xref: /openbmc/linux/arch/x86/entry/entry_32.S (revision efe4a1ac)
1/*
2 *  Copyright (C) 1991,1992  Linus Torvalds
3 *
4 * entry_32.S contains the system-call and low-level fault and trap handling routines.
5 *
6 * Stack layout while running C code:
7 *	ptrace needs to have all registers on the stack.
8 *	If the order here is changed, it needs to be
9 *	updated in fork.c:copy_process(), signal.c:do_signal(),
10 *	ptrace.c and ptrace.h
11 *
12 *	 0(%esp) - %ebx
13 *	 4(%esp) - %ecx
14 *	 8(%esp) - %edx
15 *	 C(%esp) - %esi
16 *	10(%esp) - %edi
17 *	14(%esp) - %ebp
18 *	18(%esp) - %eax
19 *	1C(%esp) - %ds
20 *	20(%esp) - %es
21 *	24(%esp) - %fs
22 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
23 *	2C(%esp) - orig_eax
24 *	30(%esp) - %eip
25 *	34(%esp) - %cs
26 *	38(%esp) - %eflags
27 *	3C(%esp) - %oldesp
28 *	40(%esp) - %oldss
29 */
30
31#include <linux/linkage.h>
32#include <linux/err.h>
33#include <asm/thread_info.h>
34#include <asm/irqflags.h>
35#include <asm/errno.h>
36#include <asm/segment.h>
37#include <asm/smp.h>
38#include <asm/percpu.h>
39#include <asm/processor-flags.h>
40#include <asm/irq_vectors.h>
41#include <asm/cpufeatures.h>
42#include <asm/alternative-asm.h>
43#include <asm/asm.h>
44#include <asm/smap.h>
45#include <asm/frame.h>
46
47	.section .entry.text, "ax"
48
49/*
50 * We use macros for low-level operations which need to be overridden
51 * for paravirtualization.  The following will never clobber any registers:
52 *   INTERRUPT_RETURN (aka. "iret")
53 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
54 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
55 *
56 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
57 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
58 * Allowing a register to be clobbered can shrink the paravirt replacement
59 * enough to patch inline, increasing performance.
60 */
61
62#ifdef CONFIG_PREEMPT
63# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
64#else
65# define preempt_stop(clobbers)
66# define resume_kernel		restore_all
67#endif
68
69.macro TRACE_IRQS_IRET
70#ifdef CONFIG_TRACE_IRQFLAGS
71	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
72	jz	1f
73	TRACE_IRQS_ON
741:
75#endif
76.endm
77
78/*
79 * User gs save/restore
80 *
81 * %gs is used for userland TLS and kernel only uses it for stack
82 * canary which is required to be at %gs:20 by gcc.  Read the comment
83 * at the top of stackprotector.h for more info.
84 *
85 * Local labels 98 and 99 are used.
86 */
87#ifdef CONFIG_X86_32_LAZY_GS
88
89 /* unfortunately push/pop can't be no-op */
90.macro PUSH_GS
91	pushl	$0
92.endm
93.macro POP_GS pop=0
94	addl	$(4 + \pop), %esp
95.endm
96.macro POP_GS_EX
97.endm
98
99 /* all the rest are no-op */
100.macro PTGS_TO_GS
101.endm
102.macro PTGS_TO_GS_EX
103.endm
104.macro GS_TO_REG reg
105.endm
106.macro REG_TO_PTGS reg
107.endm
108.macro SET_KERNEL_GS reg
109.endm
110
111#else	/* CONFIG_X86_32_LAZY_GS */
112
113.macro PUSH_GS
114	pushl	%gs
115.endm
116
117.macro POP_GS pop=0
11898:	popl	%gs
119  .if \pop <> 0
120	add	$\pop, %esp
121  .endif
122.endm
123.macro POP_GS_EX
124.pushsection .fixup, "ax"
12599:	movl	$0, (%esp)
126	jmp	98b
127.popsection
128	_ASM_EXTABLE(98b, 99b)
129.endm
130
131.macro PTGS_TO_GS
13298:	mov	PT_GS(%esp), %gs
133.endm
134.macro PTGS_TO_GS_EX
135.pushsection .fixup, "ax"
13699:	movl	$0, PT_GS(%esp)
137	jmp	98b
138.popsection
139	_ASM_EXTABLE(98b, 99b)
140.endm
141
142.macro GS_TO_REG reg
143	movl	%gs, \reg
144.endm
145.macro REG_TO_PTGS reg
146	movl	\reg, PT_GS(%esp)
147.endm
148.macro SET_KERNEL_GS reg
149	movl	$(__KERNEL_STACK_CANARY), \reg
150	movl	\reg, %gs
151.endm
152
153#endif /* CONFIG_X86_32_LAZY_GS */
154
155.macro SAVE_ALL pt_regs_ax=%eax
156	cld
157	PUSH_GS
158	pushl	%fs
159	pushl	%es
160	pushl	%ds
161	pushl	\pt_regs_ax
162	pushl	%ebp
163	pushl	%edi
164	pushl	%esi
165	pushl	%edx
166	pushl	%ecx
167	pushl	%ebx
168	movl	$(__USER_DS), %edx
169	movl	%edx, %ds
170	movl	%edx, %es
171	movl	$(__KERNEL_PERCPU), %edx
172	movl	%edx, %fs
173	SET_KERNEL_GS %edx
174.endm
175
176/*
177 * This is a sneaky trick to help the unwinder find pt_regs on the stack.  The
178 * frame pointer is replaced with an encoded pointer to pt_regs.  The encoding
179 * is just setting the LSB, which makes it an invalid stack address and is also
180 * a signal to the unwinder that it's a pt_regs pointer in disguise.
181 *
182 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
183 * original rbp.
184 */
185.macro ENCODE_FRAME_POINTER
186#ifdef CONFIG_FRAME_POINTER
187	mov %esp, %ebp
188	orl $0x1, %ebp
189#endif
190.endm
191
192.macro RESTORE_INT_REGS
193	popl	%ebx
194	popl	%ecx
195	popl	%edx
196	popl	%esi
197	popl	%edi
198	popl	%ebp
199	popl	%eax
200.endm
201
202.macro RESTORE_REGS pop=0
203	RESTORE_INT_REGS
2041:	popl	%ds
2052:	popl	%es
2063:	popl	%fs
207	POP_GS \pop
208.pushsection .fixup, "ax"
2094:	movl	$0, (%esp)
210	jmp	1b
2115:	movl	$0, (%esp)
212	jmp	2b
2136:	movl	$0, (%esp)
214	jmp	3b
215.popsection
216	_ASM_EXTABLE(1b, 4b)
217	_ASM_EXTABLE(2b, 5b)
218	_ASM_EXTABLE(3b, 6b)
219	POP_GS_EX
220.endm
221
222/*
223 * %eax: prev task
224 * %edx: next task
225 */
226ENTRY(__switch_to_asm)
227	/*
228	 * Save callee-saved registers
229	 * This must match the order in struct inactive_task_frame
230	 */
231	pushl	%ebp
232	pushl	%ebx
233	pushl	%edi
234	pushl	%esi
235
236	/* switch stack */
237	movl	%esp, TASK_threadsp(%eax)
238	movl	TASK_threadsp(%edx), %esp
239
240#ifdef CONFIG_CC_STACKPROTECTOR
241	movl	TASK_stack_canary(%edx), %ebx
242	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
243#endif
244
245	/* restore callee-saved registers */
246	popl	%esi
247	popl	%edi
248	popl	%ebx
249	popl	%ebp
250
251	jmp	__switch_to
252END(__switch_to_asm)
253
254/*
255 * The unwinder expects the last frame on the stack to always be at the same
256 * offset from the end of the page, which allows it to validate the stack.
257 * Calling schedule_tail() directly would break that convention because its an
258 * asmlinkage function so its argument has to be pushed on the stack.  This
259 * wrapper creates a proper "end of stack" frame header before the call.
260 */
261ENTRY(schedule_tail_wrapper)
262	FRAME_BEGIN
263
264	pushl	%eax
265	call	schedule_tail
266	popl	%eax
267
268	FRAME_END
269	ret
270ENDPROC(schedule_tail_wrapper)
271/*
272 * A newly forked process directly context switches into this address.
273 *
274 * eax: prev task we switched from
275 * ebx: kernel thread func (NULL for user thread)
276 * edi: kernel thread arg
277 */
278ENTRY(ret_from_fork)
279	call	schedule_tail_wrapper
280
281	testl	%ebx, %ebx
282	jnz	1f		/* kernel threads are uncommon */
283
2842:
285	/* When we fork, we trace the syscall return in the child, too. */
286	movl    %esp, %eax
287	call    syscall_return_slowpath
288	jmp     restore_all
289
290	/* kernel thread */
2911:	movl	%edi, %eax
292	call	*%ebx
293	/*
294	 * A kernel thread is allowed to return here after successfully
295	 * calling do_execve().  Exit to userspace to complete the execve()
296	 * syscall.
297	 */
298	movl	$0, PT_EAX(%esp)
299	jmp	2b
300END(ret_from_fork)
301
302/*
303 * Return to user mode is not as complex as all this looks,
304 * but we want the default path for a system call return to
305 * go as quickly as possible which is why some of this is
306 * less clear than it otherwise should be.
307 */
308
309	# userspace resumption stub bypassing syscall exit tracing
310	ALIGN
311ret_from_exception:
312	preempt_stop(CLBR_ANY)
313ret_from_intr:
314#ifdef CONFIG_VM86
315	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
316	movb	PT_CS(%esp), %al
317	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
318#else
319	/*
320	 * We can be coming here from child spawned by kernel_thread().
321	 */
322	movl	PT_CS(%esp), %eax
323	andl	$SEGMENT_RPL_MASK, %eax
324#endif
325	cmpl	$USER_RPL, %eax
326	jb	resume_kernel			# not returning to v8086 or userspace
327
328ENTRY(resume_userspace)
329	DISABLE_INTERRUPTS(CLBR_ANY)
330	TRACE_IRQS_OFF
331	movl	%esp, %eax
332	call	prepare_exit_to_usermode
333	jmp	restore_all
334END(ret_from_exception)
335
336#ifdef CONFIG_PREEMPT
337ENTRY(resume_kernel)
338	DISABLE_INTERRUPTS(CLBR_ANY)
339.Lneed_resched:
340	cmpl	$0, PER_CPU_VAR(__preempt_count)
341	jnz	restore_all
342	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
343	jz	restore_all
344	call	preempt_schedule_irq
345	jmp	.Lneed_resched
346END(resume_kernel)
347#endif
348
349GLOBAL(__begin_SYSENTER_singlestep_region)
350/*
351 * All code from here through __end_SYSENTER_singlestep_region is subject
352 * to being single-stepped if a user program sets TF and executes SYSENTER.
353 * There is absolutely nothing that we can do to prevent this from happening
354 * (thanks Intel!).  To keep our handling of this situation as simple as
355 * possible, we handle TF just like AC and NT, except that our #DB handler
356 * will ignore all of the single-step traps generated in this range.
357 */
358
359#ifdef CONFIG_XEN
360/*
361 * Xen doesn't set %esp to be precisely what the normal SYSENTER
362 * entry point expects, so fix it up before using the normal path.
363 */
364ENTRY(xen_sysenter_target)
365	addl	$5*4, %esp			/* remove xen-provided frame */
366	jmp	.Lsysenter_past_esp
367#endif
368
369/*
370 * 32-bit SYSENTER entry.
371 *
372 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
373 * if X86_FEATURE_SEP is available.  This is the preferred system call
374 * entry on 32-bit systems.
375 *
376 * The SYSENTER instruction, in principle, should *only* occur in the
377 * vDSO.  In practice, a small number of Android devices were shipped
378 * with a copy of Bionic that inlined a SYSENTER instruction.  This
379 * never happened in any of Google's Bionic versions -- it only happened
380 * in a narrow range of Intel-provided versions.
381 *
382 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
383 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
384 * SYSENTER does not save anything on the stack,
385 * and does not save old EIP (!!!), ESP, or EFLAGS.
386 *
387 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
388 * user and/or vm86 state), we explicitly disable the SYSENTER
389 * instruction in vm86 mode by reprogramming the MSRs.
390 *
391 * Arguments:
392 * eax  system call number
393 * ebx  arg1
394 * ecx  arg2
395 * edx  arg3
396 * esi  arg4
397 * edi  arg5
398 * ebp  user stack
399 * 0(%ebp) arg6
400 */
401ENTRY(entry_SYSENTER_32)
402	movl	TSS_sysenter_sp0(%esp), %esp
403.Lsysenter_past_esp:
404	pushl	$__USER_DS		/* pt_regs->ss */
405	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
406	pushfl				/* pt_regs->flags (except IF = 0) */
407	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
408	pushl	$__USER_CS		/* pt_regs->cs */
409	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
410	pushl	%eax			/* pt_regs->orig_ax */
411	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest */
412
413	/*
414	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
415	 * and TF ourselves.  To save a few cycles, we can check whether
416	 * either was set instead of doing an unconditional popfq.
417	 * This needs to happen before enabling interrupts so that
418	 * we don't get preempted with NT set.
419	 *
420	 * If TF is set, we will single-step all the way to here -- do_debug
421	 * will ignore all the traps.  (Yes, this is slow, but so is
422	 * single-stepping in general.  This allows us to avoid having
423	 * a more complicated code to handle the case where a user program
424	 * forces us to single-step through the SYSENTER entry code.)
425	 *
426	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
427	 * out-of-line as an optimization: NT is unlikely to be set in the
428	 * majority of the cases and instead of polluting the I$ unnecessarily,
429	 * we're keeping that code behind a branch which will predict as
430	 * not-taken and therefore its instructions won't be fetched.
431	 */
432	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
433	jnz	.Lsysenter_fix_flags
434.Lsysenter_flags_fixed:
435
436	/*
437	 * User mode is traced as though IRQs are on, and SYSENTER
438	 * turned them off.
439	 */
440	TRACE_IRQS_OFF
441
442	movl	%esp, %eax
443	call	do_fast_syscall_32
444	/* XEN PV guests always use IRET path */
445	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
446		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
447
448/* Opportunistic SYSEXIT */
449	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
450	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
451	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
4521:	mov	PT_FS(%esp), %fs
453	PTGS_TO_GS
454	popl	%ebx			/* pt_regs->bx */
455	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
456	popl	%esi			/* pt_regs->si */
457	popl	%edi			/* pt_regs->di */
458	popl	%ebp			/* pt_regs->bp */
459	popl	%eax			/* pt_regs->ax */
460
461	/*
462	 * Restore all flags except IF. (We restore IF separately because
463	 * STI gives a one-instruction window in which we won't be interrupted,
464	 * whereas POPF does not.)
465	 */
466	addl	$PT_EFLAGS-PT_DS, %esp	/* point esp at pt_regs->flags */
467	btr	$X86_EFLAGS_IF_BIT, (%esp)
468	popfl
469
470	/*
471	 * Return back to the vDSO, which will pop ecx and edx.
472	 * Don't bother with DS and ES (they already contain __USER_DS).
473	 */
474	sti
475	sysexit
476
477.pushsection .fixup, "ax"
4782:	movl	$0, PT_FS(%esp)
479	jmp	1b
480.popsection
481	_ASM_EXTABLE(1b, 2b)
482	PTGS_TO_GS_EX
483
484.Lsysenter_fix_flags:
485	pushl	$X86_EFLAGS_FIXED
486	popfl
487	jmp	.Lsysenter_flags_fixed
488GLOBAL(__end_SYSENTER_singlestep_region)
489ENDPROC(entry_SYSENTER_32)
490
491/*
492 * 32-bit legacy system call entry.
493 *
494 * 32-bit x86 Linux system calls traditionally used the INT $0x80
495 * instruction.  INT $0x80 lands here.
496 *
497 * This entry point can be used by any 32-bit perform system calls.
498 * Instances of INT $0x80 can be found inline in various programs and
499 * libraries.  It is also used by the vDSO's __kernel_vsyscall
500 * fallback for hardware that doesn't support a faster entry method.
501 * Restarted 32-bit system calls also fall back to INT $0x80
502 * regardless of what instruction was originally used to do the system
503 * call.  (64-bit programs can use INT $0x80 as well, but they can
504 * only run on 64-bit kernels and therefore land in
505 * entry_INT80_compat.)
506 *
507 * This is considered a slow path.  It is not used by most libc
508 * implementations on modern hardware except during process startup.
509 *
510 * Arguments:
511 * eax  system call number
512 * ebx  arg1
513 * ecx  arg2
514 * edx  arg3
515 * esi  arg4
516 * edi  arg5
517 * ebp  arg6
518 */
519ENTRY(entry_INT80_32)
520	ASM_CLAC
521	pushl	%eax			/* pt_regs->orig_ax */
522	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest */
523
524	/*
525	 * User mode is traced as though IRQs are on, and the interrupt gate
526	 * turned them off.
527	 */
528	TRACE_IRQS_OFF
529
530	movl	%esp, %eax
531	call	do_int80_syscall_32
532.Lsyscall_32_done:
533
534restore_all:
535	TRACE_IRQS_IRET
536.Lrestore_all_notrace:
537#ifdef CONFIG_X86_ESPFIX32
538	ALTERNATIVE	"jmp .Lrestore_nocheck", "", X86_BUG_ESPFIX
539
540	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
541	/*
542	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
543	 * are returning to the kernel.
544	 * See comments in process.c:copy_thread() for details.
545	 */
546	movb	PT_OLDSS(%esp), %ah
547	movb	PT_CS(%esp), %al
548	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
549	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
550	je .Lldt_ss				# returning to user-space with LDT SS
551#endif
552.Lrestore_nocheck:
553	RESTORE_REGS 4				# skip orig_eax/error_code
554.Lirq_return:
555	INTERRUPT_RETURN
556
557.section .fixup, "ax"
558ENTRY(iret_exc	)
559	pushl	$0				# no error code
560	pushl	$do_iret_error
561	jmp	common_exception
562.previous
563	_ASM_EXTABLE(.Lirq_return, iret_exc)
564
565#ifdef CONFIG_X86_ESPFIX32
566.Lldt_ss:
567/*
568 * Setup and switch to ESPFIX stack
569 *
570 * We're returning to userspace with a 16 bit stack. The CPU will not
571 * restore the high word of ESP for us on executing iret... This is an
572 * "official" bug of all the x86-compatible CPUs, which we can work
573 * around to make dosemu and wine happy. We do this by preloading the
574 * high word of ESP with the high word of the userspace ESP while
575 * compensating for the offset by changing to the ESPFIX segment with
576 * a base address that matches for the difference.
577 */
578#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
579	mov	%esp, %edx			/* load kernel esp */
580	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
581	mov	%dx, %ax			/* eax: new kernel esp */
582	sub	%eax, %edx			/* offset (low word is 0) */
583	shr	$16, %edx
584	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
585	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
586	pushl	$__ESPFIX_SS
587	pushl	%eax				/* new kernel esp */
588	/*
589	 * Disable interrupts, but do not irqtrace this section: we
590	 * will soon execute iret and the tracer was already set to
591	 * the irqstate after the IRET:
592	 */
593	DISABLE_INTERRUPTS(CLBR_ANY)
594	lss	(%esp), %esp			/* switch to espfix segment */
595	jmp	.Lrestore_nocheck
596#endif
597ENDPROC(entry_INT80_32)
598
599.macro FIXUP_ESPFIX_STACK
600/*
601 * Switch back for ESPFIX stack to the normal zerobased stack
602 *
603 * We can't call C functions using the ESPFIX stack. This code reads
604 * the high word of the segment base from the GDT and swiches to the
605 * normal stack and adjusts ESP with the matching offset.
606 */
607#ifdef CONFIG_X86_ESPFIX32
608	/* fixup the stack */
609	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
610	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
611	shl	$16, %eax
612	addl	%esp, %eax			/* the adjusted stack pointer */
613	pushl	$__KERNEL_DS
614	pushl	%eax
615	lss	(%esp), %esp			/* switch to the normal stack segment */
616#endif
617.endm
618.macro UNWIND_ESPFIX_STACK
619#ifdef CONFIG_X86_ESPFIX32
620	movl	%ss, %eax
621	/* see if on espfix stack */
622	cmpw	$__ESPFIX_SS, %ax
623	jne	27f
624	movl	$__KERNEL_DS, %eax
625	movl	%eax, %ds
626	movl	%eax, %es
627	/* switch to normal stack */
628	FIXUP_ESPFIX_STACK
62927:
630#endif
631.endm
632
633/*
634 * Build the entry stubs with some assembler magic.
635 * We pack 1 stub into every 8-byte block.
636 */
637	.align 8
638ENTRY(irq_entries_start)
639    vector=FIRST_EXTERNAL_VECTOR
640    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
641	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
642    vector=vector+1
643	jmp	common_interrupt
644	.align	8
645    .endr
646END(irq_entries_start)
647
648/*
649 * the CPU automatically disables interrupts when executing an IRQ vector,
650 * so IRQ-flags tracing has to follow that:
651 */
652	.p2align CONFIG_X86_L1_CACHE_SHIFT
653common_interrupt:
654	ASM_CLAC
655	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
656	SAVE_ALL
657	ENCODE_FRAME_POINTER
658	TRACE_IRQS_OFF
659	movl	%esp, %eax
660	call	do_IRQ
661	jmp	ret_from_intr
662ENDPROC(common_interrupt)
663
664#define BUILD_INTERRUPT3(name, nr, fn)	\
665ENTRY(name)				\
666	ASM_CLAC;			\
667	pushl	$~(nr);			\
668	SAVE_ALL;			\
669	ENCODE_FRAME_POINTER;		\
670	TRACE_IRQS_OFF			\
671	movl	%esp, %eax;		\
672	call	fn;			\
673	jmp	ret_from_intr;		\
674ENDPROC(name)
675
676
677#ifdef CONFIG_TRACING
678# define TRACE_BUILD_INTERRUPT(name, nr)	BUILD_INTERRUPT3(trace_##name, nr, smp_trace_##name)
679#else
680# define TRACE_BUILD_INTERRUPT(name, nr)
681#endif
682
683#define BUILD_INTERRUPT(name, nr)		\
684	BUILD_INTERRUPT3(name, nr, smp_##name);	\
685	TRACE_BUILD_INTERRUPT(name, nr)
686
687/* The include is where all of the SMP etc. interrupts come from */
688#include <asm/entry_arch.h>
689
690ENTRY(coprocessor_error)
691	ASM_CLAC
692	pushl	$0
693	pushl	$do_coprocessor_error
694	jmp	common_exception
695END(coprocessor_error)
696
697ENTRY(simd_coprocessor_error)
698	ASM_CLAC
699	pushl	$0
700#ifdef CONFIG_X86_INVD_BUG
701	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
702	ALTERNATIVE "pushl	$do_general_protection",	\
703		    "pushl	$do_simd_coprocessor_error",	\
704		    X86_FEATURE_XMM
705#else
706	pushl	$do_simd_coprocessor_error
707#endif
708	jmp	common_exception
709END(simd_coprocessor_error)
710
711ENTRY(device_not_available)
712	ASM_CLAC
713	pushl	$-1				# mark this as an int
714	pushl	$do_device_not_available
715	jmp	common_exception
716END(device_not_available)
717
718#ifdef CONFIG_PARAVIRT
719ENTRY(native_iret)
720	iret
721	_ASM_EXTABLE(native_iret, iret_exc)
722END(native_iret)
723#endif
724
725ENTRY(overflow)
726	ASM_CLAC
727	pushl	$0
728	pushl	$do_overflow
729	jmp	common_exception
730END(overflow)
731
732ENTRY(bounds)
733	ASM_CLAC
734	pushl	$0
735	pushl	$do_bounds
736	jmp	common_exception
737END(bounds)
738
739ENTRY(invalid_op)
740	ASM_CLAC
741	pushl	$0
742	pushl	$do_invalid_op
743	jmp	common_exception
744END(invalid_op)
745
746ENTRY(coprocessor_segment_overrun)
747	ASM_CLAC
748	pushl	$0
749	pushl	$do_coprocessor_segment_overrun
750	jmp	common_exception
751END(coprocessor_segment_overrun)
752
753ENTRY(invalid_TSS)
754	ASM_CLAC
755	pushl	$do_invalid_TSS
756	jmp	common_exception
757END(invalid_TSS)
758
759ENTRY(segment_not_present)
760	ASM_CLAC
761	pushl	$do_segment_not_present
762	jmp	common_exception
763END(segment_not_present)
764
765ENTRY(stack_segment)
766	ASM_CLAC
767	pushl	$do_stack_segment
768	jmp	common_exception
769END(stack_segment)
770
771ENTRY(alignment_check)
772	ASM_CLAC
773	pushl	$do_alignment_check
774	jmp	common_exception
775END(alignment_check)
776
777ENTRY(divide_error)
778	ASM_CLAC
779	pushl	$0				# no error code
780	pushl	$do_divide_error
781	jmp	common_exception
782END(divide_error)
783
784#ifdef CONFIG_X86_MCE
785ENTRY(machine_check)
786	ASM_CLAC
787	pushl	$0
788	pushl	machine_check_vector
789	jmp	common_exception
790END(machine_check)
791#endif
792
793ENTRY(spurious_interrupt_bug)
794	ASM_CLAC
795	pushl	$0
796	pushl	$do_spurious_interrupt_bug
797	jmp	common_exception
798END(spurious_interrupt_bug)
799
800#ifdef CONFIG_XEN
801ENTRY(xen_hypervisor_callback)
802	pushl	$-1				/* orig_ax = -1 => not a system call */
803	SAVE_ALL
804	ENCODE_FRAME_POINTER
805	TRACE_IRQS_OFF
806
807	/*
808	 * Check to see if we got the event in the critical
809	 * region in xen_iret_direct, after we've reenabled
810	 * events and checked for pending events.  This simulates
811	 * iret instruction's behaviour where it delivers a
812	 * pending interrupt when enabling interrupts:
813	 */
814	movl	PT_EIP(%esp), %eax
815	cmpl	$xen_iret_start_crit, %eax
816	jb	1f
817	cmpl	$xen_iret_end_crit, %eax
818	jae	1f
819
820	jmp	xen_iret_crit_fixup
821
822ENTRY(xen_do_upcall)
8231:	mov	%esp, %eax
824	call	xen_evtchn_do_upcall
825#ifndef CONFIG_PREEMPT
826	call	xen_maybe_preempt_hcall
827#endif
828	jmp	ret_from_intr
829ENDPROC(xen_hypervisor_callback)
830
831/*
832 * Hypervisor uses this for application faults while it executes.
833 * We get here for two reasons:
834 *  1. Fault while reloading DS, ES, FS or GS
835 *  2. Fault while executing IRET
836 * Category 1 we fix up by reattempting the load, and zeroing the segment
837 * register if the load fails.
838 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
839 * normal Linux return path in this case because if we use the IRET hypercall
840 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
841 * We distinguish between categories by maintaining a status value in EAX.
842 */
843ENTRY(xen_failsafe_callback)
844	pushl	%eax
845	movl	$1, %eax
8461:	mov	4(%esp), %ds
8472:	mov	8(%esp), %es
8483:	mov	12(%esp), %fs
8494:	mov	16(%esp), %gs
850	/* EAX == 0 => Category 1 (Bad segment)
851	   EAX != 0 => Category 2 (Bad IRET) */
852	testl	%eax, %eax
853	popl	%eax
854	lea	16(%esp), %esp
855	jz	5f
856	jmp	iret_exc
8575:	pushl	$-1				/* orig_ax = -1 => not a system call */
858	SAVE_ALL
859	ENCODE_FRAME_POINTER
860	jmp	ret_from_exception
861
862.section .fixup, "ax"
8636:	xorl	%eax, %eax
864	movl	%eax, 4(%esp)
865	jmp	1b
8667:	xorl	%eax, %eax
867	movl	%eax, 8(%esp)
868	jmp	2b
8698:	xorl	%eax, %eax
870	movl	%eax, 12(%esp)
871	jmp	3b
8729:	xorl	%eax, %eax
873	movl	%eax, 16(%esp)
874	jmp	4b
875.previous
876	_ASM_EXTABLE(1b, 6b)
877	_ASM_EXTABLE(2b, 7b)
878	_ASM_EXTABLE(3b, 8b)
879	_ASM_EXTABLE(4b, 9b)
880ENDPROC(xen_failsafe_callback)
881
882BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
883		xen_evtchn_do_upcall)
884
885#endif /* CONFIG_XEN */
886
887#if IS_ENABLED(CONFIG_HYPERV)
888
889BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
890	hyperv_vector_handler)
891
892#endif /* CONFIG_HYPERV */
893
894#ifdef CONFIG_TRACING
895ENTRY(trace_page_fault)
896	ASM_CLAC
897	pushl	$trace_do_page_fault
898	jmp	common_exception
899END(trace_page_fault)
900#endif
901
902ENTRY(page_fault)
903	ASM_CLAC
904	pushl	$do_page_fault
905	ALIGN
906	jmp common_exception
907END(page_fault)
908
909common_exception:
910	/* the function address is in %gs's slot on the stack */
911	pushl	%fs
912	pushl	%es
913	pushl	%ds
914	pushl	%eax
915	pushl	%ebp
916	pushl	%edi
917	pushl	%esi
918	pushl	%edx
919	pushl	%ecx
920	pushl	%ebx
921	ENCODE_FRAME_POINTER
922	cld
923	movl	$(__KERNEL_PERCPU), %ecx
924	movl	%ecx, %fs
925	UNWIND_ESPFIX_STACK
926	GS_TO_REG %ecx
927	movl	PT_GS(%esp), %edi		# get the function address
928	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
929	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
930	REG_TO_PTGS %ecx
931	SET_KERNEL_GS %ecx
932	movl	$(__USER_DS), %ecx
933	movl	%ecx, %ds
934	movl	%ecx, %es
935	TRACE_IRQS_OFF
936	movl	%esp, %eax			# pt_regs pointer
937	call	*%edi
938	jmp	ret_from_exception
939END(common_exception)
940
941ENTRY(debug)
942	/*
943	 * #DB can happen at the first instruction of
944	 * entry_SYSENTER_32 or in Xen's SYSENTER prologue.  If this
945	 * happens, then we will be running on a very small stack.  We
946	 * need to detect this condition and switch to the thread
947	 * stack before calling any C code at all.
948	 *
949	 * If you edit this code, keep in mind that NMIs can happen in here.
950	 */
951	ASM_CLAC
952	pushl	$-1				# mark this as an int
953	SAVE_ALL
954	ENCODE_FRAME_POINTER
955	xorl	%edx, %edx			# error code 0
956	movl	%esp, %eax			# pt_regs pointer
957
958	/* Are we currently on the SYSENTER stack? */
959	PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx)
960	subl	%eax, %ecx	/* ecx = (end of SYSENTER_stack) - esp */
961	cmpl	$SIZEOF_SYSENTER_stack, %ecx
962	jb	.Ldebug_from_sysenter_stack
963
964	TRACE_IRQS_OFF
965	call	do_debug
966	jmp	ret_from_exception
967
968.Ldebug_from_sysenter_stack:
969	/* We're on the SYSENTER stack.  Switch off. */
970	movl	%esp, %ebx
971	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
972	TRACE_IRQS_OFF
973	call	do_debug
974	movl	%ebx, %esp
975	jmp	ret_from_exception
976END(debug)
977
978/*
979 * NMI is doubly nasty.  It can happen on the first instruction of
980 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
981 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
982 * switched stacks.  We handle both conditions by simply checking whether we
983 * interrupted kernel code running on the SYSENTER stack.
984 */
985ENTRY(nmi)
986	ASM_CLAC
987#ifdef CONFIG_X86_ESPFIX32
988	pushl	%eax
989	movl	%ss, %eax
990	cmpw	$__ESPFIX_SS, %ax
991	popl	%eax
992	je	.Lnmi_espfix_stack
993#endif
994
995	pushl	%eax				# pt_regs->orig_ax
996	SAVE_ALL
997	ENCODE_FRAME_POINTER
998	xorl	%edx, %edx			# zero error code
999	movl	%esp, %eax			# pt_regs pointer
1000
1001	/* Are we currently on the SYSENTER stack? */
1002	PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx)
1003	subl	%eax, %ecx	/* ecx = (end of SYSENTER_stack) - esp */
1004	cmpl	$SIZEOF_SYSENTER_stack, %ecx
1005	jb	.Lnmi_from_sysenter_stack
1006
1007	/* Not on SYSENTER stack. */
1008	call	do_nmi
1009	jmp	.Lrestore_all_notrace
1010
1011.Lnmi_from_sysenter_stack:
1012	/*
1013	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1014	 * is using the thread stack right now, so it's safe for us to use it.
1015	 */
1016	movl	%esp, %ebx
1017	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1018	call	do_nmi
1019	movl	%ebx, %esp
1020	jmp	.Lrestore_all_notrace
1021
1022#ifdef CONFIG_X86_ESPFIX32
1023.Lnmi_espfix_stack:
1024	/*
1025	 * create the pointer to lss back
1026	 */
1027	pushl	%ss
1028	pushl	%esp
1029	addl	$4, (%esp)
1030	/* copy the iret frame of 12 bytes */
1031	.rept 3
1032	pushl	16(%esp)
1033	.endr
1034	pushl	%eax
1035	SAVE_ALL
1036	ENCODE_FRAME_POINTER
1037	FIXUP_ESPFIX_STACK			# %eax == %esp
1038	xorl	%edx, %edx			# zero error code
1039	call	do_nmi
1040	RESTORE_REGS
1041	lss	12+4(%esp), %esp		# back to espfix stack
1042	jmp	.Lirq_return
1043#endif
1044END(nmi)
1045
1046ENTRY(int3)
1047	ASM_CLAC
1048	pushl	$-1				# mark this as an int
1049	SAVE_ALL
1050	ENCODE_FRAME_POINTER
1051	TRACE_IRQS_OFF
1052	xorl	%edx, %edx			# zero error code
1053	movl	%esp, %eax			# pt_regs pointer
1054	call	do_int3
1055	jmp	ret_from_exception
1056END(int3)
1057
1058ENTRY(general_protection)
1059	pushl	$do_general_protection
1060	jmp	common_exception
1061END(general_protection)
1062
1063#ifdef CONFIG_KVM_GUEST
1064ENTRY(async_page_fault)
1065	ASM_CLAC
1066	pushl	$do_async_page_fault
1067	jmp	common_exception
1068END(async_page_fault)
1069#endif
1070
1071ENTRY(rewind_stack_do_exit)
1072	/* Prevent any naive code from trying to unwind to our caller. */
1073	xorl	%ebp, %ebp
1074
1075	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1076	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1077
1078	call	do_exit
10791:	jmp 1b
1080END(rewind_stack_do_exit)
1081