xref: /openbmc/linux/arch/x86/entry/entry_32.S (revision dc6a81c3)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative-asm.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/nospec-branch.h>
48
49#include "calling.h"
50
51	.section .entry.text, "ax"
52
53/*
54 * We use macros for low-level operations which need to be overridden
55 * for paravirtualization.  The following will never clobber any registers:
56 *   INTERRUPT_RETURN (aka. "iret")
57 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
58 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
59 *
60 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
61 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
62 * Allowing a register to be clobbered can shrink the paravirt replacement
63 * enough to patch inline, increasing performance.
64 */
65
66#ifdef CONFIG_PREEMPTION
67# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
68#else
69# define preempt_stop(clobbers)
70#endif
71
72.macro TRACE_IRQS_IRET
73#ifdef CONFIG_TRACE_IRQFLAGS
74	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
75	jz	1f
76	TRACE_IRQS_ON
771:
78#endif
79.endm
80
81#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
82
83/*
84 * User gs save/restore
85 *
86 * %gs is used for userland TLS and kernel only uses it for stack
87 * canary which is required to be at %gs:20 by gcc.  Read the comment
88 * at the top of stackprotector.h for more info.
89 *
90 * Local labels 98 and 99 are used.
91 */
92#ifdef CONFIG_X86_32_LAZY_GS
93
94 /* unfortunately push/pop can't be no-op */
95.macro PUSH_GS
96	pushl	$0
97.endm
98.macro POP_GS pop=0
99	addl	$(4 + \pop), %esp
100.endm
101.macro POP_GS_EX
102.endm
103
104 /* all the rest are no-op */
105.macro PTGS_TO_GS
106.endm
107.macro PTGS_TO_GS_EX
108.endm
109.macro GS_TO_REG reg
110.endm
111.macro REG_TO_PTGS reg
112.endm
113.macro SET_KERNEL_GS reg
114.endm
115
116#else	/* CONFIG_X86_32_LAZY_GS */
117
118.macro PUSH_GS
119	pushl	%gs
120.endm
121
122.macro POP_GS pop=0
12398:	popl	%gs
124  .if \pop <> 0
125	add	$\pop, %esp
126  .endif
127.endm
128.macro POP_GS_EX
129.pushsection .fixup, "ax"
13099:	movl	$0, (%esp)
131	jmp	98b
132.popsection
133	_ASM_EXTABLE(98b, 99b)
134.endm
135
136.macro PTGS_TO_GS
13798:	mov	PT_GS(%esp), %gs
138.endm
139.macro PTGS_TO_GS_EX
140.pushsection .fixup, "ax"
14199:	movl	$0, PT_GS(%esp)
142	jmp	98b
143.popsection
144	_ASM_EXTABLE(98b, 99b)
145.endm
146
147.macro GS_TO_REG reg
148	movl	%gs, \reg
149.endm
150.macro REG_TO_PTGS reg
151	movl	\reg, PT_GS(%esp)
152.endm
153.macro SET_KERNEL_GS reg
154	movl	$(__KERNEL_STACK_CANARY), \reg
155	movl	\reg, %gs
156.endm
157
158#endif /* CONFIG_X86_32_LAZY_GS */
159
160/* Unconditionally switch to user cr3 */
161.macro SWITCH_TO_USER_CR3 scratch_reg:req
162	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
163
164	movl	%cr3, \scratch_reg
165	orl	$PTI_SWITCH_MASK, \scratch_reg
166	movl	\scratch_reg, %cr3
167.Lend_\@:
168.endm
169
170.macro BUG_IF_WRONG_CR3 no_user_check=0
171#ifdef CONFIG_DEBUG_ENTRY
172	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
173	.if \no_user_check == 0
174	/* coming from usermode? */
175	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
176	jz	.Lend_\@
177	.endif
178	/* On user-cr3? */
179	movl	%cr3, %eax
180	testl	$PTI_SWITCH_MASK, %eax
181	jnz	.Lend_\@
182	/* From userspace with kernel cr3 - BUG */
183	ud2
184.Lend_\@:
185#endif
186.endm
187
188/*
189 * Switch to kernel cr3 if not already loaded and return current cr3 in
190 * \scratch_reg
191 */
192.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
193	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
194	movl	%cr3, \scratch_reg
195	/* Test if we are already on kernel CR3 */
196	testl	$PTI_SWITCH_MASK, \scratch_reg
197	jz	.Lend_\@
198	andl	$(~PTI_SWITCH_MASK), \scratch_reg
199	movl	\scratch_reg, %cr3
200	/* Return original CR3 in \scratch_reg */
201	orl	$PTI_SWITCH_MASK, \scratch_reg
202.Lend_\@:
203.endm
204
205#define CS_FROM_ENTRY_STACK	(1 << 31)
206#define CS_FROM_USER_CR3	(1 << 30)
207#define CS_FROM_KERNEL		(1 << 29)
208#define CS_FROM_ESPFIX		(1 << 28)
209
210.macro FIXUP_FRAME
211	/*
212	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
213	 * Clear them in case hardware didn't do this for us.
214	 */
215	andl	$0x0000ffff, 4*4(%esp)
216
217#ifdef CONFIG_VM86
218	testl	$X86_EFLAGS_VM, 5*4(%esp)
219	jnz	.Lfrom_usermode_no_fixup_\@
220#endif
221	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
222	jnz	.Lfrom_usermode_no_fixup_\@
223
224	orl	$CS_FROM_KERNEL, 4*4(%esp)
225
226	/*
227	 * When we're here from kernel mode; the (exception) stack looks like:
228	 *
229	 *  6*4(%esp) - <previous context>
230	 *  5*4(%esp) - flags
231	 *  4*4(%esp) - cs
232	 *  3*4(%esp) - ip
233	 *  2*4(%esp) - orig_eax
234	 *  1*4(%esp) - gs / function
235	 *  0*4(%esp) - fs
236	 *
237	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
238	 * is complete and in particular regs->sp is correct. This gives us
239	 * the original 6 enties as gap:
240	 *
241	 * 14*4(%esp) - <previous context>
242	 * 13*4(%esp) - gap / flags
243	 * 12*4(%esp) - gap / cs
244	 * 11*4(%esp) - gap / ip
245	 * 10*4(%esp) - gap / orig_eax
246	 *  9*4(%esp) - gap / gs / function
247	 *  8*4(%esp) - gap / fs
248	 *  7*4(%esp) - ss
249	 *  6*4(%esp) - sp
250	 *  5*4(%esp) - flags
251	 *  4*4(%esp) - cs
252	 *  3*4(%esp) - ip
253	 *  2*4(%esp) - orig_eax
254	 *  1*4(%esp) - gs / function
255	 *  0*4(%esp) - fs
256	 */
257
258	pushl	%ss		# ss
259	pushl	%esp		# sp (points at ss)
260	addl	$7*4, (%esp)	# point sp back at the previous context
261	pushl	7*4(%esp)	# flags
262	pushl	7*4(%esp)	# cs
263	pushl	7*4(%esp)	# ip
264	pushl	7*4(%esp)	# orig_eax
265	pushl	7*4(%esp)	# gs / function
266	pushl	7*4(%esp)	# fs
267.Lfrom_usermode_no_fixup_\@:
268.endm
269
270.macro IRET_FRAME
271	/*
272	 * We're called with %ds, %es, %fs, and %gs from the interrupted
273	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
274	 * mode and therefore have a nonzero SS base and an offset ESP,
275	 * so any attempt to access the stack needs to use SS.  (except for
276	 * accesses through %esp, which automatically use SS.)
277	 */
278	testl $CS_FROM_KERNEL, 1*4(%esp)
279	jz .Lfinished_frame_\@
280
281	/*
282	 * Reconstruct the 3 entry IRET frame right after the (modified)
283	 * regs->sp without lowering %esp in between, such that an NMI in the
284	 * middle doesn't scribble our stack.
285	 */
286	pushl	%eax
287	pushl	%ecx
288	movl	5*4(%esp), %eax		# (modified) regs->sp
289
290	movl	4*4(%esp), %ecx		# flags
291	movl	%ecx, %ss:-1*4(%eax)
292
293	movl	3*4(%esp), %ecx		# cs
294	andl	$0x0000ffff, %ecx
295	movl	%ecx, %ss:-2*4(%eax)
296
297	movl	2*4(%esp), %ecx		# ip
298	movl	%ecx, %ss:-3*4(%eax)
299
300	movl	1*4(%esp), %ecx		# eax
301	movl	%ecx, %ss:-4*4(%eax)
302
303	popl	%ecx
304	lea	-4*4(%eax), %esp
305	popl	%eax
306.Lfinished_frame_\@:
307.endm
308
309.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
310	cld
311.if \skip_gs == 0
312	PUSH_GS
313.endif
314	pushl	%fs
315
316	pushl	%eax
317	movl	$(__KERNEL_PERCPU), %eax
318	movl	%eax, %fs
319.if \unwind_espfix > 0
320	UNWIND_ESPFIX_STACK
321.endif
322	popl	%eax
323
324	FIXUP_FRAME
325	pushl	%es
326	pushl	%ds
327	pushl	\pt_regs_ax
328	pushl	%ebp
329	pushl	%edi
330	pushl	%esi
331	pushl	%edx
332	pushl	%ecx
333	pushl	%ebx
334	movl	$(__USER_DS), %edx
335	movl	%edx, %ds
336	movl	%edx, %es
337.if \skip_gs == 0
338	SET_KERNEL_GS %edx
339.endif
340	/* Switch to kernel stack if necessary */
341.if \switch_stacks > 0
342	SWITCH_TO_KERNEL_STACK
343.endif
344.endm
345
346.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
347	SAVE_ALL unwind_espfix=\unwind_espfix
348
349	BUG_IF_WRONG_CR3
350
351	/*
352	 * Now switch the CR3 when PTI is enabled.
353	 *
354	 * We can enter with either user or kernel cr3, the code will
355	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
356	 * if necessary.
357	 */
358	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
359
360.Lend_\@:
361.endm
362
363.macro RESTORE_INT_REGS
364	popl	%ebx
365	popl	%ecx
366	popl	%edx
367	popl	%esi
368	popl	%edi
369	popl	%ebp
370	popl	%eax
371.endm
372
373.macro RESTORE_REGS pop=0
374	RESTORE_INT_REGS
3751:	popl	%ds
3762:	popl	%es
3773:	popl	%fs
378	POP_GS \pop
379	IRET_FRAME
380.pushsection .fixup, "ax"
3814:	movl	$0, (%esp)
382	jmp	1b
3835:	movl	$0, (%esp)
384	jmp	2b
3856:	movl	$0, (%esp)
386	jmp	3b
387.popsection
388	_ASM_EXTABLE(1b, 4b)
389	_ASM_EXTABLE(2b, 5b)
390	_ASM_EXTABLE(3b, 6b)
391	POP_GS_EX
392.endm
393
394.macro RESTORE_ALL_NMI cr3_reg:req pop=0
395	/*
396	 * Now switch the CR3 when PTI is enabled.
397	 *
398	 * We enter with kernel cr3 and switch the cr3 to the value
399	 * stored on \cr3_reg, which is either a user or a kernel cr3.
400	 */
401	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
402
403	testl	$PTI_SWITCH_MASK, \cr3_reg
404	jz	.Lswitched_\@
405
406	/* User cr3 in \cr3_reg - write it to hardware cr3 */
407	movl	\cr3_reg, %cr3
408
409.Lswitched_\@:
410
411	BUG_IF_WRONG_CR3
412
413	RESTORE_REGS pop=\pop
414.endm
415
416.macro CHECK_AND_APPLY_ESPFIX
417#ifdef CONFIG_X86_ESPFIX32
418#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
419#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
420
421	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
422
423	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
424	/*
425	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
426	 * are returning to the kernel.
427	 * See comments in process.c:copy_thread() for details.
428	 */
429	movb	PT_OLDSS(%esp), %ah
430	movb	PT_CS(%esp), %al
431	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
432	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
433	jne	.Lend_\@	# returning to user-space with LDT SS
434
435	/*
436	 * Setup and switch to ESPFIX stack
437	 *
438	 * We're returning to userspace with a 16 bit stack. The CPU will not
439	 * restore the high word of ESP for us on executing iret... This is an
440	 * "official" bug of all the x86-compatible CPUs, which we can work
441	 * around to make dosemu and wine happy. We do this by preloading the
442	 * high word of ESP with the high word of the userspace ESP while
443	 * compensating for the offset by changing to the ESPFIX segment with
444	 * a base address that matches for the difference.
445	 */
446	mov	%esp, %edx			/* load kernel esp */
447	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
448	mov	%dx, %ax			/* eax: new kernel esp */
449	sub	%eax, %edx			/* offset (low word is 0) */
450	shr	$16, %edx
451	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
452	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
453	pushl	$__ESPFIX_SS
454	pushl	%eax				/* new kernel esp */
455	/*
456	 * Disable interrupts, but do not irqtrace this section: we
457	 * will soon execute iret and the tracer was already set to
458	 * the irqstate after the IRET:
459	 */
460	DISABLE_INTERRUPTS(CLBR_ANY)
461	lss	(%esp), %esp			/* switch to espfix segment */
462.Lend_\@:
463#endif /* CONFIG_X86_ESPFIX32 */
464.endm
465
466/*
467 * Called with pt_regs fully populated and kernel segments loaded,
468 * so we can access PER_CPU and use the integer registers.
469 *
470 * We need to be very careful here with the %esp switch, because an NMI
471 * can happen everywhere. If the NMI handler finds itself on the
472 * entry-stack, it will overwrite the task-stack and everything we
473 * copied there. So allocate the stack-frame on the task-stack and
474 * switch to it before we do any copying.
475 */
476
477.macro SWITCH_TO_KERNEL_STACK
478
479	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
480
481	BUG_IF_WRONG_CR3
482
483	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
484
485	/*
486	 * %eax now contains the entry cr3 and we carry it forward in
487	 * that register for the time this macro runs
488	 */
489
490	/* Are we on the entry stack? Bail out if not! */
491	movl	PER_CPU_VAR(cpu_entry_area), %ecx
492	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
493	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
494	cmpl	$SIZEOF_entry_stack, %ecx
495	jae	.Lend_\@
496
497	/* Load stack pointer into %esi and %edi */
498	movl	%esp, %esi
499	movl	%esi, %edi
500
501	/* Move %edi to the top of the entry stack */
502	andl	$(MASK_entry_stack), %edi
503	addl	$(SIZEOF_entry_stack), %edi
504
505	/* Load top of task-stack into %edi */
506	movl	TSS_entry2task_stack(%edi), %edi
507
508	/* Special case - entry from kernel mode via entry stack */
509#ifdef CONFIG_VM86
510	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
511	movb	PT_CS(%esp), %cl
512	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
513#else
514	movl	PT_CS(%esp), %ecx
515	andl	$SEGMENT_RPL_MASK, %ecx
516#endif
517	cmpl	$USER_RPL, %ecx
518	jb	.Lentry_from_kernel_\@
519
520	/* Bytes to copy */
521	movl	$PTREGS_SIZE, %ecx
522
523#ifdef CONFIG_VM86
524	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
525	jz	.Lcopy_pt_regs_\@
526
527	/*
528	 * Stack-frame contains 4 additional segment registers when
529	 * coming from VM86 mode
530	 */
531	addl	$(4 * 4), %ecx
532
533#endif
534.Lcopy_pt_regs_\@:
535
536	/* Allocate frame on task-stack */
537	subl	%ecx, %edi
538
539	/* Switch to task-stack */
540	movl	%edi, %esp
541
542	/*
543	 * We are now on the task-stack and can safely copy over the
544	 * stack-frame
545	 */
546	shrl	$2, %ecx
547	cld
548	rep movsl
549
550	jmp .Lend_\@
551
552.Lentry_from_kernel_\@:
553
554	/*
555	 * This handles the case when we enter the kernel from
556	 * kernel-mode and %esp points to the entry-stack. When this
557	 * happens we need to switch to the task-stack to run C code,
558	 * but switch back to the entry-stack again when we approach
559	 * iret and return to the interrupted code-path. This usually
560	 * happens when we hit an exception while restoring user-space
561	 * segment registers on the way back to user-space or when the
562	 * sysenter handler runs with eflags.tf set.
563	 *
564	 * When we switch to the task-stack here, we can't trust the
565	 * contents of the entry-stack anymore, as the exception handler
566	 * might be scheduled out or moved to another CPU. Therefore we
567	 * copy the complete entry-stack to the task-stack and set a
568	 * marker in the iret-frame (bit 31 of the CS dword) to detect
569	 * what we've done on the iret path.
570	 *
571	 * On the iret path we copy everything back and switch to the
572	 * entry-stack, so that the interrupted kernel code-path
573	 * continues on the same stack it was interrupted with.
574	 *
575	 * Be aware that an NMI can happen anytime in this code.
576	 *
577	 * %esi: Entry-Stack pointer (same as %esp)
578	 * %edi: Top of the task stack
579	 * %eax: CR3 on kernel entry
580	 */
581
582	/* Calculate number of bytes on the entry stack in %ecx */
583	movl	%esi, %ecx
584
585	/* %ecx to the top of entry-stack */
586	andl	$(MASK_entry_stack), %ecx
587	addl	$(SIZEOF_entry_stack), %ecx
588
589	/* Number of bytes on the entry stack to %ecx */
590	sub	%esi, %ecx
591
592	/* Mark stackframe as coming from entry stack */
593	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
594
595	/*
596	 * Test the cr3 used to enter the kernel and add a marker
597	 * so that we can switch back to it before iret.
598	 */
599	testl	$PTI_SWITCH_MASK, %eax
600	jz	.Lcopy_pt_regs_\@
601	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
602
603	/*
604	 * %esi and %edi are unchanged, %ecx contains the number of
605	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
606	 * the stack-frame on task-stack and copy everything over
607	 */
608	jmp .Lcopy_pt_regs_\@
609
610.Lend_\@:
611.endm
612
613/*
614 * Switch back from the kernel stack to the entry stack.
615 *
616 * The %esp register must point to pt_regs on the task stack. It will
617 * first calculate the size of the stack-frame to copy, depending on
618 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
619 * to copy the contents of the stack over to the entry stack.
620 *
621 * We must be very careful here, as we can't trust the contents of the
622 * task-stack once we switched to the entry-stack. When an NMI happens
623 * while on the entry-stack, the NMI handler will switch back to the top
624 * of the task stack, overwriting our stack-frame we are about to copy.
625 * Therefore we switch the stack only after everything is copied over.
626 */
627.macro SWITCH_TO_ENTRY_STACK
628
629	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
630
631	/* Bytes to copy */
632	movl	$PTREGS_SIZE, %ecx
633
634#ifdef CONFIG_VM86
635	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
636	jz	.Lcopy_pt_regs_\@
637
638	/* Additional 4 registers to copy when returning to VM86 mode */
639	addl    $(4 * 4), %ecx
640
641.Lcopy_pt_regs_\@:
642#endif
643
644	/* Initialize source and destination for movsl */
645	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
646	subl	%ecx, %edi
647	movl	%esp, %esi
648
649	/* Save future stack pointer in %ebx */
650	movl	%edi, %ebx
651
652	/* Copy over the stack-frame */
653	shrl	$2, %ecx
654	cld
655	rep movsl
656
657	/*
658	 * Switch to entry-stack - needs to happen after everything is
659	 * copied because the NMI handler will overwrite the task-stack
660	 * when on entry-stack
661	 */
662	movl	%ebx, %esp
663
664.Lend_\@:
665.endm
666
667/*
668 * This macro handles the case when we return to kernel-mode on the iret
669 * path and have to switch back to the entry stack and/or user-cr3
670 *
671 * See the comments below the .Lentry_from_kernel_\@ label in the
672 * SWITCH_TO_KERNEL_STACK macro for more details.
673 */
674.macro PARANOID_EXIT_TO_KERNEL_MODE
675
676	/*
677	 * Test if we entered the kernel with the entry-stack. Most
678	 * likely we did not, because this code only runs on the
679	 * return-to-kernel path.
680	 */
681	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
682	jz	.Lend_\@
683
684	/* Unlikely slow-path */
685
686	/* Clear marker from stack-frame */
687	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
688
689	/* Copy the remaining task-stack contents to entry-stack */
690	movl	%esp, %esi
691	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
692
693	/* Bytes on the task-stack to ecx */
694	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
695	subl	%esi, %ecx
696
697	/* Allocate stack-frame on entry-stack */
698	subl	%ecx, %edi
699
700	/*
701	 * Save future stack-pointer, we must not switch until the
702	 * copy is done, otherwise the NMI handler could destroy the
703	 * contents of the task-stack we are about to copy.
704	 */
705	movl	%edi, %ebx
706
707	/* Do the copy */
708	shrl	$2, %ecx
709	cld
710	rep movsl
711
712	/* Safe to switch to entry-stack now */
713	movl	%ebx, %esp
714
715	/*
716	 * We came from entry-stack and need to check if we also need to
717	 * switch back to user cr3.
718	 */
719	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
720	jz	.Lend_\@
721
722	/* Clear marker from stack-frame */
723	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
724
725	SWITCH_TO_USER_CR3 scratch_reg=%eax
726
727.Lend_\@:
728.endm
729/*
730 * %eax: prev task
731 * %edx: next task
732 */
733SYM_CODE_START(__switch_to_asm)
734	/*
735	 * Save callee-saved registers
736	 * This must match the order in struct inactive_task_frame
737	 */
738	pushl	%ebp
739	pushl	%ebx
740	pushl	%edi
741	pushl	%esi
742	/*
743	 * Flags are saved to prevent AC leakage. This could go
744	 * away if objtool would have 32bit support to verify
745	 * the STAC/CLAC correctness.
746	 */
747	pushfl
748
749	/* switch stack */
750	movl	%esp, TASK_threadsp(%eax)
751	movl	TASK_threadsp(%edx), %esp
752
753#ifdef CONFIG_STACKPROTECTOR
754	movl	TASK_stack_canary(%edx), %ebx
755	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
756#endif
757
758#ifdef CONFIG_RETPOLINE
759	/*
760	 * When switching from a shallower to a deeper call stack
761	 * the RSB may either underflow or use entries populated
762	 * with userspace addresses. On CPUs where those concerns
763	 * exist, overwrite the RSB with entries which capture
764	 * speculative execution to prevent attack.
765	 */
766	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
767#endif
768
769	/* Restore flags or the incoming task to restore AC state. */
770	popfl
771	/* restore callee-saved registers */
772	popl	%esi
773	popl	%edi
774	popl	%ebx
775	popl	%ebp
776
777	jmp	__switch_to
778SYM_CODE_END(__switch_to_asm)
779
780/*
781 * The unwinder expects the last frame on the stack to always be at the same
782 * offset from the end of the page, which allows it to validate the stack.
783 * Calling schedule_tail() directly would break that convention because its an
784 * asmlinkage function so its argument has to be pushed on the stack.  This
785 * wrapper creates a proper "end of stack" frame header before the call.
786 */
787SYM_FUNC_START(schedule_tail_wrapper)
788	FRAME_BEGIN
789
790	pushl	%eax
791	call	schedule_tail
792	popl	%eax
793
794	FRAME_END
795	ret
796SYM_FUNC_END(schedule_tail_wrapper)
797/*
798 * A newly forked process directly context switches into this address.
799 *
800 * eax: prev task we switched from
801 * ebx: kernel thread func (NULL for user thread)
802 * edi: kernel thread arg
803 */
804SYM_CODE_START(ret_from_fork)
805	call	schedule_tail_wrapper
806
807	testl	%ebx, %ebx
808	jnz	1f		/* kernel threads are uncommon */
809
8102:
811	/* When we fork, we trace the syscall return in the child, too. */
812	movl    %esp, %eax
813	call    syscall_return_slowpath
814	STACKLEAK_ERASE
815	jmp     restore_all
816
817	/* kernel thread */
8181:	movl	%edi, %eax
819	CALL_NOSPEC %ebx
820	/*
821	 * A kernel thread is allowed to return here after successfully
822	 * calling do_execve().  Exit to userspace to complete the execve()
823	 * syscall.
824	 */
825	movl	$0, PT_EAX(%esp)
826	jmp	2b
827SYM_CODE_END(ret_from_fork)
828
829/*
830 * Return to user mode is not as complex as all this looks,
831 * but we want the default path for a system call return to
832 * go as quickly as possible which is why some of this is
833 * less clear than it otherwise should be.
834 */
835
836	# userspace resumption stub bypassing syscall exit tracing
837SYM_CODE_START_LOCAL(ret_from_exception)
838	preempt_stop(CLBR_ANY)
839ret_from_intr:
840#ifdef CONFIG_VM86
841	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
842	movb	PT_CS(%esp), %al
843	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
844#else
845	/*
846	 * We can be coming here from child spawned by kernel_thread().
847	 */
848	movl	PT_CS(%esp), %eax
849	andl	$SEGMENT_RPL_MASK, %eax
850#endif
851	cmpl	$USER_RPL, %eax
852	jb	restore_all_kernel		# not returning to v8086 or userspace
853
854	DISABLE_INTERRUPTS(CLBR_ANY)
855	TRACE_IRQS_OFF
856	movl	%esp, %eax
857	call	prepare_exit_to_usermode
858	jmp	restore_all
859SYM_CODE_END(ret_from_exception)
860
861SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
862/*
863 * All code from here through __end_SYSENTER_singlestep_region is subject
864 * to being single-stepped if a user program sets TF and executes SYSENTER.
865 * There is absolutely nothing that we can do to prevent this from happening
866 * (thanks Intel!).  To keep our handling of this situation as simple as
867 * possible, we handle TF just like AC and NT, except that our #DB handler
868 * will ignore all of the single-step traps generated in this range.
869 */
870
871#ifdef CONFIG_XEN_PV
872/*
873 * Xen doesn't set %esp to be precisely what the normal SYSENTER
874 * entry point expects, so fix it up before using the normal path.
875 */
876SYM_CODE_START(xen_sysenter_target)
877	addl	$5*4, %esp			/* remove xen-provided frame */
878	jmp	.Lsysenter_past_esp
879SYM_CODE_END(xen_sysenter_target)
880#endif
881
882/*
883 * 32-bit SYSENTER entry.
884 *
885 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
886 * if X86_FEATURE_SEP is available.  This is the preferred system call
887 * entry on 32-bit systems.
888 *
889 * The SYSENTER instruction, in principle, should *only* occur in the
890 * vDSO.  In practice, a small number of Android devices were shipped
891 * with a copy of Bionic that inlined a SYSENTER instruction.  This
892 * never happened in any of Google's Bionic versions -- it only happened
893 * in a narrow range of Intel-provided versions.
894 *
895 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
896 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
897 * SYSENTER does not save anything on the stack,
898 * and does not save old EIP (!!!), ESP, or EFLAGS.
899 *
900 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
901 * user and/or vm86 state), we explicitly disable the SYSENTER
902 * instruction in vm86 mode by reprogramming the MSRs.
903 *
904 * Arguments:
905 * eax  system call number
906 * ebx  arg1
907 * ecx  arg2
908 * edx  arg3
909 * esi  arg4
910 * edi  arg5
911 * ebp  user stack
912 * 0(%ebp) arg6
913 */
914SYM_FUNC_START(entry_SYSENTER_32)
915	/*
916	 * On entry-stack with all userspace-regs live - save and
917	 * restore eflags and %eax to use it as scratch-reg for the cr3
918	 * switch.
919	 */
920	pushfl
921	pushl	%eax
922	BUG_IF_WRONG_CR3 no_user_check=1
923	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
924	popl	%eax
925	popfl
926
927	/* Stack empty again, switch to task stack */
928	movl	TSS_entry2task_stack(%esp), %esp
929
930.Lsysenter_past_esp:
931	pushl	$__USER_DS		/* pt_regs->ss */
932	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
933	pushfl				/* pt_regs->flags (except IF = 0) */
934	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
935	pushl	$__USER_CS		/* pt_regs->cs */
936	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
937	pushl	%eax			/* pt_regs->orig_ax */
938	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
939
940	/*
941	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
942	 * and TF ourselves.  To save a few cycles, we can check whether
943	 * either was set instead of doing an unconditional popfq.
944	 * This needs to happen before enabling interrupts so that
945	 * we don't get preempted with NT set.
946	 *
947	 * If TF is set, we will single-step all the way to here -- do_debug
948	 * will ignore all the traps.  (Yes, this is slow, but so is
949	 * single-stepping in general.  This allows us to avoid having
950	 * a more complicated code to handle the case where a user program
951	 * forces us to single-step through the SYSENTER entry code.)
952	 *
953	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
954	 * out-of-line as an optimization: NT is unlikely to be set in the
955	 * majority of the cases and instead of polluting the I$ unnecessarily,
956	 * we're keeping that code behind a branch which will predict as
957	 * not-taken and therefore its instructions won't be fetched.
958	 */
959	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
960	jnz	.Lsysenter_fix_flags
961.Lsysenter_flags_fixed:
962
963	/*
964	 * User mode is traced as though IRQs are on, and SYSENTER
965	 * turned them off.
966	 */
967	TRACE_IRQS_OFF
968
969	movl	%esp, %eax
970	call	do_fast_syscall_32
971	/* XEN PV guests always use IRET path */
972	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
973		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
974
975	STACKLEAK_ERASE
976
977/* Opportunistic SYSEXIT */
978	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
979
980	/*
981	 * Setup entry stack - we keep the pointer in %eax and do the
982	 * switch after almost all user-state is restored.
983	 */
984
985	/* Load entry stack pointer and allocate frame for eflags/eax */
986	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
987	subl	$(2*4), %eax
988
989	/* Copy eflags and eax to entry stack */
990	movl	PT_EFLAGS(%esp), %edi
991	movl	PT_EAX(%esp), %esi
992	movl	%edi, (%eax)
993	movl	%esi, 4(%eax)
994
995	/* Restore user registers and segments */
996	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
997	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
9981:	mov	PT_FS(%esp), %fs
999	PTGS_TO_GS
1000
1001	popl	%ebx			/* pt_regs->bx */
1002	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
1003	popl	%esi			/* pt_regs->si */
1004	popl	%edi			/* pt_regs->di */
1005	popl	%ebp			/* pt_regs->bp */
1006
1007	/* Switch to entry stack */
1008	movl	%eax, %esp
1009
1010	/* Now ready to switch the cr3 */
1011	SWITCH_TO_USER_CR3 scratch_reg=%eax
1012
1013	/*
1014	 * Restore all flags except IF. (We restore IF separately because
1015	 * STI gives a one-instruction window in which we won't be interrupted,
1016	 * whereas POPF does not.)
1017	 */
1018	btrl	$X86_EFLAGS_IF_BIT, (%esp)
1019	BUG_IF_WRONG_CR3 no_user_check=1
1020	popfl
1021	popl	%eax
1022
1023	/*
1024	 * Return back to the vDSO, which will pop ecx and edx.
1025	 * Don't bother with DS and ES (they already contain __USER_DS).
1026	 */
1027	sti
1028	sysexit
1029
1030.pushsection .fixup, "ax"
10312:	movl	$0, PT_FS(%esp)
1032	jmp	1b
1033.popsection
1034	_ASM_EXTABLE(1b, 2b)
1035	PTGS_TO_GS_EX
1036
1037.Lsysenter_fix_flags:
1038	pushl	$X86_EFLAGS_FIXED
1039	popfl
1040	jmp	.Lsysenter_flags_fixed
1041SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
1042SYM_FUNC_END(entry_SYSENTER_32)
1043
1044/*
1045 * 32-bit legacy system call entry.
1046 *
1047 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1048 * instruction.  INT $0x80 lands here.
1049 *
1050 * This entry point can be used by any 32-bit perform system calls.
1051 * Instances of INT $0x80 can be found inline in various programs and
1052 * libraries.  It is also used by the vDSO's __kernel_vsyscall
1053 * fallback for hardware that doesn't support a faster entry method.
1054 * Restarted 32-bit system calls also fall back to INT $0x80
1055 * regardless of what instruction was originally used to do the system
1056 * call.  (64-bit programs can use INT $0x80 as well, but they can
1057 * only run on 64-bit kernels and therefore land in
1058 * entry_INT80_compat.)
1059 *
1060 * This is considered a slow path.  It is not used by most libc
1061 * implementations on modern hardware except during process startup.
1062 *
1063 * Arguments:
1064 * eax  system call number
1065 * ebx  arg1
1066 * ecx  arg2
1067 * edx  arg3
1068 * esi  arg4
1069 * edi  arg5
1070 * ebp  arg6
1071 */
1072SYM_FUNC_START(entry_INT80_32)
1073	ASM_CLAC
1074	pushl	%eax			/* pt_regs->orig_ax */
1075
1076	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1077
1078	/*
1079	 * User mode is traced as though IRQs are on, and the interrupt gate
1080	 * turned them off.
1081	 */
1082	TRACE_IRQS_OFF
1083
1084	movl	%esp, %eax
1085	call	do_int80_syscall_32
1086.Lsyscall_32_done:
1087
1088	STACKLEAK_ERASE
1089
1090restore_all:
1091	TRACE_IRQS_IRET
1092	SWITCH_TO_ENTRY_STACK
1093	CHECK_AND_APPLY_ESPFIX
1094.Lrestore_nocheck:
1095	/* Switch back to user CR3 */
1096	SWITCH_TO_USER_CR3 scratch_reg=%eax
1097
1098	BUG_IF_WRONG_CR3
1099
1100	/* Restore user state */
1101	RESTORE_REGS pop=4			# skip orig_eax/error_code
1102.Lirq_return:
1103	/*
1104	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1105	 * when returning from IPI handler and when returning from
1106	 * scheduler to user-space.
1107	 */
1108	INTERRUPT_RETURN
1109
1110restore_all_kernel:
1111#ifdef CONFIG_PREEMPTION
1112	DISABLE_INTERRUPTS(CLBR_ANY)
1113	cmpl	$0, PER_CPU_VAR(__preempt_count)
1114	jnz	.Lno_preempt
1115	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
1116	jz	.Lno_preempt
1117	call	preempt_schedule_irq
1118.Lno_preempt:
1119#endif
1120	TRACE_IRQS_IRET
1121	PARANOID_EXIT_TO_KERNEL_MODE
1122	BUG_IF_WRONG_CR3
1123	RESTORE_REGS 4
1124	jmp	.Lirq_return
1125
1126.section .fixup, "ax"
1127SYM_CODE_START(iret_exc)
1128	pushl	$0				# no error code
1129	pushl	$do_iret_error
1130
1131#ifdef CONFIG_DEBUG_ENTRY
1132	/*
1133	 * The stack-frame here is the one that iret faulted on, so its a
1134	 * return-to-user frame. We are on kernel-cr3 because we come here from
1135	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1136	 * as the checker expects it.
1137	 */
1138	pushl	%eax
1139	SWITCH_TO_USER_CR3 scratch_reg=%eax
1140	popl	%eax
1141#endif
1142
1143	jmp	common_exception
1144SYM_CODE_END(iret_exc)
1145.previous
1146	_ASM_EXTABLE(.Lirq_return, iret_exc)
1147SYM_FUNC_END(entry_INT80_32)
1148
1149.macro FIXUP_ESPFIX_STACK
1150/*
1151 * Switch back for ESPFIX stack to the normal zerobased stack
1152 *
1153 * We can't call C functions using the ESPFIX stack. This code reads
1154 * the high word of the segment base from the GDT and swiches to the
1155 * normal stack and adjusts ESP with the matching offset.
1156 *
1157 * We might be on user CR3 here, so percpu data is not mapped and we can't
1158 * access the GDT through the percpu segment.  Instead, use SGDT to find
1159 * the cpu_entry_area alias of the GDT.
1160 */
1161#ifdef CONFIG_X86_ESPFIX32
1162	/* fixup the stack */
1163	pushl	%ecx
1164	subl	$2*4, %esp
1165	sgdt	(%esp)
1166	movl	2(%esp), %ecx				/* GDT address */
1167	/*
1168	 * Careful: ECX is a linear pointer, so we need to force base
1169	 * zero.  %cs is the only known-linear segment we have right now.
1170	 */
1171	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1172	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1173	shl	$16, %eax
1174	addl	$2*4, %esp
1175	popl	%ecx
1176	addl	%esp, %eax			/* the adjusted stack pointer */
1177	pushl	$__KERNEL_DS
1178	pushl	%eax
1179	lss	(%esp), %esp			/* switch to the normal stack segment */
1180#endif
1181.endm
1182
1183.macro UNWIND_ESPFIX_STACK
1184	/* It's safe to clobber %eax, all other regs need to be preserved */
1185#ifdef CONFIG_X86_ESPFIX32
1186	movl	%ss, %eax
1187	/* see if on espfix stack */
1188	cmpw	$__ESPFIX_SS, %ax
1189	jne	.Lno_fixup_\@
1190	/* switch to normal stack */
1191	FIXUP_ESPFIX_STACK
1192.Lno_fixup_\@:
1193#endif
1194.endm
1195
1196/*
1197 * Build the entry stubs with some assembler magic.
1198 * We pack 1 stub into every 8-byte block.
1199 */
1200	.align 8
1201SYM_CODE_START(irq_entries_start)
1202    vector=FIRST_EXTERNAL_VECTOR
1203    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1204	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1205    vector=vector+1
1206	jmp	common_interrupt
1207	.align	8
1208    .endr
1209SYM_CODE_END(irq_entries_start)
1210
1211#ifdef CONFIG_X86_LOCAL_APIC
1212	.align 8
1213SYM_CODE_START(spurious_entries_start)
1214    vector=FIRST_SYSTEM_VECTOR
1215    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
1216	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1217    vector=vector+1
1218	jmp	common_spurious
1219	.align	8
1220    .endr
1221SYM_CODE_END(spurious_entries_start)
1222
1223SYM_CODE_START_LOCAL(common_spurious)
1224	ASM_CLAC
1225	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1226	SAVE_ALL switch_stacks=1
1227	ENCODE_FRAME_POINTER
1228	TRACE_IRQS_OFF
1229	movl	%esp, %eax
1230	call	smp_spurious_interrupt
1231	jmp	ret_from_intr
1232SYM_CODE_END(common_spurious)
1233#endif
1234
1235/*
1236 * the CPU automatically disables interrupts when executing an IRQ vector,
1237 * so IRQ-flags tracing has to follow that:
1238 */
1239	.p2align CONFIG_X86_L1_CACHE_SHIFT
1240SYM_CODE_START_LOCAL(common_interrupt)
1241	ASM_CLAC
1242	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1243
1244	SAVE_ALL switch_stacks=1
1245	ENCODE_FRAME_POINTER
1246	TRACE_IRQS_OFF
1247	movl	%esp, %eax
1248	call	do_IRQ
1249	jmp	ret_from_intr
1250SYM_CODE_END(common_interrupt)
1251
1252#define BUILD_INTERRUPT3(name, nr, fn)			\
1253SYM_FUNC_START(name)					\
1254	ASM_CLAC;					\
1255	pushl	$~(nr);					\
1256	SAVE_ALL switch_stacks=1;			\
1257	ENCODE_FRAME_POINTER;				\
1258	TRACE_IRQS_OFF					\
1259	movl	%esp, %eax;				\
1260	call	fn;					\
1261	jmp	ret_from_intr;				\
1262SYM_FUNC_END(name)
1263
1264#define BUILD_INTERRUPT(name, nr)		\
1265	BUILD_INTERRUPT3(name, nr, smp_##name);	\
1266
1267/* The include is where all of the SMP etc. interrupts come from */
1268#include <asm/entry_arch.h>
1269
1270SYM_CODE_START(coprocessor_error)
1271	ASM_CLAC
1272	pushl	$0
1273	pushl	$do_coprocessor_error
1274	jmp	common_exception
1275SYM_CODE_END(coprocessor_error)
1276
1277SYM_CODE_START(simd_coprocessor_error)
1278	ASM_CLAC
1279	pushl	$0
1280#ifdef CONFIG_X86_INVD_BUG
1281	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1282	ALTERNATIVE "pushl	$do_general_protection",	\
1283		    "pushl	$do_simd_coprocessor_error",	\
1284		    X86_FEATURE_XMM
1285#else
1286	pushl	$do_simd_coprocessor_error
1287#endif
1288	jmp	common_exception
1289SYM_CODE_END(simd_coprocessor_error)
1290
1291SYM_CODE_START(device_not_available)
1292	ASM_CLAC
1293	pushl	$-1				# mark this as an int
1294	pushl	$do_device_not_available
1295	jmp	common_exception
1296SYM_CODE_END(device_not_available)
1297
1298#ifdef CONFIG_PARAVIRT
1299SYM_CODE_START(native_iret)
1300	iret
1301	_ASM_EXTABLE(native_iret, iret_exc)
1302SYM_CODE_END(native_iret)
1303#endif
1304
1305SYM_CODE_START(overflow)
1306	ASM_CLAC
1307	pushl	$0
1308	pushl	$do_overflow
1309	jmp	common_exception
1310SYM_CODE_END(overflow)
1311
1312SYM_CODE_START(bounds)
1313	ASM_CLAC
1314	pushl	$0
1315	pushl	$do_bounds
1316	jmp	common_exception
1317SYM_CODE_END(bounds)
1318
1319SYM_CODE_START(invalid_op)
1320	ASM_CLAC
1321	pushl	$0
1322	pushl	$do_invalid_op
1323	jmp	common_exception
1324SYM_CODE_END(invalid_op)
1325
1326SYM_CODE_START(coprocessor_segment_overrun)
1327	ASM_CLAC
1328	pushl	$0
1329	pushl	$do_coprocessor_segment_overrun
1330	jmp	common_exception
1331SYM_CODE_END(coprocessor_segment_overrun)
1332
1333SYM_CODE_START(invalid_TSS)
1334	ASM_CLAC
1335	pushl	$do_invalid_TSS
1336	jmp	common_exception
1337SYM_CODE_END(invalid_TSS)
1338
1339SYM_CODE_START(segment_not_present)
1340	ASM_CLAC
1341	pushl	$do_segment_not_present
1342	jmp	common_exception
1343SYM_CODE_END(segment_not_present)
1344
1345SYM_CODE_START(stack_segment)
1346	ASM_CLAC
1347	pushl	$do_stack_segment
1348	jmp	common_exception
1349SYM_CODE_END(stack_segment)
1350
1351SYM_CODE_START(alignment_check)
1352	ASM_CLAC
1353	pushl	$do_alignment_check
1354	jmp	common_exception
1355SYM_CODE_END(alignment_check)
1356
1357SYM_CODE_START(divide_error)
1358	ASM_CLAC
1359	pushl	$0				# no error code
1360	pushl	$do_divide_error
1361	jmp	common_exception
1362SYM_CODE_END(divide_error)
1363
1364#ifdef CONFIG_X86_MCE
1365SYM_CODE_START(machine_check)
1366	ASM_CLAC
1367	pushl	$0
1368	pushl	machine_check_vector
1369	jmp	common_exception
1370SYM_CODE_END(machine_check)
1371#endif
1372
1373SYM_CODE_START(spurious_interrupt_bug)
1374	ASM_CLAC
1375	pushl	$0
1376	pushl	$do_spurious_interrupt_bug
1377	jmp	common_exception
1378SYM_CODE_END(spurious_interrupt_bug)
1379
1380#ifdef CONFIG_XEN_PV
1381SYM_FUNC_START(xen_hypervisor_callback)
1382	/*
1383	 * Check to see if we got the event in the critical
1384	 * region in xen_iret_direct, after we've reenabled
1385	 * events and checked for pending events.  This simulates
1386	 * iret instruction's behaviour where it delivers a
1387	 * pending interrupt when enabling interrupts:
1388	 */
1389	cmpl	$xen_iret_start_crit, (%esp)
1390	jb	1f
1391	cmpl	$xen_iret_end_crit, (%esp)
1392	jae	1f
1393	call	xen_iret_crit_fixup
13941:
1395	pushl	$-1				/* orig_ax = -1 => not a system call */
1396	SAVE_ALL
1397	ENCODE_FRAME_POINTER
1398	TRACE_IRQS_OFF
1399	mov	%esp, %eax
1400	call	xen_evtchn_do_upcall
1401#ifndef CONFIG_PREEMPTION
1402	call	xen_maybe_preempt_hcall
1403#endif
1404	jmp	ret_from_intr
1405SYM_FUNC_END(xen_hypervisor_callback)
1406
1407/*
1408 * Hypervisor uses this for application faults while it executes.
1409 * We get here for two reasons:
1410 *  1. Fault while reloading DS, ES, FS or GS
1411 *  2. Fault while executing IRET
1412 * Category 1 we fix up by reattempting the load, and zeroing the segment
1413 * register if the load fails.
1414 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1415 * normal Linux return path in this case because if we use the IRET hypercall
1416 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1417 * We distinguish between categories by maintaining a status value in EAX.
1418 */
1419SYM_FUNC_START(xen_failsafe_callback)
1420	pushl	%eax
1421	movl	$1, %eax
14221:	mov	4(%esp), %ds
14232:	mov	8(%esp), %es
14243:	mov	12(%esp), %fs
14254:	mov	16(%esp), %gs
1426	/* EAX == 0 => Category 1 (Bad segment)
1427	   EAX != 0 => Category 2 (Bad IRET) */
1428	testl	%eax, %eax
1429	popl	%eax
1430	lea	16(%esp), %esp
1431	jz	5f
1432	jmp	iret_exc
14335:	pushl	$-1				/* orig_ax = -1 => not a system call */
1434	SAVE_ALL
1435	ENCODE_FRAME_POINTER
1436	jmp	ret_from_exception
1437
1438.section .fixup, "ax"
14396:	xorl	%eax, %eax
1440	movl	%eax, 4(%esp)
1441	jmp	1b
14427:	xorl	%eax, %eax
1443	movl	%eax, 8(%esp)
1444	jmp	2b
14458:	xorl	%eax, %eax
1446	movl	%eax, 12(%esp)
1447	jmp	3b
14489:	xorl	%eax, %eax
1449	movl	%eax, 16(%esp)
1450	jmp	4b
1451.previous
1452	_ASM_EXTABLE(1b, 6b)
1453	_ASM_EXTABLE(2b, 7b)
1454	_ASM_EXTABLE(3b, 8b)
1455	_ASM_EXTABLE(4b, 9b)
1456SYM_FUNC_END(xen_failsafe_callback)
1457#endif /* CONFIG_XEN_PV */
1458
1459#ifdef CONFIG_XEN_PVHVM
1460BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1461		 xen_evtchn_do_upcall)
1462#endif
1463
1464
1465#if IS_ENABLED(CONFIG_HYPERV)
1466
1467BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1468		 hyperv_vector_handler)
1469
1470BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1471		 hyperv_reenlightenment_intr)
1472
1473BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1474		 hv_stimer0_vector_handler)
1475
1476#endif /* CONFIG_HYPERV */
1477
1478SYM_CODE_START(page_fault)
1479	ASM_CLAC
1480	pushl	$do_page_fault
1481	jmp	common_exception_read_cr2
1482SYM_CODE_END(page_fault)
1483
1484SYM_CODE_START_LOCAL_NOALIGN(common_exception_read_cr2)
1485	/* the function address is in %gs's slot on the stack */
1486	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1487
1488	ENCODE_FRAME_POINTER
1489
1490	/* fixup %gs */
1491	GS_TO_REG %ecx
1492	movl	PT_GS(%esp), %edi
1493	REG_TO_PTGS %ecx
1494	SET_KERNEL_GS %ecx
1495
1496	GET_CR2_INTO(%ecx)			# might clobber %eax
1497
1498	/* fixup orig %eax */
1499	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1500	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1501
1502	TRACE_IRQS_OFF
1503	movl	%esp, %eax			# pt_regs pointer
1504	CALL_NOSPEC %edi
1505	jmp	ret_from_exception
1506SYM_CODE_END(common_exception_read_cr2)
1507
1508SYM_CODE_START_LOCAL_NOALIGN(common_exception)
1509	/* the function address is in %gs's slot on the stack */
1510	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1511	ENCODE_FRAME_POINTER
1512
1513	/* fixup %gs */
1514	GS_TO_REG %ecx
1515	movl	PT_GS(%esp), %edi		# get the function address
1516	REG_TO_PTGS %ecx
1517	SET_KERNEL_GS %ecx
1518
1519	/* fixup orig %eax */
1520	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1521	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1522
1523	TRACE_IRQS_OFF
1524	movl	%esp, %eax			# pt_regs pointer
1525	CALL_NOSPEC %edi
1526	jmp	ret_from_exception
1527SYM_CODE_END(common_exception)
1528
1529SYM_CODE_START(debug)
1530	/*
1531	 * Entry from sysenter is now handled in common_exception
1532	 */
1533	ASM_CLAC
1534	pushl	$-1				# mark this as an int
1535	pushl	$do_debug
1536	jmp	common_exception
1537SYM_CODE_END(debug)
1538
1539#ifdef CONFIG_DOUBLEFAULT
1540SYM_CODE_START(double_fault)
15411:
1542	/*
1543	 * This is a task gate handler, not an interrupt gate handler.
1544	 * The error code is on the stack, but the stack is otherwise
1545	 * empty.  Interrupts are off.  Our state is sane with the following
1546	 * exceptions:
1547	 *
1548	 *  - CR0.TS is set.  "TS" literally means "task switched".
1549	 *  - EFLAGS.NT is set because we're a "nested task".
1550	 *  - The doublefault TSS has back_link set and has been marked busy.
1551	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1552	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1553	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1554	 *    would make it very awkward to return back to the context we came
1555	 *    from.
1556	 *
1557	 * The rest of EFLAGS is sanitized for us, so we don't need to
1558	 * worry about AC or DF.
1559	 *
1560	 * Don't even bother popping the error code.  It's always zero,
1561	 * and ignoring it makes us a bit more robust against buggy
1562	 * hypervisor task gate implementations.
1563	 *
1564	 * We will manually undo the task switch instead of doing a
1565	 * task-switching IRET.
1566	 */
1567
1568	clts				/* clear CR0.TS */
1569	pushl	$X86_EFLAGS_FIXED
1570	popfl				/* clear EFLAGS.NT */
1571
1572	call	doublefault_shim
1573
1574	/* We don't support returning, so we have no IRET here. */
15751:
1576	hlt
1577	jmp 1b
1578SYM_CODE_END(double_fault)
1579#endif
1580
1581/*
1582 * NMI is doubly nasty.  It can happen on the first instruction of
1583 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1584 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1585 * switched stacks.  We handle both conditions by simply checking whether we
1586 * interrupted kernel code running on the SYSENTER stack.
1587 */
1588SYM_CODE_START(nmi)
1589	ASM_CLAC
1590
1591#ifdef CONFIG_X86_ESPFIX32
1592	/*
1593	 * ESPFIX_SS is only ever set on the return to user path
1594	 * after we've switched to the entry stack.
1595	 */
1596	pushl	%eax
1597	movl	%ss, %eax
1598	cmpw	$__ESPFIX_SS, %ax
1599	popl	%eax
1600	je	.Lnmi_espfix_stack
1601#endif
1602
1603	pushl	%eax				# pt_regs->orig_ax
1604	SAVE_ALL_NMI cr3_reg=%edi
1605	ENCODE_FRAME_POINTER
1606	xorl	%edx, %edx			# zero error code
1607	movl	%esp, %eax			# pt_regs pointer
1608
1609	/* Are we currently on the SYSENTER stack? */
1610	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1611	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1612	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1613	cmpl	$SIZEOF_entry_stack, %ecx
1614	jb	.Lnmi_from_sysenter_stack
1615
1616	/* Not on SYSENTER stack. */
1617	call	do_nmi
1618	jmp	.Lnmi_return
1619
1620.Lnmi_from_sysenter_stack:
1621	/*
1622	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1623	 * is using the thread stack right now, so it's safe for us to use it.
1624	 */
1625	movl	%esp, %ebx
1626	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1627	call	do_nmi
1628	movl	%ebx, %esp
1629
1630.Lnmi_return:
1631#ifdef CONFIG_X86_ESPFIX32
1632	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1633	jnz	.Lnmi_from_espfix
1634#endif
1635
1636	CHECK_AND_APPLY_ESPFIX
1637	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1638	jmp	.Lirq_return
1639
1640#ifdef CONFIG_X86_ESPFIX32
1641.Lnmi_espfix_stack:
1642	/*
1643	 * Create the pointer to LSS back
1644	 */
1645	pushl	%ss
1646	pushl	%esp
1647	addl	$4, (%esp)
1648
1649	/* Copy the (short) IRET frame */
1650	pushl	4*4(%esp)	# flags
1651	pushl	4*4(%esp)	# cs
1652	pushl	4*4(%esp)	# ip
1653
1654	pushl	%eax		# orig_ax
1655
1656	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1657	ENCODE_FRAME_POINTER
1658
1659	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1660	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1661
1662	xorl	%edx, %edx			# zero error code
1663	movl	%esp, %eax			# pt_regs pointer
1664	jmp	.Lnmi_from_sysenter_stack
1665
1666.Lnmi_from_espfix:
1667	RESTORE_ALL_NMI cr3_reg=%edi
1668	/*
1669	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1670	 * fix up the gap and long frame:
1671	 *
1672	 *  3 - original frame	(exception)
1673	 *  2 - ESPFIX block	(above)
1674	 *  6 - gap		(FIXUP_FRAME)
1675	 *  5 - long frame	(FIXUP_FRAME)
1676	 *  1 - orig_ax
1677	 */
1678	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1679	jmp	.Lirq_return
1680#endif
1681SYM_CODE_END(nmi)
1682
1683SYM_CODE_START(int3)
1684	ASM_CLAC
1685	pushl	$-1				# mark this as an int
1686
1687	SAVE_ALL switch_stacks=1
1688	ENCODE_FRAME_POINTER
1689	TRACE_IRQS_OFF
1690	xorl	%edx, %edx			# zero error code
1691	movl	%esp, %eax			# pt_regs pointer
1692	call	do_int3
1693	jmp	ret_from_exception
1694SYM_CODE_END(int3)
1695
1696SYM_CODE_START(general_protection)
1697	pushl	$do_general_protection
1698	jmp	common_exception
1699SYM_CODE_END(general_protection)
1700
1701#ifdef CONFIG_KVM_GUEST
1702SYM_CODE_START(async_page_fault)
1703	ASM_CLAC
1704	pushl	$do_async_page_fault
1705	jmp	common_exception_read_cr2
1706SYM_CODE_END(async_page_fault)
1707#endif
1708
1709SYM_CODE_START(rewind_stack_do_exit)
1710	/* Prevent any naive code from trying to unwind to our caller. */
1711	xorl	%ebp, %ebp
1712
1713	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1714	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1715
1716	call	do_exit
17171:	jmp 1b
1718SYM_CODE_END(rewind_stack_do_exit)
1719