xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 22b6e7f3)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
130		X86_FEATURE_XENPV
131
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_END_OF_STACK
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
224	ANNOTATE_NOENDBR
225	swapgs
226	sysretq
227SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
228	ANNOTATE_NOENDBR
229	int3
230SYM_CODE_END(entry_SYSCALL_64)
231
232/*
233 * %rdi: prev task
234 * %rsi: next task
235 */
236.pushsection .text, "ax"
237SYM_FUNC_START(__switch_to_asm)
238	/*
239	 * Save callee-saved registers
240	 * This must match the order in inactive_task_frame
241	 */
242	pushq	%rbp
243	pushq	%rbx
244	pushq	%r12
245	pushq	%r13
246	pushq	%r14
247	pushq	%r15
248
249	/* switch stack */
250	movq	%rsp, TASK_threadsp(%rdi)
251	movq	TASK_threadsp(%rsi), %rsp
252
253#ifdef CONFIG_STACKPROTECTOR
254	movq	TASK_stack_canary(%rsi), %rbx
255	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
256#endif
257
258	/*
259	 * When switching from a shallower to a deeper call stack
260	 * the RSB may either underflow or use entries populated
261	 * with userspace addresses. On CPUs where those concerns
262	 * exist, overwrite the RSB with entries which capture
263	 * speculative execution to prevent attack.
264	 */
265	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
266
267	/* restore callee-saved registers */
268	popq	%r15
269	popq	%r14
270	popq	%r13
271	popq	%r12
272	popq	%rbx
273	popq	%rbp
274
275	jmp	__switch_to
276SYM_FUNC_END(__switch_to_asm)
277.popsection
278
279/*
280 * A newly forked process directly context switches into this address.
281 *
282 * rax: prev task we switched from
283 * rbx: kernel thread func (NULL for user thread)
284 * r12: kernel thread arg
285 */
286.pushsection .text, "ax"
287SYM_CODE_START(ret_from_fork_asm)
288	/*
289	 * This is the start of the kernel stack; even through there's a
290	 * register set at the top, the regset isn't necessarily coherent
291	 * (consider kthreads) and one cannot unwind further.
292	 *
293	 * This ensures stack unwinds of kernel threads terminate in a known
294	 * good state.
295	 */
296	UNWIND_HINT_END_OF_STACK
297	ANNOTATE_NOENDBR // copy_thread
298	CALL_DEPTH_ACCOUNT
299
300	movq	%rax, %rdi		/* prev */
301	movq	%rsp, %rsi		/* regs */
302	movq	%rbx, %rdx		/* fn */
303	movq	%r12, %rcx		/* fn_arg */
304	call	ret_from_fork
305
306	/*
307	 * Set the stack state to what is expected for the target function
308	 * -- at this point the register set should be a valid user set
309	 * and unwind should work normally.
310	 */
311	UNWIND_HINT_REGS
312	jmp	swapgs_restore_regs_and_return_to_usermode
313SYM_CODE_END(ret_from_fork_asm)
314.popsection
315
316.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
317#ifdef CONFIG_DEBUG_ENTRY
318	pushq %rax
319	SAVE_FLAGS
320	testl $X86_EFLAGS_IF, %eax
321	jz .Lokay_\@
322	ud2
323.Lokay_\@:
324	popq %rax
325#endif
326.endm
327
328SYM_CODE_START(xen_error_entry)
329	ANNOTATE_NOENDBR
330	UNWIND_HINT_FUNC
331	PUSH_AND_CLEAR_REGS save_ret=1
332	ENCODE_FRAME_POINTER 8
333	UNTRAIN_RET_FROM_CALL
334	RET
335SYM_CODE_END(xen_error_entry)
336
337/**
338 * idtentry_body - Macro to emit code calling the C function
339 * @cfunc:		C function to be called
340 * @has_error_code:	Hardware pushed error code on stack
341 */
342.macro idtentry_body cfunc has_error_code:req
343
344	/*
345	 * Call error_entry() and switch to the task stack if from userspace.
346	 *
347	 * When in XENPV, it is already in the task stack, and it can't fault
348	 * for native_iret() nor native_load_gs_index() since XENPV uses its
349	 * own pvops for IRET and load_gs_index().  And it doesn't need to
350	 * switch the CR3.  So it can skip invoking error_entry().
351	 */
352	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
353		    "call xen_error_entry", X86_FEATURE_XENPV
354
355	ENCODE_FRAME_POINTER
356	UNWIND_HINT_REGS
357
358	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
359
360	.if \has_error_code == 1
361		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
362		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
363	.endif
364
365	call	\cfunc
366
367	/* For some configurations \cfunc ends up being a noreturn. */
368	REACHABLE
369
370	jmp	error_return
371.endm
372
373/**
374 * idtentry - Macro to generate entry stubs for simple IDT entries
375 * @vector:		Vector number
376 * @asmsym:		ASM symbol for the entry point
377 * @cfunc:		C function to be called
378 * @has_error_code:	Hardware pushed error code on stack
379 *
380 * The macro emits code to set up the kernel context for straight forward
381 * and simple IDT entries. No IST stack, no paranoid entry checks.
382 */
383.macro idtentry vector asmsym cfunc has_error_code:req
384SYM_CODE_START(\asmsym)
385
386	.if \vector == X86_TRAP_BP
387		/* #BP advances %rip to the next instruction */
388		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
389	.else
390		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
391	.endif
392
393	ENDBR
394	ASM_CLAC
395	cld
396
397	.if \has_error_code == 0
398		pushq	$-1			/* ORIG_RAX: no syscall to restart */
399	.endif
400
401	.if \vector == X86_TRAP_BP
402		/*
403		 * If coming from kernel space, create a 6-word gap to allow the
404		 * int3 handler to emulate a call instruction.
405		 */
406		testb	$3, CS-ORIG_RAX(%rsp)
407		jnz	.Lfrom_usermode_no_gap_\@
408		.rept	6
409		pushq	5*8(%rsp)
410		.endr
411		UNWIND_HINT_IRET_REGS offset=8
412.Lfrom_usermode_no_gap_\@:
413	.endif
414
415	idtentry_body \cfunc \has_error_code
416
417_ASM_NOKPROBE(\asmsym)
418SYM_CODE_END(\asmsym)
419.endm
420
421/*
422 * Interrupt entry/exit.
423 *
424 + The interrupt stubs push (vector) onto the stack, which is the error_code
425 * position of idtentry exceptions, and jump to one of the two idtentry points
426 * (common/spurious).
427 *
428 * common_interrupt is a hotpath, align it to a cache line
429 */
430.macro idtentry_irq vector cfunc
431	.p2align CONFIG_X86_L1_CACHE_SHIFT
432	idtentry \vector asm_\cfunc \cfunc has_error_code=1
433.endm
434
435/*
436 * System vectors which invoke their handlers directly and are not
437 * going through the regular common device interrupt handling code.
438 */
439.macro idtentry_sysvec vector cfunc
440	idtentry \vector asm_\cfunc \cfunc has_error_code=0
441.endm
442
443/**
444 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
445 * @vector:		Vector number
446 * @asmsym:		ASM symbol for the entry point
447 * @cfunc:		C function to be called
448 *
449 * The macro emits code to set up the kernel context for #MC and #DB
450 *
451 * If the entry comes from user space it uses the normal entry path
452 * including the return to user space work and preemption checks on
453 * exit.
454 *
455 * If hits in kernel mode then it needs to go through the paranoid
456 * entry as the exception can hit any random state. No preemption
457 * check on exit to keep the paranoid path simple.
458 */
459.macro idtentry_mce_db vector asmsym cfunc
460SYM_CODE_START(\asmsym)
461	UNWIND_HINT_IRET_ENTRY
462	ENDBR
463	ASM_CLAC
464	cld
465
466	pushq	$-1			/* ORIG_RAX: no syscall to restart */
467
468	/*
469	 * If the entry is from userspace, switch stacks and treat it as
470	 * a normal entry.
471	 */
472	testb	$3, CS-ORIG_RAX(%rsp)
473	jnz	.Lfrom_usermode_switch_stack_\@
474
475	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
476	call	paranoid_entry
477
478	UNWIND_HINT_REGS
479
480	movq	%rsp, %rdi		/* pt_regs pointer */
481
482	call	\cfunc
483
484	jmp	paranoid_exit
485
486	/* Switch to the regular task stack and use the noist entry point */
487.Lfrom_usermode_switch_stack_\@:
488	idtentry_body noist_\cfunc, has_error_code=0
489
490_ASM_NOKPROBE(\asmsym)
491SYM_CODE_END(\asmsym)
492.endm
493
494#ifdef CONFIG_AMD_MEM_ENCRYPT
495/**
496 * idtentry_vc - Macro to generate entry stub for #VC
497 * @vector:		Vector number
498 * @asmsym:		ASM symbol for the entry point
499 * @cfunc:		C function to be called
500 *
501 * The macro emits code to set up the kernel context for #VC. The #VC handler
502 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
503 *
504 * To make this work the #VC entry code tries its best to pretend it doesn't use
505 * an IST stack by switching to the task stack if coming from user-space (which
506 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
507 * entered from kernel-mode.
508 *
509 * If entered from kernel-mode the return stack is validated first, and if it is
510 * not safe to use (e.g. because it points to the entry stack) the #VC handler
511 * will switch to a fall-back stack (VC2) and call a special handler function.
512 *
513 * The macro is only used for one vector, but it is planned to be extended in
514 * the future for the #HV exception.
515 */
516.macro idtentry_vc vector asmsym cfunc
517SYM_CODE_START(\asmsym)
518	UNWIND_HINT_IRET_ENTRY
519	ENDBR
520	ASM_CLAC
521	cld
522
523	/*
524	 * If the entry is from userspace, switch stacks and treat it as
525	 * a normal entry.
526	 */
527	testb	$3, CS-ORIG_RAX(%rsp)
528	jnz	.Lfrom_usermode_switch_stack_\@
529
530	/*
531	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
532	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
533	 */
534	call	paranoid_entry
535
536	UNWIND_HINT_REGS
537
538	/*
539	 * Switch off the IST stack to make it free for nested exceptions. The
540	 * vc_switch_off_ist() function will switch back to the interrupted
541	 * stack if it is safe to do so. If not it switches to the VC fall-back
542	 * stack.
543	 */
544	movq	%rsp, %rdi		/* pt_regs pointer */
545	call	vc_switch_off_ist
546	movq	%rax, %rsp		/* Switch to new stack */
547
548	ENCODE_FRAME_POINTER
549	UNWIND_HINT_REGS
550
551	/* Update pt_regs */
552	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
553	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
554
555	movq	%rsp, %rdi		/* pt_regs pointer */
556
557	call	kernel_\cfunc
558
559	/*
560	 * No need to switch back to the IST stack. The current stack is either
561	 * identical to the stack in the IRET frame or the VC fall-back stack,
562	 * so it is definitely mapped even with PTI enabled.
563	 */
564	jmp	paranoid_exit
565
566	/* Switch to the regular task stack */
567.Lfrom_usermode_switch_stack_\@:
568	idtentry_body user_\cfunc, has_error_code=1
569
570_ASM_NOKPROBE(\asmsym)
571SYM_CODE_END(\asmsym)
572.endm
573#endif
574
575/*
576 * Double fault entry. Straight paranoid. No checks from which context
577 * this comes because for the espfix induced #DF this would do the wrong
578 * thing.
579 */
580.macro idtentry_df vector asmsym cfunc
581SYM_CODE_START(\asmsym)
582	UNWIND_HINT_IRET_ENTRY offset=8
583	ENDBR
584	ASM_CLAC
585	cld
586
587	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
588	call	paranoid_entry
589	UNWIND_HINT_REGS
590
591	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
592	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
593	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
594	call	\cfunc
595
596	/* For some configurations \cfunc ends up being a noreturn. */
597	REACHABLE
598
599	jmp	paranoid_exit
600
601_ASM_NOKPROBE(\asmsym)
602SYM_CODE_END(\asmsym)
603.endm
604
605/*
606 * Include the defines which emit the idt entries which are shared
607 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
608 * so the stacktrace boundary checks work.
609 */
610	__ALIGN
611	.globl __irqentry_text_start
612__irqentry_text_start:
613
614#include <asm/idtentry.h>
615
616	__ALIGN
617	.globl __irqentry_text_end
618__irqentry_text_end:
619	ANNOTATE_NOENDBR
620
621SYM_CODE_START_LOCAL(common_interrupt_return)
622SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
623	IBRS_EXIT
624#ifdef CONFIG_DEBUG_ENTRY
625	/* Assert that pt_regs indicates user mode. */
626	testb	$3, CS(%rsp)
627	jnz	1f
628	ud2
6291:
630#endif
631#ifdef CONFIG_XEN_PV
632	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
633#endif
634
635	POP_REGS pop_rdi=0
636
637	/*
638	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
639	 * Save old stack pointer and switch to trampoline stack.
640	 */
641	movq	%rsp, %rdi
642	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
643	UNWIND_HINT_END_OF_STACK
644
645	/* Copy the IRET frame to the trampoline stack. */
646	pushq	6*8(%rdi)	/* SS */
647	pushq	5*8(%rdi)	/* RSP */
648	pushq	4*8(%rdi)	/* EFLAGS */
649	pushq	3*8(%rdi)	/* CS */
650	pushq	2*8(%rdi)	/* RIP */
651
652	/* Push user RDI on the trampoline stack. */
653	pushq	(%rdi)
654
655	/*
656	 * We are on the trampoline stack.  All regs except RDI are live.
657	 * We can do future final exit work right here.
658	 */
659	STACKLEAK_ERASE_NOCLOBBER
660
661	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
662
663	/* Restore RDI. */
664	popq	%rdi
665	swapgs
666	jmp	.Lnative_iret
667
668
669SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
670#ifdef CONFIG_DEBUG_ENTRY
671	/* Assert that pt_regs indicates kernel mode. */
672	testb	$3, CS(%rsp)
673	jz	1f
674	ud2
6751:
676#endif
677	POP_REGS
678	addq	$8, %rsp	/* skip regs->orig_ax */
679	/*
680	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
681	 * when returning from IPI handler.
682	 */
683#ifdef CONFIG_XEN_PV
684SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
685	ANNOTATE_NOENDBR
686	.byte 0xe9
687	.long .Lnative_iret - (. + 4)
688#endif
689
690.Lnative_iret:
691	UNWIND_HINT_IRET_REGS
692	/*
693	 * Are we returning to a stack segment from the LDT?  Note: in
694	 * 64-bit mode SS:RSP on the exception stack is always valid.
695	 */
696#ifdef CONFIG_X86_ESPFIX64
697	testb	$4, (SS-RIP)(%rsp)
698	jnz	native_irq_return_ldt
699#endif
700
701SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
702	ANNOTATE_NOENDBR // exc_double_fault
703	/*
704	 * This may fault.  Non-paranoid faults on return to userspace are
705	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
706	 * Double-faults due to espfix64 are handled in exc_double_fault.
707	 * Other faults here are fatal.
708	 */
709	iretq
710
711#ifdef CONFIG_X86_ESPFIX64
712native_irq_return_ldt:
713	/*
714	 * We are running with user GSBASE.  All GPRs contain their user
715	 * values.  We have a percpu ESPFIX stack that is eight slots
716	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
717	 * of the ESPFIX stack.
718	 *
719	 * We clobber RAX and RDI in this code.  We stash RDI on the
720	 * normal stack and RAX on the ESPFIX stack.
721	 *
722	 * The ESPFIX stack layout we set up looks like this:
723	 *
724	 * --- top of ESPFIX stack ---
725	 * SS
726	 * RSP
727	 * RFLAGS
728	 * CS
729	 * RIP  <-- RSP points here when we're done
730	 * RAX  <-- espfix_waddr points here
731	 * --- bottom of ESPFIX stack ---
732	 */
733
734	pushq	%rdi				/* Stash user RDI */
735	swapgs					/* to kernel GS */
736	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
737
738	movq	PER_CPU_VAR(espfix_waddr), %rdi
739	movq	%rax, (0*8)(%rdi)		/* user RAX */
740	movq	(1*8)(%rsp), %rax		/* user RIP */
741	movq	%rax, (1*8)(%rdi)
742	movq	(2*8)(%rsp), %rax		/* user CS */
743	movq	%rax, (2*8)(%rdi)
744	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
745	movq	%rax, (3*8)(%rdi)
746	movq	(5*8)(%rsp), %rax		/* user SS */
747	movq	%rax, (5*8)(%rdi)
748	movq	(4*8)(%rsp), %rax		/* user RSP */
749	movq	%rax, (4*8)(%rdi)
750	/* Now RAX == RSP. */
751
752	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
753
754	/*
755	 * espfix_stack[31:16] == 0.  The page tables are set up such that
756	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
757	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
758	 * the same page.  Set up RSP so that RSP[31:16] contains the
759	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
760	 * still points to an RO alias of the ESPFIX stack.
761	 */
762	orq	PER_CPU_VAR(espfix_stack), %rax
763
764	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
765	swapgs					/* to user GS */
766	popq	%rdi				/* Restore user RDI */
767
768	movq	%rax, %rsp
769	UNWIND_HINT_IRET_REGS offset=8
770
771	/*
772	 * At this point, we cannot write to the stack any more, but we can
773	 * still read.
774	 */
775	popq	%rax				/* Restore user RAX */
776
777	/*
778	 * RSP now points to an ordinary IRET frame, except that the page
779	 * is read-only and RSP[31:16] are preloaded with the userspace
780	 * values.  We can now IRET back to userspace.
781	 */
782	jmp	native_irq_return_iret
783#endif
784SYM_CODE_END(common_interrupt_return)
785_ASM_NOKPROBE(common_interrupt_return)
786
787/*
788 * Reload gs selector with exception handling
789 *  di:  new selector
790 *
791 * Is in entry.text as it shouldn't be instrumented.
792 */
793SYM_FUNC_START(asm_load_gs_index)
794	FRAME_BEGIN
795	swapgs
796.Lgs_change:
797	ANNOTATE_NOENDBR // error_entry
798	movl	%edi, %gs
7992:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
800	swapgs
801	FRAME_END
802	RET
803
804	/* running with kernelgs */
805.Lbad_gs:
806	swapgs					/* switch back to user gs */
807.macro ZAP_GS
808	/* This can't be a string because the preprocessor needs to see it. */
809	movl $__USER_DS, %eax
810	movl %eax, %gs
811.endm
812	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
813	xorl	%eax, %eax
814	movl	%eax, %gs
815	jmp	2b
816
817	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
818
819SYM_FUNC_END(asm_load_gs_index)
820EXPORT_SYMBOL(asm_load_gs_index)
821
822#ifdef CONFIG_XEN_PV
823/*
824 * A note on the "critical region" in our callback handler.
825 * We want to avoid stacking callback handlers due to events occurring
826 * during handling of the last event. To do this, we keep events disabled
827 * until we've done all processing. HOWEVER, we must enable events before
828 * popping the stack frame (can't be done atomically) and so it would still
829 * be possible to get enough handler activations to overflow the stack.
830 * Although unlikely, bugs of that kind are hard to track down, so we'd
831 * like to avoid the possibility.
832 * So, on entry to the handler we detect whether we interrupted an
833 * existing activation in its critical region -- if so, we pop the current
834 * activation and restart the handler using the previous one.
835 *
836 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
837 */
838	__FUNC_ALIGN
839SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
840
841/*
842 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
843 * see the correct pointer to the pt_regs
844 */
845	UNWIND_HINT_FUNC
846	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
847	UNWIND_HINT_REGS
848
849	call	xen_pv_evtchn_do_upcall
850
851	jmp	error_return
852SYM_CODE_END(exc_xen_hypervisor_callback)
853
854/*
855 * Hypervisor uses this for application faults while it executes.
856 * We get here for two reasons:
857 *  1. Fault while reloading DS, ES, FS or GS
858 *  2. Fault while executing IRET
859 * Category 1 we do not need to fix up as Xen has already reloaded all segment
860 * registers that could be reloaded and zeroed the others.
861 * Category 2 we fix up by killing the current process. We cannot use the
862 * normal Linux return path in this case because if we use the IRET hypercall
863 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
864 * We distinguish between categories by comparing each saved segment register
865 * with its current contents: any discrepancy means we in category 1.
866 */
867	__FUNC_ALIGN
868SYM_CODE_START_NOALIGN(xen_failsafe_callback)
869	UNWIND_HINT_UNDEFINED
870	ENDBR
871	movl	%ds, %ecx
872	cmpw	%cx, 0x10(%rsp)
873	jne	1f
874	movl	%es, %ecx
875	cmpw	%cx, 0x18(%rsp)
876	jne	1f
877	movl	%fs, %ecx
878	cmpw	%cx, 0x20(%rsp)
879	jne	1f
880	movl	%gs, %ecx
881	cmpw	%cx, 0x28(%rsp)
882	jne	1f
883	/* All segments match their saved values => Category 2 (Bad IRET). */
884	movq	(%rsp), %rcx
885	movq	8(%rsp), %r11
886	addq	$0x30, %rsp
887	pushq	$0				/* RIP */
888	UNWIND_HINT_IRET_REGS offset=8
889	jmp	asm_exc_general_protection
8901:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
891	movq	(%rsp), %rcx
892	movq	8(%rsp), %r11
893	addq	$0x30, %rsp
894	UNWIND_HINT_IRET_REGS
895	pushq	$-1 /* orig_ax = -1 => not a system call */
896	PUSH_AND_CLEAR_REGS
897	ENCODE_FRAME_POINTER
898	jmp	error_return
899SYM_CODE_END(xen_failsafe_callback)
900#endif /* CONFIG_XEN_PV */
901
902/*
903 * Save all registers in pt_regs. Return GSBASE related information
904 * in EBX depending on the availability of the FSGSBASE instructions:
905 *
906 * FSGSBASE	R/EBX
907 *     N        0 -> SWAPGS on exit
908 *              1 -> no SWAPGS on exit
909 *
910 *     Y        GSBASE value at entry, must be restored in paranoid_exit
911 *
912 * R14 - old CR3
913 * R15 - old SPEC_CTRL
914 */
915SYM_CODE_START(paranoid_entry)
916	ANNOTATE_NOENDBR
917	UNWIND_HINT_FUNC
918	PUSH_AND_CLEAR_REGS save_ret=1
919	ENCODE_FRAME_POINTER 8
920
921	/*
922	 * Always stash CR3 in %r14.  This value will be restored,
923	 * verbatim, at exit.  Needed if paranoid_entry interrupted
924	 * another entry that already switched to the user CR3 value
925	 * but has not yet returned to userspace.
926	 *
927	 * This is also why CS (stashed in the "iret frame" by the
928	 * hardware at entry) can not be used: this may be a return
929	 * to kernel code, but with a user CR3 value.
930	 *
931	 * Switching CR3 does not depend on kernel GSBASE so it can
932	 * be done before switching to the kernel GSBASE. This is
933	 * required for FSGSBASE because the kernel GSBASE has to
934	 * be retrieved from a kernel internal table.
935	 */
936	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
937
938	/*
939	 * Handling GSBASE depends on the availability of FSGSBASE.
940	 *
941	 * Without FSGSBASE the kernel enforces that negative GSBASE
942	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
943	 * can be made about the GSBASE value when entering from user
944	 * space.
945	 */
946	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
947
948	/*
949	 * Read the current GSBASE and store it in %rbx unconditionally,
950	 * retrieve and set the current CPUs kernel GSBASE. The stored value
951	 * has to be restored in paranoid_exit unconditionally.
952	 *
953	 * The unconditional write to GS base below ensures that no subsequent
954	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
955	 * is needed here.
956	 */
957	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
958	jmp .Lparanoid_gsbase_done
959
960.Lparanoid_entry_checkgs:
961	/* EBX = 1 -> kernel GSBASE active, no restore required */
962	movl	$1, %ebx
963
964	/*
965	 * The kernel-enforced convention is a negative GSBASE indicates
966	 * a kernel value. No SWAPGS needed on entry and exit.
967	 */
968	movl	$MSR_GS_BASE, %ecx
969	rdmsr
970	testl	%edx, %edx
971	js	.Lparanoid_kernel_gsbase
972
973	/* EBX = 0 -> SWAPGS required on exit */
974	xorl	%ebx, %ebx
975	swapgs
976.Lparanoid_kernel_gsbase:
977	FENCE_SWAPGS_KERNEL_ENTRY
978.Lparanoid_gsbase_done:
979
980	/*
981	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
982	 * CR3 above, keep the old value in a callee saved register.
983	 */
984	IBRS_ENTER save_reg=%r15
985	UNTRAIN_RET_FROM_CALL
986
987	RET
988SYM_CODE_END(paranoid_entry)
989
990/*
991 * "Paranoid" exit path from exception stack.  This is invoked
992 * only on return from non-NMI IST interrupts that came
993 * from kernel space.
994 *
995 * We may be returning to very strange contexts (e.g. very early
996 * in syscall entry), so checking for preemption here would
997 * be complicated.  Fortunately, there's no good reason to try
998 * to handle preemption here.
999 *
1000 * R/EBX contains the GSBASE related information depending on the
1001 * availability of the FSGSBASE instructions:
1002 *
1003 * FSGSBASE	R/EBX
1004 *     N        0 -> SWAPGS on exit
1005 *              1 -> no SWAPGS on exit
1006 *
1007 *     Y        User space GSBASE, must be restored unconditionally
1008 *
1009 * R14 - old CR3
1010 * R15 - old SPEC_CTRL
1011 */
1012SYM_CODE_START_LOCAL(paranoid_exit)
1013	UNWIND_HINT_REGS
1014
1015	/*
1016	 * Must restore IBRS state before both CR3 and %GS since we need access
1017	 * to the per-CPU x86_spec_ctrl_shadow variable.
1018	 */
1019	IBRS_EXIT save_reg=%r15
1020
1021	/*
1022	 * The order of operations is important. RESTORE_CR3 requires
1023	 * kernel GSBASE.
1024	 *
1025	 * NB to anyone to try to optimize this code: this code does
1026	 * not execute at all for exceptions from user mode. Those
1027	 * exceptions go through error_return instead.
1028	 */
1029	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1030
1031	/* Handle the three GSBASE cases */
1032	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1033
1034	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1035	wrgsbase	%rbx
1036	jmp		restore_regs_and_return_to_kernel
1037
1038.Lparanoid_exit_checkgs:
1039	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1040	testl		%ebx, %ebx
1041	jnz		restore_regs_and_return_to_kernel
1042
1043	/* We are returning to a context with user GSBASE */
1044	swapgs
1045	jmp		restore_regs_and_return_to_kernel
1046SYM_CODE_END(paranoid_exit)
1047
1048/*
1049 * Switch GS and CR3 if needed.
1050 */
1051SYM_CODE_START(error_entry)
1052	ANNOTATE_NOENDBR
1053	UNWIND_HINT_FUNC
1054
1055	PUSH_AND_CLEAR_REGS save_ret=1
1056	ENCODE_FRAME_POINTER 8
1057
1058	testb	$3, CS+8(%rsp)
1059	jz	.Lerror_kernelspace
1060
1061	/*
1062	 * We entered from user mode or we're pretending to have entered
1063	 * from user mode due to an IRET fault.
1064	 */
1065	swapgs
1066	FENCE_SWAPGS_USER_ENTRY
1067	/* We have user CR3.  Change to kernel CR3. */
1068	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1069	IBRS_ENTER
1070	UNTRAIN_RET_FROM_CALL
1071
1072	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1073	/* Put us onto the real thread stack. */
1074	jmp	sync_regs
1075
1076	/*
1077	 * There are two places in the kernel that can potentially fault with
1078	 * usergs. Handle them here.  B stepping K8s sometimes report a
1079	 * truncated RIP for IRET exceptions returning to compat mode. Check
1080	 * for these here too.
1081	 */
1082.Lerror_kernelspace:
1083	leaq	native_irq_return_iret(%rip), %rcx
1084	cmpq	%rcx, RIP+8(%rsp)
1085	je	.Lerror_bad_iret
1086	movl	%ecx, %eax			/* zero extend */
1087	cmpq	%rax, RIP+8(%rsp)
1088	je	.Lbstep_iret
1089	cmpq	$.Lgs_change, RIP+8(%rsp)
1090	jne	.Lerror_entry_done_lfence
1091
1092	/*
1093	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1094	 * gsbase and proceed.  We'll fix up the exception and land in
1095	 * .Lgs_change's error handler with kernel gsbase.
1096	 */
1097	swapgs
1098
1099	/*
1100	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1101	 * kernel or user gsbase.
1102	 */
1103.Lerror_entry_done_lfence:
1104	FENCE_SWAPGS_KERNEL_ENTRY
1105	CALL_DEPTH_ACCOUNT
1106	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1107	VALIDATE_UNRET_END
1108	RET
1109
1110.Lbstep_iret:
1111	/* Fix truncated RIP */
1112	movq	%rcx, RIP+8(%rsp)
1113	/* fall through */
1114
1115.Lerror_bad_iret:
1116	/*
1117	 * We came from an IRET to user mode, so we have user
1118	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1119	 */
1120	swapgs
1121	FENCE_SWAPGS_USER_ENTRY
1122	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1123	IBRS_ENTER
1124	UNTRAIN_RET_FROM_CALL
1125
1126	/*
1127	 * Pretend that the exception came from user mode: set up pt_regs
1128	 * as if we faulted immediately after IRET.
1129	 */
1130	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1131	call	fixup_bad_iret
1132	mov	%rax, %rdi
1133	jmp	sync_regs
1134SYM_CODE_END(error_entry)
1135
1136SYM_CODE_START_LOCAL(error_return)
1137	UNWIND_HINT_REGS
1138	DEBUG_ENTRY_ASSERT_IRQS_OFF
1139	testb	$3, CS(%rsp)
1140	jz	restore_regs_and_return_to_kernel
1141	jmp	swapgs_restore_regs_and_return_to_usermode
1142SYM_CODE_END(error_return)
1143
1144/*
1145 * Runs on exception stack.  Xen PV does not go through this path at all,
1146 * so we can use real assembly here.
1147 *
1148 * Registers:
1149 *	%r14: Used to save/restore the CR3 of the interrupted context
1150 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1151 */
1152SYM_CODE_START(asm_exc_nmi)
1153	UNWIND_HINT_IRET_ENTRY
1154	ENDBR
1155
1156	/*
1157	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1158	 * the iretq it performs will take us out of NMI context.
1159	 * This means that we can have nested NMIs where the next
1160	 * NMI is using the top of the stack of the previous NMI. We
1161	 * can't let it execute because the nested NMI will corrupt the
1162	 * stack of the previous NMI. NMI handlers are not re-entrant
1163	 * anyway.
1164	 *
1165	 * To handle this case we do the following:
1166	 *  Check the a special location on the stack that contains
1167	 *  a variable that is set when NMIs are executing.
1168	 *  The interrupted task's stack is also checked to see if it
1169	 *  is an NMI stack.
1170	 *  If the variable is not set and the stack is not the NMI
1171	 *  stack then:
1172	 *    o Set the special variable on the stack
1173	 *    o Copy the interrupt frame into an "outermost" location on the
1174	 *      stack
1175	 *    o Copy the interrupt frame into an "iret" location on the stack
1176	 *    o Continue processing the NMI
1177	 *  If the variable is set or the previous stack is the NMI stack:
1178	 *    o Modify the "iret" location to jump to the repeat_nmi
1179	 *    o return back to the first NMI
1180	 *
1181	 * Now on exit of the first NMI, we first clear the stack variable
1182	 * The NMI stack will tell any nested NMIs at that point that it is
1183	 * nested. Then we pop the stack normally with iret, and if there was
1184	 * a nested NMI that updated the copy interrupt stack frame, a
1185	 * jump will be made to the repeat_nmi code that will handle the second
1186	 * NMI.
1187	 *
1188	 * However, espfix prevents us from directly returning to userspace
1189	 * with a single IRET instruction.  Similarly, IRET to user mode
1190	 * can fault.  We therefore handle NMIs from user space like
1191	 * other IST entries.
1192	 */
1193
1194	ASM_CLAC
1195	cld
1196
1197	/* Use %rdx as our temp variable throughout */
1198	pushq	%rdx
1199
1200	testb	$3, CS-RIP+8(%rsp)
1201	jz	.Lnmi_from_kernel
1202
1203	/*
1204	 * NMI from user mode.  We need to run on the thread stack, but we
1205	 * can't go through the normal entry paths: NMIs are masked, and
1206	 * we don't want to enable interrupts, because then we'll end
1207	 * up in an awkward situation in which IRQs are on but NMIs
1208	 * are off.
1209	 *
1210	 * We also must not push anything to the stack before switching
1211	 * stacks lest we corrupt the "NMI executing" variable.
1212	 */
1213
1214	swapgs
1215	FENCE_SWAPGS_USER_ENTRY
1216	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1217	movq	%rsp, %rdx
1218	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1219	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1220	pushq	5*8(%rdx)	/* pt_regs->ss */
1221	pushq	4*8(%rdx)	/* pt_regs->rsp */
1222	pushq	3*8(%rdx)	/* pt_regs->flags */
1223	pushq	2*8(%rdx)	/* pt_regs->cs */
1224	pushq	1*8(%rdx)	/* pt_regs->rip */
1225	UNWIND_HINT_IRET_REGS
1226	pushq   $-1		/* pt_regs->orig_ax */
1227	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1228	ENCODE_FRAME_POINTER
1229
1230	IBRS_ENTER
1231	UNTRAIN_RET
1232
1233	/*
1234	 * At this point we no longer need to worry about stack damage
1235	 * due to nesting -- we're on the normal thread stack and we're
1236	 * done with the NMI stack.
1237	 */
1238
1239	movq	%rsp, %rdi
1240	movq	$-1, %rsi
1241	call	exc_nmi
1242
1243	/*
1244	 * Return back to user mode.  We must *not* do the normal exit
1245	 * work, because we don't want to enable interrupts.
1246	 */
1247	jmp	swapgs_restore_regs_and_return_to_usermode
1248
1249.Lnmi_from_kernel:
1250	/*
1251	 * Here's what our stack frame will look like:
1252	 * +---------------------------------------------------------+
1253	 * | original SS                                             |
1254	 * | original Return RSP                                     |
1255	 * | original RFLAGS                                         |
1256	 * | original CS                                             |
1257	 * | original RIP                                            |
1258	 * +---------------------------------------------------------+
1259	 * | temp storage for rdx                                    |
1260	 * +---------------------------------------------------------+
1261	 * | "NMI executing" variable                                |
1262	 * +---------------------------------------------------------+
1263	 * | iret SS          } Copied from "outermost" frame        |
1264	 * | iret Return RSP  } on each loop iteration; overwritten  |
1265	 * | iret RFLAGS      } by a nested NMI to force another     |
1266	 * | iret CS          } iteration if needed.                 |
1267	 * | iret RIP         }                                      |
1268	 * +---------------------------------------------------------+
1269	 * | outermost SS          } initialized in first_nmi;       |
1270	 * | outermost Return RSP  } will not be changed before      |
1271	 * | outermost RFLAGS      } NMI processing is done.         |
1272	 * | outermost CS          } Copied to "iret" frame on each  |
1273	 * | outermost RIP         } iteration.                      |
1274	 * +---------------------------------------------------------+
1275	 * | pt_regs                                                 |
1276	 * +---------------------------------------------------------+
1277	 *
1278	 * The "original" frame is used by hardware.  Before re-enabling
1279	 * NMIs, we need to be done with it, and we need to leave enough
1280	 * space for the asm code here.
1281	 *
1282	 * We return by executing IRET while RSP points to the "iret" frame.
1283	 * That will either return for real or it will loop back into NMI
1284	 * processing.
1285	 *
1286	 * The "outermost" frame is copied to the "iret" frame on each
1287	 * iteration of the loop, so each iteration starts with the "iret"
1288	 * frame pointing to the final return target.
1289	 */
1290
1291	/*
1292	 * Determine whether we're a nested NMI.
1293	 *
1294	 * If we interrupted kernel code between repeat_nmi and
1295	 * end_repeat_nmi, then we are a nested NMI.  We must not
1296	 * modify the "iret" frame because it's being written by
1297	 * the outer NMI.  That's okay; the outer NMI handler is
1298	 * about to about to call exc_nmi() anyway, so we can just
1299	 * resume the outer NMI.
1300	 */
1301
1302	movq	$repeat_nmi, %rdx
1303	cmpq	8(%rsp), %rdx
1304	ja	1f
1305	movq	$end_repeat_nmi, %rdx
1306	cmpq	8(%rsp), %rdx
1307	ja	nested_nmi_out
13081:
1309
1310	/*
1311	 * Now check "NMI executing".  If it's set, then we're nested.
1312	 * This will not detect if we interrupted an outer NMI just
1313	 * before IRET.
1314	 */
1315	cmpl	$1, -8(%rsp)
1316	je	nested_nmi
1317
1318	/*
1319	 * Now test if the previous stack was an NMI stack.  This covers
1320	 * the case where we interrupt an outer NMI after it clears
1321	 * "NMI executing" but before IRET.  We need to be careful, though:
1322	 * there is one case in which RSP could point to the NMI stack
1323	 * despite there being no NMI active: naughty userspace controls
1324	 * RSP at the very beginning of the SYSCALL targets.  We can
1325	 * pull a fast one on naughty userspace, though: we program
1326	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1327	 * if it controls the kernel's RSP.  We set DF before we clear
1328	 * "NMI executing".
1329	 */
1330	lea	6*8(%rsp), %rdx
1331	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1332	cmpq	%rdx, 4*8(%rsp)
1333	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1334	ja	first_nmi
1335
1336	subq	$EXCEPTION_STKSZ, %rdx
1337	cmpq	%rdx, 4*8(%rsp)
1338	/* If it is below the NMI stack, it is a normal NMI */
1339	jb	first_nmi
1340
1341	/* Ah, it is within the NMI stack. */
1342
1343	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1344	jz	first_nmi	/* RSP was user controlled. */
1345
1346	/* This is a nested NMI. */
1347
1348nested_nmi:
1349	/*
1350	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1351	 * iteration of NMI handling.
1352	 */
1353	subq	$8, %rsp
1354	leaq	-10*8(%rsp), %rdx
1355	pushq	$__KERNEL_DS
1356	pushq	%rdx
1357	pushfq
1358	pushq	$__KERNEL_CS
1359	pushq	$repeat_nmi
1360
1361	/* Put stack back */
1362	addq	$(6*8), %rsp
1363
1364nested_nmi_out:
1365	popq	%rdx
1366
1367	/* We are returning to kernel mode, so this cannot result in a fault. */
1368	iretq
1369
1370first_nmi:
1371	/* Restore rdx. */
1372	movq	(%rsp), %rdx
1373
1374	/* Make room for "NMI executing". */
1375	pushq	$0
1376
1377	/* Leave room for the "iret" frame */
1378	subq	$(5*8), %rsp
1379
1380	/* Copy the "original" frame to the "outermost" frame */
1381	.rept 5
1382	pushq	11*8(%rsp)
1383	.endr
1384	UNWIND_HINT_IRET_REGS
1385
1386	/* Everything up to here is safe from nested NMIs */
1387
1388#ifdef CONFIG_DEBUG_ENTRY
1389	/*
1390	 * For ease of testing, unmask NMIs right away.  Disabled by
1391	 * default because IRET is very expensive.
1392	 */
1393	pushq	$0		/* SS */
1394	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1395	addq	$8, (%rsp)	/* Fix up RSP */
1396	pushfq			/* RFLAGS */
1397	pushq	$__KERNEL_CS	/* CS */
1398	pushq	$1f		/* RIP */
1399	iretq			/* continues at repeat_nmi below */
1400	UNWIND_HINT_IRET_REGS
14011:
1402#endif
1403
1404repeat_nmi:
1405	ANNOTATE_NOENDBR // this code
1406	/*
1407	 * If there was a nested NMI, the first NMI's iret will return
1408	 * here. But NMIs are still enabled and we can take another
1409	 * nested NMI. The nested NMI checks the interrupted RIP to see
1410	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1411	 * it will just return, as we are about to repeat an NMI anyway.
1412	 * This makes it safe to copy to the stack frame that a nested
1413	 * NMI will update.
1414	 *
1415	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1416	 * we're repeating an NMI, gsbase has the same value that it had on
1417	 * the first iteration.  paranoid_entry will load the kernel
1418	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1419	 * is zero.
1420	 */
1421	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1422
1423	/*
1424	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1425	 * here must not modify the "iret" frame while we're writing to
1426	 * it or it will end up containing garbage.
1427	 */
1428	addq	$(10*8), %rsp
1429	.rept 5
1430	pushq	-6*8(%rsp)
1431	.endr
1432	subq	$(5*8), %rsp
1433end_repeat_nmi:
1434	ANNOTATE_NOENDBR // this code
1435
1436	/*
1437	 * Everything below this point can be preempted by a nested NMI.
1438	 * If this happens, then the inner NMI will change the "iret"
1439	 * frame to point back to repeat_nmi.
1440	 */
1441	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1442
1443	/*
1444	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1445	 * as we should not be calling schedule in NMI context.
1446	 * Even with normal interrupts enabled. An NMI should not be
1447	 * setting NEED_RESCHED or anything that normal interrupts and
1448	 * exceptions might do.
1449	 */
1450	call	paranoid_entry
1451	UNWIND_HINT_REGS
1452
1453	movq	%rsp, %rdi
1454	movq	$-1, %rsi
1455	call	exc_nmi
1456
1457	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1458	IBRS_EXIT save_reg=%r15
1459
1460	/* Always restore stashed CR3 value (see paranoid_entry) */
1461	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1462
1463	/*
1464	 * The above invocation of paranoid_entry stored the GSBASE
1465	 * related information in R/EBX depending on the availability
1466	 * of FSGSBASE.
1467	 *
1468	 * If FSGSBASE is enabled, restore the saved GSBASE value
1469	 * unconditionally, otherwise take the conditional SWAPGS path.
1470	 */
1471	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1472
1473	wrgsbase	%rbx
1474	jmp	nmi_restore
1475
1476nmi_no_fsgsbase:
1477	/* EBX == 0 -> invoke SWAPGS */
1478	testl	%ebx, %ebx
1479	jnz	nmi_restore
1480
1481nmi_swapgs:
1482	swapgs
1483
1484nmi_restore:
1485	POP_REGS
1486
1487	/*
1488	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1489	 * at the "iret" frame.
1490	 */
1491	addq	$6*8, %rsp
1492
1493	/*
1494	 * Clear "NMI executing".  Set DF first so that we can easily
1495	 * distinguish the remaining code between here and IRET from
1496	 * the SYSCALL entry and exit paths.
1497	 *
1498	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1499	 * this code when I had the misapprehension that Xen PV supported
1500	 * NMIs, and Xen PV would break that approach.
1501	 */
1502	std
1503	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1504
1505	/*
1506	 * iretq reads the "iret" frame and exits the NMI stack in a
1507	 * single instruction.  We are returning to kernel mode, so this
1508	 * cannot result in a fault.  Similarly, we don't need to worry
1509	 * about espfix64 on the way back to kernel mode.
1510	 */
1511	iretq
1512SYM_CODE_END(asm_exc_nmi)
1513
1514#ifndef CONFIG_IA32_EMULATION
1515/*
1516 * This handles SYSCALL from 32-bit code.  There is no way to program
1517 * MSRs to fully disable 32-bit SYSCALL.
1518 */
1519SYM_CODE_START(ignore_sysret)
1520	UNWIND_HINT_END_OF_STACK
1521	ENDBR
1522	mov	$-ENOSYS, %eax
1523	sysretl
1524SYM_CODE_END(ignore_sysret)
1525#endif
1526
1527.pushsection .text, "ax"
1528	__FUNC_ALIGN
1529SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1530	UNWIND_HINT_FUNC
1531	/* Prevent any naive code from trying to unwind to our caller. */
1532	xorl	%ebp, %ebp
1533
1534	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1535	leaq	-PTREGS_SIZE(%rax), %rsp
1536	UNWIND_HINT_REGS
1537
1538	call	make_task_dead
1539SYM_CODE_END(rewind_stack_and_make_dead)
1540.popsection
1541