xref: /openbmc/linux/arch/x86/entry/entry_32.S (revision df0e68c1)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - unused -- was %gs on old stackprotector kernels
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/trapnr.h>
48#include <asm/nospec-branch.h>
49
50#include "calling.h"
51
52	.section .entry.text, "ax"
53
54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
55
56/* Unconditionally switch to user cr3 */
57.macro SWITCH_TO_USER_CR3 scratch_reg:req
58	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59
60	movl	%cr3, \scratch_reg
61	orl	$PTI_SWITCH_MASK, \scratch_reg
62	movl	\scratch_reg, %cr3
63.Lend_\@:
64.endm
65
66.macro BUG_IF_WRONG_CR3 no_user_check=0
67#ifdef CONFIG_DEBUG_ENTRY
68	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69	.if \no_user_check == 0
70	/* coming from usermode? */
71	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72	jz	.Lend_\@
73	.endif
74	/* On user-cr3? */
75	movl	%cr3, %eax
76	testl	$PTI_SWITCH_MASK, %eax
77	jnz	.Lend_\@
78	/* From userspace with kernel cr3 - BUG */
79	ud2
80.Lend_\@:
81#endif
82.endm
83
84/*
85 * Switch to kernel cr3 if not already loaded and return current cr3 in
86 * \scratch_reg
87 */
88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90	movl	%cr3, \scratch_reg
91	/* Test if we are already on kernel CR3 */
92	testl	$PTI_SWITCH_MASK, \scratch_reg
93	jz	.Lend_\@
94	andl	$(~PTI_SWITCH_MASK), \scratch_reg
95	movl	\scratch_reg, %cr3
96	/* Return original CR3 in \scratch_reg */
97	orl	$PTI_SWITCH_MASK, \scratch_reg
98.Lend_\@:
99.endm
100
101#define CS_FROM_ENTRY_STACK	(1 << 31)
102#define CS_FROM_USER_CR3	(1 << 30)
103#define CS_FROM_KERNEL		(1 << 29)
104#define CS_FROM_ESPFIX		(1 << 28)
105
106.macro FIXUP_FRAME
107	/*
108	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109	 * Clear them in case hardware didn't do this for us.
110	 */
111	andl	$0x0000ffff, 4*4(%esp)
112
113#ifdef CONFIG_VM86
114	testl	$X86_EFLAGS_VM, 5*4(%esp)
115	jnz	.Lfrom_usermode_no_fixup_\@
116#endif
117	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
118	jnz	.Lfrom_usermode_no_fixup_\@
119
120	orl	$CS_FROM_KERNEL, 4*4(%esp)
121
122	/*
123	 * When we're here from kernel mode; the (exception) stack looks like:
124	 *
125	 *  6*4(%esp) - <previous context>
126	 *  5*4(%esp) - flags
127	 *  4*4(%esp) - cs
128	 *  3*4(%esp) - ip
129	 *  2*4(%esp) - orig_eax
130	 *  1*4(%esp) - gs / function
131	 *  0*4(%esp) - fs
132	 *
133	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134	 * is complete and in particular regs->sp is correct. This gives us
135	 * the original 6 entries as gap:
136	 *
137	 * 14*4(%esp) - <previous context>
138	 * 13*4(%esp) - gap / flags
139	 * 12*4(%esp) - gap / cs
140	 * 11*4(%esp) - gap / ip
141	 * 10*4(%esp) - gap / orig_eax
142	 *  9*4(%esp) - gap / gs / function
143	 *  8*4(%esp) - gap / fs
144	 *  7*4(%esp) - ss
145	 *  6*4(%esp) - sp
146	 *  5*4(%esp) - flags
147	 *  4*4(%esp) - cs
148	 *  3*4(%esp) - ip
149	 *  2*4(%esp) - orig_eax
150	 *  1*4(%esp) - gs / function
151	 *  0*4(%esp) - fs
152	 */
153
154	pushl	%ss		# ss
155	pushl	%esp		# sp (points at ss)
156	addl	$7*4, (%esp)	# point sp back at the previous context
157	pushl	7*4(%esp)	# flags
158	pushl	7*4(%esp)	# cs
159	pushl	7*4(%esp)	# ip
160	pushl	7*4(%esp)	# orig_eax
161	pushl	7*4(%esp)	# gs / function
162	pushl	7*4(%esp)	# fs
163.Lfrom_usermode_no_fixup_\@:
164.endm
165
166.macro IRET_FRAME
167	/*
168	 * We're called with %ds, %es, %fs, and %gs from the interrupted
169	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
170	 * mode and therefore have a nonzero SS base and an offset ESP,
171	 * so any attempt to access the stack needs to use SS.  (except for
172	 * accesses through %esp, which automatically use SS.)
173	 */
174	testl $CS_FROM_KERNEL, 1*4(%esp)
175	jz .Lfinished_frame_\@
176
177	/*
178	 * Reconstruct the 3 entry IRET frame right after the (modified)
179	 * regs->sp without lowering %esp in between, such that an NMI in the
180	 * middle doesn't scribble our stack.
181	 */
182	pushl	%eax
183	pushl	%ecx
184	movl	5*4(%esp), %eax		# (modified) regs->sp
185
186	movl	4*4(%esp), %ecx		# flags
187	movl	%ecx, %ss:-1*4(%eax)
188
189	movl	3*4(%esp), %ecx		# cs
190	andl	$0x0000ffff, %ecx
191	movl	%ecx, %ss:-2*4(%eax)
192
193	movl	2*4(%esp), %ecx		# ip
194	movl	%ecx, %ss:-3*4(%eax)
195
196	movl	1*4(%esp), %ecx		# eax
197	movl	%ecx, %ss:-4*4(%eax)
198
199	popl	%ecx
200	lea	-4*4(%eax), %esp
201	popl	%eax
202.Lfinished_frame_\@:
203.endm
204
205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206	cld
207.if \skip_gs == 0
208	pushl	$0
209.endif
210	pushl	%fs
211
212	pushl	%eax
213	movl	$(__KERNEL_PERCPU), %eax
214	movl	%eax, %fs
215.if \unwind_espfix > 0
216	UNWIND_ESPFIX_STACK
217.endif
218	popl	%eax
219
220	FIXUP_FRAME
221	pushl	%es
222	pushl	%ds
223	pushl	\pt_regs_ax
224	pushl	%ebp
225	pushl	%edi
226	pushl	%esi
227	pushl	%edx
228	pushl	%ecx
229	pushl	%ebx
230	movl	$(__USER_DS), %edx
231	movl	%edx, %ds
232	movl	%edx, %es
233	/* Switch to kernel stack if necessary */
234.if \switch_stacks > 0
235	SWITCH_TO_KERNEL_STACK
236.endif
237.endm
238
239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240	SAVE_ALL unwind_espfix=\unwind_espfix
241
242	BUG_IF_WRONG_CR3
243
244	/*
245	 * Now switch the CR3 when PTI is enabled.
246	 *
247	 * We can enter with either user or kernel cr3, the code will
248	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
249	 * if necessary.
250	 */
251	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252
253.Lend_\@:
254.endm
255
256.macro RESTORE_INT_REGS
257	popl	%ebx
258	popl	%ecx
259	popl	%edx
260	popl	%esi
261	popl	%edi
262	popl	%ebp
263	popl	%eax
264.endm
265
266.macro RESTORE_REGS pop=0
267	RESTORE_INT_REGS
2681:	popl	%ds
2692:	popl	%es
2703:	popl	%fs
271	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
272	IRET_FRAME
273.pushsection .fixup, "ax"
2744:	movl	$0, (%esp)
275	jmp	1b
2765:	movl	$0, (%esp)
277	jmp	2b
2786:	movl	$0, (%esp)
279	jmp	3b
280.popsection
281	_ASM_EXTABLE(1b, 4b)
282	_ASM_EXTABLE(2b, 5b)
283	_ASM_EXTABLE(3b, 6b)
284.endm
285
286.macro RESTORE_ALL_NMI cr3_reg:req pop=0
287	/*
288	 * Now switch the CR3 when PTI is enabled.
289	 *
290	 * We enter with kernel cr3 and switch the cr3 to the value
291	 * stored on \cr3_reg, which is either a user or a kernel cr3.
292	 */
293	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
294
295	testl	$PTI_SWITCH_MASK, \cr3_reg
296	jz	.Lswitched_\@
297
298	/* User cr3 in \cr3_reg - write it to hardware cr3 */
299	movl	\cr3_reg, %cr3
300
301.Lswitched_\@:
302
303	BUG_IF_WRONG_CR3
304
305	RESTORE_REGS pop=\pop
306.endm
307
308.macro CHECK_AND_APPLY_ESPFIX
309#ifdef CONFIG_X86_ESPFIX32
310#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
311#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
312
313	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
314
315	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
316	/*
317	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
318	 * are returning to the kernel.
319	 * See comments in process.c:copy_thread() for details.
320	 */
321	movb	PT_OLDSS(%esp), %ah
322	movb	PT_CS(%esp), %al
323	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
324	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
325	jne	.Lend_\@	# returning to user-space with LDT SS
326
327	/*
328	 * Setup and switch to ESPFIX stack
329	 *
330	 * We're returning to userspace with a 16 bit stack. The CPU will not
331	 * restore the high word of ESP for us on executing iret... This is an
332	 * "official" bug of all the x86-compatible CPUs, which we can work
333	 * around to make dosemu and wine happy. We do this by preloading the
334	 * high word of ESP with the high word of the userspace ESP while
335	 * compensating for the offset by changing to the ESPFIX segment with
336	 * a base address that matches for the difference.
337	 */
338	mov	%esp, %edx			/* load kernel esp */
339	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
340	mov	%dx, %ax			/* eax: new kernel esp */
341	sub	%eax, %edx			/* offset (low word is 0) */
342	shr	$16, %edx
343	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
344	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
345	pushl	$__ESPFIX_SS
346	pushl	%eax				/* new kernel esp */
347	/*
348	 * Disable interrupts, but do not irqtrace this section: we
349	 * will soon execute iret and the tracer was already set to
350	 * the irqstate after the IRET:
351	 */
352	cli
353	lss	(%esp), %esp			/* switch to espfix segment */
354.Lend_\@:
355#endif /* CONFIG_X86_ESPFIX32 */
356.endm
357
358/*
359 * Called with pt_regs fully populated and kernel segments loaded,
360 * so we can access PER_CPU and use the integer registers.
361 *
362 * We need to be very careful here with the %esp switch, because an NMI
363 * can happen everywhere. If the NMI handler finds itself on the
364 * entry-stack, it will overwrite the task-stack and everything we
365 * copied there. So allocate the stack-frame on the task-stack and
366 * switch to it before we do any copying.
367 */
368
369.macro SWITCH_TO_KERNEL_STACK
370
371	BUG_IF_WRONG_CR3
372
373	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
374
375	/*
376	 * %eax now contains the entry cr3 and we carry it forward in
377	 * that register for the time this macro runs
378	 */
379
380	/* Are we on the entry stack? Bail out if not! */
381	movl	PER_CPU_VAR(cpu_entry_area), %ecx
382	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
383	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
384	cmpl	$SIZEOF_entry_stack, %ecx
385	jae	.Lend_\@
386
387	/* Load stack pointer into %esi and %edi */
388	movl	%esp, %esi
389	movl	%esi, %edi
390
391	/* Move %edi to the top of the entry stack */
392	andl	$(MASK_entry_stack), %edi
393	addl	$(SIZEOF_entry_stack), %edi
394
395	/* Load top of task-stack into %edi */
396	movl	TSS_entry2task_stack(%edi), %edi
397
398	/* Special case - entry from kernel mode via entry stack */
399#ifdef CONFIG_VM86
400	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
401	movb	PT_CS(%esp), %cl
402	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
403#else
404	movl	PT_CS(%esp), %ecx
405	andl	$SEGMENT_RPL_MASK, %ecx
406#endif
407	cmpl	$USER_RPL, %ecx
408	jb	.Lentry_from_kernel_\@
409
410	/* Bytes to copy */
411	movl	$PTREGS_SIZE, %ecx
412
413#ifdef CONFIG_VM86
414	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
415	jz	.Lcopy_pt_regs_\@
416
417	/*
418	 * Stack-frame contains 4 additional segment registers when
419	 * coming from VM86 mode
420	 */
421	addl	$(4 * 4), %ecx
422
423#endif
424.Lcopy_pt_regs_\@:
425
426	/* Allocate frame on task-stack */
427	subl	%ecx, %edi
428
429	/* Switch to task-stack */
430	movl	%edi, %esp
431
432	/*
433	 * We are now on the task-stack and can safely copy over the
434	 * stack-frame
435	 */
436	shrl	$2, %ecx
437	cld
438	rep movsl
439
440	jmp .Lend_\@
441
442.Lentry_from_kernel_\@:
443
444	/*
445	 * This handles the case when we enter the kernel from
446	 * kernel-mode and %esp points to the entry-stack. When this
447	 * happens we need to switch to the task-stack to run C code,
448	 * but switch back to the entry-stack again when we approach
449	 * iret and return to the interrupted code-path. This usually
450	 * happens when we hit an exception while restoring user-space
451	 * segment registers on the way back to user-space or when the
452	 * sysenter handler runs with eflags.tf set.
453	 *
454	 * When we switch to the task-stack here, we can't trust the
455	 * contents of the entry-stack anymore, as the exception handler
456	 * might be scheduled out or moved to another CPU. Therefore we
457	 * copy the complete entry-stack to the task-stack and set a
458	 * marker in the iret-frame (bit 31 of the CS dword) to detect
459	 * what we've done on the iret path.
460	 *
461	 * On the iret path we copy everything back and switch to the
462	 * entry-stack, so that the interrupted kernel code-path
463	 * continues on the same stack it was interrupted with.
464	 *
465	 * Be aware that an NMI can happen anytime in this code.
466	 *
467	 * %esi: Entry-Stack pointer (same as %esp)
468	 * %edi: Top of the task stack
469	 * %eax: CR3 on kernel entry
470	 */
471
472	/* Calculate number of bytes on the entry stack in %ecx */
473	movl	%esi, %ecx
474
475	/* %ecx to the top of entry-stack */
476	andl	$(MASK_entry_stack), %ecx
477	addl	$(SIZEOF_entry_stack), %ecx
478
479	/* Number of bytes on the entry stack to %ecx */
480	sub	%esi, %ecx
481
482	/* Mark stackframe as coming from entry stack */
483	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
484
485	/*
486	 * Test the cr3 used to enter the kernel and add a marker
487	 * so that we can switch back to it before iret.
488	 */
489	testl	$PTI_SWITCH_MASK, %eax
490	jz	.Lcopy_pt_regs_\@
491	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
492
493	/*
494	 * %esi and %edi are unchanged, %ecx contains the number of
495	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
496	 * the stack-frame on task-stack and copy everything over
497	 */
498	jmp .Lcopy_pt_regs_\@
499
500.Lend_\@:
501.endm
502
503/*
504 * Switch back from the kernel stack to the entry stack.
505 *
506 * The %esp register must point to pt_regs on the task stack. It will
507 * first calculate the size of the stack-frame to copy, depending on
508 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
509 * to copy the contents of the stack over to the entry stack.
510 *
511 * We must be very careful here, as we can't trust the contents of the
512 * task-stack once we switched to the entry-stack. When an NMI happens
513 * while on the entry-stack, the NMI handler will switch back to the top
514 * of the task stack, overwriting our stack-frame we are about to copy.
515 * Therefore we switch the stack only after everything is copied over.
516 */
517.macro SWITCH_TO_ENTRY_STACK
518
519	/* Bytes to copy */
520	movl	$PTREGS_SIZE, %ecx
521
522#ifdef CONFIG_VM86
523	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
524	jz	.Lcopy_pt_regs_\@
525
526	/* Additional 4 registers to copy when returning to VM86 mode */
527	addl    $(4 * 4), %ecx
528
529.Lcopy_pt_regs_\@:
530#endif
531
532	/* Initialize source and destination for movsl */
533	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
534	subl	%ecx, %edi
535	movl	%esp, %esi
536
537	/* Save future stack pointer in %ebx */
538	movl	%edi, %ebx
539
540	/* Copy over the stack-frame */
541	shrl	$2, %ecx
542	cld
543	rep movsl
544
545	/*
546	 * Switch to entry-stack - needs to happen after everything is
547	 * copied because the NMI handler will overwrite the task-stack
548	 * when on entry-stack
549	 */
550	movl	%ebx, %esp
551
552.Lend_\@:
553.endm
554
555/*
556 * This macro handles the case when we return to kernel-mode on the iret
557 * path and have to switch back to the entry stack and/or user-cr3
558 *
559 * See the comments below the .Lentry_from_kernel_\@ label in the
560 * SWITCH_TO_KERNEL_STACK macro for more details.
561 */
562.macro PARANOID_EXIT_TO_KERNEL_MODE
563
564	/*
565	 * Test if we entered the kernel with the entry-stack. Most
566	 * likely we did not, because this code only runs on the
567	 * return-to-kernel path.
568	 */
569	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
570	jz	.Lend_\@
571
572	/* Unlikely slow-path */
573
574	/* Clear marker from stack-frame */
575	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
576
577	/* Copy the remaining task-stack contents to entry-stack */
578	movl	%esp, %esi
579	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
580
581	/* Bytes on the task-stack to ecx */
582	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
583	subl	%esi, %ecx
584
585	/* Allocate stack-frame on entry-stack */
586	subl	%ecx, %edi
587
588	/*
589	 * Save future stack-pointer, we must not switch until the
590	 * copy is done, otherwise the NMI handler could destroy the
591	 * contents of the task-stack we are about to copy.
592	 */
593	movl	%edi, %ebx
594
595	/* Do the copy */
596	shrl	$2, %ecx
597	cld
598	rep movsl
599
600	/* Safe to switch to entry-stack now */
601	movl	%ebx, %esp
602
603	/*
604	 * We came from entry-stack and need to check if we also need to
605	 * switch back to user cr3.
606	 */
607	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
608	jz	.Lend_\@
609
610	/* Clear marker from stack-frame */
611	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
612
613	SWITCH_TO_USER_CR3 scratch_reg=%eax
614
615.Lend_\@:
616.endm
617
618/**
619 * idtentry - Macro to generate entry stubs for simple IDT entries
620 * @vector:		Vector number
621 * @asmsym:		ASM symbol for the entry point
622 * @cfunc:		C function to be called
623 * @has_error_code:	Hardware pushed error code on stack
624 */
625.macro idtentry vector asmsym cfunc has_error_code:req
626SYM_CODE_START(\asmsym)
627	ASM_CLAC
628	cld
629
630	.if \has_error_code == 0
631		pushl	$0		/* Clear the error code */
632	.endif
633
634	/* Push the C-function address into the GS slot */
635	pushl	$\cfunc
636	/* Invoke the common exception entry */
637	jmp	handle_exception
638SYM_CODE_END(\asmsym)
639.endm
640
641.macro idtentry_irq vector cfunc
642	.p2align CONFIG_X86_L1_CACHE_SHIFT
643SYM_CODE_START_LOCAL(asm_\cfunc)
644	ASM_CLAC
645	SAVE_ALL switch_stacks=1
646	ENCODE_FRAME_POINTER
647	movl	%esp, %eax
648	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
649	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
650	call	\cfunc
651	jmp	handle_exception_return
652SYM_CODE_END(asm_\cfunc)
653.endm
654
655.macro idtentry_sysvec vector cfunc
656	idtentry \vector asm_\cfunc \cfunc has_error_code=0
657.endm
658
659/*
660 * Include the defines which emit the idt entries which are shared
661 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
662 * so the stacktrace boundary checks work.
663 */
664	.align 16
665	.globl __irqentry_text_start
666__irqentry_text_start:
667
668#include <asm/idtentry.h>
669
670	.align 16
671	.globl __irqentry_text_end
672__irqentry_text_end:
673
674/*
675 * %eax: prev task
676 * %edx: next task
677 */
678.pushsection .text, "ax"
679SYM_CODE_START(__switch_to_asm)
680	/*
681	 * Save callee-saved registers
682	 * This must match the order in struct inactive_task_frame
683	 */
684	pushl	%ebp
685	pushl	%ebx
686	pushl	%edi
687	pushl	%esi
688	/*
689	 * Flags are saved to prevent AC leakage. This could go
690	 * away if objtool would have 32bit support to verify
691	 * the STAC/CLAC correctness.
692	 */
693	pushfl
694
695	/* switch stack */
696	movl	%esp, TASK_threadsp(%eax)
697	movl	TASK_threadsp(%edx), %esp
698
699#ifdef CONFIG_STACKPROTECTOR
700	movl	TASK_stack_canary(%edx), %ebx
701	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
702#endif
703
704#ifdef CONFIG_RETPOLINE
705	/*
706	 * When switching from a shallower to a deeper call stack
707	 * the RSB may either underflow or use entries populated
708	 * with userspace addresses. On CPUs where those concerns
709	 * exist, overwrite the RSB with entries which capture
710	 * speculative execution to prevent attack.
711	 */
712	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
713#endif
714
715	/* Restore flags or the incoming task to restore AC state. */
716	popfl
717	/* restore callee-saved registers */
718	popl	%esi
719	popl	%edi
720	popl	%ebx
721	popl	%ebp
722
723	jmp	__switch_to
724SYM_CODE_END(__switch_to_asm)
725.popsection
726
727/*
728 * The unwinder expects the last frame on the stack to always be at the same
729 * offset from the end of the page, which allows it to validate the stack.
730 * Calling schedule_tail() directly would break that convention because its an
731 * asmlinkage function so its argument has to be pushed on the stack.  This
732 * wrapper creates a proper "end of stack" frame header before the call.
733 */
734.pushsection .text, "ax"
735SYM_FUNC_START(schedule_tail_wrapper)
736	FRAME_BEGIN
737
738	pushl	%eax
739	call	schedule_tail
740	popl	%eax
741
742	FRAME_END
743	ret
744SYM_FUNC_END(schedule_tail_wrapper)
745.popsection
746
747/*
748 * A newly forked process directly context switches into this address.
749 *
750 * eax: prev task we switched from
751 * ebx: kernel thread func (NULL for user thread)
752 * edi: kernel thread arg
753 */
754.pushsection .text, "ax"
755SYM_CODE_START(ret_from_fork)
756	call	schedule_tail_wrapper
757
758	testl	%ebx, %ebx
759	jnz	1f		/* kernel threads are uncommon */
760
7612:
762	/* When we fork, we trace the syscall return in the child, too. */
763	movl    %esp, %eax
764	call    syscall_exit_to_user_mode
765	jmp     .Lsyscall_32_done
766
767	/* kernel thread */
7681:	movl	%edi, %eax
769	CALL_NOSPEC ebx
770	/*
771	 * A kernel thread is allowed to return here after successfully
772	 * calling kernel_execve().  Exit to userspace to complete the execve()
773	 * syscall.
774	 */
775	movl	$0, PT_EAX(%esp)
776	jmp	2b
777SYM_CODE_END(ret_from_fork)
778.popsection
779
780SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
781/*
782 * All code from here through __end_SYSENTER_singlestep_region is subject
783 * to being single-stepped if a user program sets TF and executes SYSENTER.
784 * There is absolutely nothing that we can do to prevent this from happening
785 * (thanks Intel!).  To keep our handling of this situation as simple as
786 * possible, we handle TF just like AC and NT, except that our #DB handler
787 * will ignore all of the single-step traps generated in this range.
788 */
789
790/*
791 * 32-bit SYSENTER entry.
792 *
793 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
794 * if X86_FEATURE_SEP is available.  This is the preferred system call
795 * entry on 32-bit systems.
796 *
797 * The SYSENTER instruction, in principle, should *only* occur in the
798 * vDSO.  In practice, a small number of Android devices were shipped
799 * with a copy of Bionic that inlined a SYSENTER instruction.  This
800 * never happened in any of Google's Bionic versions -- it only happened
801 * in a narrow range of Intel-provided versions.
802 *
803 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
804 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
805 * SYSENTER does not save anything on the stack,
806 * and does not save old EIP (!!!), ESP, or EFLAGS.
807 *
808 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
809 * user and/or vm86 state), we explicitly disable the SYSENTER
810 * instruction in vm86 mode by reprogramming the MSRs.
811 *
812 * Arguments:
813 * eax  system call number
814 * ebx  arg1
815 * ecx  arg2
816 * edx  arg3
817 * esi  arg4
818 * edi  arg5
819 * ebp  user stack
820 * 0(%ebp) arg6
821 */
822SYM_FUNC_START(entry_SYSENTER_32)
823	/*
824	 * On entry-stack with all userspace-regs live - save and
825	 * restore eflags and %eax to use it as scratch-reg for the cr3
826	 * switch.
827	 */
828	pushfl
829	pushl	%eax
830	BUG_IF_WRONG_CR3 no_user_check=1
831	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
832	popl	%eax
833	popfl
834
835	/* Stack empty again, switch to task stack */
836	movl	TSS_entry2task_stack(%esp), %esp
837
838.Lsysenter_past_esp:
839	pushl	$__USER_DS		/* pt_regs->ss */
840	pushl	$0			/* pt_regs->sp (placeholder) */
841	pushfl				/* pt_regs->flags (except IF = 0) */
842	pushl	$__USER_CS		/* pt_regs->cs */
843	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
844	pushl	%eax			/* pt_regs->orig_ax */
845	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
846
847	/*
848	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
849	 * and TF ourselves.  To save a few cycles, we can check whether
850	 * either was set instead of doing an unconditional popfq.
851	 * This needs to happen before enabling interrupts so that
852	 * we don't get preempted with NT set.
853	 *
854	 * If TF is set, we will single-step all the way to here -- do_debug
855	 * will ignore all the traps.  (Yes, this is slow, but so is
856	 * single-stepping in general.  This allows us to avoid having
857	 * a more complicated code to handle the case where a user program
858	 * forces us to single-step through the SYSENTER entry code.)
859	 *
860	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
861	 * out-of-line as an optimization: NT is unlikely to be set in the
862	 * majority of the cases and instead of polluting the I$ unnecessarily,
863	 * we're keeping that code behind a branch which will predict as
864	 * not-taken and therefore its instructions won't be fetched.
865	 */
866	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
867	jnz	.Lsysenter_fix_flags
868.Lsysenter_flags_fixed:
869
870	movl	%esp, %eax
871	call	do_SYSENTER_32
872	testl	%eax, %eax
873	jz	.Lsyscall_32_done
874
875	STACKLEAK_ERASE
876
877	/* Opportunistic SYSEXIT */
878
879	/*
880	 * Setup entry stack - we keep the pointer in %eax and do the
881	 * switch after almost all user-state is restored.
882	 */
883
884	/* Load entry stack pointer and allocate frame for eflags/eax */
885	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
886	subl	$(2*4), %eax
887
888	/* Copy eflags and eax to entry stack */
889	movl	PT_EFLAGS(%esp), %edi
890	movl	PT_EAX(%esp), %esi
891	movl	%edi, (%eax)
892	movl	%esi, 4(%eax)
893
894	/* Restore user registers and segments */
895	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
896	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
8971:	mov	PT_FS(%esp), %fs
898
899	popl	%ebx			/* pt_regs->bx */
900	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
901	popl	%esi			/* pt_regs->si */
902	popl	%edi			/* pt_regs->di */
903	popl	%ebp			/* pt_regs->bp */
904
905	/* Switch to entry stack */
906	movl	%eax, %esp
907
908	/* Now ready to switch the cr3 */
909	SWITCH_TO_USER_CR3 scratch_reg=%eax
910
911	/*
912	 * Restore all flags except IF. (We restore IF separately because
913	 * STI gives a one-instruction window in which we won't be interrupted,
914	 * whereas POPF does not.)
915	 */
916	btrl	$X86_EFLAGS_IF_BIT, (%esp)
917	BUG_IF_WRONG_CR3 no_user_check=1
918	popfl
919	popl	%eax
920
921	/*
922	 * Return back to the vDSO, which will pop ecx and edx.
923	 * Don't bother with DS and ES (they already contain __USER_DS).
924	 */
925	sti
926	sysexit
927
928.pushsection .fixup, "ax"
9292:	movl	$0, PT_FS(%esp)
930	jmp	1b
931.popsection
932	_ASM_EXTABLE(1b, 2b)
933
934.Lsysenter_fix_flags:
935	pushl	$X86_EFLAGS_FIXED
936	popfl
937	jmp	.Lsysenter_flags_fixed
938SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
939SYM_FUNC_END(entry_SYSENTER_32)
940
941/*
942 * 32-bit legacy system call entry.
943 *
944 * 32-bit x86 Linux system calls traditionally used the INT $0x80
945 * instruction.  INT $0x80 lands here.
946 *
947 * This entry point can be used by any 32-bit perform system calls.
948 * Instances of INT $0x80 can be found inline in various programs and
949 * libraries.  It is also used by the vDSO's __kernel_vsyscall
950 * fallback for hardware that doesn't support a faster entry method.
951 * Restarted 32-bit system calls also fall back to INT $0x80
952 * regardless of what instruction was originally used to do the system
953 * call.  (64-bit programs can use INT $0x80 as well, but they can
954 * only run on 64-bit kernels and therefore land in
955 * entry_INT80_compat.)
956 *
957 * This is considered a slow path.  It is not used by most libc
958 * implementations on modern hardware except during process startup.
959 *
960 * Arguments:
961 * eax  system call number
962 * ebx  arg1
963 * ecx  arg2
964 * edx  arg3
965 * esi  arg4
966 * edi  arg5
967 * ebp  arg6
968 */
969SYM_FUNC_START(entry_INT80_32)
970	ASM_CLAC
971	pushl	%eax			/* pt_regs->orig_ax */
972
973	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
974
975	movl	%esp, %eax
976	call	do_int80_syscall_32
977.Lsyscall_32_done:
978	STACKLEAK_ERASE
979
980restore_all_switch_stack:
981	SWITCH_TO_ENTRY_STACK
982	CHECK_AND_APPLY_ESPFIX
983
984	/* Switch back to user CR3 */
985	SWITCH_TO_USER_CR3 scratch_reg=%eax
986
987	BUG_IF_WRONG_CR3
988
989	/* Restore user state */
990	RESTORE_REGS pop=4			# skip orig_eax/error_code
991.Lirq_return:
992	/*
993	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
994	 * when returning from IPI handler and when returning from
995	 * scheduler to user-space.
996	 */
997	iret
998
999.section .fixup, "ax"
1000SYM_CODE_START(asm_iret_error)
1001	pushl	$0				# no error code
1002	pushl	$iret_error
1003
1004#ifdef CONFIG_DEBUG_ENTRY
1005	/*
1006	 * The stack-frame here is the one that iret faulted on, so its a
1007	 * return-to-user frame. We are on kernel-cr3 because we come here from
1008	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1009	 * as the checker expects it.
1010	 */
1011	pushl	%eax
1012	SWITCH_TO_USER_CR3 scratch_reg=%eax
1013	popl	%eax
1014#endif
1015
1016	jmp	handle_exception
1017SYM_CODE_END(asm_iret_error)
1018.previous
1019	_ASM_EXTABLE(.Lirq_return, asm_iret_error)
1020SYM_FUNC_END(entry_INT80_32)
1021
1022.macro FIXUP_ESPFIX_STACK
1023/*
1024 * Switch back for ESPFIX stack to the normal zerobased stack
1025 *
1026 * We can't call C functions using the ESPFIX stack. This code reads
1027 * the high word of the segment base from the GDT and swiches to the
1028 * normal stack and adjusts ESP with the matching offset.
1029 *
1030 * We might be on user CR3 here, so percpu data is not mapped and we can't
1031 * access the GDT through the percpu segment.  Instead, use SGDT to find
1032 * the cpu_entry_area alias of the GDT.
1033 */
1034#ifdef CONFIG_X86_ESPFIX32
1035	/* fixup the stack */
1036	pushl	%ecx
1037	subl	$2*4, %esp
1038	sgdt	(%esp)
1039	movl	2(%esp), %ecx				/* GDT address */
1040	/*
1041	 * Careful: ECX is a linear pointer, so we need to force base
1042	 * zero.  %cs is the only known-linear segment we have right now.
1043	 */
1044	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1045	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1046	shl	$16, %eax
1047	addl	$2*4, %esp
1048	popl	%ecx
1049	addl	%esp, %eax			/* the adjusted stack pointer */
1050	pushl	$__KERNEL_DS
1051	pushl	%eax
1052	lss	(%esp), %esp			/* switch to the normal stack segment */
1053#endif
1054.endm
1055
1056.macro UNWIND_ESPFIX_STACK
1057	/* It's safe to clobber %eax, all other regs need to be preserved */
1058#ifdef CONFIG_X86_ESPFIX32
1059	movl	%ss, %eax
1060	/* see if on espfix stack */
1061	cmpw	$__ESPFIX_SS, %ax
1062	jne	.Lno_fixup_\@
1063	/* switch to normal stack */
1064	FIXUP_ESPFIX_STACK
1065.Lno_fixup_\@:
1066#endif
1067.endm
1068
1069SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1070	/* the function address is in %gs's slot on the stack */
1071	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1072	ENCODE_FRAME_POINTER
1073
1074	movl	PT_GS(%esp), %edi		# get the function address
1075
1076	/* fixup orig %eax */
1077	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1078	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1079
1080	movl	%esp, %eax			# pt_regs pointer
1081	CALL_NOSPEC edi
1082
1083handle_exception_return:
1084#ifdef CONFIG_VM86
1085	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1086	movb	PT_CS(%esp), %al
1087	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1088#else
1089	/*
1090	 * We can be coming here from child spawned by kernel_thread().
1091	 */
1092	movl	PT_CS(%esp), %eax
1093	andl	$SEGMENT_RPL_MASK, %eax
1094#endif
1095	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1096	jnb	ret_to_user
1097
1098	PARANOID_EXIT_TO_KERNEL_MODE
1099	BUG_IF_WRONG_CR3
1100	RESTORE_REGS 4
1101	jmp	.Lirq_return
1102
1103ret_to_user:
1104	movl	%esp, %eax
1105	jmp	restore_all_switch_stack
1106SYM_CODE_END(handle_exception)
1107
1108SYM_CODE_START(asm_exc_double_fault)
11091:
1110	/*
1111	 * This is a task gate handler, not an interrupt gate handler.
1112	 * The error code is on the stack, but the stack is otherwise
1113	 * empty.  Interrupts are off.  Our state is sane with the following
1114	 * exceptions:
1115	 *
1116	 *  - CR0.TS is set.  "TS" literally means "task switched".
1117	 *  - EFLAGS.NT is set because we're a "nested task".
1118	 *  - The doublefault TSS has back_link set and has been marked busy.
1119	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1120	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1121	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1122	 *    would make it very awkward to return back to the context we came
1123	 *    from.
1124	 *
1125	 * The rest of EFLAGS is sanitized for us, so we don't need to
1126	 * worry about AC or DF.
1127	 *
1128	 * Don't even bother popping the error code.  It's always zero,
1129	 * and ignoring it makes us a bit more robust against buggy
1130	 * hypervisor task gate implementations.
1131	 *
1132	 * We will manually undo the task switch instead of doing a
1133	 * task-switching IRET.
1134	 */
1135
1136	clts				/* clear CR0.TS */
1137	pushl	$X86_EFLAGS_FIXED
1138	popfl				/* clear EFLAGS.NT */
1139
1140	call	doublefault_shim
1141
1142	/* We don't support returning, so we have no IRET here. */
11431:
1144	hlt
1145	jmp 1b
1146SYM_CODE_END(asm_exc_double_fault)
1147
1148/*
1149 * NMI is doubly nasty.  It can happen on the first instruction of
1150 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1151 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1152 * switched stacks.  We handle both conditions by simply checking whether we
1153 * interrupted kernel code running on the SYSENTER stack.
1154 */
1155SYM_CODE_START(asm_exc_nmi)
1156	ASM_CLAC
1157
1158#ifdef CONFIG_X86_ESPFIX32
1159	/*
1160	 * ESPFIX_SS is only ever set on the return to user path
1161	 * after we've switched to the entry stack.
1162	 */
1163	pushl	%eax
1164	movl	%ss, %eax
1165	cmpw	$__ESPFIX_SS, %ax
1166	popl	%eax
1167	je	.Lnmi_espfix_stack
1168#endif
1169
1170	pushl	%eax				# pt_regs->orig_ax
1171	SAVE_ALL_NMI cr3_reg=%edi
1172	ENCODE_FRAME_POINTER
1173	xorl	%edx, %edx			# zero error code
1174	movl	%esp, %eax			# pt_regs pointer
1175
1176	/* Are we currently on the SYSENTER stack? */
1177	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1178	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1179	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1180	cmpl	$SIZEOF_entry_stack, %ecx
1181	jb	.Lnmi_from_sysenter_stack
1182
1183	/* Not on SYSENTER stack. */
1184	call	exc_nmi
1185	jmp	.Lnmi_return
1186
1187.Lnmi_from_sysenter_stack:
1188	/*
1189	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1190	 * is using the thread stack right now, so it's safe for us to use it.
1191	 */
1192	movl	%esp, %ebx
1193	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1194	call	exc_nmi
1195	movl	%ebx, %esp
1196
1197.Lnmi_return:
1198#ifdef CONFIG_X86_ESPFIX32
1199	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1200	jnz	.Lnmi_from_espfix
1201#endif
1202
1203	CHECK_AND_APPLY_ESPFIX
1204	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1205	jmp	.Lirq_return
1206
1207#ifdef CONFIG_X86_ESPFIX32
1208.Lnmi_espfix_stack:
1209	/*
1210	 * Create the pointer to LSS back
1211	 */
1212	pushl	%ss
1213	pushl	%esp
1214	addl	$4, (%esp)
1215
1216	/* Copy the (short) IRET frame */
1217	pushl	4*4(%esp)	# flags
1218	pushl	4*4(%esp)	# cs
1219	pushl	4*4(%esp)	# ip
1220
1221	pushl	%eax		# orig_ax
1222
1223	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1224	ENCODE_FRAME_POINTER
1225
1226	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1227	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1228
1229	xorl	%edx, %edx			# zero error code
1230	movl	%esp, %eax			# pt_regs pointer
1231	jmp	.Lnmi_from_sysenter_stack
1232
1233.Lnmi_from_espfix:
1234	RESTORE_ALL_NMI cr3_reg=%edi
1235	/*
1236	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1237	 * fix up the gap and long frame:
1238	 *
1239	 *  3 - original frame	(exception)
1240	 *  2 - ESPFIX block	(above)
1241	 *  6 - gap		(FIXUP_FRAME)
1242	 *  5 - long frame	(FIXUP_FRAME)
1243	 *  1 - orig_ax
1244	 */
1245	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1246	jmp	.Lirq_return
1247#endif
1248SYM_CODE_END(asm_exc_nmi)
1249
1250.pushsection .text, "ax"
1251SYM_CODE_START(rewind_stack_do_exit)
1252	/* Prevent any naive code from trying to unwind to our caller. */
1253	xorl	%ebp, %ebp
1254
1255	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1256	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1257
1258	call	do_exit
12591:	jmp 1b
1260SYM_CODE_END(rewind_stack_do_exit)
1261.popsection
1262