1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_EMPTY 89 90 swapgs 91 /* tss.sp2 is scratch space. */ 92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 95 96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 97 98 /* Construct struct pt_regs on stack */ 99 pushq $__USER_DS /* pt_regs->ss */ 100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 101 pushq %r11 /* pt_regs->flags */ 102 pushq $__USER_CS /* pt_regs->cs */ 103 pushq %rcx /* pt_regs->ip */ 104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 105 pushq %rax /* pt_regs->orig_ax */ 106 107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 108 109 /* IRQs are off. */ 110 movq %rsp, %rdi 111 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 112 movslq %eax, %rsi 113 call do_syscall_64 /* returns with IRQs disabled */ 114 115 /* 116 * Try to use SYSRET instead of IRET if we're returning to 117 * a completely clean 64-bit userspace context. If we're not, 118 * go to the slow exit path. 119 * In the Xen PV case we must use iret anyway. 120 */ 121 122 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 123 X86_FEATURE_XENPV 124 125 movq RCX(%rsp), %rcx 126 movq RIP(%rsp), %r11 127 128 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 129 jne swapgs_restore_regs_and_return_to_usermode 130 131 /* 132 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 133 * in kernel space. This essentially lets the user take over 134 * the kernel, since userspace controls RSP. 135 * 136 * If width of "canonical tail" ever becomes variable, this will need 137 * to be updated to remain correct on both old and new CPUs. 138 * 139 * Change top bits to match most significant bit (47th or 56th bit 140 * depending on paging mode) in the address. 141 */ 142#ifdef CONFIG_X86_5LEVEL 143 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 144 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 145#else 146 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 147 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 148#endif 149 150 /* If this changed %rcx, it was not canonical */ 151 cmpq %rcx, %r11 152 jne swapgs_restore_regs_and_return_to_usermode 153 154 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 155 jne swapgs_restore_regs_and_return_to_usermode 156 157 movq R11(%rsp), %r11 158 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 /* 162 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 163 * restore RF properly. If the slowpath sets it for whatever reason, we 164 * need to restore it correctly. 165 * 166 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 167 * trap from userspace immediately after SYSRET. This would cause an 168 * infinite loop whenever #DB happens with register state that satisfies 169 * the opportunistic SYSRET conditions. For example, single-stepping 170 * this user code: 171 * 172 * movq $stuck_here, %rcx 173 * pushfq 174 * popq %r11 175 * stuck_here: 176 * 177 * would never get past 'stuck_here'. 178 */ 179 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 180 jnz swapgs_restore_regs_and_return_to_usermode 181 182 /* nothing to check for RSP */ 183 184 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 185 jne swapgs_restore_regs_and_return_to_usermode 186 187 /* 188 * We win! This label is here just for ease of understanding 189 * perf profiles. Nothing jumps here. 190 */ 191syscall_return_via_sysret: 192 /* rcx and r11 are already restored (see code above) */ 193 POP_REGS pop_rdi=0 skip_r11rcx=1 194 195 /* 196 * Now all regs are restored except RSP and RDI. 197 * Save old stack pointer and switch to trampoline stack. 198 */ 199 movq %rsp, %rdi 200 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 201 UNWIND_HINT_EMPTY 202 203 pushq RSP-RDI(%rdi) /* RSP */ 204 pushq (%rdi) /* RDI */ 205 206 /* 207 * We are on the trampoline stack. All regs except RDI are live. 208 * We can do future final exit work right here. 209 */ 210 STACKLEAK_ERASE_NOCLOBBER 211 212 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 213 214 popq %rdi 215 popq %rsp 216 swapgs 217 sysretq 218SYM_CODE_END(entry_SYSCALL_64) 219 220/* 221 * %rdi: prev task 222 * %rsi: next task 223 */ 224.pushsection .text, "ax" 225SYM_FUNC_START(__switch_to_asm) 226 /* 227 * Save callee-saved registers 228 * This must match the order in inactive_task_frame 229 */ 230 pushq %rbp 231 pushq %rbx 232 pushq %r12 233 pushq %r13 234 pushq %r14 235 pushq %r15 236 237 /* switch stack */ 238 movq %rsp, TASK_threadsp(%rdi) 239 movq TASK_threadsp(%rsi), %rsp 240 241#ifdef CONFIG_STACKPROTECTOR 242 movq TASK_stack_canary(%rsi), %rbx 243 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 244#endif 245 246#ifdef CONFIG_RETPOLINE 247 /* 248 * When switching from a shallower to a deeper call stack 249 * the RSB may either underflow or use entries populated 250 * with userspace addresses. On CPUs where those concerns 251 * exist, overwrite the RSB with entries which capture 252 * speculative execution to prevent attack. 253 */ 254 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 255#endif 256 257 /* restore callee-saved registers */ 258 popq %r15 259 popq %r14 260 popq %r13 261 popq %r12 262 popq %rbx 263 popq %rbp 264 265 jmp __switch_to 266SYM_FUNC_END(__switch_to_asm) 267.popsection 268 269/* 270 * A newly forked process directly context switches into this address. 271 * 272 * rax: prev task we switched from 273 * rbx: kernel thread func (NULL for user thread) 274 * r12: kernel thread arg 275 */ 276.pushsection .text, "ax" 277SYM_CODE_START(ret_from_fork) 278 UNWIND_HINT_EMPTY 279 movq %rax, %rdi 280 call schedule_tail /* rdi: 'prev' task parameter */ 281 282 testq %rbx, %rbx /* from kernel_thread? */ 283 jnz 1f /* kernel threads are uncommon */ 284 2852: 286 UNWIND_HINT_REGS 287 movq %rsp, %rdi 288 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 289 jmp swapgs_restore_regs_and_return_to_usermode 290 2911: 292 /* kernel thread */ 293 UNWIND_HINT_EMPTY 294 movq %r12, %rdi 295 CALL_NOSPEC rbx 296 /* 297 * A kernel thread is allowed to return here after successfully 298 * calling kernel_execve(). Exit to userspace to complete the execve() 299 * syscall. 300 */ 301 movq $0, RAX(%rsp) 302 jmp 2b 303SYM_CODE_END(ret_from_fork) 304.popsection 305 306.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 307#ifdef CONFIG_DEBUG_ENTRY 308 pushq %rax 309 SAVE_FLAGS 310 testl $X86_EFLAGS_IF, %eax 311 jz .Lokay_\@ 312 ud2 313.Lokay_\@: 314 popq %rax 315#endif 316.endm 317 318/** 319 * idtentry_body - Macro to emit code calling the C function 320 * @cfunc: C function to be called 321 * @has_error_code: Hardware pushed error code on stack 322 */ 323.macro idtentry_body cfunc has_error_code:req 324 325 call error_entry 326 UNWIND_HINT_REGS 327 328 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 329 330 .if \has_error_code == 1 331 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 332 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 333 .endif 334 335 call \cfunc 336 337 jmp error_return 338.endm 339 340/** 341 * idtentry - Macro to generate entry stubs for simple IDT entries 342 * @vector: Vector number 343 * @asmsym: ASM symbol for the entry point 344 * @cfunc: C function to be called 345 * @has_error_code: Hardware pushed error code on stack 346 * 347 * The macro emits code to set up the kernel context for straight forward 348 * and simple IDT entries. No IST stack, no paranoid entry checks. 349 */ 350.macro idtentry vector asmsym cfunc has_error_code:req 351SYM_CODE_START(\asmsym) 352 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 353 ASM_CLAC 354 355 .if \has_error_code == 0 356 pushq $-1 /* ORIG_RAX: no syscall to restart */ 357 .endif 358 359 .if \vector == X86_TRAP_BP 360 /* 361 * If coming from kernel space, create a 6-word gap to allow the 362 * int3 handler to emulate a call instruction. 363 */ 364 testb $3, CS-ORIG_RAX(%rsp) 365 jnz .Lfrom_usermode_no_gap_\@ 366 .rept 6 367 pushq 5*8(%rsp) 368 .endr 369 UNWIND_HINT_IRET_REGS offset=8 370.Lfrom_usermode_no_gap_\@: 371 .endif 372 373 idtentry_body \cfunc \has_error_code 374 375_ASM_NOKPROBE(\asmsym) 376SYM_CODE_END(\asmsym) 377.endm 378 379/* 380 * Interrupt entry/exit. 381 * 382 + The interrupt stubs push (vector) onto the stack, which is the error_code 383 * position of idtentry exceptions, and jump to one of the two idtentry points 384 * (common/spurious). 385 * 386 * common_interrupt is a hotpath, align it to a cache line 387 */ 388.macro idtentry_irq vector cfunc 389 .p2align CONFIG_X86_L1_CACHE_SHIFT 390 idtentry \vector asm_\cfunc \cfunc has_error_code=1 391.endm 392 393/* 394 * System vectors which invoke their handlers directly and are not 395 * going through the regular common device interrupt handling code. 396 */ 397.macro idtentry_sysvec vector cfunc 398 idtentry \vector asm_\cfunc \cfunc has_error_code=0 399.endm 400 401/** 402 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 403 * @vector: Vector number 404 * @asmsym: ASM symbol for the entry point 405 * @cfunc: C function to be called 406 * 407 * The macro emits code to set up the kernel context for #MC and #DB 408 * 409 * If the entry comes from user space it uses the normal entry path 410 * including the return to user space work and preemption checks on 411 * exit. 412 * 413 * If hits in kernel mode then it needs to go through the paranoid 414 * entry as the exception can hit any random state. No preemption 415 * check on exit to keep the paranoid path simple. 416 */ 417.macro idtentry_mce_db vector asmsym cfunc 418SYM_CODE_START(\asmsym) 419 UNWIND_HINT_IRET_REGS 420 ASM_CLAC 421 422 pushq $-1 /* ORIG_RAX: no syscall to restart */ 423 424 /* 425 * If the entry is from userspace, switch stacks and treat it as 426 * a normal entry. 427 */ 428 testb $3, CS-ORIG_RAX(%rsp) 429 jnz .Lfrom_usermode_switch_stack_\@ 430 431 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 432 call paranoid_entry 433 434 UNWIND_HINT_REGS 435 436 movq %rsp, %rdi /* pt_regs pointer */ 437 438 call \cfunc 439 440 jmp paranoid_exit 441 442 /* Switch to the regular task stack and use the noist entry point */ 443.Lfrom_usermode_switch_stack_\@: 444 idtentry_body noist_\cfunc, has_error_code=0 445 446_ASM_NOKPROBE(\asmsym) 447SYM_CODE_END(\asmsym) 448.endm 449 450#ifdef CONFIG_AMD_MEM_ENCRYPT 451/** 452 * idtentry_vc - Macro to generate entry stub for #VC 453 * @vector: Vector number 454 * @asmsym: ASM symbol for the entry point 455 * @cfunc: C function to be called 456 * 457 * The macro emits code to set up the kernel context for #VC. The #VC handler 458 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 459 * 460 * To make this work the #VC entry code tries its best to pretend it doesn't use 461 * an IST stack by switching to the task stack if coming from user-space (which 462 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 463 * entered from kernel-mode. 464 * 465 * If entered from kernel-mode the return stack is validated first, and if it is 466 * not safe to use (e.g. because it points to the entry stack) the #VC handler 467 * will switch to a fall-back stack (VC2) and call a special handler function. 468 * 469 * The macro is only used for one vector, but it is planned to be extended in 470 * the future for the #HV exception. 471 */ 472.macro idtentry_vc vector asmsym cfunc 473SYM_CODE_START(\asmsym) 474 UNWIND_HINT_IRET_REGS 475 ASM_CLAC 476 477 /* 478 * If the entry is from userspace, switch stacks and treat it as 479 * a normal entry. 480 */ 481 testb $3, CS-ORIG_RAX(%rsp) 482 jnz .Lfrom_usermode_switch_stack_\@ 483 484 /* 485 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 486 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 487 */ 488 call paranoid_entry 489 490 UNWIND_HINT_REGS 491 492 /* 493 * Switch off the IST stack to make it free for nested exceptions. The 494 * vc_switch_off_ist() function will switch back to the interrupted 495 * stack if it is safe to do so. If not it switches to the VC fall-back 496 * stack. 497 */ 498 movq %rsp, %rdi /* pt_regs pointer */ 499 call vc_switch_off_ist 500 movq %rax, %rsp /* Switch to new stack */ 501 502 UNWIND_HINT_REGS 503 504 /* Update pt_regs */ 505 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 506 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 507 508 movq %rsp, %rdi /* pt_regs pointer */ 509 510 call kernel_\cfunc 511 512 /* 513 * No need to switch back to the IST stack. The current stack is either 514 * identical to the stack in the IRET frame or the VC fall-back stack, 515 * so it is definitely mapped even with PTI enabled. 516 */ 517 jmp paranoid_exit 518 519 /* Switch to the regular task stack */ 520.Lfrom_usermode_switch_stack_\@: 521 idtentry_body user_\cfunc, has_error_code=1 522 523_ASM_NOKPROBE(\asmsym) 524SYM_CODE_END(\asmsym) 525.endm 526#endif 527 528/* 529 * Double fault entry. Straight paranoid. No checks from which context 530 * this comes because for the espfix induced #DF this would do the wrong 531 * thing. 532 */ 533.macro idtentry_df vector asmsym cfunc 534SYM_CODE_START(\asmsym) 535 UNWIND_HINT_IRET_REGS offset=8 536 ASM_CLAC 537 538 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 539 call paranoid_entry 540 UNWIND_HINT_REGS 541 542 movq %rsp, %rdi /* pt_regs pointer into first argument */ 543 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 544 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 545 call \cfunc 546 547 jmp paranoid_exit 548 549_ASM_NOKPROBE(\asmsym) 550SYM_CODE_END(\asmsym) 551.endm 552 553/* 554 * Include the defines which emit the idt entries which are shared 555 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 556 * so the stacktrace boundary checks work. 557 */ 558 .align 16 559 .globl __irqentry_text_start 560__irqentry_text_start: 561 562#include <asm/idtentry.h> 563 564 .align 16 565 .globl __irqentry_text_end 566__irqentry_text_end: 567 568SYM_CODE_START_LOCAL(common_interrupt_return) 569SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 570#ifdef CONFIG_DEBUG_ENTRY 571 /* Assert that pt_regs indicates user mode. */ 572 testb $3, CS(%rsp) 573 jnz 1f 574 ud2 5751: 576#endif 577#ifdef CONFIG_XEN_PV 578 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 579#endif 580 581 POP_REGS pop_rdi=0 582 583 /* 584 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 585 * Save old stack pointer and switch to trampoline stack. 586 */ 587 movq %rsp, %rdi 588 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 589 UNWIND_HINT_EMPTY 590 591 /* Copy the IRET frame to the trampoline stack. */ 592 pushq 6*8(%rdi) /* SS */ 593 pushq 5*8(%rdi) /* RSP */ 594 pushq 4*8(%rdi) /* EFLAGS */ 595 pushq 3*8(%rdi) /* CS */ 596 pushq 2*8(%rdi) /* RIP */ 597 598 /* Push user RDI on the trampoline stack. */ 599 pushq (%rdi) 600 601 /* 602 * We are on the trampoline stack. All regs except RDI are live. 603 * We can do future final exit work right here. 604 */ 605 STACKLEAK_ERASE_NOCLOBBER 606 607 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 608 609 /* Restore RDI. */ 610 popq %rdi 611 SWAPGS 612 INTERRUPT_RETURN 613 614 615SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 616#ifdef CONFIG_DEBUG_ENTRY 617 /* Assert that pt_regs indicates kernel mode. */ 618 testb $3, CS(%rsp) 619 jz 1f 620 ud2 6211: 622#endif 623 POP_REGS 624 addq $8, %rsp /* skip regs->orig_ax */ 625 /* 626 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 627 * when returning from IPI handler. 628 */ 629 INTERRUPT_RETURN 630 631SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 632 UNWIND_HINT_IRET_REGS 633 /* 634 * Are we returning to a stack segment from the LDT? Note: in 635 * 64-bit mode SS:RSP on the exception stack is always valid. 636 */ 637#ifdef CONFIG_X86_ESPFIX64 638 testb $4, (SS-RIP)(%rsp) 639 jnz native_irq_return_ldt 640#endif 641 642SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 643 /* 644 * This may fault. Non-paranoid faults on return to userspace are 645 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 646 * Double-faults due to espfix64 are handled in exc_double_fault. 647 * Other faults here are fatal. 648 */ 649 iretq 650 651#ifdef CONFIG_X86_ESPFIX64 652native_irq_return_ldt: 653 /* 654 * We are running with user GSBASE. All GPRs contain their user 655 * values. We have a percpu ESPFIX stack that is eight slots 656 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 657 * of the ESPFIX stack. 658 * 659 * We clobber RAX and RDI in this code. We stash RDI on the 660 * normal stack and RAX on the ESPFIX stack. 661 * 662 * The ESPFIX stack layout we set up looks like this: 663 * 664 * --- top of ESPFIX stack --- 665 * SS 666 * RSP 667 * RFLAGS 668 * CS 669 * RIP <-- RSP points here when we're done 670 * RAX <-- espfix_waddr points here 671 * --- bottom of ESPFIX stack --- 672 */ 673 674 pushq %rdi /* Stash user RDI */ 675 swapgs /* to kernel GS */ 676 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 677 678 movq PER_CPU_VAR(espfix_waddr), %rdi 679 movq %rax, (0*8)(%rdi) /* user RAX */ 680 movq (1*8)(%rsp), %rax /* user RIP */ 681 movq %rax, (1*8)(%rdi) 682 movq (2*8)(%rsp), %rax /* user CS */ 683 movq %rax, (2*8)(%rdi) 684 movq (3*8)(%rsp), %rax /* user RFLAGS */ 685 movq %rax, (3*8)(%rdi) 686 movq (5*8)(%rsp), %rax /* user SS */ 687 movq %rax, (5*8)(%rdi) 688 movq (4*8)(%rsp), %rax /* user RSP */ 689 movq %rax, (4*8)(%rdi) 690 /* Now RAX == RSP. */ 691 692 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 693 694 /* 695 * espfix_stack[31:16] == 0. The page tables are set up such that 696 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 697 * espfix_waddr for any X. That is, there are 65536 RO aliases of 698 * the same page. Set up RSP so that RSP[31:16] contains the 699 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 700 * still points to an RO alias of the ESPFIX stack. 701 */ 702 orq PER_CPU_VAR(espfix_stack), %rax 703 704 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 705 swapgs /* to user GS */ 706 popq %rdi /* Restore user RDI */ 707 708 movq %rax, %rsp 709 UNWIND_HINT_IRET_REGS offset=8 710 711 /* 712 * At this point, we cannot write to the stack any more, but we can 713 * still read. 714 */ 715 popq %rax /* Restore user RAX */ 716 717 /* 718 * RSP now points to an ordinary IRET frame, except that the page 719 * is read-only and RSP[31:16] are preloaded with the userspace 720 * values. We can now IRET back to userspace. 721 */ 722 jmp native_irq_return_iret 723#endif 724SYM_CODE_END(common_interrupt_return) 725_ASM_NOKPROBE(common_interrupt_return) 726 727/* 728 * Reload gs selector with exception handling 729 * edi: new selector 730 * 731 * Is in entry.text as it shouldn't be instrumented. 732 */ 733SYM_FUNC_START(asm_load_gs_index) 734 FRAME_BEGIN 735 swapgs 736.Lgs_change: 737 movl %edi, %gs 7382: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 739 swapgs 740 FRAME_END 741 ret 742SYM_FUNC_END(asm_load_gs_index) 743EXPORT_SYMBOL(asm_load_gs_index) 744 745 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 746 .section .fixup, "ax" 747 /* running with kernelgs */ 748SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 749 swapgs /* switch back to user gs */ 750.macro ZAP_GS 751 /* This can't be a string because the preprocessor needs to see it. */ 752 movl $__USER_DS, %eax 753 movl %eax, %gs 754.endm 755 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 756 xorl %eax, %eax 757 movl %eax, %gs 758 jmp 2b 759SYM_CODE_END(.Lbad_gs) 760 .previous 761 762#ifdef CONFIG_XEN_PV 763/* 764 * A note on the "critical region" in our callback handler. 765 * We want to avoid stacking callback handlers due to events occurring 766 * during handling of the last event. To do this, we keep events disabled 767 * until we've done all processing. HOWEVER, we must enable events before 768 * popping the stack frame (can't be done atomically) and so it would still 769 * be possible to get enough handler activations to overflow the stack. 770 * Although unlikely, bugs of that kind are hard to track down, so we'd 771 * like to avoid the possibility. 772 * So, on entry to the handler we detect whether we interrupted an 773 * existing activation in its critical region -- if so, we pop the current 774 * activation and restart the handler using the previous one. 775 * 776 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 777 */ 778SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 779 780/* 781 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 782 * see the correct pointer to the pt_regs 783 */ 784 UNWIND_HINT_FUNC 785 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 786 UNWIND_HINT_REGS 787 788 call xen_pv_evtchn_do_upcall 789 790 jmp error_return 791SYM_CODE_END(exc_xen_hypervisor_callback) 792 793/* 794 * Hypervisor uses this for application faults while it executes. 795 * We get here for two reasons: 796 * 1. Fault while reloading DS, ES, FS or GS 797 * 2. Fault while executing IRET 798 * Category 1 we do not need to fix up as Xen has already reloaded all segment 799 * registers that could be reloaded and zeroed the others. 800 * Category 2 we fix up by killing the current process. We cannot use the 801 * normal Linux return path in this case because if we use the IRET hypercall 802 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 803 * We distinguish between categories by comparing each saved segment register 804 * with its current contents: any discrepancy means we in category 1. 805 */ 806SYM_CODE_START(xen_failsafe_callback) 807 UNWIND_HINT_EMPTY 808 movl %ds, %ecx 809 cmpw %cx, 0x10(%rsp) 810 jne 1f 811 movl %es, %ecx 812 cmpw %cx, 0x18(%rsp) 813 jne 1f 814 movl %fs, %ecx 815 cmpw %cx, 0x20(%rsp) 816 jne 1f 817 movl %gs, %ecx 818 cmpw %cx, 0x28(%rsp) 819 jne 1f 820 /* All segments match their saved values => Category 2 (Bad IRET). */ 821 movq (%rsp), %rcx 822 movq 8(%rsp), %r11 823 addq $0x30, %rsp 824 pushq $0 /* RIP */ 825 UNWIND_HINT_IRET_REGS offset=8 826 jmp asm_exc_general_protection 8271: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 828 movq (%rsp), %rcx 829 movq 8(%rsp), %r11 830 addq $0x30, %rsp 831 UNWIND_HINT_IRET_REGS 832 pushq $-1 /* orig_ax = -1 => not a system call */ 833 PUSH_AND_CLEAR_REGS 834 ENCODE_FRAME_POINTER 835 jmp error_return 836SYM_CODE_END(xen_failsafe_callback) 837#endif /* CONFIG_XEN_PV */ 838 839/* 840 * Save all registers in pt_regs. Return GSBASE related information 841 * in EBX depending on the availability of the FSGSBASE instructions: 842 * 843 * FSGSBASE R/EBX 844 * N 0 -> SWAPGS on exit 845 * 1 -> no SWAPGS on exit 846 * 847 * Y GSBASE value at entry, must be restored in paranoid_exit 848 */ 849SYM_CODE_START_LOCAL(paranoid_entry) 850 UNWIND_HINT_FUNC 851 cld 852 PUSH_AND_CLEAR_REGS save_ret=1 853 ENCODE_FRAME_POINTER 8 854 855 /* 856 * Always stash CR3 in %r14. This value will be restored, 857 * verbatim, at exit. Needed if paranoid_entry interrupted 858 * another entry that already switched to the user CR3 value 859 * but has not yet returned to userspace. 860 * 861 * This is also why CS (stashed in the "iret frame" by the 862 * hardware at entry) can not be used: this may be a return 863 * to kernel code, but with a user CR3 value. 864 * 865 * Switching CR3 does not depend on kernel GSBASE so it can 866 * be done before switching to the kernel GSBASE. This is 867 * required for FSGSBASE because the kernel GSBASE has to 868 * be retrieved from a kernel internal table. 869 */ 870 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 871 872 /* 873 * Handling GSBASE depends on the availability of FSGSBASE. 874 * 875 * Without FSGSBASE the kernel enforces that negative GSBASE 876 * values indicate kernel GSBASE. With FSGSBASE no assumptions 877 * can be made about the GSBASE value when entering from user 878 * space. 879 */ 880 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 881 882 /* 883 * Read the current GSBASE and store it in %rbx unconditionally, 884 * retrieve and set the current CPUs kernel GSBASE. The stored value 885 * has to be restored in paranoid_exit unconditionally. 886 * 887 * The unconditional write to GS base below ensures that no subsequent 888 * loads based on a mispredicted GS base can happen, therefore no LFENCE 889 * is needed here. 890 */ 891 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 892 ret 893 894.Lparanoid_entry_checkgs: 895 /* EBX = 1 -> kernel GSBASE active, no restore required */ 896 movl $1, %ebx 897 898 /* 899 * The kernel-enforced convention is a negative GSBASE indicates 900 * a kernel value. No SWAPGS needed on entry and exit. 901 */ 902 movl $MSR_GS_BASE, %ecx 903 rdmsr 904 testl %edx, %edx 905 js .Lparanoid_kernel_gsbase 906 907 /* EBX = 0 -> SWAPGS required on exit */ 908 xorl %ebx, %ebx 909 swapgs 910.Lparanoid_kernel_gsbase: 911 912 FENCE_SWAPGS_KERNEL_ENTRY 913 ret 914SYM_CODE_END(paranoid_entry) 915 916/* 917 * "Paranoid" exit path from exception stack. This is invoked 918 * only on return from non-NMI IST interrupts that came 919 * from kernel space. 920 * 921 * We may be returning to very strange contexts (e.g. very early 922 * in syscall entry), so checking for preemption here would 923 * be complicated. Fortunately, there's no good reason to try 924 * to handle preemption here. 925 * 926 * R/EBX contains the GSBASE related information depending on the 927 * availability of the FSGSBASE instructions: 928 * 929 * FSGSBASE R/EBX 930 * N 0 -> SWAPGS on exit 931 * 1 -> no SWAPGS on exit 932 * 933 * Y User space GSBASE, must be restored unconditionally 934 */ 935SYM_CODE_START_LOCAL(paranoid_exit) 936 UNWIND_HINT_REGS 937 /* 938 * The order of operations is important. RESTORE_CR3 requires 939 * kernel GSBASE. 940 * 941 * NB to anyone to try to optimize this code: this code does 942 * not execute at all for exceptions from user mode. Those 943 * exceptions go through error_exit instead. 944 */ 945 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 946 947 /* Handle the three GSBASE cases */ 948 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 949 950 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 951 wrgsbase %rbx 952 jmp restore_regs_and_return_to_kernel 953 954.Lparanoid_exit_checkgs: 955 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 956 testl %ebx, %ebx 957 jnz restore_regs_and_return_to_kernel 958 959 /* We are returning to a context with user GSBASE */ 960 swapgs 961 jmp restore_regs_and_return_to_kernel 962SYM_CODE_END(paranoid_exit) 963 964/* 965 * Save all registers in pt_regs, and switch GS if needed. 966 */ 967SYM_CODE_START_LOCAL(error_entry) 968 UNWIND_HINT_FUNC 969 cld 970 PUSH_AND_CLEAR_REGS save_ret=1 971 ENCODE_FRAME_POINTER 8 972 testb $3, CS+8(%rsp) 973 jz .Lerror_kernelspace 974 975 /* 976 * We entered from user mode or we're pretending to have entered 977 * from user mode due to an IRET fault. 978 */ 979 SWAPGS 980 FENCE_SWAPGS_USER_ENTRY 981 /* We have user CR3. Change to kernel CR3. */ 982 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 983 984.Lerror_entry_from_usermode_after_swapgs: 985 /* Put us onto the real thread stack. */ 986 popq %r12 /* save return addr in %12 */ 987 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 988 call sync_regs 989 movq %rax, %rsp /* switch stack */ 990 ENCODE_FRAME_POINTER 991 pushq %r12 992 ret 993 994 /* 995 * There are two places in the kernel that can potentially fault with 996 * usergs. Handle them here. B stepping K8s sometimes report a 997 * truncated RIP for IRET exceptions returning to compat mode. Check 998 * for these here too. 999 */ 1000.Lerror_kernelspace: 1001 leaq native_irq_return_iret(%rip), %rcx 1002 cmpq %rcx, RIP+8(%rsp) 1003 je .Lerror_bad_iret 1004 movl %ecx, %eax /* zero extend */ 1005 cmpq %rax, RIP+8(%rsp) 1006 je .Lbstep_iret 1007 cmpq $.Lgs_change, RIP+8(%rsp) 1008 jne .Lerror_entry_done_lfence 1009 1010 /* 1011 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1012 * gsbase and proceed. We'll fix up the exception and land in 1013 * .Lgs_change's error handler with kernel gsbase. 1014 */ 1015 SWAPGS 1016 1017 /* 1018 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1019 * kernel or user gsbase. 1020 */ 1021.Lerror_entry_done_lfence: 1022 FENCE_SWAPGS_KERNEL_ENTRY 1023 ret 1024 1025.Lbstep_iret: 1026 /* Fix truncated RIP */ 1027 movq %rcx, RIP+8(%rsp) 1028 /* fall through */ 1029 1030.Lerror_bad_iret: 1031 /* 1032 * We came from an IRET to user mode, so we have user 1033 * gsbase and CR3. Switch to kernel gsbase and CR3: 1034 */ 1035 SWAPGS 1036 FENCE_SWAPGS_USER_ENTRY 1037 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1038 1039 /* 1040 * Pretend that the exception came from user mode: set up pt_regs 1041 * as if we faulted immediately after IRET. 1042 */ 1043 mov %rsp, %rdi 1044 call fixup_bad_iret 1045 mov %rax, %rsp 1046 jmp .Lerror_entry_from_usermode_after_swapgs 1047SYM_CODE_END(error_entry) 1048 1049SYM_CODE_START_LOCAL(error_return) 1050 UNWIND_HINT_REGS 1051 DEBUG_ENTRY_ASSERT_IRQS_OFF 1052 testb $3, CS(%rsp) 1053 jz restore_regs_and_return_to_kernel 1054 jmp swapgs_restore_regs_and_return_to_usermode 1055SYM_CODE_END(error_return) 1056 1057/* 1058 * Runs on exception stack. Xen PV does not go through this path at all, 1059 * so we can use real assembly here. 1060 * 1061 * Registers: 1062 * %r14: Used to save/restore the CR3 of the interrupted context 1063 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1064 */ 1065SYM_CODE_START(asm_exc_nmi) 1066 UNWIND_HINT_IRET_REGS 1067 1068 /* 1069 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1070 * the iretq it performs will take us out of NMI context. 1071 * This means that we can have nested NMIs where the next 1072 * NMI is using the top of the stack of the previous NMI. We 1073 * can't let it execute because the nested NMI will corrupt the 1074 * stack of the previous NMI. NMI handlers are not re-entrant 1075 * anyway. 1076 * 1077 * To handle this case we do the following: 1078 * Check the a special location on the stack that contains 1079 * a variable that is set when NMIs are executing. 1080 * The interrupted task's stack is also checked to see if it 1081 * is an NMI stack. 1082 * If the variable is not set and the stack is not the NMI 1083 * stack then: 1084 * o Set the special variable on the stack 1085 * o Copy the interrupt frame into an "outermost" location on the 1086 * stack 1087 * o Copy the interrupt frame into an "iret" location on the stack 1088 * o Continue processing the NMI 1089 * If the variable is set or the previous stack is the NMI stack: 1090 * o Modify the "iret" location to jump to the repeat_nmi 1091 * o return back to the first NMI 1092 * 1093 * Now on exit of the first NMI, we first clear the stack variable 1094 * The NMI stack will tell any nested NMIs at that point that it is 1095 * nested. Then we pop the stack normally with iret, and if there was 1096 * a nested NMI that updated the copy interrupt stack frame, a 1097 * jump will be made to the repeat_nmi code that will handle the second 1098 * NMI. 1099 * 1100 * However, espfix prevents us from directly returning to userspace 1101 * with a single IRET instruction. Similarly, IRET to user mode 1102 * can fault. We therefore handle NMIs from user space like 1103 * other IST entries. 1104 */ 1105 1106 ASM_CLAC 1107 1108 /* Use %rdx as our temp variable throughout */ 1109 pushq %rdx 1110 1111 testb $3, CS-RIP+8(%rsp) 1112 jz .Lnmi_from_kernel 1113 1114 /* 1115 * NMI from user mode. We need to run on the thread stack, but we 1116 * can't go through the normal entry paths: NMIs are masked, and 1117 * we don't want to enable interrupts, because then we'll end 1118 * up in an awkward situation in which IRQs are on but NMIs 1119 * are off. 1120 * 1121 * We also must not push anything to the stack before switching 1122 * stacks lest we corrupt the "NMI executing" variable. 1123 */ 1124 1125 swapgs 1126 cld 1127 FENCE_SWAPGS_USER_ENTRY 1128 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1129 movq %rsp, %rdx 1130 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1131 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1132 pushq 5*8(%rdx) /* pt_regs->ss */ 1133 pushq 4*8(%rdx) /* pt_regs->rsp */ 1134 pushq 3*8(%rdx) /* pt_regs->flags */ 1135 pushq 2*8(%rdx) /* pt_regs->cs */ 1136 pushq 1*8(%rdx) /* pt_regs->rip */ 1137 UNWIND_HINT_IRET_REGS 1138 pushq $-1 /* pt_regs->orig_ax */ 1139 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1140 ENCODE_FRAME_POINTER 1141 1142 /* 1143 * At this point we no longer need to worry about stack damage 1144 * due to nesting -- we're on the normal thread stack and we're 1145 * done with the NMI stack. 1146 */ 1147 1148 movq %rsp, %rdi 1149 movq $-1, %rsi 1150 call exc_nmi 1151 1152 /* 1153 * Return back to user mode. We must *not* do the normal exit 1154 * work, because we don't want to enable interrupts. 1155 */ 1156 jmp swapgs_restore_regs_and_return_to_usermode 1157 1158.Lnmi_from_kernel: 1159 /* 1160 * Here's what our stack frame will look like: 1161 * +---------------------------------------------------------+ 1162 * | original SS | 1163 * | original Return RSP | 1164 * | original RFLAGS | 1165 * | original CS | 1166 * | original RIP | 1167 * +---------------------------------------------------------+ 1168 * | temp storage for rdx | 1169 * +---------------------------------------------------------+ 1170 * | "NMI executing" variable | 1171 * +---------------------------------------------------------+ 1172 * | iret SS } Copied from "outermost" frame | 1173 * | iret Return RSP } on each loop iteration; overwritten | 1174 * | iret RFLAGS } by a nested NMI to force another | 1175 * | iret CS } iteration if needed. | 1176 * | iret RIP } | 1177 * +---------------------------------------------------------+ 1178 * | outermost SS } initialized in first_nmi; | 1179 * | outermost Return RSP } will not be changed before | 1180 * | outermost RFLAGS } NMI processing is done. | 1181 * | outermost CS } Copied to "iret" frame on each | 1182 * | outermost RIP } iteration. | 1183 * +---------------------------------------------------------+ 1184 * | pt_regs | 1185 * +---------------------------------------------------------+ 1186 * 1187 * The "original" frame is used by hardware. Before re-enabling 1188 * NMIs, we need to be done with it, and we need to leave enough 1189 * space for the asm code here. 1190 * 1191 * We return by executing IRET while RSP points to the "iret" frame. 1192 * That will either return for real or it will loop back into NMI 1193 * processing. 1194 * 1195 * The "outermost" frame is copied to the "iret" frame on each 1196 * iteration of the loop, so each iteration starts with the "iret" 1197 * frame pointing to the final return target. 1198 */ 1199 1200 /* 1201 * Determine whether we're a nested NMI. 1202 * 1203 * If we interrupted kernel code between repeat_nmi and 1204 * end_repeat_nmi, then we are a nested NMI. We must not 1205 * modify the "iret" frame because it's being written by 1206 * the outer NMI. That's okay; the outer NMI handler is 1207 * about to about to call exc_nmi() anyway, so we can just 1208 * resume the outer NMI. 1209 */ 1210 1211 movq $repeat_nmi, %rdx 1212 cmpq 8(%rsp), %rdx 1213 ja 1f 1214 movq $end_repeat_nmi, %rdx 1215 cmpq 8(%rsp), %rdx 1216 ja nested_nmi_out 12171: 1218 1219 /* 1220 * Now check "NMI executing". If it's set, then we're nested. 1221 * This will not detect if we interrupted an outer NMI just 1222 * before IRET. 1223 */ 1224 cmpl $1, -8(%rsp) 1225 je nested_nmi 1226 1227 /* 1228 * Now test if the previous stack was an NMI stack. This covers 1229 * the case where we interrupt an outer NMI after it clears 1230 * "NMI executing" but before IRET. We need to be careful, though: 1231 * there is one case in which RSP could point to the NMI stack 1232 * despite there being no NMI active: naughty userspace controls 1233 * RSP at the very beginning of the SYSCALL targets. We can 1234 * pull a fast one on naughty userspace, though: we program 1235 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1236 * if it controls the kernel's RSP. We set DF before we clear 1237 * "NMI executing". 1238 */ 1239 lea 6*8(%rsp), %rdx 1240 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1241 cmpq %rdx, 4*8(%rsp) 1242 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1243 ja first_nmi 1244 1245 subq $EXCEPTION_STKSZ, %rdx 1246 cmpq %rdx, 4*8(%rsp) 1247 /* If it is below the NMI stack, it is a normal NMI */ 1248 jb first_nmi 1249 1250 /* Ah, it is within the NMI stack. */ 1251 1252 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1253 jz first_nmi /* RSP was user controlled. */ 1254 1255 /* This is a nested NMI. */ 1256 1257nested_nmi: 1258 /* 1259 * Modify the "iret" frame to point to repeat_nmi, forcing another 1260 * iteration of NMI handling. 1261 */ 1262 subq $8, %rsp 1263 leaq -10*8(%rsp), %rdx 1264 pushq $__KERNEL_DS 1265 pushq %rdx 1266 pushfq 1267 pushq $__KERNEL_CS 1268 pushq $repeat_nmi 1269 1270 /* Put stack back */ 1271 addq $(6*8), %rsp 1272 1273nested_nmi_out: 1274 popq %rdx 1275 1276 /* We are returning to kernel mode, so this cannot result in a fault. */ 1277 iretq 1278 1279first_nmi: 1280 /* Restore rdx. */ 1281 movq (%rsp), %rdx 1282 1283 /* Make room for "NMI executing". */ 1284 pushq $0 1285 1286 /* Leave room for the "iret" frame */ 1287 subq $(5*8), %rsp 1288 1289 /* Copy the "original" frame to the "outermost" frame */ 1290 .rept 5 1291 pushq 11*8(%rsp) 1292 .endr 1293 UNWIND_HINT_IRET_REGS 1294 1295 /* Everything up to here is safe from nested NMIs */ 1296 1297#ifdef CONFIG_DEBUG_ENTRY 1298 /* 1299 * For ease of testing, unmask NMIs right away. Disabled by 1300 * default because IRET is very expensive. 1301 */ 1302 pushq $0 /* SS */ 1303 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1304 addq $8, (%rsp) /* Fix up RSP */ 1305 pushfq /* RFLAGS */ 1306 pushq $__KERNEL_CS /* CS */ 1307 pushq $1f /* RIP */ 1308 iretq /* continues at repeat_nmi below */ 1309 UNWIND_HINT_IRET_REGS 13101: 1311#endif 1312 1313repeat_nmi: 1314 /* 1315 * If there was a nested NMI, the first NMI's iret will return 1316 * here. But NMIs are still enabled and we can take another 1317 * nested NMI. The nested NMI checks the interrupted RIP to see 1318 * if it is between repeat_nmi and end_repeat_nmi, and if so 1319 * it will just return, as we are about to repeat an NMI anyway. 1320 * This makes it safe to copy to the stack frame that a nested 1321 * NMI will update. 1322 * 1323 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1324 * we're repeating an NMI, gsbase has the same value that it had on 1325 * the first iteration. paranoid_entry will load the kernel 1326 * gsbase if needed before we call exc_nmi(). "NMI executing" 1327 * is zero. 1328 */ 1329 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1330 1331 /* 1332 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1333 * here must not modify the "iret" frame while we're writing to 1334 * it or it will end up containing garbage. 1335 */ 1336 addq $(10*8), %rsp 1337 .rept 5 1338 pushq -6*8(%rsp) 1339 .endr 1340 subq $(5*8), %rsp 1341end_repeat_nmi: 1342 1343 /* 1344 * Everything below this point can be preempted by a nested NMI. 1345 * If this happens, then the inner NMI will change the "iret" 1346 * frame to point back to repeat_nmi. 1347 */ 1348 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1349 1350 /* 1351 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1352 * as we should not be calling schedule in NMI context. 1353 * Even with normal interrupts enabled. An NMI should not be 1354 * setting NEED_RESCHED or anything that normal interrupts and 1355 * exceptions might do. 1356 */ 1357 call paranoid_entry 1358 UNWIND_HINT_REGS 1359 1360 movq %rsp, %rdi 1361 movq $-1, %rsi 1362 call exc_nmi 1363 1364 /* Always restore stashed CR3 value (see paranoid_entry) */ 1365 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1366 1367 /* 1368 * The above invocation of paranoid_entry stored the GSBASE 1369 * related information in R/EBX depending on the availability 1370 * of FSGSBASE. 1371 * 1372 * If FSGSBASE is enabled, restore the saved GSBASE value 1373 * unconditionally, otherwise take the conditional SWAPGS path. 1374 */ 1375 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1376 1377 wrgsbase %rbx 1378 jmp nmi_restore 1379 1380nmi_no_fsgsbase: 1381 /* EBX == 0 -> invoke SWAPGS */ 1382 testl %ebx, %ebx 1383 jnz nmi_restore 1384 1385nmi_swapgs: 1386 swapgs 1387 1388nmi_restore: 1389 POP_REGS 1390 1391 /* 1392 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1393 * at the "iret" frame. 1394 */ 1395 addq $6*8, %rsp 1396 1397 /* 1398 * Clear "NMI executing". Set DF first so that we can easily 1399 * distinguish the remaining code between here and IRET from 1400 * the SYSCALL entry and exit paths. 1401 * 1402 * We arguably should just inspect RIP instead, but I (Andy) wrote 1403 * this code when I had the misapprehension that Xen PV supported 1404 * NMIs, and Xen PV would break that approach. 1405 */ 1406 std 1407 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1408 1409 /* 1410 * iretq reads the "iret" frame and exits the NMI stack in a 1411 * single instruction. We are returning to kernel mode, so this 1412 * cannot result in a fault. Similarly, we don't need to worry 1413 * about espfix64 on the way back to kernel mode. 1414 */ 1415 iretq 1416SYM_CODE_END(asm_exc_nmi) 1417 1418#ifndef CONFIG_IA32_EMULATION 1419/* 1420 * This handles SYSCALL from 32-bit code. There is no way to program 1421 * MSRs to fully disable 32-bit SYSCALL. 1422 */ 1423SYM_CODE_START(ignore_sysret) 1424 UNWIND_HINT_EMPTY 1425 mov $-ENOSYS, %eax 1426 sysretl 1427SYM_CODE_END(ignore_sysret) 1428#endif 1429 1430.pushsection .text, "ax" 1431SYM_CODE_START(rewind_stack_do_exit) 1432 UNWIND_HINT_FUNC 1433 /* Prevent any naive code from trying to unwind to our caller. */ 1434 xorl %ebp, %ebp 1435 1436 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1437 leaq -PTREGS_SIZE(%rax), %rsp 1438 UNWIND_HINT_REGS 1439 1440 call do_exit 1441SYM_CODE_END(rewind_stack_do_exit) 1442.popsection 1443