xref: /openbmc/linux/arch/x86/entry/entry_64.S (revision 1b39eacd)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END:		Define functions in the symbol table.
19 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
20 * - idtentry:		Define exception entry points.
21 */
22#include <linux/linkage.h>
23#include <asm/segment.h>
24#include <asm/cache.h>
25#include <asm/errno.h>
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <asm/export.h>
39#include <asm/frame.h>
40#include <linux/err.h>
41
42#include "calling.h"
43
44.code64
45.section .entry.text, "ax"
46
47#ifdef CONFIG_PARAVIRT
48ENTRY(native_usergs_sysret64)
49	UNWIND_HINT_EMPTY
50	swapgs
51	sysretq
52END(native_usergs_sysret64)
53#endif /* CONFIG_PARAVIRT */
54
55.macro TRACE_IRQS_FLAGS flags:req
56#ifdef CONFIG_TRACE_IRQFLAGS
57	bt	$9, \flags		/* interrupts off? */
58	jnc	1f
59	TRACE_IRQS_ON
601:
61#endif
62.endm
63
64.macro TRACE_IRQS_IRETQ
65	TRACE_IRQS_FLAGS EFLAGS(%rsp)
66.endm
67
68/*
69 * When dynamic function tracer is enabled it will add a breakpoint
70 * to all locations that it is about to modify, sync CPUs, update
71 * all the code, sync CPUs, then remove the breakpoints. In this time
72 * if lockdep is enabled, it might jump back into the debug handler
73 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
74 *
75 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
76 * make sure the stack pointer does not get reset back to the top
77 * of the debug stack, and instead just reuses the current stack.
78 */
79#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
80
81.macro TRACE_IRQS_OFF_DEBUG
82	call	debug_stack_set_zero
83	TRACE_IRQS_OFF
84	call	debug_stack_reset
85.endm
86
87.macro TRACE_IRQS_ON_DEBUG
88	call	debug_stack_set_zero
89	TRACE_IRQS_ON
90	call	debug_stack_reset
91.endm
92
93.macro TRACE_IRQS_IRETQ_DEBUG
94	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
95	jnc	1f
96	TRACE_IRQS_ON_DEBUG
971:
98.endm
99
100#else
101# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
102# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
103# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
104#endif
105
106/*
107 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
108 *
109 * This is the only entry point used for 64-bit system calls.  The
110 * hardware interface is reasonably well designed and the register to
111 * argument mapping Linux uses fits well with the registers that are
112 * available when SYSCALL is used.
113 *
114 * SYSCALL instructions can be found inlined in libc implementations as
115 * well as some other programs and libraries.  There are also a handful
116 * of SYSCALL instructions in the vDSO used, for example, as a
117 * clock_gettimeofday fallback.
118 *
119 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
120 * then loads new ss, cs, and rip from previously programmed MSRs.
121 * rflags gets masked by a value from another MSR (so CLD and CLAC
122 * are not needed). SYSCALL does not save anything on the stack
123 * and does not change rsp.
124 *
125 * Registers on entry:
126 * rax  system call number
127 * rcx  return address
128 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
129 * rdi  arg0
130 * rsi  arg1
131 * rdx  arg2
132 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
133 * r8   arg4
134 * r9   arg5
135 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
136 *
137 * Only called from user space.
138 *
139 * When user can change pt_regs->foo always force IRET. That is because
140 * it deals with uncanonical addresses better. SYSRET has trouble
141 * with them due to bugs in both AMD and Intel CPUs.
142 */
143
144	.pushsection .entry_trampoline, "ax"
145
146/*
147 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
148 * that the assembler and linker have the wrong idea as to where this code
149 * lives (and, in fact, it's mapped more than once, so it's not even at a
150 * fixed address).  So we can't reference any symbols outside the entry
151 * trampoline and expect it to work.
152 *
153 * Instead, we carefully abuse %rip-relative addressing.
154 * _entry_trampoline(%rip) refers to the start of the remapped) entry
155 * trampoline.  We can thus find cpu_entry_area with this macro:
156 */
157
158#define CPU_ENTRY_AREA \
159	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
160
161/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
162#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
163			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
164
165ENTRY(entry_SYSCALL_64_trampoline)
166	UNWIND_HINT_EMPTY
167	swapgs
168
169	/* Stash the user RSP. */
170	movq	%rsp, RSP_SCRATCH
171
172	/* Note: using %rsp as a scratch reg. */
173	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
174
175	/* Load the top of the task stack into RSP */
176	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
177
178	/* Start building the simulated IRET frame. */
179	pushq	$__USER_DS			/* pt_regs->ss */
180	pushq	RSP_SCRATCH			/* pt_regs->sp */
181	pushq	%r11				/* pt_regs->flags */
182	pushq	$__USER_CS			/* pt_regs->cs */
183	pushq	%rcx				/* pt_regs->ip */
184
185	/*
186	 * x86 lacks a near absolute jump, and we can't jump to the real
187	 * entry text with a relative jump.  We could push the target
188	 * address and then use retq, but this destroys the pipeline on
189	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
190	 * spill RDI and restore it in a second-stage trampoline.
191	 */
192	pushq	%rdi
193	movq	$entry_SYSCALL_64_stage2, %rdi
194	jmp	*%rdi
195END(entry_SYSCALL_64_trampoline)
196
197	.popsection
198
199ENTRY(entry_SYSCALL_64_stage2)
200	UNWIND_HINT_EMPTY
201	popq	%rdi
202	jmp	entry_SYSCALL_64_after_hwframe
203END(entry_SYSCALL_64_stage2)
204
205ENTRY(entry_SYSCALL_64)
206	UNWIND_HINT_EMPTY
207	/*
208	 * Interrupts are off on entry.
209	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
210	 * it is too small to ever cause noticeable irq latency.
211	 */
212
213	swapgs
214	/*
215	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
216	 * is not required to switch CR3.
217	 */
218	movq	%rsp, PER_CPU_VAR(rsp_scratch)
219	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
220
221	/* Construct struct pt_regs on stack */
222	pushq	$__USER_DS			/* pt_regs->ss */
223	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
224	pushq	%r11				/* pt_regs->flags */
225	pushq	$__USER_CS			/* pt_regs->cs */
226	pushq	%rcx				/* pt_regs->ip */
227GLOBAL(entry_SYSCALL_64_after_hwframe)
228	pushq	%rax				/* pt_regs->orig_ax */
229	pushq	%rdi				/* pt_regs->di */
230	pushq	%rsi				/* pt_regs->si */
231	pushq	%rdx				/* pt_regs->dx */
232	pushq	%rcx				/* pt_regs->cx */
233	pushq	$-ENOSYS			/* pt_regs->ax */
234	pushq	%r8				/* pt_regs->r8 */
235	pushq	%r9				/* pt_regs->r9 */
236	pushq	%r10				/* pt_regs->r10 */
237	pushq	%r11				/* pt_regs->r11 */
238	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
239	UNWIND_HINT_REGS extra=0
240
241	TRACE_IRQS_OFF
242
243	/*
244	 * If we need to do entry work or if we guess we'll need to do
245	 * exit work, go straight to the slow path.
246	 */
247	movq	PER_CPU_VAR(current_task), %r11
248	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
249	jnz	entry_SYSCALL64_slow_path
250
251entry_SYSCALL_64_fastpath:
252	/*
253	 * Easy case: enable interrupts and issue the syscall.  If the syscall
254	 * needs pt_regs, we'll call a stub that disables interrupts again
255	 * and jumps to the slow path.
256	 */
257	TRACE_IRQS_ON
258	ENABLE_INTERRUPTS(CLBR_NONE)
259#if __SYSCALL_MASK == ~0
260	cmpq	$__NR_syscall_max, %rax
261#else
262	andl	$__SYSCALL_MASK, %eax
263	cmpl	$__NR_syscall_max, %eax
264#endif
265	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
266	movq	%r10, %rcx
267
268	/*
269	 * This call instruction is handled specially in stub_ptregs_64.
270	 * It might end up jumping to the slow path.  If it jumps, RAX
271	 * and all argument registers are clobbered.
272	 */
273	call	*sys_call_table(, %rax, 8)
274.Lentry_SYSCALL_64_after_fastpath_call:
275
276	movq	%rax, RAX(%rsp)
2771:
278
279	/*
280	 * If we get here, then we know that pt_regs is clean for SYSRET64.
281	 * If we see that no exit work is required (which we are required
282	 * to check with IRQs off), then we can go straight to SYSRET64.
283	 */
284	DISABLE_INTERRUPTS(CLBR_ANY)
285	TRACE_IRQS_OFF
286	movq	PER_CPU_VAR(current_task), %r11
287	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
288	jnz	1f
289
290	LOCKDEP_SYS_EXIT
291	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
292	movq	RIP(%rsp), %rcx
293	movq	EFLAGS(%rsp), %r11
294	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
295	UNWIND_HINT_EMPTY
296	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
297
2981:
299	/*
300	 * The fast path looked good when we started, but something changed
301	 * along the way and we need to switch to the slow path.  Calling
302	 * raise(3) will trigger this, for example.  IRQs are off.
303	 */
304	TRACE_IRQS_ON
305	ENABLE_INTERRUPTS(CLBR_ANY)
306	SAVE_EXTRA_REGS
307	movq	%rsp, %rdi
308	call	syscall_return_slowpath	/* returns with IRQs disabled */
309	jmp	return_from_SYSCALL_64
310
311entry_SYSCALL64_slow_path:
312	/* IRQs are off. */
313	SAVE_EXTRA_REGS
314	movq	%rsp, %rdi
315	call	do_syscall_64		/* returns with IRQs disabled */
316
317return_from_SYSCALL_64:
318	TRACE_IRQS_IRETQ		/* we're about to change IF */
319
320	/*
321	 * Try to use SYSRET instead of IRET if we're returning to
322	 * a completely clean 64-bit userspace context.  If we're not,
323	 * go to the slow exit path.
324	 */
325	movq	RCX(%rsp), %rcx
326	movq	RIP(%rsp), %r11
327
328	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
329	jne	swapgs_restore_regs_and_return_to_usermode
330
331	/*
332	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
333	 * in kernel space.  This essentially lets the user take over
334	 * the kernel, since userspace controls RSP.
335	 *
336	 * If width of "canonical tail" ever becomes variable, this will need
337	 * to be updated to remain correct on both old and new CPUs.
338	 *
339	 * Change top bits to match most significant bit (47th or 56th bit
340	 * depending on paging mode) in the address.
341	 */
342	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
343	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
344
345	/* If this changed %rcx, it was not canonical */
346	cmpq	%rcx, %r11
347	jne	swapgs_restore_regs_and_return_to_usermode
348
349	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
350	jne	swapgs_restore_regs_and_return_to_usermode
351
352	movq	R11(%rsp), %r11
353	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
354	jne	swapgs_restore_regs_and_return_to_usermode
355
356	/*
357	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
358	 * restore RF properly. If the slowpath sets it for whatever reason, we
359	 * need to restore it correctly.
360	 *
361	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
362	 * trap from userspace immediately after SYSRET.  This would cause an
363	 * infinite loop whenever #DB happens with register state that satisfies
364	 * the opportunistic SYSRET conditions.  For example, single-stepping
365	 * this user code:
366	 *
367	 *           movq	$stuck_here, %rcx
368	 *           pushfq
369	 *           popq %r11
370	 *   stuck_here:
371	 *
372	 * would never get past 'stuck_here'.
373	 */
374	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
375	jnz	swapgs_restore_regs_and_return_to_usermode
376
377	/* nothing to check for RSP */
378
379	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
380	jne	swapgs_restore_regs_and_return_to_usermode
381
382	/*
383	 * We win! This label is here just for ease of understanding
384	 * perf profiles. Nothing jumps here.
385	 */
386syscall_return_via_sysret:
387	/* rcx and r11 are already restored (see code above) */
388	UNWIND_HINT_EMPTY
389	POP_EXTRA_REGS
390.Lpop_c_regs_except_rcx_r11_and_sysret:
391	popq	%rsi	/* skip r11 */
392	popq	%r10
393	popq	%r9
394	popq	%r8
395	popq	%rax
396	popq	%rsi	/* skip rcx */
397	popq	%rdx
398	popq	%rsi
399
400	/*
401	 * Now all regs are restored except RSP and RDI.
402	 * Save old stack pointer and switch to trampoline stack.
403	 */
404	movq	%rsp, %rdi
405	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
406
407	pushq	RSP-RDI(%rdi)	/* RSP */
408	pushq	(%rdi)		/* RDI */
409
410	/*
411	 * We are on the trampoline stack.  All regs except RDI are live.
412	 * We can do future final exit work right here.
413	 */
414	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
415
416	popq	%rdi
417	popq	%rsp
418	USERGS_SYSRET64
419END(entry_SYSCALL_64)
420
421ENTRY(stub_ptregs_64)
422	/*
423	 * Syscalls marked as needing ptregs land here.
424	 * If we are on the fast path, we need to save the extra regs,
425	 * which we achieve by trying again on the slow path.  If we are on
426	 * the slow path, the extra regs are already saved.
427	 *
428	 * RAX stores a pointer to the C function implementing the syscall.
429	 * IRQs are on.
430	 */
431	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
432	jne	1f
433
434	/*
435	 * Called from fast path -- disable IRQs again, pop return address
436	 * and jump to slow path
437	 */
438	DISABLE_INTERRUPTS(CLBR_ANY)
439	TRACE_IRQS_OFF
440	popq	%rax
441	UNWIND_HINT_REGS extra=0
442	jmp	entry_SYSCALL64_slow_path
443
4441:
445	jmp	*%rax				/* Called from C */
446END(stub_ptregs_64)
447
448.macro ptregs_stub func
449ENTRY(ptregs_\func)
450	UNWIND_HINT_FUNC
451	leaq	\func(%rip), %rax
452	jmp	stub_ptregs_64
453END(ptregs_\func)
454.endm
455
456/* Instantiate ptregs_stub for each ptregs-using syscall */
457#define __SYSCALL_64_QUAL_(sym)
458#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
459#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
460#include <asm/syscalls_64.h>
461
462/*
463 * %rdi: prev task
464 * %rsi: next task
465 */
466ENTRY(__switch_to_asm)
467	UNWIND_HINT_FUNC
468	/*
469	 * Save callee-saved registers
470	 * This must match the order in inactive_task_frame
471	 */
472	pushq	%rbp
473	pushq	%rbx
474	pushq	%r12
475	pushq	%r13
476	pushq	%r14
477	pushq	%r15
478
479	/* switch stack */
480	movq	%rsp, TASK_threadsp(%rdi)
481	movq	TASK_threadsp(%rsi), %rsp
482
483#ifdef CONFIG_CC_STACKPROTECTOR
484	movq	TASK_stack_canary(%rsi), %rbx
485	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
486#endif
487
488	/* restore callee-saved registers */
489	popq	%r15
490	popq	%r14
491	popq	%r13
492	popq	%r12
493	popq	%rbx
494	popq	%rbp
495
496	jmp	__switch_to
497END(__switch_to_asm)
498
499/*
500 * A newly forked process directly context switches into this address.
501 *
502 * rax: prev task we switched from
503 * rbx: kernel thread func (NULL for user thread)
504 * r12: kernel thread arg
505 */
506ENTRY(ret_from_fork)
507	UNWIND_HINT_EMPTY
508	movq	%rax, %rdi
509	call	schedule_tail			/* rdi: 'prev' task parameter */
510
511	testq	%rbx, %rbx			/* from kernel_thread? */
512	jnz	1f				/* kernel threads are uncommon */
513
5142:
515	UNWIND_HINT_REGS
516	movq	%rsp, %rdi
517	call	syscall_return_slowpath	/* returns with IRQs disabled */
518	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
519	jmp	swapgs_restore_regs_and_return_to_usermode
520
5211:
522	/* kernel thread */
523	movq	%r12, %rdi
524	call	*%rbx
525	/*
526	 * A kernel thread is allowed to return here after successfully
527	 * calling do_execve().  Exit to userspace to complete the execve()
528	 * syscall.
529	 */
530	movq	$0, RAX(%rsp)
531	jmp	2b
532END(ret_from_fork)
533
534/*
535 * Build the entry stubs with some assembler magic.
536 * We pack 1 stub into every 8-byte block.
537 */
538	.align 8
539ENTRY(irq_entries_start)
540    vector=FIRST_EXTERNAL_VECTOR
541    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
542	UNWIND_HINT_IRET_REGS
543	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
544	jmp	common_interrupt
545	.align	8
546	vector=vector+1
547    .endr
548END(irq_entries_start)
549
550.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
551#ifdef CONFIG_DEBUG_ENTRY
552	pushq %rax
553	SAVE_FLAGS(CLBR_RAX)
554	testl $X86_EFLAGS_IF, %eax
555	jz .Lokay_\@
556	ud2
557.Lokay_\@:
558	popq %rax
559#endif
560.endm
561
562/*
563 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
564 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
565 * Requires kernel GSBASE.
566 *
567 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
568 */
569.macro ENTER_IRQ_STACK regs=1 old_rsp
570	DEBUG_ENTRY_ASSERT_IRQS_OFF
571	movq	%rsp, \old_rsp
572
573	.if \regs
574	UNWIND_HINT_REGS base=\old_rsp
575	.endif
576
577	incl	PER_CPU_VAR(irq_count)
578	jnz	.Lirq_stack_push_old_rsp_\@
579
580	/*
581	 * Right now, if we just incremented irq_count to zero, we've
582	 * claimed the IRQ stack but we haven't switched to it yet.
583	 *
584	 * If anything is added that can interrupt us here without using IST,
585	 * it must be *extremely* careful to limit its stack usage.  This
586	 * could include kprobes and a hypothetical future IST-less #DB
587	 * handler.
588	 *
589	 * The OOPS unwinder relies on the word at the top of the IRQ
590	 * stack linking back to the previous RSP for the entire time we're
591	 * on the IRQ stack.  For this to work reliably, we need to write
592	 * it before we actually move ourselves to the IRQ stack.
593	 */
594
595	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
596	movq	PER_CPU_VAR(irq_stack_ptr), %rsp
597
598#ifdef CONFIG_DEBUG_ENTRY
599	/*
600	 * If the first movq above becomes wrong due to IRQ stack layout
601	 * changes, the only way we'll notice is if we try to unwind right
602	 * here.  Assert that we set up the stack right to catch this type
603	 * of bug quickly.
604	 */
605	cmpq	-8(%rsp), \old_rsp
606	je	.Lirq_stack_okay\@
607	ud2
608	.Lirq_stack_okay\@:
609#endif
610
611.Lirq_stack_push_old_rsp_\@:
612	pushq	\old_rsp
613
614	.if \regs
615	UNWIND_HINT_REGS indirect=1
616	.endif
617.endm
618
619/*
620 * Undoes ENTER_IRQ_STACK.
621 */
622.macro LEAVE_IRQ_STACK regs=1
623	DEBUG_ENTRY_ASSERT_IRQS_OFF
624	/* We need to be off the IRQ stack before decrementing irq_count. */
625	popq	%rsp
626
627	.if \regs
628	UNWIND_HINT_REGS
629	.endif
630
631	/*
632	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
633	 * the irq stack but we're not on it.
634	 */
635
636	decl	PER_CPU_VAR(irq_count)
637.endm
638
639/*
640 * Interrupt entry/exit.
641 *
642 * Interrupt entry points save only callee clobbered registers in fast path.
643 *
644 * Entry runs with interrupts off.
645 */
646
647/* 0(%rsp): ~(interrupt number) */
648	.macro interrupt func
649	cld
650
651	testb	$3, CS-ORIG_RAX(%rsp)
652	jz	1f
653	SWAPGS
654	call	switch_to_thread_stack
6551:
656
657	ALLOC_PT_GPREGS_ON_STACK
658	SAVE_C_REGS
659	SAVE_EXTRA_REGS
660	ENCODE_FRAME_POINTER
661
662	testb	$3, CS(%rsp)
663	jz	1f
664
665	/*
666	 * IRQ from user mode.
667	 *
668	 * We need to tell lockdep that IRQs are off.  We can't do this until
669	 * we fix gsbase, and we should do it before enter_from_user_mode
670	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
671	 * the simplest way to handle it is to just call it twice if
672	 * we enter from user mode.  There's no reason to optimize this since
673	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
674	 */
675	TRACE_IRQS_OFF
676
677	CALL_enter_from_user_mode
678
6791:
680	ENTER_IRQ_STACK old_rsp=%rdi
681	/* We entered an interrupt context - irqs are off: */
682	TRACE_IRQS_OFF
683
684	call	\func	/* rdi points to pt_regs */
685	.endm
686
687	/*
688	 * The interrupt stubs push (~vector+0x80) onto the stack and
689	 * then jump to common_interrupt.
690	 */
691	.p2align CONFIG_X86_L1_CACHE_SHIFT
692common_interrupt:
693	ASM_CLAC
694	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
695	interrupt do_IRQ
696	/* 0(%rsp): old RSP */
697ret_from_intr:
698	DISABLE_INTERRUPTS(CLBR_ANY)
699	TRACE_IRQS_OFF
700
701	LEAVE_IRQ_STACK
702
703	testb	$3, CS(%rsp)
704	jz	retint_kernel
705
706	/* Interrupt came from user space */
707GLOBAL(retint_user)
708	mov	%rsp,%rdi
709	call	prepare_exit_to_usermode
710	TRACE_IRQS_IRETQ
711
712GLOBAL(swapgs_restore_regs_and_return_to_usermode)
713#ifdef CONFIG_DEBUG_ENTRY
714	/* Assert that pt_regs indicates user mode. */
715	testb	$3, CS(%rsp)
716	jnz	1f
717	ud2
7181:
719#endif
720	POP_EXTRA_REGS
721	popq	%r11
722	popq	%r10
723	popq	%r9
724	popq	%r8
725	popq	%rax
726	popq	%rcx
727	popq	%rdx
728	popq	%rsi
729
730	/*
731	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
732	 * Save old stack pointer and switch to trampoline stack.
733	 */
734	movq	%rsp, %rdi
735	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
736
737	/* Copy the IRET frame to the trampoline stack. */
738	pushq	6*8(%rdi)	/* SS */
739	pushq	5*8(%rdi)	/* RSP */
740	pushq	4*8(%rdi)	/* EFLAGS */
741	pushq	3*8(%rdi)	/* CS */
742	pushq	2*8(%rdi)	/* RIP */
743
744	/* Push user RDI on the trampoline stack. */
745	pushq	(%rdi)
746
747	/*
748	 * We are on the trampoline stack.  All regs except RDI are live.
749	 * We can do future final exit work right here.
750	 */
751
752	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
753
754	/* Restore RDI. */
755	popq	%rdi
756	SWAPGS
757	INTERRUPT_RETURN
758
759
760/* Returning to kernel space */
761retint_kernel:
762#ifdef CONFIG_PREEMPT
763	/* Interrupts are off */
764	/* Check if we need preemption */
765	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
766	jnc	1f
7670:	cmpl	$0, PER_CPU_VAR(__preempt_count)
768	jnz	1f
769	call	preempt_schedule_irq
770	jmp	0b
7711:
772#endif
773	/*
774	 * The iretq could re-enable interrupts:
775	 */
776	TRACE_IRQS_IRETQ
777
778GLOBAL(restore_regs_and_return_to_kernel)
779#ifdef CONFIG_DEBUG_ENTRY
780	/* Assert that pt_regs indicates kernel mode. */
781	testb	$3, CS(%rsp)
782	jz	1f
783	ud2
7841:
785#endif
786	POP_EXTRA_REGS
787	POP_C_REGS
788	addq	$8, %rsp	/* skip regs->orig_ax */
789	INTERRUPT_RETURN
790
791ENTRY(native_iret)
792	UNWIND_HINT_IRET_REGS
793	/*
794	 * Are we returning to a stack segment from the LDT?  Note: in
795	 * 64-bit mode SS:RSP on the exception stack is always valid.
796	 */
797#ifdef CONFIG_X86_ESPFIX64
798	testb	$4, (SS-RIP)(%rsp)
799	jnz	native_irq_return_ldt
800#endif
801
802.global native_irq_return_iret
803native_irq_return_iret:
804	/*
805	 * This may fault.  Non-paranoid faults on return to userspace are
806	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
807	 * Double-faults due to espfix64 are handled in do_double_fault.
808	 * Other faults here are fatal.
809	 */
810	iretq
811
812#ifdef CONFIG_X86_ESPFIX64
813native_irq_return_ldt:
814	/*
815	 * We are running with user GSBASE.  All GPRs contain their user
816	 * values.  We have a percpu ESPFIX stack that is eight slots
817	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
818	 * of the ESPFIX stack.
819	 *
820	 * We clobber RAX and RDI in this code.  We stash RDI on the
821	 * normal stack and RAX on the ESPFIX stack.
822	 *
823	 * The ESPFIX stack layout we set up looks like this:
824	 *
825	 * --- top of ESPFIX stack ---
826	 * SS
827	 * RSP
828	 * RFLAGS
829	 * CS
830	 * RIP  <-- RSP points here when we're done
831	 * RAX  <-- espfix_waddr points here
832	 * --- bottom of ESPFIX stack ---
833	 */
834
835	pushq	%rdi				/* Stash user RDI */
836	SWAPGS					/* to kernel GS */
837	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
838
839	movq	PER_CPU_VAR(espfix_waddr), %rdi
840	movq	%rax, (0*8)(%rdi)		/* user RAX */
841	movq	(1*8)(%rsp), %rax		/* user RIP */
842	movq	%rax, (1*8)(%rdi)
843	movq	(2*8)(%rsp), %rax		/* user CS */
844	movq	%rax, (2*8)(%rdi)
845	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
846	movq	%rax, (3*8)(%rdi)
847	movq	(5*8)(%rsp), %rax		/* user SS */
848	movq	%rax, (5*8)(%rdi)
849	movq	(4*8)(%rsp), %rax		/* user RSP */
850	movq	%rax, (4*8)(%rdi)
851	/* Now RAX == RSP. */
852
853	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
854
855	/*
856	 * espfix_stack[31:16] == 0.  The page tables are set up such that
857	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
858	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
859	 * the same page.  Set up RSP so that RSP[31:16] contains the
860	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
861	 * still points to an RO alias of the ESPFIX stack.
862	 */
863	orq	PER_CPU_VAR(espfix_stack), %rax
864
865	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
866	SWAPGS					/* to user GS */
867	popq	%rdi				/* Restore user RDI */
868
869	movq	%rax, %rsp
870	UNWIND_HINT_IRET_REGS offset=8
871
872	/*
873	 * At this point, we cannot write to the stack any more, but we can
874	 * still read.
875	 */
876	popq	%rax				/* Restore user RAX */
877
878	/*
879	 * RSP now points to an ordinary IRET frame, except that the page
880	 * is read-only and RSP[31:16] are preloaded with the userspace
881	 * values.  We can now IRET back to userspace.
882	 */
883	jmp	native_irq_return_iret
884#endif
885END(common_interrupt)
886
887/*
888 * APIC interrupts.
889 */
890.macro apicinterrupt3 num sym do_sym
891ENTRY(\sym)
892	UNWIND_HINT_IRET_REGS
893	ASM_CLAC
894	pushq	$~(\num)
895.Lcommon_\sym:
896	interrupt \do_sym
897	jmp	ret_from_intr
898END(\sym)
899.endm
900
901/* Make sure APIC interrupt handlers end up in the irqentry section: */
902#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
903#define POP_SECTION_IRQENTRY	.popsection
904
905.macro apicinterrupt num sym do_sym
906PUSH_SECTION_IRQENTRY
907apicinterrupt3 \num \sym \do_sym
908POP_SECTION_IRQENTRY
909.endm
910
911#ifdef CONFIG_SMP
912apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
913apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
914#endif
915
916#ifdef CONFIG_X86_UV
917apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
918#endif
919
920apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
921apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
922
923#ifdef CONFIG_HAVE_KVM
924apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
925apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
926apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
927#endif
928
929#ifdef CONFIG_X86_MCE_THRESHOLD
930apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
931#endif
932
933#ifdef CONFIG_X86_MCE_AMD
934apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
935#endif
936
937#ifdef CONFIG_X86_THERMAL_VECTOR
938apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
939#endif
940
941#ifdef CONFIG_SMP
942apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
943apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
944apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
945#endif
946
947apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
948apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
949
950#ifdef CONFIG_IRQ_WORK
951apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
952#endif
953
954/*
955 * Exception entry points.
956 */
957#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
958
959/*
960 * Switch to the thread stack.  This is called with the IRET frame and
961 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
962 * space has not been allocated for them.)
963 */
964ENTRY(switch_to_thread_stack)
965	UNWIND_HINT_FUNC
966
967	pushq	%rdi
968	/* Need to switch before accessing the thread stack. */
969	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
970	movq	%rsp, %rdi
971	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
972	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
973
974	pushq	7*8(%rdi)		/* regs->ss */
975	pushq	6*8(%rdi)		/* regs->rsp */
976	pushq	5*8(%rdi)		/* regs->eflags */
977	pushq	4*8(%rdi)		/* regs->cs */
978	pushq	3*8(%rdi)		/* regs->ip */
979	pushq	2*8(%rdi)		/* regs->orig_ax */
980	pushq	8(%rdi)			/* return address */
981	UNWIND_HINT_FUNC
982
983	movq	(%rdi), %rdi
984	ret
985END(switch_to_thread_stack)
986
987.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
988ENTRY(\sym)
989	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
990
991	/* Sanity check */
992	.if \shift_ist != -1 && \paranoid == 0
993	.error "using shift_ist requires paranoid=1"
994	.endif
995
996	ASM_CLAC
997
998	.if \has_error_code == 0
999	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1000	.endif
1001
1002	ALLOC_PT_GPREGS_ON_STACK
1003
1004	.if \paranoid < 2
1005	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
1006	jnz	.Lfrom_usermode_switch_stack_\@
1007	.endif
1008
1009	.if \paranoid
1010	call	paranoid_entry
1011	.else
1012	call	error_entry
1013	.endif
1014	UNWIND_HINT_REGS
1015	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1016
1017	.if \paranoid
1018	.if \shift_ist != -1
1019	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
1020	.else
1021	TRACE_IRQS_OFF
1022	.endif
1023	.endif
1024
1025	movq	%rsp, %rdi			/* pt_regs pointer */
1026
1027	.if \has_error_code
1028	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
1029	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1030	.else
1031	xorl	%esi, %esi			/* no error code */
1032	.endif
1033
1034	.if \shift_ist != -1
1035	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1036	.endif
1037
1038	call	\do_sym
1039
1040	.if \shift_ist != -1
1041	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1042	.endif
1043
1044	/* these procedures expect "no swapgs" flag in ebx */
1045	.if \paranoid
1046	jmp	paranoid_exit
1047	.else
1048	jmp	error_exit
1049	.endif
1050
1051	.if \paranoid < 2
1052	/*
1053	 * Entry from userspace.  Switch stacks and treat it
1054	 * as a normal entry.  This means that paranoid handlers
1055	 * run in real process context if user_mode(regs).
1056	 */
1057.Lfrom_usermode_switch_stack_\@:
1058	call	error_entry
1059
1060	movq	%rsp, %rdi			/* pt_regs pointer */
1061
1062	.if \has_error_code
1063	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
1064	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1065	.else
1066	xorl	%esi, %esi			/* no error code */
1067	.endif
1068
1069	call	\do_sym
1070
1071	jmp	error_exit			/* %ebx: no swapgs flag */
1072	.endif
1073END(\sym)
1074.endm
1075
1076idtentry divide_error			do_divide_error			has_error_code=0
1077idtentry overflow			do_overflow			has_error_code=0
1078idtentry bounds				do_bounds			has_error_code=0
1079idtentry invalid_op			do_invalid_op			has_error_code=0
1080idtentry device_not_available		do_device_not_available		has_error_code=0
1081idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
1082idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
1083idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
1084idtentry segment_not_present		do_segment_not_present		has_error_code=1
1085idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
1086idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
1087idtentry alignment_check		do_alignment_check		has_error_code=1
1088idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
1089
1090
1091	/*
1092	 * Reload gs selector with exception handling
1093	 * edi:  new selector
1094	 */
1095ENTRY(native_load_gs_index)
1096	FRAME_BEGIN
1097	pushfq
1098	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1099	TRACE_IRQS_OFF
1100	SWAPGS
1101.Lgs_change:
1102	movl	%edi, %gs
11032:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1104	SWAPGS
1105	TRACE_IRQS_FLAGS (%rsp)
1106	popfq
1107	FRAME_END
1108	ret
1109ENDPROC(native_load_gs_index)
1110EXPORT_SYMBOL(native_load_gs_index)
1111
1112	_ASM_EXTABLE(.Lgs_change, bad_gs)
1113	.section .fixup, "ax"
1114	/* running with kernelgs */
1115bad_gs:
1116	SWAPGS					/* switch back to user gs */
1117.macro ZAP_GS
1118	/* This can't be a string because the preprocessor needs to see it. */
1119	movl $__USER_DS, %eax
1120	movl %eax, %gs
1121.endm
1122	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1123	xorl	%eax, %eax
1124	movl	%eax, %gs
1125	jmp	2b
1126	.previous
1127
1128/* Call softirq on interrupt stack. Interrupts are off. */
1129ENTRY(do_softirq_own_stack)
1130	pushq	%rbp
1131	mov	%rsp, %rbp
1132	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1133	call	__do_softirq
1134	LEAVE_IRQ_STACK regs=0
1135	leaveq
1136	ret
1137ENDPROC(do_softirq_own_stack)
1138
1139#ifdef CONFIG_XEN
1140idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1141
1142/*
1143 * A note on the "critical region" in our callback handler.
1144 * We want to avoid stacking callback handlers due to events occurring
1145 * during handling of the last event. To do this, we keep events disabled
1146 * until we've done all processing. HOWEVER, we must enable events before
1147 * popping the stack frame (can't be done atomically) and so it would still
1148 * be possible to get enough handler activations to overflow the stack.
1149 * Although unlikely, bugs of that kind are hard to track down, so we'd
1150 * like to avoid the possibility.
1151 * So, on entry to the handler we detect whether we interrupted an
1152 * existing activation in its critical region -- if so, we pop the current
1153 * activation and restart the handler using the previous one.
1154 */
1155ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
1156
1157/*
1158 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1159 * see the correct pointer to the pt_regs
1160 */
1161	UNWIND_HINT_FUNC
1162	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1163	UNWIND_HINT_REGS
1164
1165	ENTER_IRQ_STACK old_rsp=%r10
1166	call	xen_evtchn_do_upcall
1167	LEAVE_IRQ_STACK
1168
1169#ifndef CONFIG_PREEMPT
1170	call	xen_maybe_preempt_hcall
1171#endif
1172	jmp	error_exit
1173END(xen_do_hypervisor_callback)
1174
1175/*
1176 * Hypervisor uses this for application faults while it executes.
1177 * We get here for two reasons:
1178 *  1. Fault while reloading DS, ES, FS or GS
1179 *  2. Fault while executing IRET
1180 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1181 * registers that could be reloaded and zeroed the others.
1182 * Category 2 we fix up by killing the current process. We cannot use the
1183 * normal Linux return path in this case because if we use the IRET hypercall
1184 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1185 * We distinguish between categories by comparing each saved segment register
1186 * with its current contents: any discrepancy means we in category 1.
1187 */
1188ENTRY(xen_failsafe_callback)
1189	UNWIND_HINT_EMPTY
1190	movl	%ds, %ecx
1191	cmpw	%cx, 0x10(%rsp)
1192	jne	1f
1193	movl	%es, %ecx
1194	cmpw	%cx, 0x18(%rsp)
1195	jne	1f
1196	movl	%fs, %ecx
1197	cmpw	%cx, 0x20(%rsp)
1198	jne	1f
1199	movl	%gs, %ecx
1200	cmpw	%cx, 0x28(%rsp)
1201	jne	1f
1202	/* All segments match their saved values => Category 2 (Bad IRET). */
1203	movq	(%rsp), %rcx
1204	movq	8(%rsp), %r11
1205	addq	$0x30, %rsp
1206	pushq	$0				/* RIP */
1207	UNWIND_HINT_IRET_REGS offset=8
1208	jmp	general_protection
12091:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1210	movq	(%rsp), %rcx
1211	movq	8(%rsp), %r11
1212	addq	$0x30, %rsp
1213	UNWIND_HINT_IRET_REGS
1214	pushq	$-1 /* orig_ax = -1 => not a system call */
1215	ALLOC_PT_GPREGS_ON_STACK
1216	SAVE_C_REGS
1217	SAVE_EXTRA_REGS
1218	ENCODE_FRAME_POINTER
1219	jmp	error_exit
1220END(xen_failsafe_callback)
1221
1222apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1223	xen_hvm_callback_vector xen_evtchn_do_upcall
1224
1225#endif /* CONFIG_XEN */
1226
1227#if IS_ENABLED(CONFIG_HYPERV)
1228apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1229	hyperv_callback_vector hyperv_vector_handler
1230#endif /* CONFIG_HYPERV */
1231
1232idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1233idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1234idtentry stack_segment		do_stack_segment	has_error_code=1
1235
1236#ifdef CONFIG_XEN
1237idtentry xennmi			do_nmi			has_error_code=0
1238idtentry xendebug		do_debug		has_error_code=0
1239idtentry xenint3		do_int3			has_error_code=0
1240#endif
1241
1242idtentry general_protection	do_general_protection	has_error_code=1
1243idtentry page_fault		do_page_fault		has_error_code=1
1244
1245#ifdef CONFIG_KVM_GUEST
1246idtentry async_page_fault	do_async_page_fault	has_error_code=1
1247#endif
1248
1249#ifdef CONFIG_X86_MCE
1250idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1251#endif
1252
1253/*
1254 * Save all registers in pt_regs, and switch gs if needed.
1255 * Use slow, but surefire "are we in kernel?" check.
1256 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1257 */
1258ENTRY(paranoid_entry)
1259	UNWIND_HINT_FUNC
1260	cld
1261	SAVE_C_REGS 8
1262	SAVE_EXTRA_REGS 8
1263	ENCODE_FRAME_POINTER 8
1264	movl	$1, %ebx
1265	movl	$MSR_GS_BASE, %ecx
1266	rdmsr
1267	testl	%edx, %edx
1268	js	1f				/* negative -> in kernel */
1269	SWAPGS
1270	xorl	%ebx, %ebx
1271
12721:
1273	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1274
1275	ret
1276END(paranoid_entry)
1277
1278/*
1279 * "Paranoid" exit path from exception stack.  This is invoked
1280 * only on return from non-NMI IST interrupts that came
1281 * from kernel space.
1282 *
1283 * We may be returning to very strange contexts (e.g. very early
1284 * in syscall entry), so checking for preemption here would
1285 * be complicated.  Fortunately, we there's no good reason
1286 * to try to handle preemption here.
1287 *
1288 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1289 */
1290ENTRY(paranoid_exit)
1291	UNWIND_HINT_REGS
1292	DISABLE_INTERRUPTS(CLBR_ANY)
1293	TRACE_IRQS_OFF_DEBUG
1294	testl	%ebx, %ebx			/* swapgs needed? */
1295	jnz	.Lparanoid_exit_no_swapgs
1296	TRACE_IRQS_IRETQ
1297	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1298	SWAPGS_UNSAFE_STACK
1299	jmp	.Lparanoid_exit_restore
1300.Lparanoid_exit_no_swapgs:
1301	TRACE_IRQS_IRETQ_DEBUG
1302.Lparanoid_exit_restore:
1303	jmp restore_regs_and_return_to_kernel
1304END(paranoid_exit)
1305
1306/*
1307 * Save all registers in pt_regs, and switch gs if needed.
1308 * Return: EBX=0: came from user mode; EBX=1: otherwise
1309 */
1310ENTRY(error_entry)
1311	UNWIND_HINT_FUNC
1312	cld
1313	SAVE_C_REGS 8
1314	SAVE_EXTRA_REGS 8
1315	ENCODE_FRAME_POINTER 8
1316	xorl	%ebx, %ebx
1317	testb	$3, CS+8(%rsp)
1318	jz	.Lerror_kernelspace
1319
1320	/*
1321	 * We entered from user mode or we're pretending to have entered
1322	 * from user mode due to an IRET fault.
1323	 */
1324	SWAPGS
1325	/* We have user CR3.  Change to kernel CR3. */
1326	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1327
1328.Lerror_entry_from_usermode_after_swapgs:
1329	/* Put us onto the real thread stack. */
1330	popq	%r12				/* save return addr in %12 */
1331	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1332	call	sync_regs
1333	movq	%rax, %rsp			/* switch stack */
1334	ENCODE_FRAME_POINTER
1335	pushq	%r12
1336
1337	/*
1338	 * We need to tell lockdep that IRQs are off.  We can't do this until
1339	 * we fix gsbase, and we should do it before enter_from_user_mode
1340	 * (which can take locks).
1341	 */
1342	TRACE_IRQS_OFF
1343	CALL_enter_from_user_mode
1344	ret
1345
1346.Lerror_entry_done:
1347	TRACE_IRQS_OFF
1348	ret
1349
1350	/*
1351	 * There are two places in the kernel that can potentially fault with
1352	 * usergs. Handle them here.  B stepping K8s sometimes report a
1353	 * truncated RIP for IRET exceptions returning to compat mode. Check
1354	 * for these here too.
1355	 */
1356.Lerror_kernelspace:
1357	incl	%ebx
1358	leaq	native_irq_return_iret(%rip), %rcx
1359	cmpq	%rcx, RIP+8(%rsp)
1360	je	.Lerror_bad_iret
1361	movl	%ecx, %eax			/* zero extend */
1362	cmpq	%rax, RIP+8(%rsp)
1363	je	.Lbstep_iret
1364	cmpq	$.Lgs_change, RIP+8(%rsp)
1365	jne	.Lerror_entry_done
1366
1367	/*
1368	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1369	 * gsbase and proceed.  We'll fix up the exception and land in
1370	 * .Lgs_change's error handler with kernel gsbase.
1371	 */
1372	SWAPGS
1373	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1374	jmp .Lerror_entry_done
1375
1376.Lbstep_iret:
1377	/* Fix truncated RIP */
1378	movq	%rcx, RIP+8(%rsp)
1379	/* fall through */
1380
1381.Lerror_bad_iret:
1382	/*
1383	 * We came from an IRET to user mode, so we have user
1384	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1385	 */
1386	SWAPGS
1387	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1388
1389	/*
1390	 * Pretend that the exception came from user mode: set up pt_regs
1391	 * as if we faulted immediately after IRET and clear EBX so that
1392	 * error_exit knows that we will be returning to user mode.
1393	 */
1394	mov	%rsp, %rdi
1395	call	fixup_bad_iret
1396	mov	%rax, %rsp
1397	decl	%ebx
1398	jmp	.Lerror_entry_from_usermode_after_swapgs
1399END(error_entry)
1400
1401
1402/*
1403 * On entry, EBX is a "return to kernel mode" flag:
1404 *   1: already in kernel mode, don't need SWAPGS
1405 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1406 */
1407ENTRY(error_exit)
1408	UNWIND_HINT_REGS
1409	DISABLE_INTERRUPTS(CLBR_ANY)
1410	TRACE_IRQS_OFF
1411	testl	%ebx, %ebx
1412	jnz	retint_kernel
1413	jmp	retint_user
1414END(error_exit)
1415
1416/*
1417 * Runs on exception stack.  Xen PV does not go through this path at all,
1418 * so we can use real assembly here.
1419 *
1420 * Registers:
1421 *	%r14: Used to save/restore the CR3 of the interrupted context
1422 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1423 */
1424ENTRY(nmi)
1425	UNWIND_HINT_IRET_REGS
1426
1427	/*
1428	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1429	 * the iretq it performs will take us out of NMI context.
1430	 * This means that we can have nested NMIs where the next
1431	 * NMI is using the top of the stack of the previous NMI. We
1432	 * can't let it execute because the nested NMI will corrupt the
1433	 * stack of the previous NMI. NMI handlers are not re-entrant
1434	 * anyway.
1435	 *
1436	 * To handle this case we do the following:
1437	 *  Check the a special location on the stack that contains
1438	 *  a variable that is set when NMIs are executing.
1439	 *  The interrupted task's stack is also checked to see if it
1440	 *  is an NMI stack.
1441	 *  If the variable is not set and the stack is not the NMI
1442	 *  stack then:
1443	 *    o Set the special variable on the stack
1444	 *    o Copy the interrupt frame into an "outermost" location on the
1445	 *      stack
1446	 *    o Copy the interrupt frame into an "iret" location on the stack
1447	 *    o Continue processing the NMI
1448	 *  If the variable is set or the previous stack is the NMI stack:
1449	 *    o Modify the "iret" location to jump to the repeat_nmi
1450	 *    o return back to the first NMI
1451	 *
1452	 * Now on exit of the first NMI, we first clear the stack variable
1453	 * The NMI stack will tell any nested NMIs at that point that it is
1454	 * nested. Then we pop the stack normally with iret, and if there was
1455	 * a nested NMI that updated the copy interrupt stack frame, a
1456	 * jump will be made to the repeat_nmi code that will handle the second
1457	 * NMI.
1458	 *
1459	 * However, espfix prevents us from directly returning to userspace
1460	 * with a single IRET instruction.  Similarly, IRET to user mode
1461	 * can fault.  We therefore handle NMIs from user space like
1462	 * other IST entries.
1463	 */
1464
1465	ASM_CLAC
1466
1467	/* Use %rdx as our temp variable throughout */
1468	pushq	%rdx
1469
1470	testb	$3, CS-RIP+8(%rsp)
1471	jz	.Lnmi_from_kernel
1472
1473	/*
1474	 * NMI from user mode.  We need to run on the thread stack, but we
1475	 * can't go through the normal entry paths: NMIs are masked, and
1476	 * we don't want to enable interrupts, because then we'll end
1477	 * up in an awkward situation in which IRQs are on but NMIs
1478	 * are off.
1479	 *
1480	 * We also must not push anything to the stack before switching
1481	 * stacks lest we corrupt the "NMI executing" variable.
1482	 */
1483
1484	swapgs
1485	cld
1486	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1487	movq	%rsp, %rdx
1488	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1489	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1490	pushq	5*8(%rdx)	/* pt_regs->ss */
1491	pushq	4*8(%rdx)	/* pt_regs->rsp */
1492	pushq	3*8(%rdx)	/* pt_regs->flags */
1493	pushq	2*8(%rdx)	/* pt_regs->cs */
1494	pushq	1*8(%rdx)	/* pt_regs->rip */
1495	UNWIND_HINT_IRET_REGS
1496	pushq   $-1		/* pt_regs->orig_ax */
1497	pushq   %rdi		/* pt_regs->di */
1498	pushq   %rsi		/* pt_regs->si */
1499	pushq   (%rdx)		/* pt_regs->dx */
1500	pushq   %rcx		/* pt_regs->cx */
1501	pushq   %rax		/* pt_regs->ax */
1502	pushq   %r8		/* pt_regs->r8 */
1503	pushq   %r9		/* pt_regs->r9 */
1504	pushq   %r10		/* pt_regs->r10 */
1505	pushq   %r11		/* pt_regs->r11 */
1506	pushq	%rbx		/* pt_regs->rbx */
1507	pushq	%rbp		/* pt_regs->rbp */
1508	pushq	%r12		/* pt_regs->r12 */
1509	pushq	%r13		/* pt_regs->r13 */
1510	pushq	%r14		/* pt_regs->r14 */
1511	pushq	%r15		/* pt_regs->r15 */
1512	UNWIND_HINT_REGS
1513	ENCODE_FRAME_POINTER
1514
1515	/*
1516	 * At this point we no longer need to worry about stack damage
1517	 * due to nesting -- we're on the normal thread stack and we're
1518	 * done with the NMI stack.
1519	 */
1520
1521	movq	%rsp, %rdi
1522	movq	$-1, %rsi
1523	call	do_nmi
1524
1525	/*
1526	 * Return back to user mode.  We must *not* do the normal exit
1527	 * work, because we don't want to enable interrupts.
1528	 */
1529	jmp	swapgs_restore_regs_and_return_to_usermode
1530
1531.Lnmi_from_kernel:
1532	/*
1533	 * Here's what our stack frame will look like:
1534	 * +---------------------------------------------------------+
1535	 * | original SS                                             |
1536	 * | original Return RSP                                     |
1537	 * | original RFLAGS                                         |
1538	 * | original CS                                             |
1539	 * | original RIP                                            |
1540	 * +---------------------------------------------------------+
1541	 * | temp storage for rdx                                    |
1542	 * +---------------------------------------------------------+
1543	 * | "NMI executing" variable                                |
1544	 * +---------------------------------------------------------+
1545	 * | iret SS          } Copied from "outermost" frame        |
1546	 * | iret Return RSP  } on each loop iteration; overwritten  |
1547	 * | iret RFLAGS      } by a nested NMI to force another     |
1548	 * | iret CS          } iteration if needed.                 |
1549	 * | iret RIP         }                                      |
1550	 * +---------------------------------------------------------+
1551	 * | outermost SS          } initialized in first_nmi;       |
1552	 * | outermost Return RSP  } will not be changed before      |
1553	 * | outermost RFLAGS      } NMI processing is done.         |
1554	 * | outermost CS          } Copied to "iret" frame on each  |
1555	 * | outermost RIP         } iteration.                      |
1556	 * +---------------------------------------------------------+
1557	 * | pt_regs                                                 |
1558	 * +---------------------------------------------------------+
1559	 *
1560	 * The "original" frame is used by hardware.  Before re-enabling
1561	 * NMIs, we need to be done with it, and we need to leave enough
1562	 * space for the asm code here.
1563	 *
1564	 * We return by executing IRET while RSP points to the "iret" frame.
1565	 * That will either return for real or it will loop back into NMI
1566	 * processing.
1567	 *
1568	 * The "outermost" frame is copied to the "iret" frame on each
1569	 * iteration of the loop, so each iteration starts with the "iret"
1570	 * frame pointing to the final return target.
1571	 */
1572
1573	/*
1574	 * Determine whether we're a nested NMI.
1575	 *
1576	 * If we interrupted kernel code between repeat_nmi and
1577	 * end_repeat_nmi, then we are a nested NMI.  We must not
1578	 * modify the "iret" frame because it's being written by
1579	 * the outer NMI.  That's okay; the outer NMI handler is
1580	 * about to about to call do_nmi anyway, so we can just
1581	 * resume the outer NMI.
1582	 */
1583
1584	movq	$repeat_nmi, %rdx
1585	cmpq	8(%rsp), %rdx
1586	ja	1f
1587	movq	$end_repeat_nmi, %rdx
1588	cmpq	8(%rsp), %rdx
1589	ja	nested_nmi_out
15901:
1591
1592	/*
1593	 * Now check "NMI executing".  If it's set, then we're nested.
1594	 * This will not detect if we interrupted an outer NMI just
1595	 * before IRET.
1596	 */
1597	cmpl	$1, -8(%rsp)
1598	je	nested_nmi
1599
1600	/*
1601	 * Now test if the previous stack was an NMI stack.  This covers
1602	 * the case where we interrupt an outer NMI after it clears
1603	 * "NMI executing" but before IRET.  We need to be careful, though:
1604	 * there is one case in which RSP could point to the NMI stack
1605	 * despite there being no NMI active: naughty userspace controls
1606	 * RSP at the very beginning of the SYSCALL targets.  We can
1607	 * pull a fast one on naughty userspace, though: we program
1608	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1609	 * if it controls the kernel's RSP.  We set DF before we clear
1610	 * "NMI executing".
1611	 */
1612	lea	6*8(%rsp), %rdx
1613	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1614	cmpq	%rdx, 4*8(%rsp)
1615	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1616	ja	first_nmi
1617
1618	subq	$EXCEPTION_STKSZ, %rdx
1619	cmpq	%rdx, 4*8(%rsp)
1620	/* If it is below the NMI stack, it is a normal NMI */
1621	jb	first_nmi
1622
1623	/* Ah, it is within the NMI stack. */
1624
1625	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1626	jz	first_nmi	/* RSP was user controlled. */
1627
1628	/* This is a nested NMI. */
1629
1630nested_nmi:
1631	/*
1632	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1633	 * iteration of NMI handling.
1634	 */
1635	subq	$8, %rsp
1636	leaq	-10*8(%rsp), %rdx
1637	pushq	$__KERNEL_DS
1638	pushq	%rdx
1639	pushfq
1640	pushq	$__KERNEL_CS
1641	pushq	$repeat_nmi
1642
1643	/* Put stack back */
1644	addq	$(6*8), %rsp
1645
1646nested_nmi_out:
1647	popq	%rdx
1648
1649	/* We are returning to kernel mode, so this cannot result in a fault. */
1650	iretq
1651
1652first_nmi:
1653	/* Restore rdx. */
1654	movq	(%rsp), %rdx
1655
1656	/* Make room for "NMI executing". */
1657	pushq	$0
1658
1659	/* Leave room for the "iret" frame */
1660	subq	$(5*8), %rsp
1661
1662	/* Copy the "original" frame to the "outermost" frame */
1663	.rept 5
1664	pushq	11*8(%rsp)
1665	.endr
1666	UNWIND_HINT_IRET_REGS
1667
1668	/* Everything up to here is safe from nested NMIs */
1669
1670#ifdef CONFIG_DEBUG_ENTRY
1671	/*
1672	 * For ease of testing, unmask NMIs right away.  Disabled by
1673	 * default because IRET is very expensive.
1674	 */
1675	pushq	$0		/* SS */
1676	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1677	addq	$8, (%rsp)	/* Fix up RSP */
1678	pushfq			/* RFLAGS */
1679	pushq	$__KERNEL_CS	/* CS */
1680	pushq	$1f		/* RIP */
1681	iretq			/* continues at repeat_nmi below */
1682	UNWIND_HINT_IRET_REGS
16831:
1684#endif
1685
1686repeat_nmi:
1687	/*
1688	 * If there was a nested NMI, the first NMI's iret will return
1689	 * here. But NMIs are still enabled and we can take another
1690	 * nested NMI. The nested NMI checks the interrupted RIP to see
1691	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1692	 * it will just return, as we are about to repeat an NMI anyway.
1693	 * This makes it safe to copy to the stack frame that a nested
1694	 * NMI will update.
1695	 *
1696	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1697	 * we're repeating an NMI, gsbase has the same value that it had on
1698	 * the first iteration.  paranoid_entry will load the kernel
1699	 * gsbase if needed before we call do_nmi.  "NMI executing"
1700	 * is zero.
1701	 */
1702	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1703
1704	/*
1705	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1706	 * here must not modify the "iret" frame while we're writing to
1707	 * it or it will end up containing garbage.
1708	 */
1709	addq	$(10*8), %rsp
1710	.rept 5
1711	pushq	-6*8(%rsp)
1712	.endr
1713	subq	$(5*8), %rsp
1714end_repeat_nmi:
1715
1716	/*
1717	 * Everything below this point can be preempted by a nested NMI.
1718	 * If this happens, then the inner NMI will change the "iret"
1719	 * frame to point back to repeat_nmi.
1720	 */
1721	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1722	ALLOC_PT_GPREGS_ON_STACK
1723
1724	/*
1725	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1726	 * as we should not be calling schedule in NMI context.
1727	 * Even with normal interrupts enabled. An NMI should not be
1728	 * setting NEED_RESCHED or anything that normal interrupts and
1729	 * exceptions might do.
1730	 */
1731	call	paranoid_entry
1732	UNWIND_HINT_REGS
1733
1734	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1735	movq	%rsp, %rdi
1736	movq	$-1, %rsi
1737	call	do_nmi
1738
1739	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1740
1741	testl	%ebx, %ebx			/* swapgs needed? */
1742	jnz	nmi_restore
1743nmi_swapgs:
1744	SWAPGS_UNSAFE_STACK
1745nmi_restore:
1746	POP_EXTRA_REGS
1747	POP_C_REGS
1748
1749	/*
1750	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1751	 * at the "iret" frame.
1752	 */
1753	addq	$6*8, %rsp
1754
1755	/*
1756	 * Clear "NMI executing".  Set DF first so that we can easily
1757	 * distinguish the remaining code between here and IRET from
1758	 * the SYSCALL entry and exit paths.
1759	 *
1760	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1761	 * this code when I had the misapprehension that Xen PV supported
1762	 * NMIs, and Xen PV would break that approach.
1763	 */
1764	std
1765	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1766
1767	/*
1768	 * iretq reads the "iret" frame and exits the NMI stack in a
1769	 * single instruction.  We are returning to kernel mode, so this
1770	 * cannot result in a fault.  Similarly, we don't need to worry
1771	 * about espfix64 on the way back to kernel mode.
1772	 */
1773	iretq
1774END(nmi)
1775
1776ENTRY(ignore_sysret)
1777	UNWIND_HINT_EMPTY
1778	mov	$-ENOSYS, %eax
1779	sysret
1780END(ignore_sysret)
1781
1782ENTRY(rewind_stack_do_exit)
1783	UNWIND_HINT_FUNC
1784	/* Prevent any naive code from trying to unwind to our caller. */
1785	xorl	%ebp, %ebp
1786
1787	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1788	leaq	-PTREGS_SIZE(%rax), %rsp
1789	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1790
1791	call	do_exit
1792END(rewind_stack_do_exit)
1793