1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 1991,1992 Linus Torvalds 4 * 5 * entry_32.S contains the system-call and low-level fault and trap handling routines. 6 * 7 * Stack layout while running C code: 8 * ptrace needs to have all registers on the stack. 9 * If the order here is changed, it needs to be 10 * updated in fork.c:copy_process(), signal.c:do_signal(), 11 * ptrace.c and ptrace.h 12 * 13 * 0(%esp) - %ebx 14 * 4(%esp) - %ecx 15 * 8(%esp) - %edx 16 * C(%esp) - %esi 17 * 10(%esp) - %edi 18 * 14(%esp) - %ebp 19 * 18(%esp) - %eax 20 * 1C(%esp) - %ds 21 * 20(%esp) - %es 22 * 24(%esp) - %fs 23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS 24 * 2C(%esp) - orig_eax 25 * 30(%esp) - %eip 26 * 34(%esp) - %cs 27 * 38(%esp) - %eflags 28 * 3C(%esp) - %oldesp 29 * 40(%esp) - %oldss 30 */ 31 32#include <linux/linkage.h> 33#include <linux/err.h> 34#include <asm/thread_info.h> 35#include <asm/irqflags.h> 36#include <asm/errno.h> 37#include <asm/segment.h> 38#include <asm/smp.h> 39#include <asm/percpu.h> 40#include <asm/processor-flags.h> 41#include <asm/irq_vectors.h> 42#include <asm/cpufeatures.h> 43#include <asm/alternative-asm.h> 44#include <asm/asm.h> 45#include <asm/smap.h> 46#include <asm/frame.h> 47#include <asm/nospec-branch.h> 48 49#include "calling.h" 50 51 .section .entry.text, "ax" 52 53/* 54 * We use macros for low-level operations which need to be overridden 55 * for paravirtualization. The following will never clobber any registers: 56 * INTERRUPT_RETURN (aka. "iret") 57 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax") 58 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit"). 59 * 60 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must 61 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY). 62 * Allowing a register to be clobbered can shrink the paravirt replacement 63 * enough to patch inline, increasing performance. 64 */ 65 66#ifdef CONFIG_PREEMPT 67# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF 68#else 69# define preempt_stop(clobbers) 70# define resume_kernel restore_all_kernel 71#endif 72 73.macro TRACE_IRQS_IRET 74#ifdef CONFIG_TRACE_IRQFLAGS 75 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off? 76 jz 1f 77 TRACE_IRQS_ON 781: 79#endif 80.endm 81 82#define PTI_SWITCH_MASK (1 << PAGE_SHIFT) 83 84/* 85 * User gs save/restore 86 * 87 * %gs is used for userland TLS and kernel only uses it for stack 88 * canary which is required to be at %gs:20 by gcc. Read the comment 89 * at the top of stackprotector.h for more info. 90 * 91 * Local labels 98 and 99 are used. 92 */ 93#ifdef CONFIG_X86_32_LAZY_GS 94 95 /* unfortunately push/pop can't be no-op */ 96.macro PUSH_GS 97 pushl $0 98.endm 99.macro POP_GS pop=0 100 addl $(4 + \pop), %esp 101.endm 102.macro POP_GS_EX 103.endm 104 105 /* all the rest are no-op */ 106.macro PTGS_TO_GS 107.endm 108.macro PTGS_TO_GS_EX 109.endm 110.macro GS_TO_REG reg 111.endm 112.macro REG_TO_PTGS reg 113.endm 114.macro SET_KERNEL_GS reg 115.endm 116 117#else /* CONFIG_X86_32_LAZY_GS */ 118 119.macro PUSH_GS 120 pushl %gs 121.endm 122 123.macro POP_GS pop=0 12498: popl %gs 125 .if \pop <> 0 126 add $\pop, %esp 127 .endif 128.endm 129.macro POP_GS_EX 130.pushsection .fixup, "ax" 13199: movl $0, (%esp) 132 jmp 98b 133.popsection 134 _ASM_EXTABLE(98b, 99b) 135.endm 136 137.macro PTGS_TO_GS 13898: mov PT_GS(%esp), %gs 139.endm 140.macro PTGS_TO_GS_EX 141.pushsection .fixup, "ax" 14299: movl $0, PT_GS(%esp) 143 jmp 98b 144.popsection 145 _ASM_EXTABLE(98b, 99b) 146.endm 147 148.macro GS_TO_REG reg 149 movl %gs, \reg 150.endm 151.macro REG_TO_PTGS reg 152 movl \reg, PT_GS(%esp) 153.endm 154.macro SET_KERNEL_GS reg 155 movl $(__KERNEL_STACK_CANARY), \reg 156 movl \reg, %gs 157.endm 158 159#endif /* CONFIG_X86_32_LAZY_GS */ 160 161/* Unconditionally switch to user cr3 */ 162.macro SWITCH_TO_USER_CR3 scratch_reg:req 163 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 164 165 movl %cr3, \scratch_reg 166 orl $PTI_SWITCH_MASK, \scratch_reg 167 movl \scratch_reg, %cr3 168.Lend_\@: 169.endm 170 171.macro BUG_IF_WRONG_CR3 no_user_check=0 172#ifdef CONFIG_DEBUG_ENTRY 173 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 174 .if \no_user_check == 0 175 /* coming from usermode? */ 176 testl $SEGMENT_RPL_MASK, PT_CS(%esp) 177 jz .Lend_\@ 178 .endif 179 /* On user-cr3? */ 180 movl %cr3, %eax 181 testl $PTI_SWITCH_MASK, %eax 182 jnz .Lend_\@ 183 /* From userspace with kernel cr3 - BUG */ 184 ud2 185.Lend_\@: 186#endif 187.endm 188 189/* 190 * Switch to kernel cr3 if not already loaded and return current cr3 in 191 * \scratch_reg 192 */ 193.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req 194 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 195 movl %cr3, \scratch_reg 196 /* Test if we are already on kernel CR3 */ 197 testl $PTI_SWITCH_MASK, \scratch_reg 198 jz .Lend_\@ 199 andl $(~PTI_SWITCH_MASK), \scratch_reg 200 movl \scratch_reg, %cr3 201 /* Return original CR3 in \scratch_reg */ 202 orl $PTI_SWITCH_MASK, \scratch_reg 203.Lend_\@: 204.endm 205 206.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 207 cld 208 PUSH_GS 209 pushl %fs 210 pushl %es 211 pushl %ds 212 pushl \pt_regs_ax 213 pushl %ebp 214 pushl %edi 215 pushl %esi 216 pushl %edx 217 pushl %ecx 218 pushl %ebx 219 movl $(__USER_DS), %edx 220 movl %edx, %ds 221 movl %edx, %es 222 movl $(__KERNEL_PERCPU), %edx 223 movl %edx, %fs 224 SET_KERNEL_GS %edx 225 226 /* Switch to kernel stack if necessary */ 227.if \switch_stacks > 0 228 SWITCH_TO_KERNEL_STACK 229.endif 230 231.endm 232 233.macro SAVE_ALL_NMI cr3_reg:req 234 SAVE_ALL 235 236 BUG_IF_WRONG_CR3 237 238 /* 239 * Now switch the CR3 when PTI is enabled. 240 * 241 * We can enter with either user or kernel cr3, the code will 242 * store the old cr3 in \cr3_reg and switches to the kernel cr3 243 * if necessary. 244 */ 245 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg 246 247.Lend_\@: 248.endm 249 250/* 251 * This is a sneaky trick to help the unwinder find pt_regs on the stack. The 252 * frame pointer is replaced with an encoded pointer to pt_regs. The encoding 253 * is just clearing the MSB, which makes it an invalid stack address and is also 254 * a signal to the unwinder that it's a pt_regs pointer in disguise. 255 * 256 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the 257 * original rbp. 258 */ 259.macro ENCODE_FRAME_POINTER 260#ifdef CONFIG_FRAME_POINTER 261 mov %esp, %ebp 262 andl $0x7fffffff, %ebp 263#endif 264.endm 265 266.macro RESTORE_INT_REGS 267 popl %ebx 268 popl %ecx 269 popl %edx 270 popl %esi 271 popl %edi 272 popl %ebp 273 popl %eax 274.endm 275 276.macro RESTORE_REGS pop=0 277 RESTORE_INT_REGS 2781: popl %ds 2792: popl %es 2803: popl %fs 281 POP_GS \pop 282.pushsection .fixup, "ax" 2834: movl $0, (%esp) 284 jmp 1b 2855: movl $0, (%esp) 286 jmp 2b 2876: movl $0, (%esp) 288 jmp 3b 289.popsection 290 _ASM_EXTABLE(1b, 4b) 291 _ASM_EXTABLE(2b, 5b) 292 _ASM_EXTABLE(3b, 6b) 293 POP_GS_EX 294.endm 295 296.macro RESTORE_ALL_NMI cr3_reg:req pop=0 297 /* 298 * Now switch the CR3 when PTI is enabled. 299 * 300 * We enter with kernel cr3 and switch the cr3 to the value 301 * stored on \cr3_reg, which is either a user or a kernel cr3. 302 */ 303 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI 304 305 testl $PTI_SWITCH_MASK, \cr3_reg 306 jz .Lswitched_\@ 307 308 /* User cr3 in \cr3_reg - write it to hardware cr3 */ 309 movl \cr3_reg, %cr3 310 311.Lswitched_\@: 312 313 BUG_IF_WRONG_CR3 314 315 RESTORE_REGS pop=\pop 316.endm 317 318.macro CHECK_AND_APPLY_ESPFIX 319#ifdef CONFIG_X86_ESPFIX32 320#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8) 321 322 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX 323 324 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS 325 /* 326 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we 327 * are returning to the kernel. 328 * See comments in process.c:copy_thread() for details. 329 */ 330 movb PT_OLDSS(%esp), %ah 331 movb PT_CS(%esp), %al 332 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax 333 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax 334 jne .Lend_\@ # returning to user-space with LDT SS 335 336 /* 337 * Setup and switch to ESPFIX stack 338 * 339 * We're returning to userspace with a 16 bit stack. The CPU will not 340 * restore the high word of ESP for us on executing iret... This is an 341 * "official" bug of all the x86-compatible CPUs, which we can work 342 * around to make dosemu and wine happy. We do this by preloading the 343 * high word of ESP with the high word of the userspace ESP while 344 * compensating for the offset by changing to the ESPFIX segment with 345 * a base address that matches for the difference. 346 */ 347 mov %esp, %edx /* load kernel esp */ 348 mov PT_OLDESP(%esp), %eax /* load userspace esp */ 349 mov %dx, %ax /* eax: new kernel esp */ 350 sub %eax, %edx /* offset (low word is 0) */ 351 shr $16, %edx 352 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ 353 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ 354 pushl $__ESPFIX_SS 355 pushl %eax /* new kernel esp */ 356 /* 357 * Disable interrupts, but do not irqtrace this section: we 358 * will soon execute iret and the tracer was already set to 359 * the irqstate after the IRET: 360 */ 361 DISABLE_INTERRUPTS(CLBR_ANY) 362 lss (%esp), %esp /* switch to espfix segment */ 363.Lend_\@: 364#endif /* CONFIG_X86_ESPFIX32 */ 365.endm 366 367/* 368 * Called with pt_regs fully populated and kernel segments loaded, 369 * so we can access PER_CPU and use the integer registers. 370 * 371 * We need to be very careful here with the %esp switch, because an NMI 372 * can happen everywhere. If the NMI handler finds itself on the 373 * entry-stack, it will overwrite the task-stack and everything we 374 * copied there. So allocate the stack-frame on the task-stack and 375 * switch to it before we do any copying. 376 */ 377 378#define CS_FROM_ENTRY_STACK (1 << 31) 379#define CS_FROM_USER_CR3 (1 << 30) 380 381.macro SWITCH_TO_KERNEL_STACK 382 383 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV 384 385 BUG_IF_WRONG_CR3 386 387 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 388 389 /* 390 * %eax now contains the entry cr3 and we carry it forward in 391 * that register for the time this macro runs 392 */ 393 394 /* 395 * The high bits of the CS dword (__csh) are used for 396 * CS_FROM_ENTRY_STACK and CS_FROM_USER_CR3. Clear them in case 397 * hardware didn't do this for us. 398 */ 399 andl $(0x0000ffff), PT_CS(%esp) 400 401 /* Are we on the entry stack? Bail out if not! */ 402 movl PER_CPU_VAR(cpu_entry_area), %ecx 403 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 404 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ 405 cmpl $SIZEOF_entry_stack, %ecx 406 jae .Lend_\@ 407 408 /* Load stack pointer into %esi and %edi */ 409 movl %esp, %esi 410 movl %esi, %edi 411 412 /* Move %edi to the top of the entry stack */ 413 andl $(MASK_entry_stack), %edi 414 addl $(SIZEOF_entry_stack), %edi 415 416 /* Load top of task-stack into %edi */ 417 movl TSS_entry2task_stack(%edi), %edi 418 419 /* Special case - entry from kernel mode via entry stack */ 420#ifdef CONFIG_VM86 421 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS 422 movb PT_CS(%esp), %cl 423 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx 424#else 425 movl PT_CS(%esp), %ecx 426 andl $SEGMENT_RPL_MASK, %ecx 427#endif 428 cmpl $USER_RPL, %ecx 429 jb .Lentry_from_kernel_\@ 430 431 /* Bytes to copy */ 432 movl $PTREGS_SIZE, %ecx 433 434#ifdef CONFIG_VM86 435 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) 436 jz .Lcopy_pt_regs_\@ 437 438 /* 439 * Stack-frame contains 4 additional segment registers when 440 * coming from VM86 mode 441 */ 442 addl $(4 * 4), %ecx 443 444#endif 445.Lcopy_pt_regs_\@: 446 447 /* Allocate frame on task-stack */ 448 subl %ecx, %edi 449 450 /* Switch to task-stack */ 451 movl %edi, %esp 452 453 /* 454 * We are now on the task-stack and can safely copy over the 455 * stack-frame 456 */ 457 shrl $2, %ecx 458 cld 459 rep movsl 460 461 jmp .Lend_\@ 462 463.Lentry_from_kernel_\@: 464 465 /* 466 * This handles the case when we enter the kernel from 467 * kernel-mode and %esp points to the entry-stack. When this 468 * happens we need to switch to the task-stack to run C code, 469 * but switch back to the entry-stack again when we approach 470 * iret and return to the interrupted code-path. This usually 471 * happens when we hit an exception while restoring user-space 472 * segment registers on the way back to user-space or when the 473 * sysenter handler runs with eflags.tf set. 474 * 475 * When we switch to the task-stack here, we can't trust the 476 * contents of the entry-stack anymore, as the exception handler 477 * might be scheduled out or moved to another CPU. Therefore we 478 * copy the complete entry-stack to the task-stack and set a 479 * marker in the iret-frame (bit 31 of the CS dword) to detect 480 * what we've done on the iret path. 481 * 482 * On the iret path we copy everything back and switch to the 483 * entry-stack, so that the interrupted kernel code-path 484 * continues on the same stack it was interrupted with. 485 * 486 * Be aware that an NMI can happen anytime in this code. 487 * 488 * %esi: Entry-Stack pointer (same as %esp) 489 * %edi: Top of the task stack 490 * %eax: CR3 on kernel entry 491 */ 492 493 /* Calculate number of bytes on the entry stack in %ecx */ 494 movl %esi, %ecx 495 496 /* %ecx to the top of entry-stack */ 497 andl $(MASK_entry_stack), %ecx 498 addl $(SIZEOF_entry_stack), %ecx 499 500 /* Number of bytes on the entry stack to %ecx */ 501 sub %esi, %ecx 502 503 /* Mark stackframe as coming from entry stack */ 504 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 505 506 /* 507 * Test the cr3 used to enter the kernel and add a marker 508 * so that we can switch back to it before iret. 509 */ 510 testl $PTI_SWITCH_MASK, %eax 511 jz .Lcopy_pt_regs_\@ 512 orl $CS_FROM_USER_CR3, PT_CS(%esp) 513 514 /* 515 * %esi and %edi are unchanged, %ecx contains the number of 516 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate 517 * the stack-frame on task-stack and copy everything over 518 */ 519 jmp .Lcopy_pt_regs_\@ 520 521.Lend_\@: 522.endm 523 524/* 525 * Switch back from the kernel stack to the entry stack. 526 * 527 * The %esp register must point to pt_regs on the task stack. It will 528 * first calculate the size of the stack-frame to copy, depending on 529 * whether we return to VM86 mode or not. With that it uses 'rep movsl' 530 * to copy the contents of the stack over to the entry stack. 531 * 532 * We must be very careful here, as we can't trust the contents of the 533 * task-stack once we switched to the entry-stack. When an NMI happens 534 * while on the entry-stack, the NMI handler will switch back to the top 535 * of the task stack, overwriting our stack-frame we are about to copy. 536 * Therefore we switch the stack only after everything is copied over. 537 */ 538.macro SWITCH_TO_ENTRY_STACK 539 540 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV 541 542 /* Bytes to copy */ 543 movl $PTREGS_SIZE, %ecx 544 545#ifdef CONFIG_VM86 546 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) 547 jz .Lcopy_pt_regs_\@ 548 549 /* Additional 4 registers to copy when returning to VM86 mode */ 550 addl $(4 * 4), %ecx 551 552.Lcopy_pt_regs_\@: 553#endif 554 555 /* Initialize source and destination for movsl */ 556 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 557 subl %ecx, %edi 558 movl %esp, %esi 559 560 /* Save future stack pointer in %ebx */ 561 movl %edi, %ebx 562 563 /* Copy over the stack-frame */ 564 shrl $2, %ecx 565 cld 566 rep movsl 567 568 /* 569 * Switch to entry-stack - needs to happen after everything is 570 * copied because the NMI handler will overwrite the task-stack 571 * when on entry-stack 572 */ 573 movl %ebx, %esp 574 575.Lend_\@: 576.endm 577 578/* 579 * This macro handles the case when we return to kernel-mode on the iret 580 * path and have to switch back to the entry stack and/or user-cr3 581 * 582 * See the comments below the .Lentry_from_kernel_\@ label in the 583 * SWITCH_TO_KERNEL_STACK macro for more details. 584 */ 585.macro PARANOID_EXIT_TO_KERNEL_MODE 586 587 /* 588 * Test if we entered the kernel with the entry-stack. Most 589 * likely we did not, because this code only runs on the 590 * return-to-kernel path. 591 */ 592 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 593 jz .Lend_\@ 594 595 /* Unlikely slow-path */ 596 597 /* Clear marker from stack-frame */ 598 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) 599 600 /* Copy the remaining task-stack contents to entry-stack */ 601 movl %esp, %esi 602 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 603 604 /* Bytes on the task-stack to ecx */ 605 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx 606 subl %esi, %ecx 607 608 /* Allocate stack-frame on entry-stack */ 609 subl %ecx, %edi 610 611 /* 612 * Save future stack-pointer, we must not switch until the 613 * copy is done, otherwise the NMI handler could destroy the 614 * contents of the task-stack we are about to copy. 615 */ 616 movl %edi, %ebx 617 618 /* Do the copy */ 619 shrl $2, %ecx 620 cld 621 rep movsl 622 623 /* Safe to switch to entry-stack now */ 624 movl %ebx, %esp 625 626 /* 627 * We came from entry-stack and need to check if we also need to 628 * switch back to user cr3. 629 */ 630 testl $CS_FROM_USER_CR3, PT_CS(%esp) 631 jz .Lend_\@ 632 633 /* Clear marker from stack-frame */ 634 andl $(~CS_FROM_USER_CR3), PT_CS(%esp) 635 636 SWITCH_TO_USER_CR3 scratch_reg=%eax 637 638.Lend_\@: 639.endm 640/* 641 * %eax: prev task 642 * %edx: next task 643 */ 644ENTRY(__switch_to_asm) 645 /* 646 * Save callee-saved registers 647 * This must match the order in struct inactive_task_frame 648 */ 649 pushl %ebp 650 pushl %ebx 651 pushl %edi 652 pushl %esi 653 pushfl 654 655 /* switch stack */ 656 movl %esp, TASK_threadsp(%eax) 657 movl TASK_threadsp(%edx), %esp 658 659#ifdef CONFIG_STACKPROTECTOR 660 movl TASK_stack_canary(%edx), %ebx 661 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset 662#endif 663 664#ifdef CONFIG_RETPOLINE 665 /* 666 * When switching from a shallower to a deeper call stack 667 * the RSB may either underflow or use entries populated 668 * with userspace addresses. On CPUs where those concerns 669 * exist, overwrite the RSB with entries which capture 670 * speculative execution to prevent attack. 671 */ 672 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 673#endif 674 675 /* restore callee-saved registers */ 676 popfl 677 popl %esi 678 popl %edi 679 popl %ebx 680 popl %ebp 681 682 jmp __switch_to 683END(__switch_to_asm) 684 685/* 686 * The unwinder expects the last frame on the stack to always be at the same 687 * offset from the end of the page, which allows it to validate the stack. 688 * Calling schedule_tail() directly would break that convention because its an 689 * asmlinkage function so its argument has to be pushed on the stack. This 690 * wrapper creates a proper "end of stack" frame header before the call. 691 */ 692ENTRY(schedule_tail_wrapper) 693 FRAME_BEGIN 694 695 pushl %eax 696 call schedule_tail 697 popl %eax 698 699 FRAME_END 700 ret 701ENDPROC(schedule_tail_wrapper) 702/* 703 * A newly forked process directly context switches into this address. 704 * 705 * eax: prev task we switched from 706 * ebx: kernel thread func (NULL for user thread) 707 * edi: kernel thread arg 708 */ 709ENTRY(ret_from_fork) 710 call schedule_tail_wrapper 711 712 testl %ebx, %ebx 713 jnz 1f /* kernel threads are uncommon */ 714 7152: 716 /* When we fork, we trace the syscall return in the child, too. */ 717 movl %esp, %eax 718 call syscall_return_slowpath 719 STACKLEAK_ERASE 720 jmp restore_all 721 722 /* kernel thread */ 7231: movl %edi, %eax 724 CALL_NOSPEC %ebx 725 /* 726 * A kernel thread is allowed to return here after successfully 727 * calling do_execve(). Exit to userspace to complete the execve() 728 * syscall. 729 */ 730 movl $0, PT_EAX(%esp) 731 jmp 2b 732END(ret_from_fork) 733 734/* 735 * Return to user mode is not as complex as all this looks, 736 * but we want the default path for a system call return to 737 * go as quickly as possible which is why some of this is 738 * less clear than it otherwise should be. 739 */ 740 741 # userspace resumption stub bypassing syscall exit tracing 742 ALIGN 743ret_from_exception: 744 preempt_stop(CLBR_ANY) 745ret_from_intr: 746#ifdef CONFIG_VM86 747 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS 748 movb PT_CS(%esp), %al 749 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax 750#else 751 /* 752 * We can be coming here from child spawned by kernel_thread(). 753 */ 754 movl PT_CS(%esp), %eax 755 andl $SEGMENT_RPL_MASK, %eax 756#endif 757 cmpl $USER_RPL, %eax 758 jb resume_kernel # not returning to v8086 or userspace 759 760ENTRY(resume_userspace) 761 DISABLE_INTERRUPTS(CLBR_ANY) 762 TRACE_IRQS_OFF 763 movl %esp, %eax 764 call prepare_exit_to_usermode 765 jmp restore_all 766END(ret_from_exception) 767 768#ifdef CONFIG_PREEMPT 769ENTRY(resume_kernel) 770 DISABLE_INTERRUPTS(CLBR_ANY) 771 cmpl $0, PER_CPU_VAR(__preempt_count) 772 jnz restore_all_kernel 773 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ? 774 jz restore_all_kernel 775 call preempt_schedule_irq 776 jmp restore_all_kernel 777END(resume_kernel) 778#endif 779 780GLOBAL(__begin_SYSENTER_singlestep_region) 781/* 782 * All code from here through __end_SYSENTER_singlestep_region is subject 783 * to being single-stepped if a user program sets TF and executes SYSENTER. 784 * There is absolutely nothing that we can do to prevent this from happening 785 * (thanks Intel!). To keep our handling of this situation as simple as 786 * possible, we handle TF just like AC and NT, except that our #DB handler 787 * will ignore all of the single-step traps generated in this range. 788 */ 789 790#ifdef CONFIG_XEN_PV 791/* 792 * Xen doesn't set %esp to be precisely what the normal SYSENTER 793 * entry point expects, so fix it up before using the normal path. 794 */ 795ENTRY(xen_sysenter_target) 796 addl $5*4, %esp /* remove xen-provided frame */ 797 jmp .Lsysenter_past_esp 798#endif 799 800/* 801 * 32-bit SYSENTER entry. 802 * 803 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here 804 * if X86_FEATURE_SEP is available. This is the preferred system call 805 * entry on 32-bit systems. 806 * 807 * The SYSENTER instruction, in principle, should *only* occur in the 808 * vDSO. In practice, a small number of Android devices were shipped 809 * with a copy of Bionic that inlined a SYSENTER instruction. This 810 * never happened in any of Google's Bionic versions -- it only happened 811 * in a narrow range of Intel-provided versions. 812 * 813 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. 814 * IF and VM in RFLAGS are cleared (IOW: interrupts are off). 815 * SYSENTER does not save anything on the stack, 816 * and does not save old EIP (!!!), ESP, or EFLAGS. 817 * 818 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting 819 * user and/or vm86 state), we explicitly disable the SYSENTER 820 * instruction in vm86 mode by reprogramming the MSRs. 821 * 822 * Arguments: 823 * eax system call number 824 * ebx arg1 825 * ecx arg2 826 * edx arg3 827 * esi arg4 828 * edi arg5 829 * ebp user stack 830 * 0(%ebp) arg6 831 */ 832ENTRY(entry_SYSENTER_32) 833 /* 834 * On entry-stack with all userspace-regs live - save and 835 * restore eflags and %eax to use it as scratch-reg for the cr3 836 * switch. 837 */ 838 pushfl 839 pushl %eax 840 BUG_IF_WRONG_CR3 no_user_check=1 841 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 842 popl %eax 843 popfl 844 845 /* Stack empty again, switch to task stack */ 846 movl TSS_entry2task_stack(%esp), %esp 847 848.Lsysenter_past_esp: 849 pushl $__USER_DS /* pt_regs->ss */ 850 pushl %ebp /* pt_regs->sp (stashed in bp) */ 851 pushfl /* pt_regs->flags (except IF = 0) */ 852 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */ 853 pushl $__USER_CS /* pt_regs->cs */ 854 pushl $0 /* pt_regs->ip = 0 (placeholder) */ 855 pushl %eax /* pt_regs->orig_ax */ 856 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ 857 858 /* 859 * SYSENTER doesn't filter flags, so we need to clear NT, AC 860 * and TF ourselves. To save a few cycles, we can check whether 861 * either was set instead of doing an unconditional popfq. 862 * This needs to happen before enabling interrupts so that 863 * we don't get preempted with NT set. 864 * 865 * If TF is set, we will single-step all the way to here -- do_debug 866 * will ignore all the traps. (Yes, this is slow, but so is 867 * single-stepping in general. This allows us to avoid having 868 * a more complicated code to handle the case where a user program 869 * forces us to single-step through the SYSENTER entry code.) 870 * 871 * NB.: .Lsysenter_fix_flags is a label with the code under it moved 872 * out-of-line as an optimization: NT is unlikely to be set in the 873 * majority of the cases and instead of polluting the I$ unnecessarily, 874 * we're keeping that code behind a branch which will predict as 875 * not-taken and therefore its instructions won't be fetched. 876 */ 877 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) 878 jnz .Lsysenter_fix_flags 879.Lsysenter_flags_fixed: 880 881 /* 882 * User mode is traced as though IRQs are on, and SYSENTER 883 * turned them off. 884 */ 885 TRACE_IRQS_OFF 886 887 movl %esp, %eax 888 call do_fast_syscall_32 889 /* XEN PV guests always use IRET path */ 890 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \ 891 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV 892 893 STACKLEAK_ERASE 894 895/* Opportunistic SYSEXIT */ 896 TRACE_IRQS_ON /* User mode traces as IRQs on. */ 897 898 /* 899 * Setup entry stack - we keep the pointer in %eax and do the 900 * switch after almost all user-state is restored. 901 */ 902 903 /* Load entry stack pointer and allocate frame for eflags/eax */ 904 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax 905 subl $(2*4), %eax 906 907 /* Copy eflags and eax to entry stack */ 908 movl PT_EFLAGS(%esp), %edi 909 movl PT_EAX(%esp), %esi 910 movl %edi, (%eax) 911 movl %esi, 4(%eax) 912 913 /* Restore user registers and segments */ 914 movl PT_EIP(%esp), %edx /* pt_regs->ip */ 915 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 9161: mov PT_FS(%esp), %fs 917 PTGS_TO_GS 918 919 popl %ebx /* pt_regs->bx */ 920 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ 921 popl %esi /* pt_regs->si */ 922 popl %edi /* pt_regs->di */ 923 popl %ebp /* pt_regs->bp */ 924 925 /* Switch to entry stack */ 926 movl %eax, %esp 927 928 /* Now ready to switch the cr3 */ 929 SWITCH_TO_USER_CR3 scratch_reg=%eax 930 931 /* 932 * Restore all flags except IF. (We restore IF separately because 933 * STI gives a one-instruction window in which we won't be interrupted, 934 * whereas POPF does not.) 935 */ 936 btrl $X86_EFLAGS_IF_BIT, (%esp) 937 BUG_IF_WRONG_CR3 no_user_check=1 938 popfl 939 popl %eax 940 941 /* 942 * Return back to the vDSO, which will pop ecx and edx. 943 * Don't bother with DS and ES (they already contain __USER_DS). 944 */ 945 sti 946 sysexit 947 948.pushsection .fixup, "ax" 9492: movl $0, PT_FS(%esp) 950 jmp 1b 951.popsection 952 _ASM_EXTABLE(1b, 2b) 953 PTGS_TO_GS_EX 954 955.Lsysenter_fix_flags: 956 pushl $X86_EFLAGS_FIXED 957 popfl 958 jmp .Lsysenter_flags_fixed 959GLOBAL(__end_SYSENTER_singlestep_region) 960ENDPROC(entry_SYSENTER_32) 961 962/* 963 * 32-bit legacy system call entry. 964 * 965 * 32-bit x86 Linux system calls traditionally used the INT $0x80 966 * instruction. INT $0x80 lands here. 967 * 968 * This entry point can be used by any 32-bit perform system calls. 969 * Instances of INT $0x80 can be found inline in various programs and 970 * libraries. It is also used by the vDSO's __kernel_vsyscall 971 * fallback for hardware that doesn't support a faster entry method. 972 * Restarted 32-bit system calls also fall back to INT $0x80 973 * regardless of what instruction was originally used to do the system 974 * call. (64-bit programs can use INT $0x80 as well, but they can 975 * only run on 64-bit kernels and therefore land in 976 * entry_INT80_compat.) 977 * 978 * This is considered a slow path. It is not used by most libc 979 * implementations on modern hardware except during process startup. 980 * 981 * Arguments: 982 * eax system call number 983 * ebx arg1 984 * ecx arg2 985 * edx arg3 986 * esi arg4 987 * edi arg5 988 * ebp arg6 989 */ 990ENTRY(entry_INT80_32) 991 ASM_CLAC 992 pushl %eax /* pt_regs->orig_ax */ 993 994 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ 995 996 /* 997 * User mode is traced as though IRQs are on, and the interrupt gate 998 * turned them off. 999 */ 1000 TRACE_IRQS_OFF 1001 1002 movl %esp, %eax 1003 call do_int80_syscall_32 1004.Lsyscall_32_done: 1005 1006 STACKLEAK_ERASE 1007 1008restore_all: 1009 TRACE_IRQS_IRET 1010 SWITCH_TO_ENTRY_STACK 1011.Lrestore_all_notrace: 1012 CHECK_AND_APPLY_ESPFIX 1013.Lrestore_nocheck: 1014 /* Switch back to user CR3 */ 1015 SWITCH_TO_USER_CR3 scratch_reg=%eax 1016 1017 BUG_IF_WRONG_CR3 1018 1019 /* Restore user state */ 1020 RESTORE_REGS pop=4 # skip orig_eax/error_code 1021.Lirq_return: 1022 /* 1023 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 1024 * when returning from IPI handler and when returning from 1025 * scheduler to user-space. 1026 */ 1027 INTERRUPT_RETURN 1028 1029restore_all_kernel: 1030 TRACE_IRQS_IRET 1031 PARANOID_EXIT_TO_KERNEL_MODE 1032 BUG_IF_WRONG_CR3 1033 RESTORE_REGS 4 1034 jmp .Lirq_return 1035 1036.section .fixup, "ax" 1037ENTRY(iret_exc ) 1038 pushl $0 # no error code 1039 pushl $do_iret_error 1040 1041#ifdef CONFIG_DEBUG_ENTRY 1042 /* 1043 * The stack-frame here is the one that iret faulted on, so its a 1044 * return-to-user frame. We are on kernel-cr3 because we come here from 1045 * the fixup code. This confuses the CR3 checker, so switch to user-cr3 1046 * as the checker expects it. 1047 */ 1048 pushl %eax 1049 SWITCH_TO_USER_CR3 scratch_reg=%eax 1050 popl %eax 1051#endif 1052 1053 jmp common_exception 1054.previous 1055 _ASM_EXTABLE(.Lirq_return, iret_exc) 1056ENDPROC(entry_INT80_32) 1057 1058.macro FIXUP_ESPFIX_STACK 1059/* 1060 * Switch back for ESPFIX stack to the normal zerobased stack 1061 * 1062 * We can't call C functions using the ESPFIX stack. This code reads 1063 * the high word of the segment base from the GDT and swiches to the 1064 * normal stack and adjusts ESP with the matching offset. 1065 */ 1066#ifdef CONFIG_X86_ESPFIX32 1067 /* fixup the stack */ 1068 mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */ 1069 mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */ 1070 shl $16, %eax 1071 addl %esp, %eax /* the adjusted stack pointer */ 1072 pushl $__KERNEL_DS 1073 pushl %eax 1074 lss (%esp), %esp /* switch to the normal stack segment */ 1075#endif 1076.endm 1077.macro UNWIND_ESPFIX_STACK 1078#ifdef CONFIG_X86_ESPFIX32 1079 movl %ss, %eax 1080 /* see if on espfix stack */ 1081 cmpw $__ESPFIX_SS, %ax 1082 jne 27f 1083 movl $__KERNEL_DS, %eax 1084 movl %eax, %ds 1085 movl %eax, %es 1086 /* switch to normal stack */ 1087 FIXUP_ESPFIX_STACK 108827: 1089#endif 1090.endm 1091 1092/* 1093 * Build the entry stubs with some assembler magic. 1094 * We pack 1 stub into every 8-byte block. 1095 */ 1096 .align 8 1097ENTRY(irq_entries_start) 1098 vector=FIRST_EXTERNAL_VECTOR 1099 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) 1100 pushl $(~vector+0x80) /* Note: always in signed byte range */ 1101 vector=vector+1 1102 jmp common_interrupt 1103 .align 8 1104 .endr 1105END(irq_entries_start) 1106 1107/* 1108 * the CPU automatically disables interrupts when executing an IRQ vector, 1109 * so IRQ-flags tracing has to follow that: 1110 */ 1111 .p2align CONFIG_X86_L1_CACHE_SHIFT 1112common_interrupt: 1113 ASM_CLAC 1114 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ 1115 1116 SAVE_ALL switch_stacks=1 1117 ENCODE_FRAME_POINTER 1118 TRACE_IRQS_OFF 1119 movl %esp, %eax 1120 call do_IRQ 1121 jmp ret_from_intr 1122ENDPROC(common_interrupt) 1123 1124#define BUILD_INTERRUPT3(name, nr, fn) \ 1125ENTRY(name) \ 1126 ASM_CLAC; \ 1127 pushl $~(nr); \ 1128 SAVE_ALL switch_stacks=1; \ 1129 ENCODE_FRAME_POINTER; \ 1130 TRACE_IRQS_OFF \ 1131 movl %esp, %eax; \ 1132 call fn; \ 1133 jmp ret_from_intr; \ 1134ENDPROC(name) 1135 1136#define BUILD_INTERRUPT(name, nr) \ 1137 BUILD_INTERRUPT3(name, nr, smp_##name); \ 1138 1139/* The include is where all of the SMP etc. interrupts come from */ 1140#include <asm/entry_arch.h> 1141 1142ENTRY(coprocessor_error) 1143 ASM_CLAC 1144 pushl $0 1145 pushl $do_coprocessor_error 1146 jmp common_exception 1147END(coprocessor_error) 1148 1149ENTRY(simd_coprocessor_error) 1150 ASM_CLAC 1151 pushl $0 1152#ifdef CONFIG_X86_INVD_BUG 1153 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */ 1154 ALTERNATIVE "pushl $do_general_protection", \ 1155 "pushl $do_simd_coprocessor_error", \ 1156 X86_FEATURE_XMM 1157#else 1158 pushl $do_simd_coprocessor_error 1159#endif 1160 jmp common_exception 1161END(simd_coprocessor_error) 1162 1163ENTRY(device_not_available) 1164 ASM_CLAC 1165 pushl $-1 # mark this as an int 1166 pushl $do_device_not_available 1167 jmp common_exception 1168END(device_not_available) 1169 1170#ifdef CONFIG_PARAVIRT 1171ENTRY(native_iret) 1172 iret 1173 _ASM_EXTABLE(native_iret, iret_exc) 1174END(native_iret) 1175#endif 1176 1177ENTRY(overflow) 1178 ASM_CLAC 1179 pushl $0 1180 pushl $do_overflow 1181 jmp common_exception 1182END(overflow) 1183 1184ENTRY(bounds) 1185 ASM_CLAC 1186 pushl $0 1187 pushl $do_bounds 1188 jmp common_exception 1189END(bounds) 1190 1191ENTRY(invalid_op) 1192 ASM_CLAC 1193 pushl $0 1194 pushl $do_invalid_op 1195 jmp common_exception 1196END(invalid_op) 1197 1198ENTRY(coprocessor_segment_overrun) 1199 ASM_CLAC 1200 pushl $0 1201 pushl $do_coprocessor_segment_overrun 1202 jmp common_exception 1203END(coprocessor_segment_overrun) 1204 1205ENTRY(invalid_TSS) 1206 ASM_CLAC 1207 pushl $do_invalid_TSS 1208 jmp common_exception 1209END(invalid_TSS) 1210 1211ENTRY(segment_not_present) 1212 ASM_CLAC 1213 pushl $do_segment_not_present 1214 jmp common_exception 1215END(segment_not_present) 1216 1217ENTRY(stack_segment) 1218 ASM_CLAC 1219 pushl $do_stack_segment 1220 jmp common_exception 1221END(stack_segment) 1222 1223ENTRY(alignment_check) 1224 ASM_CLAC 1225 pushl $do_alignment_check 1226 jmp common_exception 1227END(alignment_check) 1228 1229ENTRY(divide_error) 1230 ASM_CLAC 1231 pushl $0 # no error code 1232 pushl $do_divide_error 1233 jmp common_exception 1234END(divide_error) 1235 1236#ifdef CONFIG_X86_MCE 1237ENTRY(machine_check) 1238 ASM_CLAC 1239 pushl $0 1240 pushl machine_check_vector 1241 jmp common_exception 1242END(machine_check) 1243#endif 1244 1245ENTRY(spurious_interrupt_bug) 1246 ASM_CLAC 1247 pushl $0 1248 pushl $do_spurious_interrupt_bug 1249 jmp common_exception 1250END(spurious_interrupt_bug) 1251 1252#ifdef CONFIG_XEN_PV 1253ENTRY(xen_hypervisor_callback) 1254 pushl $-1 /* orig_ax = -1 => not a system call */ 1255 SAVE_ALL 1256 ENCODE_FRAME_POINTER 1257 TRACE_IRQS_OFF 1258 1259 /* 1260 * Check to see if we got the event in the critical 1261 * region in xen_iret_direct, after we've reenabled 1262 * events and checked for pending events. This simulates 1263 * iret instruction's behaviour where it delivers a 1264 * pending interrupt when enabling interrupts: 1265 */ 1266 movl PT_EIP(%esp), %eax 1267 cmpl $xen_iret_start_crit, %eax 1268 jb 1f 1269 cmpl $xen_iret_end_crit, %eax 1270 jae 1f 1271 1272 jmp xen_iret_crit_fixup 1273 1274ENTRY(xen_do_upcall) 12751: mov %esp, %eax 1276 call xen_evtchn_do_upcall 1277#ifndef CONFIG_PREEMPT 1278 call xen_maybe_preempt_hcall 1279#endif 1280 jmp ret_from_intr 1281ENDPROC(xen_hypervisor_callback) 1282 1283/* 1284 * Hypervisor uses this for application faults while it executes. 1285 * We get here for two reasons: 1286 * 1. Fault while reloading DS, ES, FS or GS 1287 * 2. Fault while executing IRET 1288 * Category 1 we fix up by reattempting the load, and zeroing the segment 1289 * register if the load fails. 1290 * Category 2 we fix up by jumping to do_iret_error. We cannot use the 1291 * normal Linux return path in this case because if we use the IRET hypercall 1292 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 1293 * We distinguish between categories by maintaining a status value in EAX. 1294 */ 1295ENTRY(xen_failsafe_callback) 1296 pushl %eax 1297 movl $1, %eax 12981: mov 4(%esp), %ds 12992: mov 8(%esp), %es 13003: mov 12(%esp), %fs 13014: mov 16(%esp), %gs 1302 /* EAX == 0 => Category 1 (Bad segment) 1303 EAX != 0 => Category 2 (Bad IRET) */ 1304 testl %eax, %eax 1305 popl %eax 1306 lea 16(%esp), %esp 1307 jz 5f 1308 jmp iret_exc 13095: pushl $-1 /* orig_ax = -1 => not a system call */ 1310 SAVE_ALL 1311 ENCODE_FRAME_POINTER 1312 jmp ret_from_exception 1313 1314.section .fixup, "ax" 13156: xorl %eax, %eax 1316 movl %eax, 4(%esp) 1317 jmp 1b 13187: xorl %eax, %eax 1319 movl %eax, 8(%esp) 1320 jmp 2b 13218: xorl %eax, %eax 1322 movl %eax, 12(%esp) 1323 jmp 3b 13249: xorl %eax, %eax 1325 movl %eax, 16(%esp) 1326 jmp 4b 1327.previous 1328 _ASM_EXTABLE(1b, 6b) 1329 _ASM_EXTABLE(2b, 7b) 1330 _ASM_EXTABLE(3b, 8b) 1331 _ASM_EXTABLE(4b, 9b) 1332ENDPROC(xen_failsafe_callback) 1333#endif /* CONFIG_XEN_PV */ 1334 1335#ifdef CONFIG_XEN_PVHVM 1336BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR, 1337 xen_evtchn_do_upcall) 1338#endif 1339 1340 1341#if IS_ENABLED(CONFIG_HYPERV) 1342 1343BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR, 1344 hyperv_vector_handler) 1345 1346BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR, 1347 hyperv_reenlightenment_intr) 1348 1349BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR, 1350 hv_stimer0_vector_handler) 1351 1352#endif /* CONFIG_HYPERV */ 1353 1354ENTRY(page_fault) 1355 ASM_CLAC 1356 pushl $do_page_fault 1357 ALIGN 1358 jmp common_exception 1359END(page_fault) 1360 1361common_exception: 1362 /* the function address is in %gs's slot on the stack */ 1363 pushl %fs 1364 pushl %es 1365 pushl %ds 1366 pushl %eax 1367 movl $(__USER_DS), %eax 1368 movl %eax, %ds 1369 movl %eax, %es 1370 movl $(__KERNEL_PERCPU), %eax 1371 movl %eax, %fs 1372 pushl %ebp 1373 pushl %edi 1374 pushl %esi 1375 pushl %edx 1376 pushl %ecx 1377 pushl %ebx 1378 SWITCH_TO_KERNEL_STACK 1379 ENCODE_FRAME_POINTER 1380 cld 1381 UNWIND_ESPFIX_STACK 1382 GS_TO_REG %ecx 1383 movl PT_GS(%esp), %edi # get the function address 1384 movl PT_ORIG_EAX(%esp), %edx # get the error code 1385 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart 1386 REG_TO_PTGS %ecx 1387 SET_KERNEL_GS %ecx 1388 TRACE_IRQS_OFF 1389 movl %esp, %eax # pt_regs pointer 1390 CALL_NOSPEC %edi 1391 jmp ret_from_exception 1392END(common_exception) 1393 1394ENTRY(debug) 1395 /* 1396 * Entry from sysenter is now handled in common_exception 1397 */ 1398 ASM_CLAC 1399 pushl $-1 # mark this as an int 1400 pushl $do_debug 1401 jmp common_exception 1402END(debug) 1403 1404/* 1405 * NMI is doubly nasty. It can happen on the first instruction of 1406 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning 1407 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 1408 * switched stacks. We handle both conditions by simply checking whether we 1409 * interrupted kernel code running on the SYSENTER stack. 1410 */ 1411ENTRY(nmi) 1412 ASM_CLAC 1413 1414#ifdef CONFIG_X86_ESPFIX32 1415 pushl %eax 1416 movl %ss, %eax 1417 cmpw $__ESPFIX_SS, %ax 1418 popl %eax 1419 je .Lnmi_espfix_stack 1420#endif 1421 1422 pushl %eax # pt_regs->orig_ax 1423 SAVE_ALL_NMI cr3_reg=%edi 1424 ENCODE_FRAME_POINTER 1425 xorl %edx, %edx # zero error code 1426 movl %esp, %eax # pt_regs pointer 1427 1428 /* Are we currently on the SYSENTER stack? */ 1429 movl PER_CPU_VAR(cpu_entry_area), %ecx 1430 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 1431 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ 1432 cmpl $SIZEOF_entry_stack, %ecx 1433 jb .Lnmi_from_sysenter_stack 1434 1435 /* Not on SYSENTER stack. */ 1436 call do_nmi 1437 jmp .Lnmi_return 1438 1439.Lnmi_from_sysenter_stack: 1440 /* 1441 * We're on the SYSENTER stack. Switch off. No one (not even debug) 1442 * is using the thread stack right now, so it's safe for us to use it. 1443 */ 1444 movl %esp, %ebx 1445 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp 1446 call do_nmi 1447 movl %ebx, %esp 1448 1449.Lnmi_return: 1450 CHECK_AND_APPLY_ESPFIX 1451 RESTORE_ALL_NMI cr3_reg=%edi pop=4 1452 jmp .Lirq_return 1453 1454#ifdef CONFIG_X86_ESPFIX32 1455.Lnmi_espfix_stack: 1456 /* 1457 * create the pointer to lss back 1458 */ 1459 pushl %ss 1460 pushl %esp 1461 addl $4, (%esp) 1462 /* copy the iret frame of 12 bytes */ 1463 .rept 3 1464 pushl 16(%esp) 1465 .endr 1466 pushl %eax 1467 SAVE_ALL_NMI cr3_reg=%edi 1468 ENCODE_FRAME_POINTER 1469 FIXUP_ESPFIX_STACK # %eax == %esp 1470 xorl %edx, %edx # zero error code 1471 call do_nmi 1472 RESTORE_ALL_NMI cr3_reg=%edi 1473 lss 12+4(%esp), %esp # back to espfix stack 1474 jmp .Lirq_return 1475#endif 1476END(nmi) 1477 1478ENTRY(int3) 1479 ASM_CLAC 1480 pushl $-1 # mark this as an int 1481 1482 SAVE_ALL switch_stacks=1 1483 ENCODE_FRAME_POINTER 1484 TRACE_IRQS_OFF 1485 xorl %edx, %edx # zero error code 1486 movl %esp, %eax # pt_regs pointer 1487 call do_int3 1488 jmp ret_from_exception 1489END(int3) 1490 1491ENTRY(general_protection) 1492 pushl $do_general_protection 1493 jmp common_exception 1494END(general_protection) 1495 1496#ifdef CONFIG_KVM_GUEST 1497ENTRY(async_page_fault) 1498 ASM_CLAC 1499 pushl $do_async_page_fault 1500 jmp common_exception 1501END(async_page_fault) 1502#endif 1503 1504ENTRY(rewind_stack_do_exit) 1505 /* Prevent any naive code from trying to unwind to our caller. */ 1506 xorl %ebp, %ebp 1507 1508 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi 1509 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp 1510 1511 call do_exit 15121: jmp 1b 1513END(rewind_stack_do_exit) 1514