came from user mode; EBX=1: otherwise
1221 */
1222ENTRY(error_entry)
1223	UNWIND_HINT_FUNC
1224	cld
1225	SAVE_C_REGS 8
1226	SAVE_EXTRA_REGS 8
1227	ENCODE_FRAME_POINTER 8
1228	xorl	%ebx, %ebx
1229	testb	$3, CS+8(%rsp)
1230	jz	.Lerror_kernelspace
1231
1232	/*
1233	 * We entered from user mode or we're pretending to have entered
1234	 * from user mode due to an IRET fault.
1235	 */
1236	SWAPGS
1237	/* We have user CR3.  Change to kernel CR3. */
1238	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1239
1240.Lerror_entry_from_usermode_after_swapgs:
1241	/* Put us onto the real thread stack. */
1242	popq	%r12				/* save return addr in %12 */
1243	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1244	call	sync_regs
1245	movq	%rax, %rsp			/* switch stack */
1246	ENCODE_FRAME_POINTER
1247	pushq	%r12
1248
1249	/*
1250	 * We need to tell lockdep that IRQs are off.  We can't do this until
1251	 * we fix gsbase, and we should do it before enter_from_user_mode
1252	 * (which can take locks).
1253	 */
1254	TRACE_IRQS_OFF
1255	CALL_enter_from_user_mode
1256	ret
1257
1258.Lerror_entry_done:
1259	TRACE_IRQS_OFF
1260	ret
1261
1262	/*
1263	 * There are two places in the kernel that can potentially fault with
1264	 * usergs. Handle them here.  B stepping K8s sometimes report a
1265	 * truncated RIP for IRET exceptions returning to compat mode. Check
1266	 * for these here too.
1267	 */
1268.Lerror_kernelspace:
1269	incl	%ebx
1270	leaq	native_irq_return_iret(%rip), %rcx
1271	cmpq	%rcx, RIP+8(%rsp)
1272	je	.Lerror_bad_iret
1273	movl	%ecx, %eax			/* zero extend */
1274	cmpq	%rax, RIP+8(%rsp)
1275	je	.Lbstep_iret
1276	cmpq	$.Lgs_change, RIP+8(%rsp)
1277	jne	.Lerror_entry_done
1278
1279	/*
1280	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1281	 * gsbase and proceed.  We'll fix up the exception and land in
1282	 * .Lgs_change's error handler with kernel gsbase.
1283	 */
1284	SWAPGS
1285	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1286	jmp .Lerror_entry_done
1287
1288.Lbstep_iret:
1289	/* Fix truncated RIP */
1290	movq	%rcx, RIP+8(%rsp)
1291	/* fall through */
1292
1293.Lerror_bad_iret:
1294	/*
1295	 * We came from an IRET to user mode, so we have user
1296	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1297	 */
1298	SWAPGS
1299	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1300
1301	/*
1302	 * Pretend that the exception came from user mode: set up pt_regs
1303	 * as if we faulted immediately after IRET and clear EBX so that
1304	 * error_exit knows that we will be returning to user mode.
1305	 */
1306	mov	%rsp, %rdi
1307	call	fixup_bad_iret
1308	mov	%rax, %rsp
1309	decl	%ebx
1310	jmp	.Lerror_entry_from_usermode_after_swapgs
1311END(error_entry)
1312
1313
1314/*
1315 * On entry, EBX is a "return to kernel mode" flag:
1316 *   1: already in kernel mode, don't need SWAPGS
1317 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1318 */
1319ENTRY(error_exit)
1320	UNWIND_HINT_REGS
1321	DISABLE_INTERRUPTS(CLBR_ANY)
1322	TRACE_IRQS_OFF
1323	testl	%ebx, %ebx
1324	jnz	retint_kernel
1325	jmp	retint_user
1326END(error_exit)
1327
1328/*
1329 * Runs on exception stack.  Xen PV does not go through this path at all,
1330 * so we can use real assembly here.
1331 *
1332 * Registers:
1333 *	%r14: Used to save/restore the CR3 of the interrupted context
1334 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1335 */
1336ENTRY(nmi)
1337	UNWIND_HINT_IRET_REGS
1338
1339	/*
1340	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1341	 * the iretq it performs will take us out of NMI context.
1342	 * This means that we can have nested NMIs where the next
1343	 * NMI is using the top of the stack of the previous NMI. We
1344	 * can't let it execute because the nested NMI will corrupt the
1345	 * stack of the previous NMI. NMI handlers are not re-entrant
1346	 * anyway.
1347	 *
1348	 * To handle this case we do the following:
1349	 *  Check the a special location on the stack that contains
1350	 *  a variable that is set when NMIs are executing.
1351	 *  The interrupted task's stack is also checked to see if it
1352	 *  is an NMI stack.
1353	 *  If the variable is not set and the stack is not the NMI
1354	 *  stack then:
1355	 *    o Set the special variable on the stack
1356	 *    o Copy the interrupt frame into an "outermost" location on the
1357	 *      stack
1358	 *    o Copy the interrupt frame into an "iret" location on the stack
1359	 *    o Continue processing the NMI
1360	 *  If the variable is set or the previous stack is the NMI stack:
1361	 *    o Modify the "iret" location to jump to the repeat_nmi
1362	 *    o return back to the first NMI
1363	 *
1364	 * Now on exit of the first NMI, we first clear the stack variable
1365	 * The NMI stack will tell any nested NMIs at that point that it is
1366	 * nested. Then we pop the stack normally with iret, and if there was
1367	 * a nested NMI that updated the copy interrupt stack frame, a
1368	 * jump will be made to the repeat_nmi code that will handle the second
1369	 * NMI.
1370	 *
1371	 * However, espfix prevents us from directly returning to userspace
1372	 * with a single IRET instruction.  Similarly, IRET to user mode
1373	 * can fault.  We therefore handle NMIs from user space like
1374	 * other IST entries.
1375	 */
1376
1377	ASM_CLAC
1378
1379	/* Use %rdx as our temp variable throughout */
1380	pushq	%rdx
1381
1382	testb	$3, CS-RIP+8(%rsp)
1383	jz	.Lnmi_from_kernel
1384
1385	/*
1386	 * NMI from user mode.  We need to run on the thread stack, but we
1387	 * can't go through the normal entry paths: NMIs are masked, and
1388	 * we don't want to enable interrupts, because then we'll end
1389	 * up in an awkward situation in which IRQs are on but NMIs
1390	 * are off.
1391	 *
1392	 * We also must not push anything to the stack before switching
1393	 * stacks lest we corrupt the "NMI executing" variable.
1394	 */
1395
1396	swapgs
1397	cld
1398	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1399	movq	%rsp, %rdx
1400	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1401	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1402	pushq	5*8(%rdx)	/* pt_regs->ss */
1403	pushq	4*8(%rdx)	/* pt_regs->rsp */
1404	pushq	3*8(%rdx)	/* pt_regs->flags */
1405	pushq	2*8(%rdx)	/* pt_regs->cs */
1406	pushq	1*8(%rdx)	/* pt_regs->rip */
1407	UNWIND_HINT_IRET_REGS
1408	pushq   $-1		/* pt_regs->orig_ax */
1409	pushq   %rdi		/* pt_regs->di */
1410	pushq   %rsi		/* pt_regs->si */
1411	pushq   (%rdx)		/* pt_regs->dx */
1412	pushq   %rcx		/* pt_regs->cx */
1413	pushq   %rax		/* pt_regs->ax */
1414	pushq   %r8		/* pt_regs->r8 */
1415	pushq   %r9		/* pt_regs->r9 */
1416	pushq   %r10		/* pt_regs->r10 */
1417	pushq   %r11		/* pt_regs->r11 */
1418	pushq	%rbx		/* pt_regs->rbx */
1419	pushq	%rbp		/* pt_regs->rbp */
1420	pushq	%r12		/* pt_regs->r12 */
1421	pushq	%r13		/* pt_regs->r13 */
1422	pushq	%r14		/* pt_regs->r14 */
1423	pushq	%r15		/* pt_regs->r15 */
1424	UNWIND_HINT_REGS
1425	ENCODE_FRAME_POINTER
1426
1427	/*
1428	 * At this point we no longer need to worry about stack damage
1429	 * due to nesting -- we're on the normal thread stack and we're
1430	 * done with the NMI stack.
1431	 */
1432
1433	movq	%rsp, %rdi
1434	movq	$-1, %rsi
1435	call	do_nmi
1436
1437	/*
1438	 * Return back to user mode.  We must *not* do the normal exit
1439	 * work, because we don't want to enable interrupts.
1440	 */
1441	jmp	swapgs_restore_regs_and_return_to_usermode
1442
1443.Lnmi_from_kernel:
1444	/*
1445	 * Here's what our stack frame will look like:
1446	 * +---------------------------------------------------------+
1447	 * | original SS                                             |
1448	 * | original Return RSP                                     |
1449	 * | original RFLAGS                                         |
1450	 * | original CS                                             |
1451	 * | original RIP                                            |
1452	 * +---------------------------------------------------------+
1453	 * | temp storage for rdx                                    |
1454	 * +---------------------------------------------------------+
1455	 * | "NMI executing" variable                                |
1456	 * +---------------------------------------------------------+
1457	 * | iret SS          } Copied from "outermost" frame        |
1458	 * | iret Return RSP  } on each loop iteration; overwritten  |
1459	 * | iret RFLAGS      } by a nested NMI to force another     |
1460	 * | iret CS          } iteration if needed.                 |
1461	 * | iret RIP         }                                      |
1462	 * +---------------------------------------------------------+
1463	 * | outermost SS          } initialized in first_nmi;       |
1464	 * | outermost Return RSP  } will not be changed before      |
1465	 * | outermost RFLAGS      } NMI processing is done.         |
1466	 * | outermost CS          } Copied to "iret" frame on each  |
1467	 * | outermost RIP         } iteration.                      |
1468	 * +---------------------------------------------------------+
1469	 * | pt_regs                                                 |
1470	 * +---------------------------------------------------------+
1471	 *
1472	 * The "original" frame is used by hardware.  Before re-enabling
1473	 * NMIs, we need to be done with it, and we need to leave enough
1474	 * space for the asm code here.
1475	 *
1476	 * We return by executing IRET while RSP points to the "iret" frame.
1477	 * That will either return for real or it will loop back into NMI
1478	 * processing.
1479	 *
1480	 * The "outermost" frame is copied to the "iret" frame on each
1481	 * iteration of the loop, so each iteration starts with the "iret"
1482	 * frame pointing to the final return target.
1483	 */
1484
1485	/*
1486	 * Determine whether we're a nested NMI.
1487	 *
1488	 * If we interrupted kernel code between repeat_nmi and
1489	 * end_repeat_nmi, then we are a nested NMI.  We must not
1490	 * modify the "iret" frame because it's being written by
1491	 * the outer NMI.  That's okay; the outer NMI handler is
1492	 * about to about to call do_nmi anyway, so we can just
1493	 * resume the outer NMI.
1494	 */
1495
1496	movq	$repeat_nmi, %rdx
1497	cmpq	8(%rsp), %rdx
1498	ja	1f
1499	movq	$end_repeat_nmi, %rdx
1500	cmpq	8(%rsp), %rdx
1501	ja	nested_nmi_out
15021:
1503
1504	/*
1505	 * Now check "NMI executing".  If it's set, then we're nested.
1506	 * This will not detect if we interrupted an outer NMI just
1507	 * before IRET.
1508	 */
1509	cmpl	$1, -8(%rsp)
1510	je	nested_nmi
1511
1512	/*
1513	 * Now test if the previous stack was an NMI stack.  This covers
1514	 * the case where we interrupt an outer NMI after it clears
1515	 * "NMI executing" but before IRET.  We need to be careful, though:
1516	 * there is one case in which RSP could point to the NMI stack
1517	 * despite there being no NMI active: naughty userspace controls
1518	 * RSP at the very beginning of the SYSCALL targets.  We can
1519	 * pull a fast one on naughty userspace, though: we program
1520	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1521	 * if it controls the kernel's RSP.  We set DF before we clear
1522	 * "NMI executing".
1523	 */
1524	lea	6*8(%rsp), %rdx
1525	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1526	cmpq	%rdx, 4*8(%rsp)
1527	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1528	ja	first_nmi
1529
1530	subq	$EXCEPTION_STKSZ, %rdx
1531	cmpq	%rdx, 4*8(%rsp)
1532	/* If it is below the NMI stack, it is a normal NMI */
1533	jb	first_nmi
1534
1535	/* Ah, it is within the NMI stack. */
1536
1537	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1538	jz	first_nmi	/* RSP was user controlled. */
1539
1540	/* This is a nested NMI. */
1541
1542nested_nmi:
1543	/*
1544	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1545	 * iteration of NMI handling.
1546	 */
1547	subq	$8, %rsp
1548	leaq	-10*8(%rsp), %rdx
1549	pushq	$__KERNEL_DS
1550	pushq	%rdx
1551	pushfq
1552	pushq	$__KERNEL_CS
1553	pushq	$repeat_nmi
1554
1555	/* Put stack back */
1556	addq	$(6*8), %rsp
1557
1558nested_nmi_out:
1559	popq	%rdx
1560
1561	/* We are returning to kernel mode, so this cannot result in a fault. */
1562	iretq
1563
1564first_nmi:
1565	/* Restore rdx. */
1566	movq	(%rsp), %rdx
1567
1568	/* Make room for "NMI executing". */
1569	pushq	$0
1570
1571	/* Leave room for the "iret" frame */
1572	subq	$(5*8), %rsp
1573
1574	/* Copy the "original" frame to the "outermost" frame */
1575	.rept 5
1576	pushq	11*8(%rsp)
1577	.endr
1578	UNWIND_HINT_IRET_REGS
1579
1580	/* Everything up to here is safe from nested NMIs */
1581
1582#ifdef CONFIG_DEBUG_ENTRY
1583	/*
1584	 * For ease of testing, unmask NMIs right away.  Disabled by
1585	 * default because IRET is very expensive.
1586	 */
1587	pushq	$0		/* SS */
1588	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1589	addq	$8, (%rsp)	/* Fix up RSP */
1590	pushfq			/* RFLAGS */
1591	pushq	$__KERNEL_CS	/* CS */
1592	pushq	$1f		/* RIP */
1593	iretq			/* continues at repeat_nmi below */
1594	UNWIND_HINT_IRET_REGS
15951:
1596#endif
1597
1598repeat_nmi:
1599	/*
1600	 * If there was a nested NMI, the first NMI's iret will return
1601	 * here. But NMIs are still enabled and we can take another
1602	 * nested NMI. The nested NMI checks the interrupted RIP to see
1603	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1604	 * it will just return, as we are about to repeat an NMI anyway.
1605	 * This makes it safe to copy to the stack frame that a nested
1606	 * NMI will update.
1607	 *
1608	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1609	 * we're repeating an NMI, gsbase has the same value that it had on
1610	 * the first iteration.  paranoid_entry will load the kernel
1611	 * gsbase if needed before we call do_nmi.  "NMI executing"
1612	 * is zero.
1613	 */
1614	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1615
1616	/*
1617	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1618	 * here must not modify the "iret" frame while we're writing to
1619	 * it or it will end up containing garbage.
1620	 */
1621	addq	$(10*8), %rsp
1622	.rept 5
1623	pushq	-6*8(%rsp)
1624	.endr
1625	subq	$(5*8), %rsp
1626end_repeat_nmi:
1627
1628	/*
1629	 * Everything below this point can be preempted by a nested NMI.
1630	 * If this happens, then the inner NMI will change the "iret"
1631	 * frame to point back to repeat_nmi.
1632	 */
1633	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1634	ALLOC_PT_GPREGS_ON_STACK
1635
1636	/*
1637	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1638	 * as we should not be calling schedule in NMI context.
1639	 * Even with normal interrupts enabled. An NMI should not be
1640	 * setting NEED_RESCHED or anything that normal interrupts and
1641	 * exceptions might do.
1642	 */
1643	call	paranoid_entry
1644	UNWIND_HINT_REGS
1645
1646	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1647	movq	%rsp, %rdi
1648	movq	$-1, %rsi
1649	call	do_nmi
1650
1651	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1652
1653	testl	%ebx, %ebx			/* swapgs needed? */
1654	jnz	nmi_restore
1655nmi_swapgs:
1656	SWAPGS_UNSAFE_STACK
1657nmi_restore:
1658	POP_EXTRA_REGS
1659	POP_C_REGS
1660
1661	/*
1662	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1663	 * at the "iret" frame.
1664	 */
1665	addq	$6*8, %rsp
1666
1667	/*
1668	 * Clear "NMI executing".  Set DF first so that we can easily
1669	 * distinguish the remaining code between here and IRET from
1670	 * the SYSCALL entry and exit paths.
1671	 *
1672	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1673	 * this code when I had the misapprehension that Xen PV supported
1674	 * NMIs, and Xen PV would break that approach.
1675	 */
1676	std
1677	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1678
1679	/*
1680	 * iretq reads the "iret" frame and exits the NMI stack in a
1681	 * single instruction.  We are returning to kernel mode, so this
1682	 * cannot result in a fault.  Similarly, we don't need to worry
1683	 * about espfix64 on the way back to kernel mode.
1684	 */
1685	iretq
1686END(nmi)
1687
1688ENTRY(ignore_sysret)
1689	UNWIND_HINT_EMPTY
1690	mov	$-ENOSYS, %eax
1691	sysret
1692END(ignore_sysret)
1693
1694ENTRY(rewind_stack_do_exit)
1695	UNWIND_HINT_FUNC
1696	/* Prevent any naive code from trying to unwind to our caller. */
1697	xorl	%ebp, %ebp
1698
1699	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1700	leaq	-PTREGS_SIZE(%rax), %rsp
1701	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1702
1703	call	do_exit
1704END(rewind_stack_do_exit)
1705